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PREFACE 

This book presents material fundamental to a modern treatment of vibrations, placing 
the emphasis on analytical developments and computational solutions. It is intended 
as a textbook for a number of courses on vibrations ranging from the junior level to 
the second-year graduate level; the book can also serve as a reference for practicing 
engineers. Certain material from pertinent disciplines was included to render the book 
self-contained, and hence suitable for self-study. Consistent with this, the book begins 
with very elementary material and raises the level gradually. A large number of exam- 
ples and homework problems, as well as computer programs written in MATLAB', are 
provided. 

The following review is designed to help the reader decide how best to use the 
book: 
Chapter 1. Concepts from Vibrations-Sections 1.1-1.6 are devoted to a review of ba- 
sic concepts from Newtonian mechanics. Issues concerning the modeling of mechanical 
systems, from components to assembled systems, are discussed in Secs. 1.7 to 1.9, and 
the differential equations of motion for such systems are derived in Sec. 1.10. Sections 
1.11 and 1.12 are concerned with the nature of the excitations, the system characteristics 
and the nature of the response; the concept of linearity and the closely related principle 
of superposition are discussed. Finally, in Sec. 1.13, the concepts of equilibrium points 
and motions about equilibrium points are introduced. 

The whole chapter is suitable for a first course on vibrations at the undergraduate 
level, but Secs. 1.1-1.6 may be omitted from a first course at the graduate level. 
Chapter 2. Response of Single-Degree-of-Freedom Systems to Initial Excitations- 
This chapter is concerned with the free vibration of undamped, viscously damped and 
Coulomb damped systems to initial displacements and velocities. It includes a MATLAB 
program for plotting the response of viscously damped systems. 

This chapter is essential to a first course on vibrations at any level. 
Chapter 3. Response of Single-Degree-of-Freedom Systems to Harmonic and Peri- 
odic Excitations-In Secs. 3. l and 3.2, the response to harmonic excitations is repre- 
sented in the frequency domain, through magnitude and phase angle frequency response 
plots. Sections 3.3-3.7 discuss applications such as systems with rotating eccentric 
masses, systems with harmonically moving support, vibration isolation and vibration 
measuring instruments. In Sec. 3.8, structural damping is treated by means of an anal- 
ogy with viscous damping. Finally, in Sec. 3.9, the approach to the response of systems 
to harmonic excitations is extended to periodic excitations through the use of Fourier 
series. A MATLAB program generating frequency response plots is provided in Sec. 
3.10. 

The material in Secs. 3.1-3.6 is to be included in a first course on vibrations, but 
the material in Secs. 3.7-3.9 is optional. 

'MATLAB @ is a registered trademark of The Mathworks, Inc. 



Chapter 4. Response of Single-Degree-of-Freedom Systems to Nonperiodic Exci- 
tations-Sections 4.1-4.3 introduce the unit impulse, unit step function and unit ramp 
function and the respective response. Then, regarding arbitrary excitations as a super- 
position of impulses of varying magnitude, the system response is represented in Sec. 
4.4 as a corresponding superposition of impulse responses, becoming the convolution 
integral in the limit. Section 4.5 discusses the concept of shock spectrum. Sections 4.6 
and 4.7 are devoted to the system response by the Laplace transformation; the concept 
of transfer function is introduced. Next, in Sec. 4.8, the response is obtained by the 
state transition matrix. Numerical solutions for the response are carried out in discrete 
time by the convolution sum in Sec. 4.9 and by the discrete-time transition matrix in 
Sec. 4.10. A MATLAB program for the response using the convolution sum is given 
in Sec. 4.11 and another program using the discrete-time transition matrix is given in 
Sec. 4.12. 

Sections 4.1-4.4 are to be included in a first course on vibrations at all levels. 
Section 4.5 is optional, but recommended for a design-oriented course. Sections 4.6- 
4.10 are optional for a junior course, recommended for a senior course and to be included 
in a first course at the graduate level. 
Chapter 5. Two-Degree-of-Freedom Systems-Sections 5.1-5.6 present in a simple 
fashion such topics as the eigenvalue problem, natural modes, response to initial exci- 
tations, coupling, orthogonality of modes and modal analysis. Section 5.7 is concerned 
with the beat phenomenon, Sec. 5.8 derives the response to harmonic excitations and 
Sec. 5.9 discusses vibration absorbers. The response to nonperiodic excitations is carried 
out in continuous time in Sec. 5.10 and in discrete time in Sec. 5.1 1. Three MATLAB 
programs are included, the first in Sec. 5.12 for the response to initial excitations, the 
second in Sec. 5.13 for producing frequency response plots and the third in Sec. 5.14 for 
the response to a rectangular pulse by the convolution sum. 

The material belongs in an undergraduate course on vibrations, but is not essential 
to a graduate course, unless a gradual transition to multi-degree-of-freedom systems is 
deemed desirable. 
Chapter 6. Elements of Analytical Dynamics-Sections 6.1-6.3 provide the prereq- 
uisite material for the development in Sec. 6.4 of the extended Hamilton principle, which 
permits the derivation of all the equations of motion. In Sec. 6.5, the principle is used 
to produce a generic form of the equations of motion, namely, Lagrange's equations. 

This chapter is suitable for a senior course on vibrations and is a virtual necessity 
for a first-year graduate course. 
Chapter 7. Multi-Degree-of-Freedom System-Sections 7.1-7.4 are concerned with 
the formulation of the equations of motion for linear and linearized systems, as well 
as with some basic properties of such systems. In Secs. 7.5-7.7, some of the concepts 
discussed in Ch. 5, such as linear transformations, coupling, the eigenvalue problem, 
natural modes and orthogonality of modes, are presented in a more compact manner 
by means of matrix algebra. Then, in Sec. 7.8, the question of rigid-body motions is 
addressed. In Secs. 7.9 and 7.10, modal analysis is first developed in a rigorous manner 
and then used to obtain the response to initial excitations. Certain issues associated with 
the eigenvalue problem are discussed in Secs. 7.1 1 and 7.12. Section 7.13 is devoted 



to Rayleigh's quotient, a concept of great importance in vibrations. The response to 
external excitations is obtained in continuous time in Secs. 7.14 and 7.15 and in discrete 
time in Sec. 7.17. MATLAB programs are provided as follows: the solution of the 
eigenvalue problem for conservative systems and for nonconservative systems, both in 
Sec. 7.18, the response to initial excitations in Sec. 7.19 and the response to external 
excitations by the discrete-time transition matrix in Sec. 7.20. 

This chapter, in full or in part, is suitable for a senior course on vibrations, and 
should be considered as an alternative to Ch. 5. The material rightfully belongs in a 
first-year graduate course. 
Chapter 8. Distributed-Parameter Systems: Exact Solutions-In Sec. 8.1, the equa- 
tions of motion for a set of lumped masses on a string are first derived by the Newtonian 
approach and then transformed in the limit into a boundary-value problem for a dis- 
tributed string. The same boundary-value problem is derived in Sec. 8.2 by the extended 
Hamilton principle. In Sec. 8.3, the boundary-value problem for a beam in bending is 
derived by both the Newtonian approach and the extended Hamilton principle. Sections 
8.4-8.8 are devoted to the differential eigenvalue problem and its solution. Rayleigh's 
quotient is used in Sec. 8.8 to develop the variational approach to the differential eigen- 
value problem. The response to initial excitations and external excitations by modal 
analysis is considered in Secs. 8.9 and 8.10, respectively. A modal solution to the prob- 
lem of a rod subjected to a boundary force is obtained in Sec. 8.1 1. The wave equation 
and its solution in terms of traveling waves and standing waves are introduced in Sec. 
8.12, and in Sec. 8.13 it is shown that a traveling wave solution matches the standing 
waves solution obtained in Sec. 8.11. 

Sections 8.1-8.5,8.9 and 8.10 are suitable for a senior course or a first-year graduate 
course on vibrations. The balance of the chapter belongs in a second-year graduate 
course. 
Chapter 9. Distributed-Parameter Systems: Approximate Methods-Sections 9.1- 
9.4 discuss four lumped-parameter methods, including Holzer's method and Myklestad's 
method. The balance of the chapter is concerned with series discretization techniques. 
Section 9.5 presents Rayleigh's principle, which is the basis for the variational approach 
to the differential eigenvalue problem identified with the Rayleigh-Ritz method, as ex- 
pounded in Secs. 9.6-9.8. Sections 9.9 and 9.10 consider two weighted residuals meth- 
ods, Galerkin's method and the collocation method, respectively. A MATLAB program 
for the solution of the eigenvalue problem for a nonuniform rod by the Rayleigh-Ritz 
method is provided in Sec. 9.1 1. 

The material is suitable for a senior or a first-year graduate course on vibrations, 
with the exception of the second half of Sec. 9.6 and the entire Sec. 9.7. which are more 
suitable for a second-year graduate course. 
Chapter 10. The Finite Element Method-Section 10.1 presents the formalism of the 
finite element method. Sections 10.2 and 10.3 consider strings, rods and shafts in terms 
of linear, quadratic and cubic interpolation functions. Then, Sec. 10.4 discusses beams 
in bending. Estimates of errors incurred in using the finite element method are provided 
in Sec. 10.5. In Secs. 10.6 and 10.7, trusses and frames are treated as assemblages of 
rods and beams, respectively. Then, system response by the finite element method is 
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discussed in Sec. 10.8. A MATLAB program for the solution of the eigenvalue problem 
for a nonuniform pinned-pinned beam is provided in Sec. 10.9. 

This chapter is suitable for a senior or a first-year graduate course on vibrations, 
with the exception of Sec. 10.3, which is optional, and Secs. 10.6 and 10.7, which are 
more suitable for a second-year graduate course. 
Chapter 11. Nonlinear Oscillations-Sections 11.1-1 1.3 are concerned with qualita- 
tive aspects of nonlinear systems, such as equilibrium points, stability of motion about 
equilibrium, trajectories in the neighborhood of equilibrium and motions in the large. 
Section 11.4 discusses the van der Pol oscillator and the concept of limit cycle. Sections 
11.5-1 1.7 introduce the perturbation approach and how to obtain periodic perturbation 
solutions by Lindstedt's method. Using the perturbation approach, the jump phenomenon 
is discussed in Sec. 11.8, subhannonic solutions in Sec. 11.9 and linear systems with 
time-dependent coefficients in Sec. 11.10. Section 11.11 is devoted to numerical inte- 
gration of differential equations of motion by the Runge-Kutta methods. A MATLAB 
program for plotting trajectories for the van der Pol oscillator is provided in Sec. 11.12. 

The material is suitable for a senior or a graduate course on nonlinear vibrations. 
Chapter 12. Random Vibrations-Sections 12.1-12.3 introduce such concepts as ran- 
dom process, stationarity, ergodicity, mean value, autocorrelation function, mean square 
value and standard deviation. Sections 12.4 and 12.5 are concerned with probability 
density functions. Properties of the autocorrelation function are discussed in Sec. 12.6. 
Sections 12.7-12.1 1 are devoted to the response to random excitations using frequency 
domain techniques. Sections 12.12-12.15 are concerned with joint properties of two 
random processes. The response of multi-degree-of-freedom systems and distributed 
systems to random excitations is discussed in Secs. 12.16 and 12.17, respectively. 

The material is suitable for a graduate course on random vibrations. 
Appendix A. Fourier Series-The material is concerned with the representation of 
periodic functions by Fourier series. Both the real form and the complex form of Fourier 
series are discussed. 
Appendix B. Laplace Transformation-The appendix contains an introduction to the 
Laplace transformation and its use to solve ordinary differential equations with constant 
coefficients, such as those encountered in vibrations. 
Appendix C. Linear Algebra-The appendix represents an introduction to matrices, 
vector spaces and linear transformations. The material is indispensable to an efficient 
and rigorous treatment of multi-degree-of-freedom systems. 

In recent years, computational algorithms of interest in vibrations have matured to 
the extent that they are now standard. Examples of these are the QR method for solving 
algebraic eigenvalue problems and the method based on the discrete-time transition ma- 
trix for computing the response of linear systems. At the same time, computers capable 
of handling such algorithms have become ubiquitous. Moreover, the software for the 
implementation of these algorithms has become easier to use. In this regard, MATLAB 
must be considered the software of choice. It is quite intuitive, it can be used interactively 
and it possesses an inventory of routines, referred to as functions, which simplify the 
task of programming even more. This book contains 14 MATLAB programs solving 
typical vibrations problems; they have been written using Version 5.3 of MATLAB. The 



programs can be used as they are, or they can be modified as needed, particularly the 
data. In addition, a number of MATLAB problems are included. Further information 
concerning MATLAB can be obtained from: 

The Mathworks, Inc. 
3 Apple Hill Drive 
Natick, MA 01760 

It should be stressed that the book is independent of the MATLAB material and 
can be used with or without it. Of course, the MATLAB material is designed to enhance 
the study of vibrations, and its use is highly recommended. 

The author wishes to express his appreciation to William J. Atherton, Cleveland 
State University; Amr M. Baz, University of Maryland; Itzhak Green, Georgia Institute 
of Technology; Robert H. Lipp, University of New Orleans; Hayrani Ali OZ, Ohio State 
University; and Alan B. Palazzolo, Texas A&M University, for their extensive review of 
the manuscript and their many useful suggestions. He also wishes to thank Timothy J. 
Stemple, Virginia Polytechnic Institute and State University, for producing the computer- 
generated figures and for reviewing an early version of the manuscript. Special thanks 
are due to 1lhan Tuzcu, Virginia Polytechnic Institute and State University, for his major 
role in developing the MATLAB programs, as well as for his thorough review of the 
manuscript. Last but not least, the author would like to thank Norma B. Guynn for 
typing the book essentially as it appears in its final form; the book places in evidence 
the excellent quality of her work. 

Leonard Meirovitch 
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INTRODUCTION 
D.ynamics is the branch of physics concerned with the motion of bodies under the action 
of forces. For the problems of interest in this text, relativistic effects are extremely small, 
so that the motions are governed by the laws of Newtonian mechanics. Vibrations, or 
oscillations, can be regarded as a subset of dynamics in which a system subjected to 
restoring forces swings back and forth about an equilibrium position, where a system is 
defined as an assemblage of parts acting together as a whole. The restoring forces are 
due to elasticity, or due to gravity. 

For the most part, engineering systems are so complex that their response to stimuli 
is difficult to predict. Yet, the ability to predict system behavior is essential. In such cases, 
it is necessary to construct a simplified model acting as a surrogate for the actual system. 
The process consists of identifying constituent components, determining the dynamic 
characteristics of the individual components, perhaps experimentally, and assembling the 
components into a model representative of the whole system. Models are not unique, 
and for a given system it is possible to construct a number of models. The choice of a 
model depends on its use and on the system mass and stiffness properties, referred to as 
parameters. For example, in preliminary design, a simple model predicting the system 
behavior reasonably well may suffice. On the other hand, in advanced stages of design, a 
very refined model capable of predicting accurately the behavior of the actual system may 
be necessary. Many systems can be simulated by models whose behavior is described 
by a single ordinary differential equation of motion, i.e., by single-degree-of-freedom 
models. This is the case when the model consists of a single mass undergoing translation 
in one direction, or rotation about one axis. Many other systems must be modeled by 
an array of masses connected elastically. The behavior of such models is described by a 
set of ordinary differential equations, and are known as multi-degree-of-freedom models. 
They are commonly referred to as discrete systems, or lumped-parameter systems. Then, 
there are systems with distributed mass and stiffness properties. They can be represented 
by lumped-parameter models, or by distributed-parameter models, where the behavior 
of the latter is described by partial differential equations. Occasionally, we encounter 
systems with both lumped and distributed properties. Modeling is an important part of 
engineering vibrations. 

The response of a system to given excitations depends on the system character- 
istics, as reflected in the differential equations of motion. If the response increases 
proportionally to the excitation, then the system is said to be linear; otherwise it is non- 
linear. Linearity is of paramount importance to a system, as it dictates the approach to 
the solution of the equations of motion. Indeed, in the case of linear systems theprinci- 
ple of superposition applies, which can simplify the solution greatly. The superposition 
principle does not apply to nonlinear systems. 

Different types of excitations call for different methods of solution, particularly 
the external excitations. By virtue of the superposition principle, the response of linear 
systems to initial excitations and to external excitations can be obtained separately and 
then combined linearly. Because for all practical purposes the response to initial excita- 
tions decays with time, it is referred to as transient. In the case of sinusoidal excitations, 
it is more advantageous to treat the response in the frequency domain, through frequency 
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response plots, rather than in the time domain. Periodic excitations can be represented as 
a combination of sinusoidal functions by means of Fourier series, and the response can be 
obtained as a corresponding combination of sinusoidal responses. Because in both cases 
time plays no particular role, the response to sinusoidal excitations and the response to 
periodic excitations are said to be steady state. Arbitrary excitations can be regarded as 
superpositions of impulses of varying magnitude, so that the response can be obtained as 
corresponding superpositions of impulse responses. The Laplace transformation method 
yields the same results, perhaps in a less intuitive manner. In linear system theory, the 
most common approach to the response is to cast the equations of motion in state form 
and then solve them by a technique based on the state transition matrix. For the most 
part, the response to arbitrary excitations must be obtained numerically on a computer, 
which implies discrete-time processing. Random excitations require entirely different 
approaches, and the response can be obtained in terms of statistical quantities. 

Although the preceding discussion applies to all types of models, multi-degree- 
of-freedom systems and distributed-parameter systems require further elaboration. The 
equations of motion for multi-degree-of-freedom systems are more efficiently derived 
by means of Lagrange's equations than by direct application of Newton's second law. 
Linear, or linearized equations of motion are best expressed in matrix form. Because 
these are simultaneous equations, the coefficient matrices, albeit symmetric, are fully 
populated. Their solution can only be carried out by rendering the equations independent 
by means of modal analysis. This involves the solution of an algebraic eigenvalue 
problem and an orthogonal transformation using the modal matrix, all made possible 
by developments in linear algebra. The independent modal equations resemble those 
for a single-degree-of-freedom and can be solved accordingly. Although different in 
appearance, partial differential equations describing distributed-parameter systems can 
be solved in an analogous manner, the primary difference being that they require the 
solution of a differential eigenvalue problem instead of an algebraic one. 

For the most part, differential eigenvalue problems do not admit analytical so- 
lutions, so that they must be solved approximately, which amounts to reducing them 
to algebraic eigenvalue problems. This implies the construction of a discrete model 
approximating the distributed-parameter system, which can be done through parameter 
lumping or series discretization. Among series discretization methods, we include the 
Rayleigh-Ritz method, the Galerkin method and the finite element method, the latter 
being perhaps the most important development in structural dynamics in the last half a 
century. 

The fact that the superposition principle does not hold for nonlinear systems causes 
difficulties in producing solutions. If the interest lies only in qualitative stability char- 
acteristics, rather than in the system response, then such information can be obtained 
by linearizing the equations of motion about a given equilibrium point, solving the cor- 
responding eigenvalue problem and reaching stability conclusions from the nature of 
the eigenvalues. For systems with small nonlinearities, more quantitative results can be 
obtained by means of perturbation techniques, which pennit solutions using once again 
methods of linear analysis. For nonlinearities of arbitrary magnitude, solutions can only 
be obtained numerically on a computer. To this end, the Runge-Kutta methods are quite 
effective. 
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Difficulties of a different kind arise in the case of random excitations. The response 
to random excitations is also random and can only be defined in terms of statistical 
quantities. This situation is much better for Gaussian random processes, for which the 
probability that the response will remain below a certain value can be defined by means 
of two statistics alone: the mean value and the standard deviation. The latter is the more 
important one and can be computed working in the frequency domain using Fourier 
transforms, rather than in the time domain. 

Finally, it should be noted that the numerical work involved in this vibrations study 
can be programmed for computer evaluation using MATLAB software. In fact, this book 
contains MATLAB programs for a variety of vibrations problems, which can be regarded 
as the foundation for a vibrations toolbox. 



CHAPTER 

CONCEPTS FROM VIBRATIONS 

This text is concerned with systems executing oscillatory motion, where a system is 
defined as an aggregation of components acting together as a whole. For mechanical 
systems the oscillatory motion is generally referred to as vibration. The basic question in 
vibrations is how systems respond to various stimuli, or excitations. As a preliminary to 
our vibrations study, in this chapter we consider such topics as fundamental concepts from 
Newtonian mechanics, component modeling, system modeling, derivation of system 
differential equations of motion, general excitation and response characteristics and 
motion stability. 

The derivation of the equations of motion can be carried out by means of methods of 
Newtonian mechanics or by methods of analytical dynamics, also known as Lagrangian 
mechanics. Newtonian mechanics uses such concepts as force, momentum, velocity and 
acceleration, all of which are vector quantities. For this reason, Newtonian mechanics 
is referred to as vectorial mechanics. The basic tool in deriving the equations of motion 
is the free-body diagram, namely, a diagram for each mass in the system showing all the 
forces acting upon the mass. Newtonian mechanics is physical in nature and considers 
constraints explicitly. By contrast, analytical dynamics is more abstract in nature and 
eliminates constraints automatically. We discuss Newtonian mechanics in this chapter 
and analytical dynamics in Ch. 6. 

A model consists of a collection of either individual components, or groups of 
components, or both. Before modeling can be carried out, it is necessary to identify 
and characterize the various types of system components, which implies establishing the 
excitation-response relation, or input-output relation, for individual components or for 
groups of components, either from experience or through testing. 

1 
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The task of system modeling amounts to devising a simplified model capable of 
simulating the behavior of an actual physical system. For vibrating systems, the behavior 
is governed by equations of motion. Derivation of explicit equations of motion consists 
of applying the laws of physics to generate a mathematical formulation relating the 
response to the excitation, or the output to the input. The formulation is commonly in 
the form of differential equations obtained by methods presented in the beginning of this 
chapter. 

To derive the system response, it is necessary to solve the equations of motion. 
This is by far the largest part of the study of vibrations, which can be traced to the fact 
that there is a large variety of excitations, and each type of excitations tends to require a 
different approach to the solution. We begin this study in Ch. 2. 

In this chapter, we begin with a brief review of Newtonian mechanics and then 
discuss the excitation-response characteristics of various system components with a 
view to the derivation of the differential equations governing the behavior of vibrating 
systems. Next, we examine the nature of the excitations and response in a general way, 
and finally introduce such concepts as equilibrium positions and stability of motion about 
equilibrium. 

1.1 NEWTON'S LAWS 

Newton's laws were formulated for single particles and can be extended to systems of 
particles and rigid bodies. Actually, the laws can be extended to elastic bodies as well, 
as shown later in this text. Newton's laws can be stated as follows: 

First Law. Ifthere are no forces acting upon a particle, then the particle will 
move in n straight line with constant velocity. 
The first law states mathematically that, if F = 0, then v = constant, where F is the force 
vector and v the velocity vector measured relative to a set of inertial axes xyz (Fig. 1 .I), 
defined as a reference frame either at rest or moving with uniform velocity relative to an 
average position of the "distant stars." 

Second Law. A particle acted upon by a force moves so that the force vector is 
equal to the time rate of change of the linear momentum vector. 
The mathematical expression of the second law is 

where 

is the linear momentum vector, in which m is the mass of the particle, a positive quantity 
whose value does not depend on time, and r is the position vector of m relative to the 
inertial space xyz.  If we insert Eq. (1.2) into Eq. (1.1), we obtain Newton's second law 
in its most familiar form 

in which a is the acceleration vector of the particle relative to the inertial space. Note 
that all hnematical quantities measured relative to an inertial space are referred to as 
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FIGURE 1.1 

i 
Motion of a particle relative to an inertial reference frame 

absolute. Equation (1. I), or Eq. (1.3), represents the equations of motion for particle m. 
In SI units, the unit of mass is the kilogram (kg) and the unit of force is the newton (N). 
The kilogram is a basic unit and the newton is a derived unit, 1 N = 1 kg. m/s2. 

Third Law. When two particles exert forces upon one anothe~ the forces lie along 
the line joining the particles and the corresponding force vectors are the negative of each 
other: 
This law is also known as the law of action and reaction. Denoting by f,, the force 
exerted by particle j on particle i ,  the law can be stated mathematically as 

where the vectors f,, and f,, are clearly collinear. Electromagnetic forces are exceptions 
to this law, but they are of no concern in this text. 

Note that the first law, known as Galilee's inertial law, is a special case of the 
second law in which the force F is zero. In this case, we conclude from Eq. (1.1) that the 
linear momentum p, and hence the velocity v, is constant. Such a constant quantity is 
the result of the integration of Eq. (1. I), for which reason it is referred to as an integral of 
motion. The statement p = constant is commonly known as the conservation of linear 
momentum. 

It should be pointed out that, in using Newton's second law to derive the equations 
of motion, it is necessary to draw a free-body diagram, which is a diagram of the isolated 
particle m showing all forces acting upon m. If in the process of isolating the particle 
it becomes necessary to cut through internal forces, then these forces acquire the role 
of externally applied forces. In this regard, it must be made clear that the symbol F in 
Eq. (1.1), or Eq. (1.3), stands for the resultant of all forces acting on m. 

Example 1.1. A simple pendulum conslsts of a bob of mass rn suspended on a string of 
length L (Fig. 1.2a). Derive the differential equation for the angular displacement B( t )  of 
the pendulum, as well as an expression for the tension T in the string. 
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FIGURE 1.2 
a. Simple pendulum, b. Free-body diagram 

The equation of motion and the tension T can be obtained conveniently by means of 
Newton's second law in terms of radial and transverse components. Figure 1.2b shows the 
necessary free-body diagram, in which the tension T, an internal force, plays the role of an 
externally applied force. The only other force is the weight mg, which in the context of this 
problem can be regarded as an applied force. From Fig. 1.2b, we can write the equations 
of motion in terms of the radial and transverse components r and .Q as follows: 

Recognizing that r = L = constant, so that i = i: = 0, and recalling from kinematics the 
expressions of the radial and transverse components of the acceleration (Ref. 11, Sec. 2.3), 
we can write 

Inserting the second of Eqs. (b) into the second of Eqs. (a), we obtain the differential 
equation of motion 

from which we conclude that the motion of the pendulum does not depend on m, a fact 
known to the ancient Greeks. On the other hand, the first of Eqs. (a) and (b) give the tension 
in the string 

which does depend on the value of rn, in addition to the angular displacement and angular 
velocity of the pendulum. 
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1.2 MOMENT OF A FORCE AND ANGULAR MOMENTUM 

We consider a particle of mass m moving under the action of a force F and denote its 
position relative to the origin 0 of the reference frame xyz by r and its absolute velocity 
by v = f .  By definition, the moment of the force F about point 0 is a vector given by 
the cross product (vector product) 

M o = r x F  (1.5) 

and it represents a vector normal to the plane defined by r and F (Fig. 1.1). In a similar 
fashion, the moment of momentum, or angular momentum of m with respect to point 0 
is defined as the moment of the linear momentum about 0 and is a vector represented 
mathematically by the cross product of the radius vector r and the linear momentum 
p = m i ,  or 

and we note that Ho is a vector normal to the plane defined by r and p (Fig. 1 .I). 
Next, we consider the time rate of change of Ho,  recall that m is constant and 

write 

H o = r x m r + r x m r = r x m r  (1.7) 

where, by the definition of the cross product, i x m i  = m(r x r) = 0. But, by Newton's 
second law, Eq. (1.3), 

m r = F  (1.8) 

Hence, inserting Eq. (1.8) into Eq. (1.7) and considering Eq. (1.5), we conclude that 

or, the moment of a force about aJixedpoint 0 is equal to the time rate of clzange of the 
angular momentum about 0. 

When the moment about 0 is zero, Mo = 0, it follows from Eq. (1.9) that 

Ho = constant (1.10) 

which represents the principle of consewation of angular momentum, stating that, in 
the absence of moments about 0, the angular momentum about 0 is constant. Note 
that it is not necessary that the force resultant be zero for the angular momentum to be 
conserved, but only that the moment about 0 be zero, which is the case when the force 
resultant passes through 0. 

It should be pointed out that the developments of this section were carried out for 
the general three-dimensional case. In the special case of planar motions, the vectors 
Mo,  Ho and Ho are all normal to the plane of motion. 

Example 1.2. Derive the equation of motion for the simple pendulum of Fig. 1.3 using the 
moment, angular momentum relation, Eq. (1.9). 

From Fig. 1.3, the position, force and linear momentum vectors can be written in 
terms of radial and transverse components as follows: 

r = Lu,, F = mg(cos0u, -sin0ug), p = mL0ug (a) 



FIGURE 1.3 
Simple pendulum 

so that, using Eqs. (1.5) and (1.6), the moment and angular momentum about 0 are 

Mo = r x F = Lu, x mg (cos Bur - sin Oug) = -mg L sin 0k 

respectively, where k is a unit vector normal to u, and ug. Inserting Eqs. (b) into Eq. (1.9), 
omitting the unit vector k and dividing through by m ~ ~ ,  we obtain the desired equation of 
motion in the form 

&' . @ + - s i n 0 = 0  
L 

(c) 

which coincides with Eq. (c) of Example 1.1. 

1.3 WORK AND ENERGY 

We consider a particle of mass m moving along curve S under the action of a given force 
F (Fig. 1.4). By definition, the increment of work performed by the force F in moving 
the particle from position r  to position r  + d r  is given by the dot product (scalar product) 

dW = ~ . d r  (1.11) 

where the overbar indicates that dW is an incremental expression rather than the differ- 
ential of a function W. Clearly, dW is a scalar quantity. But, from kinematics dr = r d t ,  
so that using Newton's second law, Eq. (1.3), we can write 

in which we recognized that the order of the terms in the multiplication is immaterial in 
a dot product. At this point, we define the kinetic energy of mass m as 
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I ,- cur 

FIGURE 1.4 
Particle moving under the action of a force 

so that Eq. (1.12) can be rewritten in the form 
- 
d W = d T  (1.14) 

and we note that, unlike dW, d T  does represent the differential of a function, namely, 
the kinetic energy function T. 

Next, we consider the work performed by F in moving the particle from position 
rl to position r2, as shown in Fig. 1.4. Integrating Eq. (1.14) and using Eq. (1.1 I), we 
obtain 

in which T, is the kinetic energy in the position r, ( i  = 1,2).  Hence, the workpe$ormed 
by the force F in moving the particle m from position rl to position r2 is responsible for 
a change in the kinetic energy from TI to T2. 

A very important class of forces is the class of conservative forces for which the 
work depends only on the initial position rl and theJinal position r2, and not on the path 
taken from rl to 1-2. Denoting two distinct paths from rl to r2 by I and I1 (Fig. IS), we 
can express the preceding statement in the mathematical form 

path I path I1 

Equation (1.16) can be given a different interpretation by writing 

path I path I1 path I path I1 

in which $ denotes an integral over a closed path. In view of this, we can state that 
the work pe$ormed by conservative forces over a closed path is zero. In the following 
discussions, we identify conservative forces by the subscript c. 



path I1 

FIGURE 1.5 
Motion on a path passing through a reference position 

At this point, we consider a conservative force F,, choose a path from rl to r2 
passing through the reference position r,,f, as shown in Fig. 1.5, and define the potential 
energy as the work performed by conservative forces in moving a particle from position 
r to the reference position r,,f, or 

where V is a scalar function depending on r alone, as r,f is arbitrary and hence imma- 
terial. Indeed, because the interest lies in changes in the potential energy as the particle 
changes positions, rather than in the potential energy at a given point alone, when the 
difference in the potential energy between two points is considered, any contribution to 
the potential energy from r,,f cancels out. In view of definition (1. IS), we can express 
the work performed by conservative forces in moving a particle from position rl to 
position rz in the form 

in which V, = V (r , )  (i  = 1,2).  Equation (1.19) states that the work pegormed by 
conservative forces in moving a particle from rl to rz is equal to the negative of the 
change in the potential energy from Vl to V2. 

In general, forces can be divided into two classes, conservative and nonconserva- 
tive, where the latter are denoted by F,,. Consistent with this, the work can be expressed 
as the sum of work performed by conservative forces and nonconservative forces, or 

Inserting Eqs. (1.15) and (1.19) into Eq. (1.20), we obtain 
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Then, defining the sum of the kinetic energy and potential energy as the total energy 
function 

E = T + V  (1.22) 

Eq. (1.21) can be rewritten as 

Jr l  

which states that the work pe$ormed by nonconsewative forces in moving a particle 
from rl to rz is responsible for a change in the total enetgy from El  to Ez. Equation 
(1.23) can be expressed in the incremental form 

so that, dividing through by d t ,  we obtain 

F,,.r = E (1.25) 

But, in general the scalar product F . i represents the rate of work and is known as the 
power. Hence, Eq. (1.25) states that the power associated with nonconsewative forces 
is equal to the time rate of change of the total energy. From Eq. (1.25), we conclude that 
nonconservative forces can add or dissipate energy, depending on whether the product 
F,, . r is positive or negative, respectively. Physically, this depends on whether the 
projection of the nonconservative force vector F,, on the velocity vector r is in the same 
direction as r or in the opposite direction, respectively. 

When there are only conservative forces present, F,, = 0, Eq. (1.25) reduces to 

which yields 

E = constant (1.27) 

Hence, in the absence of nonconsewative forces the total energy is conserved, a statement 
known as the consewation of energy principle. This statement provides the justification 
for the term "conservative forces" introduced earlier in this section, before a satisfactory 
explanation of the term could be given. The total energy is a different type of integral of 
motion than the linear momentum integral or angular momentum integral; it represents 
a relation between displacements and velocities, and it can provide a great deal of infor- 
mation concerning the motion of the particle. The value of the integral depends on the 
initial displacements and velocities. 

To ascertain the existence of an energy integral, or the absence of one, it is necessary 
to identify the type of forces acting on the particle. To this end, we observe that the class 
of conservative forces contains constant forces and forces depending on the position r 
alone. On the other hand, the class of nonconservative forces includes forces depending 
explicitly on time, or on the velocity r, or on both. 

For conservative systems defined by a single coordinate, Eq. (1.26) can be used to 
derive the equation of motion. 
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Example 1.3. Consider the simple pendulum of Examples 1.1 and 1.2, ascertain the ex- 
istence of a motion integral and determine its expression for the initial conditions O(0) = 

0, 0(0) = wg. Then, use Eq. (1.26) to derive the equation of motion. 
The only external force acting upon the bob, the weight mg, destroys the conservation 

of both the linear momentum and the angular momentum about the point of support 0. On 
the other hand, the force mg is constant, and hence conservative. As a result, there is a 
motion integral in the form of the total energy. 

From Eq. (1.13), we can write the kinetic energy 

To obtain the potential energy, we insert the first two of Eqs. (a) of Example 1.2 into Eq. 
(1.18) with r,,f = 0, recognize that the only change in the vector r is due to a change dB in 
direction and that the change LdQ is normal to r (Ref. 11, Sec. 2.3), so that 

and write 

rng(cosQur -sinQus) . LdOus = -mgL sinQdQ = mgL(1 -cosO) (c) 

Equation (c) can be obtained in a simpler manner by using a scalar form of the integral 
(1.18) in terms of the vertical component of force and displacement differential. An even 
more direct approach consists of writing, on physical grounds, 

where Ah is the rise of the bob above the reference position Q = 0, in which the bob is at 
its lowest level. Hence, considering the initial conditions, the energy integral is 

which clearly represents a relation between the angular displacement Q and angular velocity 
8. As a matter of interest, we obtain the maximum angle reached by the pendulum by letting 
0 = 0 and writing 

Q,, = cos-'(1- ~w;/2g) ,  wg < 2 m  (f ) 

If wg > 2 m .  then Q > 0, which implies that the pendulum rotates continuously, never 
reaching an equilibrium position. 

Next, we take the time derivative of Eq. (e) and write according to Eq. (1.26) 

so that, for 0 # 0, we must have , I 

mL28+mgLsin0 = O (h) 

which represents the equation of motion. 

1.4 DYNAMICS OF SYSTEMS OF PARTICLES 

Newton's laws were formulated for single particles, but in this text the interest lies in 
the vibration of flexible bodies and to a smaller extent in the oscillation of rigid bodies. 
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Newton's second law can be used to derive equations of motion for rigid bodies and 
deformable bodies, which can be done conveniently by first deriving the equations for 
systems of particles. 

We consider a system of N particles of mass m,  (i  = 1,2 ,  . . . , N ) ,  as shown in 
Fig. 1.6, in which F, denotes the force acting on mi and fZJ denotes the force exerted by 
mJ on rn, (i, j = 1,2, . . . , N ;  j # i ) .  According to Newton's second law, Eq. (1.3), the 
equation of motion for particle m, is 

where r, = a, is the acceleration of particle mi relative to an inertial space. To derive 
an equation for the motion of the entire system of particles, we sum up Eqs. (1.28) and 
write 

Then, recognizing that, by virtue of Eqs. (1.4), the internal forces fZJ and fJ, cancel out 
in pairs and letting 

N 

CF, = F (1.30) 
1=1 

FIGURE 1.6 
System of particles 
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of all forces, the equation of motion for the system ofparticles is 

N N 

F = C m , r ,  = x m , a ,  (1.3 1) 
2 = 1  z=1 

Next, we define the moment of momentum of the system of particles about the 
fixed point 0 as 

Taking the time derivative of Eq. (1.32) and recognizing that i., x ri = 0, we obtain 

But, inserting Eqs. (1.28) into Eq. (1.33) and recognizing that the moments due to the 
internal forces add up to zero (Ref. 11, Sec. 9.5), we can write 

Then, denoting the moment of all forces about 0 by 

Eq. (1.34) yields 

Equation (1.36) states that the resultant of the moments about afiedpoint 0 acting on 
a system of particles is equal to the time rate of change of the moment of momentum 
about 0 ofthe system ofparticles. 

On occasions, it is advisable to refer the motion to a moving point, rather than to 
a fixed point. A point playing a special role in dynamics is the mass center, denoted by 
C and defined as a point coinciding with a weighted average position of all particles, 
where the weighting factor for each particle i is the mass m, of the particle. The radius 
vector from the origin 0 to the mass center C (Fig. 1.6) is defined as 



in which m = zEI m,  is the total mass of the system of particles. Then, we can express 
the absolute position, velocity and accereration of particle m ,  as 

r, = rc+r i ,  i = 1 , 2  ,..., N 

~ , = ~ i = i ' ~ + r ~ = v ~ + v ~ ,  i = 1 , 2  ,..., N (1.38) 

where rc, rc = vc and rc = ac are the absolute position, velocity and acceleration of 
point C, respectively, and ri , ri = vi and ri = a; are the corresponding position, velocity 
and acceleration vectors of particle rn, relative to C. Using the first of Eqs. (1.38), we 
can write 

from which we conclude that 

Hence, the mass center C can also be dejined as apoint such that the weighted average 
position relative to C is zero. 

Inserting Eqs. (1.38) into Eq. (1.31) and observing that rc = ac is independent of 
i ,  we obtain the force equation in the form 

c = 1  i = l  c = 1  

Introducing Eq. (1.40) in Eq. (1.41), we obtain the simple force equation 

which can be interpreted as stating that the motion of the system ofparticles is equivalent 
to the motion of a single body of mass equal to the total mass m of the system ofparticles 
and whose acceleration under the resultant force F is equal to the acceleration ac of the 
mass center. 

Now, we define the moment of momentum about C as 

consider Eq. (1.28) and the second of Eqs. (1.38), use the same argument as that leading 



to Eq. (1.34), recall Eq. (1.40) and write the time derivative of Hc in the form 

Then, observing that 

N 

is the moment of all forces about C, the moment equation about C reduces to the same 
simple form 

as the moment equation about a fixed point 0, Eq. (1.34). Moreover, introducing the 
second of Eqs. (1.38) in Eq. (1.43) and using Eq. (1.40), we obtain 

so that the moment of momentum about the mass center C also has the same simple 
form as the moment of momentum about a fixed point 0. 

Note that if the motion is referred to an arbitrary moving point, rather than to the 
mass center, both the force and moment equations are more involved. Hence, if the 
motion is to be referred to a moving point, then it is a good policy to choose the moving 
point as the mass center C .  

1.5 DYNAMICS OF RIGID BODIES 

Rigid bodies can be regarded as systems of particles, so that the developments of Sec. 1.4 
apply equally well to rigid bodies. Still, there are some basic differences between 
rigid bodies and arbitrary systems of particles, which require certain extensions of the 
developments of Sec. 1.4. In the first place, rigid bodies are characterized by continuous 
mass, i.e., the mass is distributed over the entire body, instead of being concentrated 
at discrete points. As a result, the mass properties are described by means of a mass 
density function p(x, y ,  z ) ,  representing mass per unit volume at a given point in the 
body identified by the spatial variables x ,  y and z ,  which are the coordinates of the 
given point relative to a set of axes x ,  y, z fixed in the body and known as body axes. 
This is in contrast with the discrete masses mi in the case of collections of particles, 
which are identified by the index i. Hence, to apply the developments of Sec. 1.4 to 
continuous bodies, we must replace the discrete mass m, by the differential element of 
mass dm (x, y ,  z )  and the summation over the collection of particles by integration over 
the body. Another difference lies in the fact that the distance between any two points 
in a rigid body is constant. As a result, any motion of one point in a rigid body relative 
to another is due entirely to rotation, which reduces drastically the number of variables 
required for a description of the motion of rigid bodies. 



In deriving the equations of motion for rigid bodies, we consider the following 
cases: 

1.5.1 Pure Translation Relative to the Inertial Space 
I 

In the case of pure translation, the equations of motion are all force equations. In view of 
the preceding discussion, the force equation can be obtained from Eq. (1.3 1) by writing 
in general 

where F is the resultant force vector, a is the acceleration vector of a point in the rigid 
body and dm(x,  y, z )  = p(x, y ,  z)dV is the differential element of mass, in which m is 
the total mass and dV is the differential element of volume. But, in pure translation the 
acceleration is the same for every point of the body, a(x ,  y,  z,  t )  = a(t) ,  so that Eq. (1.48) 
yields simply 

In the case of planar motions, the force equation, Eq. (1.49), has only two scalar 
components, or 

F, = ma,, Fy = may  (1 S O )  

where F, and Fy are the resultant forces in the x- and y-direction, respectively. 
Note that on occasions the force equations are not sufficient to solve the problem, 

so that a moment equation must be invoked, even though the angular acceleration is zero. 
On such occasions, it is generally advisable to take moments about the mass center. 

Example 1.4. Derive the equations of motion for the body in horizontal translation shown 
in Fig. 1.7a. The horizontal reactions at the points of contact are proportional to the vertical 
reactions at these points, where the proportionality constant is the friction coefficient p. 
Then, use the parameter values /3 = 30°, p = 0.5, H = 0.6L and D = 0.1L and determine 
the magnitude F of the force F as a fraction of the weight m g  when the body is on the verge 
of tipping over, as well as the acceleration of the body as a fraction of g .  

Figure 1.7b shows the corresponding free-body diagram. Just before tipping over, 
the reaction NA reduces to zero. Hence, using Eqs. (1 SO), we obtain simply 

We observe that there are three unknowns, F ,  NB and a,, and only two equations, so that 
we must have another equation. We can write another equation by considering the fact that 
the body undergoes no rotations, so that the moment about the mass center is zero. Hence, 
taking moments about the mass center C, we have 



a. 
FIGURE 1.7 
a. Rigid body in horizontal translation, b. Free-body diagram 

Solving the second of Eqs. (a) and Eq. (b) for Flmg and using the given parameter values, 
we can write 

Then, inserting N B  from the second of Eqs. (a) into the first and using Eq. (c), we obtain 
the nondimensional acceleration 

1.5.2 Pure Rotation About a Fixed Point 

In the case of pure rotation about a fixed point 0, the motion is described by the moment 
equation given by Eq. (1.36), in which, from Eq. (1.39, 

is the resultant torque about point 0 (Fig. 1.8) and, from Eq. (1.32), 

Ho = lady r x vdm (1.52) 

is the moment of momentum, or angular momentum of the body about 0. From kine- 
matics (Ref. 11, Sec. 2.5), we can write the velocity vector of a point on a rigid body in 
pure planar rotation in the form 

v = YWUQ (1.53) 



FIGURE 1.8 
Pure rotation about a fixed point 

Then, letting r = ru ,  and inserting Eq. (1.53) into Eq. (1.52), the angular I 

for planar motion becomes 

Ho = lOdyrur x ~ ~ u ~ d r n  = (lady r2drn) ~k = Iowk 

where k  is a unit vector normal to the plane of motion and 

10 = lady r2dm 

is the moment of inertia of the body about 0.  Hence, for planar motions, I 

momentum has only one component. Consistent with this, the torque vectc 
one component also, namely 

M o  = M o k  

But, from Eq. (1.54), 

where a = ij is the angular acceleration magnitude. Hence, inserting Eqs. 
(1.57) into Eq. (1.36), we obtain the single scalar moment equation 

Mo = I o a  

Example 1.5. A rigid body suspended from a point other than the mass cente 
oscillate is known as a "compound pendulum." Figure 1.9 depicts a compour 
consisting of a uniform bar of total mass m hinged at point 0 at a distance Z 
mass center C.  If the pendulum is released from rest in the horizontal positio 
the angular acceleration of the pendulum immediately after release. 

~mentum 

(1.54) 

(1.55) 

: angular 
has only 
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FIGURE 1.9 
Compound pendulum 

Regarding counterclockwise moments and angular motions as positive, Ey. (1.58) 
yields 

where the mass moment of inertia of the pendulum about 0 can be obtained through 
integration as follows: 

Hence, inserting Eq. (b) into Eq. (a), we conclude that the angular acceleration immediately 
after release is 

where the minus sign indicates that the acceleration is in the opposite sense to that indicated 
in Fig. 1.9, i.e., it is in the clockwise sense. 

1.5.3 General Planar Motion Referred to the Mass Center 

In the general case, the body is capable of both translation and rotation relative to the 
inertial space, so that it is necessary to refer the motion to a moving point. In this case, 
it is advantageous for the most part to refer the motion to the moving mass center C. 
The force and moment equations for rigid bodies retain the same general form as for 
collections of particles. Hence, from Eq. (1.42), we write the force equation 

which states that the force equation of motion of a rigid body is the same as that of a 
fictitious body with the entire mass concentrated at the mass center C. Moreover, from 
Eq. (1.46), the moment equation about the mass center C is 

where, by analogy with Eq. (1.43, the moment about C of a rigid body in planar motion 
is defined as 



in which r' is the radius vector from C to dm, and, by analogy with Eq. (1.54), the 
angular momentum about C is given by 

He = Icwk (1.62) 

where Ic is the moment of inertia of the rigid body about C and w is the angular velocity 
of the body relative to the inertial space. 

For planar motions, the force equation, Eq. (1.59), has the two scalar components 

and, by analogy with Eq. (1.58) the moment equation about the mass center C has the 
single component 

where a iscthe angular acceleration of the body relative to the inertial space. It should 
be pointed out that, to obtain the motion of the rigid body, Eqs. (1.63) and (1.64) must 
in general be solved simultaneously. 

Example 1.6. A uniform rigid bar of total mass m and length L z ,  suspended at point 0 
by a string of length L 1, is acted upon by the horizontal force F, as shown in Fig. 1.10a. 
Use the angular displacements 01 and 02 to define the position, velocity and acceleration 
of the mass center C in terms of body axes and then derive the equations of motion for the 
translation of C and the rotation about C. 

Referring to Fig. ].lob, we can write the position, velocity and acceleration of the 
mass center C in the form 

and 

respectively. Equations (a) - (c) are in terms of two sets of unit vectors. To obtain expressions 
in terms of the body axes r2, 82, we observe from Fig. 1.lOb that the two sets of unit vectors 
are related by 

Inserting Eqs. (d) into Eqs. (a) - (c), we obtain the position, velocity and acceleration of the 
mass center C in terms of components along the body axes, as follows: 
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a. b. c .  
FIGURE 1.10 
a. Rigid bar on a string, b. Position of the mass center, c. Free-body diagram 

and 

respectively. 
To derive the equations of motion, we refer to the free-body diagram of Fig. 1.10c, 

in which T is the tension in the string and mg the weight of the bar. By analogy with 
Eqs. (1.63), the force equations in terms of body axes components are 

Fr2 = macr2, Fsz = mac02 

and from Eq. (1.64) the moment equation is 

Mc = ICa = IcOz 

But, from Fig. 1.10c, the force resultants and moment about C are 

Fr2 =F sin02 +mgcosQ2 - T cos(Q2 - el) 

Fez = F cos 82 - mg sin 82 + T sin(Q2 - el) 
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Moreover, we recognize that the acceleration components acv2 and ace2 are simply the 
coefficients of uTz and "02 in Eq. (g), respectively, and that for a thin bar Ic = m ~ z / 1 2 .  In 
view of this, the desired equations of motion take the explicit form 

We observe that the motion of the bar is fully defined by the angular displacements 
01 and 02, and there are three equations of motion. Hence, there must be a third unknown, 
besides 01 and 02, which is the tension T. If the value of T presents no interest, then it 
can be eliminated from Eqs. (k) and, in the process, reduce the number of equations to two. 
For example, the first two of Eqs. (k) can be used to solve for T. Then, introducing this 
expression for T into any two of the three equations, we obtain two equations of motion in 
terms of Q1 and Q2 and their time derivatives alone. This elimination process is left as an 
exercise to the reader. 

1.6 KINETIC ENERGY OF RIGID BODIES IN PLANAR MOTION 

In Sec. 1.3, we defined the kinetic energy for a single particle, Eq. (1.13). The definition 
can be extended to collections of particles and rigid bodies. Because in this text we 
have no particular interest in the kinetic energy of arbitrary collections of particles, we 
consider the kinetic energy of rigid bodies directly. To this end, we use the pattern of 
Sec. 1.5. as follows: 

1.6.1 Pure Translation Relative to the Inertial Space 

By analogy with Eq. (1.13), the kinetic energy for a continuous body in planar motion 
can be written as 

But, for a rigid body in pure translation, the velocity is the same for every point in the 
body, v(x, y,  t )  = v ( t ) ,  so that the kinetic energy reduces to 

which has the same form as the kinetic energy of a single particle, except that here m 
represents the total mass of the body. 
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1.6.2 Pure Rotation About a Fixed Point 

Inserting Eq. (1.53) into Eq. (1.65), the kinetic energy in pure planar rotation about the 
fixed point 0 can be written as 

in which I. is recognized as the mass moment of inertia about 0, Eq. (1.55), and w is 
the magnitude of the angular velocity vector w. 

1.6.3 General Planar Motion Referred to the Mass Center 

As in Sec. 1.5, it is advantageous to work with a set of body axes with the origin at the 
mass center C of the rigid body, so that the velocity of any point in the rigid body is the 
sum of the velocity of translation of the mass center and the velocity of rotation about 
the mass center. Hence, substituting r' for r in Eq. (1.53), the velocity in planar motion 
is 

where r' is the distance from C to dm. Inserting Eq. (1.68) into Eq. (1.65) and recognizing 
that, by analogy with Eq. (1.40), 

r'dm = 0 (1.69) 

we can write the kinetic energy of a rigid body in general planar motion in the form 

in which 

is the kinetic energy of translation as if the entire body were concentrated at the mass 
center C and 

is the kinetic energy of rotation about the mass center, where Ic is the mass moment 
of inertia of the body about the mass center. Clearly, the advantage of choosing the 
mass center C as the origin of the body axes is that the kinetic energy separates into two 
parts, one due to translation of point C and one due to rotation about C, and there is no 
coupling between the translation and rotation. 



Example 1.7. Derive the kinetic energy of the bar on a string of Example 1.6. 
The bar translates and rotates, with the velocity of the mass center C being given 

by Eq. (f) of Example 1.6 and the velocity of rotation being 02. Hence, the kinetic energy 
consists of two parts, one due to translation of C and one due to rotation about C. Inserting 
Eq. (f) of Example 1.6 into Eq. (1.71), we obtain the lunetic energy of translation 

On the other hand, using Eq. (1.72) and recalling that the mass moment of inertia of a thin 
uniform bar about C is Ic = m ~ ~ / 1 2 ,  the kinetic energy of rotation about C is simply 

1.7 CHARACTERISTICS OF DISCRETE SYSTEM COMPONENTS 

Vibrating systems represent assemblages of individual components acting together as a 
whole. Before we can produce the equations of motion for a given system, it is necessary 
to establish the excitation-response characteristics of the constituent components. The 
components can be broadly divided into three classes according to whether the compo- 
nent forces are proportional to displacements, proportional to velocities, or proportional 
to accelerations. Correspondingly, they can be divided into components that store and 
release potential energy, dissipate energy and store and release kinetic energy. This 
section is devoted to such component characterization. 

In the first class, the components possess the characteristic that, when displaced 
from equilibrium, they generate forces seeking to restore the system to equilibrium. For 
the most part, but not exclusively, this property is due to elasticity. All elastic compo- 
nents store potential energy as displacements increase, and release potential energy as 
displacements decrease. A typical component in this group is the helical spring depicted 
in Fig. 1.11 and shown schematically in Fig. 1.12a. Although this is only approximately 
true, springs are generally assumed to be massless, so that a force F, at one end must be 
balanced by a force F, acting at the other end. A tensile force F,, such as that shown in 
Fig. 1.12a, causes the spring to undergo an elongation 6 equal to the difference xz - xi 
between the displacements x2 and xl of the two end points. A typical plot of the force F, 

FIGURE 1.11 
Helical Spnng 
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b. 
FIGURE 1.12 
a. Spring under a tensile force, b. Force versus elongation 

as a function of the elongation 6 is as depicted in Fig. 1.12b. For a given range, known as 
the linear range, 6 is proportional to F,, where the constant of proportionality k is equal 
to the slope of the curve Fs versus 6. Hence, in the linear range, the relation between 
the force and elongation is simply 

A spring operating in the linear range is said to be linear, in which case the constant k is 
referred to as the spring constant, or spring stifiess. It is customary to identify a linear 
spring by its stiffness k. We note that the units of k are newtons per meter (Nlm). It 
should be pointed out that Figs. 1.12a and 1.12b show the force F, external to the spring. 
At every point inside the spring there is an elastic force - F, which tends to return the 
spring to the undeformed configuration, and hence it represents a restoring force. In 
many cases the undeformed configuration corresponds to the static equilibrium position 
(Sec. 1.10). Clearly, because they depend on the elongation alone, spring forces are 
conservative (see Sec. 1.3). 

Next, we derive the potential energy expression. Recognizing that in the linear 
range there is a spring restoring force equal to -kc corresponding to an elongation < 
and taking the undeformed configuration as the reference position, we can use Eq. (1.18) 
and write the potential energy 

The potential energy can be interpreted geometrically as the integral of the shaded area 
in Fig. 1.12b. 

Beyond the linear range elongations are no longer proportional to the force, in 
which case the spring is said to be nonlinear. If the force F, increases at a slower rate 
than the elongation 6, then the spring is said to be a "softening spring." This is the case 
shown in Fig. 1.12b. On the other hand, if the force F, increases at a faster rate than the 
elongation 6, then the spring is referred to as a "stiffening spring." 



Spring forces are conservative, regardless of whether a spring is linear or nonlinear, 
as they depend on the elongation alone. Hence using Eq. (1. IS), we can write the potential 
energy for springs operating beyond the linear range in the form 

However, before the integral can be evaluated, it is necessary to specify how Fs varies 
with C in the nonlinear range. If Fig. 1.12b was obtained experimentally, and no analytical 
expression for Fs is available, then the potential energy can be evaluated by determining 
the area under the curve numerically. 

The second type of component relates forces to velocities. This is the viscous 
damper, or the dashpot, and it consists of a piston fitting loosely in a cylinder filled with 
oil or water so that the viscous fluid can flow around the piston inside the cylinder, as 
depicted in Fig. 1.13. Alternatively, the piston has holes permitting fluid to flow through 
them. As with the spring, the viscous damper is assumed to be massless, so that a force 
Fd at one end must be balanced by a corresponding force Fd at the other end, as shown 
schematically in Fig. 1.14a. It is also assumed that the forces Fd cause smooth shear in 
the viscous fluid, so that the plot Fd versus 8 is linear, as depicted in Fig. 1.14b, where 
6 = iz -il is the velocity of separation of the end points. The relation between the force 

FIGURE 1.13 
Viscous damper 

b. 
FIGURE 1.14 
a. Damper under a tenslle force, b. Force versus separation velocity 



Fd and the velocity of separation h is simply 

Fd = cS = c(X2-XI) 

where the proportionality constant c, which is merely the slope of the curve Fd versus 
8, is known as the coefficient ofviscous damping. We identify a viscous damper by the 
coefficient c. The units of c are newton . second per meter (N . s/m). 

At this point, we consider the energy implications of viscous dampers. The force 
in the damper is opposed to the external force. By virtue of the assumption that the 
damper is massless, the force has the same magnitude as the external force, so that it is 
equal to -c&. Clearly, the damperforce is nonconsewative, as it depends on the velocity 
and not on the position. Regarding the damper as part of a system and using Eq. (1.25), 
we can write 

. . 
' 2 E = (-cS)S = -cS (1.77) 

where E is the total energy of the system. But, the right side of Eq. (1.77) is negative as 
long as h # 0, and is equal to zero only when 6 = 0. Hence, we must conclude that the 
system loses energy steadily, so that viscous dampers dissipate energy. 

The third and final type of component is the rigid mass in translation. For motion in 
the x-direction only, as shown in Fig. 1.15a, Newton's second law, the first of Eqs. (1 SO), 
yields 

F,, = ma, = m2 (1.78) 

Consistent with the discussion of springs and dampers, Eq. (1.78) states that the force F, 
is proportional to the acceleration, with the constant of proportionality being the mass 
m (Fig. 1.15b). We recall from Sec. 1.1 that the mass has units of kilograms (kg). 

To examine the energy implications of the mass as a component, we consider 
Eq. (1.66) and write the kinetic energy of translation in the x-direction in the form 

from which we conclude that masses store kinetic energy as velocities increase, and 
release kinetic energy as velocities decrease. 

b. 
\ 

FIGURE 1.15 
a. Mass acted upon by a force, b. Force versus acceleration 



a. b 
FIGURE 1.16 
a. Torsional spring, b. Torsional damper, c. Rotating mass 

The spring constant k, the coefficient of viscous damping c and the mass m repre- 
sent parameters of a system. Because they do not require spatial variables to describe 
their location and can be regarded as being located at discrete points, they are referred 
to as lumped, or discrete parameters. We reiterate that, unless otherwise stated, springs 
and dampers possess no mass and masses are rigid. Later in this text, we relax these 
assumptions. 

Similar types of components relate torques to rotational motions. For the torsional 
spring of Fig. 1.16a, the relation between the torque M, and the angle of twist 02 - O1 is 

Ms =kT(o2-01) (1.80) 

where kT is the torsional spring constant and O1 and O2 are the angular displacements 
of the end points. The units of kT are newtons . meter per radian (N . m/rad). In a like 
fashion, for the torsional viscous damper of Fig. 1.16b, the relation is 

in which Md is the torque acting on the damper and CT is the torsional coefficient of 
viscous damping, where the units of c~ are newtons . meter. second per radian (N . m . 
s/rad). Finally, from Eq. (1.58), the relation between the torque Mo about the fixed 
point 0 and the acceleration 0 of a rigid body about 0, as shown in Fig. 1.16c, is 

where lo is the mass moment of inertia of the body about 0, and we note that Zo has 
units kilogram. meter2 (kg . m2). 

1.8 EQUIVALENT SPRINGS, DAMPERS AND MASSES 

On occasion springs and dampers occur in certain combinations. In such cases, the 
analysis can be simplified appreciably by using equivalent springs and dampers to sim- 
ulate the action of the combinations in question. To illustrate the idea, we consider 
springs connected in parallel and springs connected in series. We confine ourselves to 
linear springs, as the concept does not apply to nonlinear ones. Figure 1.17a shows a 
system of two springs in parallel under the action of the tensile force F, and Fig. 1.17b 



a. 
FIGURE 1.17 
a. Springs in parallel, b. Force diagram 

shows a diagram with the individual springs and the corresponding internal forces. From 
Fig. 1.17b, by analogy with Eq. (1.73), we have the relations 

where Fsl and Fs2 are the forces acting on the springs kl and k2, respectively. Also from 
Fig. 1.17b, we conclude that the spring forces Fsl and Fs2 must add up to the total force 
Fs, or 

Inserting Eqs. (1.83) into Eq. (1.84), we obtain 

in which 

denotes the stiffness of an equivalent spring representing the combined effect of kl and 
k2 arranged in parallel. If a number n of springs ki (i = 1 ,2 , .  . . , n) are arranged in 
parallel, then it is not difficult to show that the equivalent spring is 

For two springs in series, as depicted in Fig. 1.18a, we first recognize that the same 
force F, acts throughout both springs. Then, from Figs. 1.18b, we have the relations 

so that, eliminating xo from Eqs. (1.88), we can write 

Fs =keq(x2 -XI) 

in which 



FIGURE 1.18 
a. Springs in series, b. Force diagram 

is the equivalent spring constant for two springs connected in series. If there are n springs 
connected in series, then the equivalent stiffness is 

Expressions for equivalent spring constants for torsional springs in parallel and 
in series can be shown to resemble Eqs. (1.87) and (1.91), respectively. Moreover, 
equivalent coefficients of viscous damping for dashpots in parallel and in series can be 
derived in an analogous manner. They have the same structure as Eqs. (1.87) and (l.91), 
respectively, except that the symbol k is replaced by the symbol c. 

Under certain circumstances, distributed elastic components can be treated as 
equivalent discrete springs. As an illustration, we consider a component in the form 
of a thin rod fixed at x = 0 and with the tensile force F at x = L (Fig. 1.19). If the 
mass of the rod is negligibly small compared to any other masses in the system, then by 
analogy with Eq. (1.73), the rod can be regarded as a spring with the equivalent spring 
constant 

where 6 = u(L) is the axial displacement of the tip of the rod. But, from mechanics of 
materials (Ref. 1, Sec. 2.8), the static axial displacement u(x) of a point at a distance x 
from the left end must satisfy the differential equation 

FIGURE 1.19 
Rod under a tensile force 



in which E is Young's modulus, or modulus of elasticity, and A ( x )  is the cross-sectional 
area of the rod. Note that the product E A  (x) is commonly known as the axial stifiess. 
Moreover, F ( x )  is the axial force, which in this case is the same for any point x and is 
equal to the force F at x = L, F ( x )  = F .  Because the rod is fixed at x = 0 ,  the solution 
u ( x )  must satisfy the boundary condition 

Integrating Eq. (1.93) and considering Eq. (1.94), we obtain simply 

But, at x = L the displacement must be equal to 6, so that 

Hence, inserting Eq. (1.96) into Eq. (1.92), we can write the equivalent axial spring 
constant for the rod of Fig. 1.19 in the form 

and we note that the units of keg are newtons per meter (Nlm). In the case of a uniform 
rod, E A ( x )  = E A  = constant, Eq. (1.97) reduces to 

Another case of interest is that in which the axial stiffness of the rod is sectionally 
uniform, as shown in Fig. 1.20. Such a rod can be treated as two axial springs in series 
with the stiffnesses 

Then, inserting Eqs. (1.99) into Eq. (1.90), we obtain the equivalent spring constant for 
the sectionally uniform rod in the form 

FIGURE 1.20 
Rod with sectionally constant stiffness 



FIGURE 1.21 
Shaft in torsion subjected to a torque 

Shafts in torsion are entirely analogous to rods deforming axially. Figure 1.21 
shows a shaft clamped at x = 0 and sub~ected to a torque M at x = L. Indeed, all the 
developments covered by Eqs. (1.93)-(1.98) remain the same except that the torsional 
displacement O(x) replaces the axial displacement u(x), the moment M replaces the 
force F and the torsional stiffness GJ(x)  replaces the axial stiffness EA(x), where G 
is the shear modulus and J(x) is the polar moment of inertia of the cross-sectional area. 
Hence, from Eq. (1.98) the equivalent torsional spring constant for a uniform shaft is 

in which 8 = 8(L) is the tip angular displacement. We observe that, unlike axial springs, 
the units of torsional springs are newton . meter per radian (N . m/rad). Clearly, the 
analogy extends to sectionally uniform shafts in torsion. Indeed, to obtain the equivalent 
torsional spring constant for two shafts in series clamped at x = 0, we simply replace 
E A ,  by GJ,  (i = 1,2) in Eq. (1.100). 

Next, we derive the equivalent spring constant for a beam in bending clamped at 
x = 0 and acted upon by a transverse force F at x = L, as shown in Fig. 1.22. From 
mechanics of materials (Ref. 1, Sec. 8.3), according to the elementary beam theory, the 
transverse displacement w (x) satisfies the differential equation 

where E Z (x) is the flexural rigidity, in which Z (x) is the cross-sectional area moment 
of inertia, and M(,Y) is the bending moment. In the case at hand, the bending moment 
is equal to F (L - x). At the clamped end, x = 0, the displacement and the slope of the 
displacement curve must be zero, so that the boundary conditions are 

dw 
w=O, - = O a t x = O  (1.103) 

dx 
Integrating Eq. (1.102) twice and considering Eqs. (1.103), we obtain the solution 



FIGURE 1.22 
Beam in bending under a transverse force 

so that, letting w(L) = S and using the same approach as for the rod, the equivalent 
spring constant for a cantilever beam is 

In the case of a uniform cantilever beam, E l  (x) = EI = constant, Eq. (1.105) reduces 
to 

It should be pointed out that this is not the only equivalent spring constant possible, 
although it is the most common one. Indeed, another equivalent spring constant can be 
defined as the ratio of the bending moment M to the slope dwldx at x = L (Problem 
1.16). 

Determination of the equivalent spring constant for a uniform cantilever beam 
is relatively easy. When the beam is not uniform it may be possible to determine the 
equivalent spring constant by performing the indicated double integration in Eq. (1.105). 
Except for some simple cases, however, the integrations must be carried out numerically. 
Moreover, in more complex cases even this task can prove very difficult. In such cases, 
other approaches are advisable. One such approach is known as the moment-area method 
(Ref. 1, Ch. 9), which is based on two theorems. To demonstrate these theorems, we 
consider the displacement curve for a beam in bending shown in Fig. 1.23a. Then, we 
denote the slope at any point x by 

dw(x) e ( ~ )  = - 
dx 

and rewrite Eq. (1.102) in the form 
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FIGURE 1.23 
a. Displacement curve, b. M ( x ) / E  I (x) versus x 

Equation (1.108) can be interpreted geometrically as the shaded area in the diagram 
M ( x ) /  E I ( x )  versus x of Fig. 1.23b. Integrating Eq. (1.108) between the points x = X A  

and x = xg, we obtain simply 

Equation (1.109) can be stated in words in the form of Theorem 1: The difference in 
slopes between the points x~ and x~ is equal to the area of the M ( x ) / E  I ( x )  diagram 
between these two points. 

Next, we refer to Fig. 1.23a, consider Eq. (1.108) and express the differential 
element of displacement at x = xg in the form 

so that, integrating Eq. (1.110) between x = x~ and x = X B ,  we obtain 

I:' W B - W A - ~ A ( X ~ - X ~ ) =  ( X B - x ) -  

Equation (1.111) lends itself not only to an interesting but also a useful geometric in- 
terpretation. Indeed, we observe that the quantity inside the integral sign represents the 
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FIGURE 1.24 
M ( x ) / E I  (x) versus .x for a cantilever beam 

moment about x  = x ~  of the shaded area in Fig. 1.23b, which permits us to state the 
geometric interpretation of Eq. (1.11 1 )  in the form of Theorem 2: The displacement of 
point B relative to the intersection ofthe tangent to the displacement curve at x  = x ~  
and the vertical through x  = x ~  is equal to the moment about x  = x ~  of the M ( x ) / E l  ( x )  
diagram between the points x  = X A  and x  = x ~ .  

As a simple illustration, we consider a uniform cantilever beam subjected to a 
force F at x  = L, as shown in Fig. 1.22. The diagram M ( x ) / E I  ( x )  has the triangular 
form depicted in Fig. 1.24. Using Eq. (1.109) and recognizing that OA = 0, we conclude 
that the slope of the deflection curve at x  = L is simply 

Moreover, using Eq. (1.11 1) and recognizing that W A  = 0  and OA = 0, the displacement 
at x  = L is 

This permits us to determine the equivalent spring constant by writing 

which is the same as that given by Eq. (1.106). Note that in this particular example it 
is perhaps simpler to obtain the results by applying the two theorems presented above 
than carrying out integrations. Indeed, from Theorem 1 ,  we conclude that the slope at 
x  = L is simply the area of the diagram of Fig. 1.24. Moreover, from Theorem 2,  the 
displacement at x  = L is equal to the moment of the diagram of Fig. 1.24 with respect to 
the end x  = L, which is simply equal to the area of the diagram multiplied by the distance 
2 L / 3  between the geometric center of the diagram and the vertical through x  = L. 

The preceding process for the calculation of the slope and displacement can be 
better explained perhaps by conceiving of a fictitious beam free at x  = 0 and clamped 
at x  = L and loaded with a distributed load in the form of the diagram M ( x ) / E I  ( x ) ,  
as shown in Fig. 1.25. Then, recalling from mechanics of materials that the integral 
of a distributed load f is equal to the shearing force Q, we conclude that the slope 
B(x) = d w ( x ) / d x  of the actual beam at point x  is equal to the shearing force of the 
fictious beam at x .  Moreovel; the displacement w ( x )  of the actual beam at x  is equal to 
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FIGURE 1.25 
Cantilever beam loaded by the M(x)/EZ ( x )  diagram 

Table 1.1 - End Types for Conjugate Beams 

Actual Beam 

the moment of the fictitious beam at x. The fictitious free-clamped beam loaded with 
the diagram M(x)/EI (x) is known as the conjugate beam corresponding to the actual 
clamped-free beam, and the procedure for determining the slope and the displacement 
just outlined is called the conjugate beam method. The approach can be extended to 
other types of beams by replacing an end type of the actual beam by an end type of 
a conjugate beam as shown in Table 1 .I. Of course, the first two entries in Table 1.1 
merely represent the case just discussed. On the other hand, the third entry states that 
the conjugate beam for a pinned-pinned beam is a pinned-pinned beam, which has very 
useful implications. 

As an example of the use of the conjugate beam method, we propose to calculate the 
equivalent spring constant for a uniform pinned-pinned beam acted upon by a transverse 
force F at x = a ,  as shown in Fig. 1.26a. To this end, we consider the displacement 
curve of Fig. 1.26b, in which we identify QA as the angle between the tangent to the 
displacement curve at x = 0 and the horizontal and 6 as the displacement at x = a .  
The conjugate beam is also pinned-pinned and loaded by the diagram M(x)/EZ(x), as 
shown in Fig. 1 .26~.  The angle BA, which can be identified as the ihearing force of the 
conjugate beam at x = 0, is 

Conjugate Beam 

.A 

Clamped 

Free 

Pinned 

- Fab a a 1 Fab  b 2b Fab  
- - OA=Q,=---(-+b)-+ - [a(a +3b) +2b2] (1.115) 

E I L 2  3 L E I L 2 3 L  6EIL2 

End Tvpe 1 Boundarv Conditions / Boundarv Conditions / End Tvpe 

Then, the displacement of the actual beam at x = a is simply the moment of the conjugate 
beam at x = a (Fig. 1.26d), or 

- Fab 
6= ~ ( a )  = M(a) = - 

Fab  a a  ~ a ~ b ~  
- 

6EIL2 
[a(a+3b)+2b2]a---- - 

E I L 2 3  3EIL 
(1.116) 

w  = O  

w  # 0  

w  = 0  

dwldx  = O  

dwldx  # 0  

dwldx  # 0  

.A 

Free 

Clamped 

Plnned 

- 
M = O  
- 
M # 0  
- 
M = 0  

- 
Q = 0  
- 
Q # 0  
- 
Q # 0  



a. 
EI = constant 

Fab 
-- 

FIGURE 1.26 
a. Pinned-pinned beam under transverse force, b. Displacement curve, 
c. Conjugate beam, d. Moment diagram for the conjugate beam 

Finally, the equivalent spring constant is simply 

The possibilities for defining equivalent spring constants are endless. Some of the 
more common ones are given in Table 1.2. 

Using the same approach, it is possible to define equivalent coefficients of viscous 
damping for distributed components. However, the concept is not as useful as that of 
equivalent spring constants. 

Next, we reconsider the assumption that springs are massless. To this end, we re- 
fer to a uniformly distributed spring fixed at x = 0 and free at x = L, as shown in Fig. 1.27, 

FIGURE 1.27 
Spring with distributed mass 
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Springs in parallel 

Table 1.2 - Equivalent Spring Constants 
Component Sketch and Description 

---I- Rod in axial deformation 

kc, 

Torsional spring 

I 

E 1 - 
L 

rt in torsion - 
L 

Helical spring - 
d = diameter of coil cross - 2R section 

f 
n = number of coils 

Cant~lever beam w ~ t h  a 3 E 1  - 
force at the tip L3 

I 

~d~ 
64nR3 

3 - Cantilever beam with a 
moment at the tip 

+ L +  

and propose to derive an equivalent mass for the spring. Denoting the mass of the spring 
by m, and using Eq. (1.65), we can write the kinetic energy in the form 

EI  - 
L 

1 
T ( t )  = - i2(x, t)dms 

2 1, (1.118) 

where i(x, t )  is the velocity of point x on the spring. But, from Eq. (1.95) with E A ( 0  = 
EA = constant, it is easy to see that the static displacement of a massless spring is a 



Table 1.2 - Equivalent Spring Constants (continued) 
Component Sketch and Description 

Pinned-pinned beam 
with a force at 

L L 1- 7j *+ - midspan 2 

ke,  

48EI 
- 

L3 

Pinned-pinned beam 
with an off-center 

13- a 
'I- b 
L force 

3 E I L  - 
a2b2 

Clamped-pinned beam 
w ~ t h  a force at m~dspan 

768EI - 
7L3 

-- 

Clamped-clamped beam 
wlth one end sagglng 
under a force 

12EI 

L3 

P~nned-pinned beam 
wlth an overhang and 
a force at the tip 

E = modulus of elasticity 
I = cross-sectional area moment of inertia 
A = cross-sectional area 
G = shear modulus 

3EI 

a 2 ( L + a )  

Clamped-pinned beam 
wlth an overhang and 
a force at the t ~ p  

J = cross-sectional area polar moment of inertia 

12EI 

a 2 ( 3 ~  f 4 n )  

linear function of x. Hence, assuming that the mass of the spring does not affect this 
displacement characteristic in a meaningful way, we approximate the displacement at 
any point on the spring as follows: 
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Inserting Eq. (1.1 19) into Eq. (1.118) and recognizing that for a uniform spring dms = 
(mS /L )dx ,  we obtain 

in which 
1 

meq = -m, (1.121) 
3 

represents the equivalent mass for the spring. 

1.9 MODELING OF MECHANICAL SYSTEMS 

In many ways, modeling is more of an art than an exact science. Indeed, more often than 
not a physical system is so complex that an exact description is not feasible. Fortunately, 
in many cases an exact description is not really necessary. This is certainly the case 
in preliminary design, in which the objective is primarily to verify whether a certain 
system is capable of meeting given performance criteria. In other cases, the interest lies 
in checking only certain properties of the system, so that the same physical system can 
be modeled in different ways. A model represents only an approximation of the actual 
physical system, and a good model must retain all the essential dynamic characteristics 
of the system. The implication is that the behavior predicted by the model must match 
the observed behavior of the actual system reasonably well. 

Broadly speaking, models of vibrating mechanical systems fall into two classes, 
lumped-parameter, frequently referred to as discrete, and distributed-parameter systems. 
On occasion, models contain both lumped and distributed parameters. The classification 
is often a subjective matter, and the same physical system can at one time be modeled 
as discrete and at another time as distributed. In this section, we consider a number of 
physical systems and corresponding models. 

Figure 1.28a represents a washing machine mounted on rubber supports and with 
the drum rotating in the vertical plane with the constant angular velocity w relative to 
the body of the machine. In the first place, we assume that the body of the machine and 
the drum undergo no elastic deformations. Moreover, we assume that the clothes are 
spread uniformly around the drum. Because the mass of the drum and of the clothes is 
symmetric with respect to the axis of rotation, the inertial properties do not change with 
time. It follows that the combined mass of the body of the machine, the drum and the 
clothes, denoted by M, is constant and behaves as if it were rigid. Hence, the motion 
of the system is fully defined by the vertical displacement x ( t )  of mass M .  The rubber 
supports can be assumed to behave viscoelastically, which implies that they act as springs 
and dashpots in parallel. For simplicity of notation, we denote the spring constants and 
coefficients of viscous damping of the left and right supports by k / 2  and c/2 each, so 
that the corresponding model is as shown in Fig. 1.28b. The situation is different when 
the clothes are spread nonuniformly around the drum. In this case, it is convenient to 
represent the nonuniformity by an excess mass m concentrated at a distance e from the 



a. b. 
FIGURE 1.28 
a. Washing machine, b. Model of washing machine 

axis of rotation, where e is known as the eccentricity. Because the motion of the eccentric 
mass m relative to the body of the machine is prescribed, the motion of the system is 
fully defined by the vertical displacement x ( t )  in this case as well. As we shall see later 
in this chapter, the effect of the rotating eccentric mass is to exert an inertial force upon 
the system. 

Another system of interest is the automobile shown in Fig. 1.29a. Although the 
bodylchassis structure is capable of elastic deformations, as a first approximation, it is 
reasonable to assume that the body/chassis structure can be treated as a rigid slab. The 
mass of the slab is supported by primary suspension systems at each of the four wheels, 
where each system consists of a relatively soft spring and a hydraulic shock absorber 
representing a viscous damper. The suspension systems transmit the load to the axles 
and tires, where the latter transmit the load to the ground. The axle and wheels, including 
the tires, possess some mass and the tires can be regarded as stiff springs. Although the 
tires provide some viscoelastic damping, the magnitude is relatively small and can be 
ignored. These considerations lead to the model depicted in Fig. 1.29b, from which 
we identify the motions of the system as the vertical translation nb ( t )  of the body, the 
rotations Q y  ( t )  and O,(t) of the body about axes y and z ,  respectively, and the vertical 
translations x,, ( t )  (i  = 1,2,3,4)  of the wheels. The system parameters can be identified 
as the mass of the body mb, the mass moments of inertia I y  and I, of the body about axes 
y and z ,  respectively, the coefficients of viscous damping c,, and spring constants k,, 
of the primary suspension systems, the wheel masses m,, and the tire spring constants 
kt, (i = 1,2,3,4).  Of course, the two front suspensions parameters are likely to have 
equal values, and the same can be said about the rear suspensions. Moreover, the wheel 
masses and tire spring constants are the same for all wheels and tires, respectively. The 
distance between the axles is L and between the left and right wheels is B. 

Another example is the missile in free flight depicted in Fig. 1.30a. The missile 
tends to be a slender elastic body capable of bending about two transverse axes. It is 
common, however, to assume that the vibration takes place in one plane only, namely, 
in the plane of the missile trajectory. A discrete model of the missile can be conceived 



FIGURE 1.29 
a. Automobile, b. Model of automobile 

by dividing the mass into n lumps of mass mi (i = 1,2, . . . , n) connected by massless 
segments of length Axi and bending stiffness E I ,  (i = 1,2, . . . , n - I), as shown in 
Fig. 1.30b. Then, the vibration of the missile can be defined in terms of the transverse 
displacements w, (t) of the masses m, (i = 1,2, . . . , n). The missile can also be modeled 
as a distributed-parameter system in the form of a beam of length L, free at both ends 
and undergoing bending vibration w (x, t) in the transverse direction (Fig. 1.30~). The 
system parameters are the mass per unit length m(x) and the bending stiffness E l  (x). 



a. 
EIl 

b. c. 
FIGURE 1.30 
a. Missile in free flight, b. Discrete model, c. Distributed-parameter model 

Finally, we consider the modeling of the aircraft displayed in Fig 1.3 1 a. We assume 
that the fuselage is rigid and that the wing is flexible and construct first a discrete model 
by lumping the mass of the wing as shown in Fig. 1.31b. The fuselage has the mass mf 
and the principal mass moments of inertia I,, I y  and I,, whereas the mass of the left half 
of the wing is divided into the n lumped masses m, (i = 1,2, . . . . n). Of course, there 
are n symmetric masses for the right half of the wing. For simplicity, we assume that the 
wing undergoes pure bending only and denote the elastic displacements of the lumped 
masses by w, ( t )  (i = 1,2, . . . ,272). The fuselage undergoes the vertical displacement 
z ( t ) ,  known as plunge, and the rotations B, ( t ) ,  6, ( t )  and Oz ( t ) ,  called roll, pitch and yaw, 
respectively. Note that it has been assumed that the forward motion is known and that 
the side motion can be ignored. Moreover, in general the wing can also undergo torsion 
about its longitudinal axis. A more refined model can be obtained by regarding the wing 
as distributed, as shown in Fig. 1.3 1c. In general, the inertia axis,' does not coincide with 
the elastic axis,2 so that the wing undergoes both bending and torsion. Hence, whereas 
the fuselage inertial parameters and motions remain the same as for the wholly discrete 
model, a point on the wing at a distance E from the root, measured along the elastic axis, 
undergoes the bending displacement w(E, t )  and the twist $(<, t ) .  Consistent with this, 
the wing has the mass per unit length m ( J ) ,  the mass moment of inertia per unit length 
I+ ( J ) ,  the bending stiffness E I ( E ) ,  where I ( E )  is the cross-sectional area moment of 
inertia, and the torsional stiffness G J ( f ) ,  where G is the shear modulus and J ( J )  is the 
cross-sectional area polar moment of inertia. Clearly, the model of Fig. 1 . 3 1 ~  is part 
discrete and part distributed. 

Next, we return to the automobile model of Fig. 1.29b and observe that when 
the automobile travels in straight forward motion, it is reasonable to assume that the 
front wheels on the one hand and the rear wheels on the other hand undergo the same 

 he inertia axis is the locus of the mass centers of the cross sections. 

 he elastic axis is defined as the locus of the shear centers of the cross sections, where a shear center is a 
point such that a shearing force actlng through it produces pure bending (with no torsion) and a moment about 
it produces pure torsion (with no bending). 
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FIGURE 1.31 
a. Aircraft in flight, b. Discrete model, c. Distributed-parameter model 

displacement, which implies that the rotation 19, is zero. Under these circumstances, the 
model can be simplified as shown in Fig. 1.32a. Finally, assuming that the tire stiffness 
is infinitely large, the model can be further simplified by ignoring the mass of the wheels 
and the tire springs, as shown in Fig. 1.32b. 

b. 

FIGURE 1.32 
a. Model of automobile in planar motion, b. Simplified automobile model 
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1.10 SYSTEM DIFFERENTIAL EQUATIONS OF MOTION 

A system subjected to excitations exhibits a response that depends on the nature of 
the excitation and on the system characteristics. The excitations can be divided into 
two broad classes, initial excitations and applied forces, or applied moments. The 
initial excitations take the form of initial displacements or initial velocities, or both. 
The implication of the first is that the system is released from rest in some displaced 
position and allowed to vibrate freely. The time of release is the initial time, for the most 
part t = 0, and the displaced configuration at t = 0 defines the initial displacements. 
Similarly, initial velocities represent velocities imparted to the masses at t = 0. The 
effect of the initial excitations is to impart energy to the system, potential energy in the 
case of initial displacements and kinetic energy in the case of initial velocities. After the 
energy has been imparted to the system, there are no longer any external factors affecting 
the system, for which reason the subsequent motion is referred to as free vibration, or 
free response. On the other hand, the response to applied forces and/or applied moments 
is called forced vibration, or forced response. Note that applied forces (moments) are 
also known as external or impressed forces (moments). Whereas the initial excitations 
require little further discussion, the applied forces (moments) require a great deal of 
elaboration. Indeed, there are many types of external forces (moments), and determining 
the response involves different techniques for different types. We examine the nature of 
the excitations in Sec. 1.1 1. 

As can be concluded from the preceding discussions, excitations represent fac- 
tors external to the system. On the other hand, the system characteristics represent 
internal factors; they consist of the excitation-response characteristics of the individual 
components and the manner in which the components are arranged. These factors are 
considered naturally in the course of developing a mathematical formulation relating the 
response of the whole system to excitations, where in general the formulation is in the 
form of differential equations of motion. In this section, we derive equations of motion 
for some systems of interest in vibrations using Newton's second law. The basic tool 
in deriving equations of motion by means of Newton's second law is the free-body dia- 
gram, a diagram with every mass in the system isolated and with all forces acting upon 
the mass included. Reference is made here to externally applied forces. However, if in 
the process of isolating a mass it becomes necessary to cut through the line of action of 
internal forces, then these forces must be treated as external. 

As a simple illustration, we consider the model of the washing machine of Fig. 
1.28b. The corresponding free-body diagram is depicted in Fig. 1.33, in which the 
two springs have been combined into one with spring constant equal to k and the two 
dampers into one with coefficient of viscous damping equal to c. Then, if we measure 
the displacement y ( t )  from the unstrained spring position, the corresponding forces are 
-ky and - c j ,  respectively, and we recognize that these two forces are not genuine 
applied forces. The only other force is the weight W = Mg, where g is the gravitational 
constant. Using Newton's second law, Eq. (1.3), and recognizing that the problem is 
one-dimensional only, we can write the equation of motion in the form 



SYSTEM DIFFERENTIAL EQUATIONS OF MOTION 45 

Wt)  cX(t) 
FIGURE 1.33 
Free-body diagram for a washing machine 
model 

which can be rewritten as 

Mj( t )  +cj,(t) + ky(t) = -Mg 

and we note that the term - Mg on the right side renders Eq. (1.123) nonhomogeneous. 
As it turns out, a simple transformation can render the equation homogeneous. To this 
end, we denote by x(t) the displacement of M from the static equilibriumposition, which 
differs from the unstrained spring position y (t) by the static equilibrium displacement 
defined as 

But, from Fig. 1.33, the various displacements are related by 

Y (t) = x (t) - fist (1.125) 

Inserting Eq. (1.125) into Eq. (1.123), recognizing that SSt is constant, so that j (t) = i (t), 
and canceling the term -Mg on both sides of the equation, we obtain the equation of 
motion relative to the equilibrium position in the form 

which is homogeneous. The question may be asked as to how the weight disappeared. 
The fact is that the weight did not really disappear. Indeed, the weight Mg is balanced 
at all times by a constant force kfiSt in the spring. The conclusion is that it is possible 
to simplify the equation of motion by measuring the displacement from equilibrium, 
a conclusion which is true in general. Equation (1.126) represents the free vibration 
equation; it will be studied in Ch. 2. 

Next, we turn our attention to the case in which there is some imbalance in the 
system, as shown in Fig. 1.34a. To derive the equation of motion, it is convenient 
to consider two free-body diagrams, one for M - m and one for m. The two free-body 
diagrams are given by Figs. 1.34b and 1.34c, respectively, in which FH and Fv represent 
hinge reactions. Measuring x(t) from the static equilibrium position, which permits us 
to ignore the weight Mg, and using Newton's second law, the equations of motion in the 



x(t) + sin ~t M-m 

L 

FIGURE 1.34 
a. System with rotating eccentric mass, b. Free-body diagram for main mass, c. Free-body diagram 
for eccentric Inass 

vertical direction are 

- Fv - k x  - c i  =(M - m)2 

d2 (1.127) 
2 Fv =m - ( x  + e sin wt)  = m (2 - ew sin wt)  

d t2  

Eliminating the vertical reaction Fv and rearranging, we obtain the single equation of 
motion 

M i  + c i  + kx = F = mew2 sinwt (1.128) 

where F = F ( t )  represents a force acting upon the system. Equation (1.128) confirms 
the statements made in Sec. 1.9 that a single displacement defines the motion of the 
system fully and that the rotating eccentric mass m exerts an inertial force on the system. 
We will study the behavior of the system described by Eq. (1.128) in Ch. 3. 

Finally, we propose to derive the equations of motion for the automobile model 
of Fig. 1.32a with a vertical force added. This requires three free-body diagrams, one 
for each mass, as shown in Fig. 1.35, and we note that gravitational forces were ignored 
on the assumption that displacements are measured from equilibrium. To define the 
displacements of mass mb, we must choose a reference point. To this end, we recall 
from Sec. 1.5 that the most indicated choice is the mass center, as the equations of motion 
in terms of the mass center have a relatively simple form. Hence, we define xb as the 
vertical displacement of the mass center C. Moreover, it is reasonable to assume that 
the angular displacement 0 is relatively small, so that sin 8 Y 8. It follows that the front 
and rear suspension systems undergo the elongations xb - ad - x f  and xb + bQ - x,, 
respectively. Then, referring to the free-body diagrams of Fig. 1.35 and using the first 
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+ c,, ( i b  + b e  - x,) 

kf xf kr xr 
FIGURE 1.35 
Free-body diagram for the system of Figure 1.32a 

of Eqs. (1.63) and Eq. (1.64), we obtain the system equations of motion 

Fc + [ksf (xb - aQ - x f )  + csf (ib - a0 -if )]a - [k,, (xb + bQ - x,) 
(1.129) 

+c,,(ib + b8 - i r ) ] b  = z ~ B  

which can be rewritten as follows: 

mb.?b f (csf + csr)ib - (csfa - cSrb)8 - cSf i f - csr ir  

+(ks f  +ksr)xb- ( k S f a - k s , b ) Q - k s f x f  -ksrx,  = F 

2 ZcB - ( c s fa  - csrb)ib + (cs fa  + cSrb2)8 + cS f  a i  - c,, b i ,  
(1.130) 

- - ksrb)xb + ( k s fa2  + ks,b2)6' + ksf  a x f  - ks,bx, = Fc 

m f j c ' f - c s f i b + c s f a ~ + ~ s f i f  - k s f x b + k s f a Q + k s f x f  = O  

m,% -csrib-cs,b8+cs,ir -ks,xb-ksrb6'+ks,x, = O  

Equations (1.130) represent a set of four simultaneous second-order ordinary differential 
equations in terms of the four unknowns xb, Q ,  x f  and x, . Clearly, the automobile model 
is considerably more involved than the washing machine model. 



We observe that the behavior of the washing machine model, whether subjected 
to inertial forces due to rotating eccentric masses or not, is fully described by a single 
variable, where variables are commonly known as coordinates. On the other hand, 
the behavior of the automobile model of Fig. 1.35 is described by four coordinates, as 
indicated in the preceding paragraph. At this point, we define the number of degrees of 
freedom as the number of independent coordinates necessary to describe the motion of 
a systemfully. In view of this, the washing machine model represents a single-degree- 
ofTfeedom system and the automobile model of Fig. 1.35 is a four-degree-ofTfeedom 
system. Systems described by two or more variables are called multi-degree-of-freedom 
systems. They are discussed in Ch. 7. 

1.11 NATURE OF EXCITATIONS 

The study of vibrations is concerned essentially with the question of how systems behave 
in response to stimuli. To answer this question, it is necessary to solve the system 
equations of motion, such as those derived in Sec. 1.10. The choice of methodology for 
obtaining the solution and the solution itself depend on the type of excitation and on the 
system characteristics. We examine the nature of the excitations in this section and of 
the system characteristics in Sec. 1.12. 

As indicated in Sec. 1.10, we distinguish between initial excitations and applied 
forces, or moments. This distinction is not as airtight as it may seem, because initial 
velocities are really caused by a special type of forces, namely, impulsive forces, as 
we shall verify later in this text. As far as solving the differential equations of motion 
is concerned, however, the distinction is important, as in the case of initial excitations 
the equations are homogeneous and in the case of applied forces the equations are 
nonhomogeneous. 

Initial excitations consist of initial displacements and initial velocities and they 
are generated by imparting potential energy and kinetic energy to a system, respectively. 
The initial excitations set the system in a motion known as free vibration. If the system 
is conservative, this motion persists ad infinitum, at least in theory. Whereas the total 
energy remains constant, the balance between the potential energy and kinetic energy 
fluctuates. On the other hand, if there is damping in the system, then energy is dissipated, 
causing the total energy to go down continuously until it reaches zero, at which point the 
motion stops. Of course, in practice all systems dissipate energy, even those assumed to 
be conservative. The main difference is that conservative systems dissipate energy very 
slowly. Still, all motions caused by initial excitations come to rest eventually. For this 
reason, initial excitations are referred to at times as transient excitations. 

In contrast with initial excitations, there is a large variety of applied forces. A 
very important class of forces consists of harmonic excitations, which are simply forces 
proportional to the trigonometric function sinwt, or to coswt, or to a combination of 
the two. Examining Eq. (1.128), we conclude that the rotating eccentric mass exerts 
a harmonic force upon the washing machine. This is but one of many examples of 
harmonic forces occurring in real life, as we shall have the opportunity to see throughout 
this text. To examine the nature of harmonic functions, we consider a combination of 
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sin wt and cos wt of the form 

where w is the frequency of the harmonic function; it has units of radians per second 
(radls). Moreover, 

A =  4- (1.132) 

is known as the amplitude and 

A1 II) = tan-' - 
A2 

as the phase angle. The function F(t) can be interpreted geometrically as the vertical 
projection of a vector A rotating with the angular velocity w, as shown in Fig. 1.36a. 
The angle wt - $ between A and the vertical axis increases linearly with time, so that 
the vertical projection varies harmonically with time. The plot F (t) versus t is displayed 
in Fig. 1.36b, and we observe that the function repeats itself every time interval T ,  
where T has units of seconds (s) and is known as the period. Because cos(wt - $) = 
cos[w(t + T) - $1, we conclude that the period is related to the frequency by 

Also from Fig. 1.36b, we conclude that there is a time interval $/w between F ( 0 )  
and the first peak, so that the phase angle is a measure of this interval. Whereas the 
amplitude and frequency of the harmonic excitation function F (t) are important factors, 
the phase angle of the excitation is largely irrelevant. Indeed, as we shall demonstrate in 
Ch. 3, depending on the system damping, there is in general a phase angle between the 
excitation and response, which is a characteristic of the response, and is not affected by 
the phase angle $ of the excitation. This implies that the location of the origin t = 0 of 
the time axis has no particular meaning. In fact, because the general shape of harmonic 
functions, such as the cosine function of Eq. (1.13 I), is well defined, the only two pieces 
of information necessary for the characterization of a given harmonic function are the 

FIGURE 1.36 
a. Rotating vector, b. Harmonic force as a function of time 



amplitude and frequency, with time playing a secondary role only. Indeed, harmonic 
excitations have the same characteristics for all times, -oo < t < co, for which reason 
they are known as steady-state excitations. They are distinctly different from transient 
excitations, such as initial displacements and velocities, for which the origin t = 0 of the 
time axis defines the time when the response starts. 

In deriving the response to harmonic excitations, it is convenient to work with a 
different form than the trigonometric form given by Eq. (1.13 I), namely, the exponential 
form. To this end, we consider the series 

Equation (1.135) can be given a geometric interpretation similar to that of Fig. 1.36~1. 
Indeed, as shown in Fig. 1.37, the exponential function eiwt can be represented in the 
complex plane as a vector of unit magnitude and making an angle wt with respect to 
the real axis. Clearly, the projection of the vector on the real axis is cos wt and that on 
the imaginary axes is i sin wt. As time increases, the vector rotates in the complex plane 
with the angular velocity w, causing the two projections to vary harmonically with time. 
From Eq. (1.135), we can write 

R~ eiwt - - C O S W ~ ,  Im eiwt = sinwt (1.136) 

where Re and Im denote the real part and imaginary part, respectively. Equations (1.136) 
can be used to express either coswt or sinwt in exponential form, as the case may be. 
Hence, ignoring the excitation phase angle $, we can replace the trigonometric form of 
the harmonic force, Eq. (1.13 I), by the exponential form 

The advantage of expressing a harmonic force in exponential form is that the response 
is significantly simpler to obtain. Of course, the response will also have an exponential 

i s i n o t  I 7 

FIGURE 1.37 
Unit vector rotating in the complex plane 
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FIGURE 1.38 
Periodic excitation 

form, and hence it will be complex. Then, if the excitation is proportional to cos wt ,  
we retain the real part of the response, and if the excitation is proportional to sinwt, we 
retain the imaginary part of the response. The process may appear as an unnecessary 
complication at this point, but its efficiency will be amply demonstrated in Ch. 3. 

Harmonic excitations belong to a larger class of functions characterized by the fact 
that the functions repeat themselves every time interval T. This is the class of periodic 
functions, such as the function F ( t )  of Fig. 1.38, in which T is the period. We observe 
that, as with harmonic functions, in the case of periodic functions time plays only a sec- 
ondary role. Hence, periodic excitations represent a more general class of steady-state 
excitations. Whereas harmonic functions are periodic, periodic functions are not neces- 
sarily harmonic. However, periodic functions can be expressed as linear combinations of 
harmonic functions known as Fourier series (Appendix A). As with harmonic functions, 
periodic functions can be expressed in terms of trigonometric functions or exponential 
functions, referred to at times as the real form or the complex form of Fourier series, 
respectively. The frequency of each harmonic function in a Fourier series is an integer 
multiple of the lowest frequency, which is known as the fundamental frequency. A great 
deal of information concerning the nature of a periodic function F ( t )  is revealed by a 
plot of the amplitude of each of the constituent harmonic functions in the Fourier series 
as a function of the frequency, as it displays in one diagram the degree of participation 
of each of these harmonic functions in F ( t ) ,  a diagram known as a frequency spectrum. 
The frequency spectrum represents a frequency domain description of a periodic func- 
tion. Hence, although Fig. 1.38 permits easy visualization of the periodic function F ( t )  
as a function of time, a frequency domain description of F ( t )  is more useful. Because 
the plot of the frequency spectrum of a periodic function consists of mere points at the 
individual frequencies, rather than being a continuous plot, this is a discrete frequerzcy 
spectrum. We study the response to periodic forces in Ch. 3. 

The remaining types of excitations clearly belong in the class of nonperiodic 
excitations, which includes a large variety of forces. Many of these forces represent 
known functions of time, two of the most important ones being the impulse function and 
the step function, and many other forces can be expressed as combinations of known 
functions. In general, nonperiodic forces represent arbitrary excitations, such as the 
force F ( t )  depicted in Fig. 1.39. Interestingly, even such conlpletely arbitrary forces 
can be represented as combinations of known functions, and in particular as combinations 
of impulse forces of different amplitude and applied at different times. This is in contrast 



FIGURE 1.39 
Nonperiodic excitation 

with periodic forces, which can be represented by means of combinations of harmonic 
functions. The representation in terms of impulse forces is very convenient in deriving 
the response of systems to arbitrary excitations. This subject is discussed in great detail 
in Ch. 4. 

The three types of forces discussed above, namely, harmonic, periodic and nonpe- 
riodic, have one thing in common, namely, their value is given in advance for any time 
t .  Such excitation forces are said to be deterministic. There are many excitation forces, 
however, that do not lend themselves to such explicit time description. Examples of such 
excitations are the forces exerted by an earthquake on a building, by a rough runway on a 
taxiing aircraft, by a rocket engine on a structure, etc. The implication is that the value of 
the force at some future time cannot be predicted. The reason for this is that there are too 
many factors affecting the force. Of course, it may be possible to measure these forces as 
functions of time, but records from different dates may differ from one another. Forces 
of this type are classified as nondeterministic, and are commonly referred to as random. 
A typical random excitation is displayed in Fig. 1.40. Clearly, a description of random 

FIGURE 1.40 
Random excitation 
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forces as functions of time is not particularly meaningful. Many random phenomena, 
but not all, exhibit a certain pattern known as statistical regularity, which permits their 
description in terms of certain averages, such as the mean value and the mean square 
value. In evaluating the response to random excitations, it turns out that a frequency 
domain description is more useful than a time domain description. This amounts to de- 
composing the random function F ( t )  of Fig. 1.40 into harmonic components. Because 
F ( t )  is nonperiodic, a plot showing the contribution from each harmonic component 
will have an entry at every frequency, resulting in a continuous frequency spectrum. 
The subject of random vibrations is presented in Ch. 12, in which these concepts are 
discussed in detail. 

1.12 SYSTEM AND RESPONSE CHARACTERISTICS. 
THE SUPERPOSITION PRINCIPLE 

As indicated in Sec. 1.10, the manner in which a system responds to excitations depends 
on the nature of the excitations and on the system characteristics. In Sec. 1.11, we 
examined various types of excitations, and in this section we wish to investigate how 
the system characteristics affect the response of the system. To this end, we consider 
the symbolic block diagram of Fig. 1.41, in which the system is represented by a "black 
box" containing the system characteristics. The meaning of the block diagram is that a 
system subjected to an excitation F ( t )  exhibits a certain response x ( t ) .  

A system is broadly defined as an aggregation of components working together 
as a single unit. The system characteristics are determined not only by the excitation- 
response relations of the individual components but also by the manner in which these 
components are connected to one another within the framework of the system. The 
characteristics of a whole system are determined naturally in the process of deriving the 
system equations of motion, as can be concluded from the developments in Sec. 1.10. 

One of the most fundamental questions in vibrations is whether a system is linear or 
nonlinear, as the answer has profound implications as far as the solution of the equations 
of motion is concerned. To answer this question, we assume that a given system, when 
acted upon by two distinct forces Fl ( t )  and F2(t), exhibits the responses xl ( t )  and x2 ( t ) ,  
respectively. Then, if we subject the system to a force of the form 

where cl and c2 are constants, and the response to F ( t )  is 

I I 

FIGURE 1.41 
Symbolic block diagram relating the excitation and the response 

Excitation Response 
x(t) F(t) t System 

characteristics 
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the system is linear. This situation is depicted in Fig. 1.42. On the other hand, if 

x ( t )  # ~ 1 x 1  ( t )  + ~ 2 ~ 2 ( t )  (1.140) 

the system is nonlinear. Equations (1.138) and (1.139) can be extended to the case in 
which F ( t )  and x ( t )  are the sum of any number of excitations and responses, respectively. 
The equations represent the principle of superposition and can be stated as follows: i f  
a linear system is acted upon by a linear combination of individual excitations, the 
individual responses can be jirst obtained separately and then combined linearly to 
obtain the total response. 

As an illustration, we consider a system described by the differential equation 

and denote the response to Fl by xl and the response to F2 by x2, so that 

Then, we assume an excitation in the form of Eq. (1.138), multiply the first of Eqs. 
(1.142) by cl and the second by c2, add up the results and write 

Comparing Eqs. (1.141) and (1.143), we conclude that Eq. (1.139) holds, so that the 
system is linear. 

xzf t )  
Linear system 

Fl(t) 
W Linear system 

FIGURE 1.42 
Excitation-response relation for linear systems 

F(t) = ~ l F l ( t )  + c2F2(t) 
- 

x(t) = clxl(t) + c2x2(t) 
Linear system 
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Next, we consider the system described by 

Following the same process, we write 

multiply the first of Eqs. (1.145) by cl and the second by c2 and obtain 

= clF1 +c2F2 = F 

But, because 

we conclude that Eq. (1.139) does not hold, so that the system described by Eq. (1.144) 
is nonlinear. This can be explained by the fact that Eq. (1.144) represents the equation 
of motion of a single-degree-of-freedom system with a nonlinear spring. For t > 0 it is 
a stiffening spring, and for t < 0 it is a softening spring. 

Comparing Eqs. (1.141) and (1.144), we see that the only difference between the 
two lies in the cubic term in x in Eq. (1.144). Hence, we can draw the conclusion that a 
system is linear if the dependent variable x(t) and all its time derivatives appear in the 
equation of motion to theJirstpower or zero power only, where zero power implies that 
the corresponding term is constant. Based on this statement, it is possible for the most part 
to ascertain whether a system is linear or nonlinear by merely inspecting the differential 
equation, and tests such as the preceding ones are not really necessary. Although we 
reached this conclusion on the basis of a single-degree-of-freedom system, a similar 
conclusion can be reached for multi-degree-of-freedom systems and for distributed- 
parameter systems. Indeed, it is sufficient for a single dependent variable or one of its 
derivatives to be nonlinear for the whole system to be nonlinear. 

The distinction between linear and nonlinear systems is not as sharp as it may seem, 
and the same system can be regarded as linear over a certain range and as nonlinear over 
another. To illustrate the idea, we consider Eq. (1.144) and assume that t is a small 
quantity. Then, in the range in which tx3 << x the system can be regarded as linear. On 
the other hand, if x reaches amplitudes such that ex3 is of the same order of magnitude 
as x, the system must be treated as nonlinear. Clearly, there is a point beyond which the 
system becomes nonlinear. This point bounds the linear range, as shown in Fig. 1.12b, 
and quite often the point is not well defined; it depends to a large extent on the desired 
accuracy. Nonlinear systems are discussed in Ch. I I. 



Before we discuss response characteristics, it is necessary to introduce an addi- 
tional concept. To this end, we refer to the block diagram of Fig. 1.43 and consider 
such excitations F ( t )  that, if F ( t )  is delayed by an amount of time 7 ,  the response x ( t )  
is delayed by the same amount T .  This condition is automatically satisfied by linear 
systems for which the coefficients multiplying the dependent variable x ( t )  and its time 
derivatives do not depend explicitly on time. Such systems are known as linear time- 
invariant systems, or Inore commonly as linear systems with constant coefficients. An 
example of a time-invariant system is that given by Eq. (1.141), in which the constant 
coefficients are the system parameters m ,  c and k.  On the other hand, in the case in 
which the system is described by the differential equation 

the excitation-response relation is not as depicted by the block diagram of Fig. 1.43. 
The reason for this is that Eq. (1.148) represents a time-varying system, or a system with 
time-dependent coeflcients. The treatment of time-varying systems is significantly more 
difficult than that of time-invariant systems. The subject is discussed in Ch. 11. Unless 
otherwise stated, we can assume that we are dealing with linear systems with constant 
coefficients. 

The response to initial excitations is the simplest problem in vibrations. It amounts 
to letting F ( t )  = 0 in the differential equation of motion and assuming that the solution 
x ( t )  of the resulting homogeneous equation has exponential form, which leads to a 
characteristic equation for the exponents. Then, the coefficients of the exponential terms 
are determined by letting x ( t )  and i ( t )  evaluated at t = 0 match the initial displacement 
and velocity, respectively. We discuss this subject in Ch. 2. 

The response to harmonic excitations is also harmonic and has the same frequency 
as the excitation frequency, but it differs in magnitude and possesses aphase angle relative 
to the excitation, both magnitude and phase angle depending on the driving frequency 
w. The response to harmonic excitations is a steady-state response and, as in the case 
of the excitation, it is best treated in the frequency domain. Plots of the magnitude and 
phase angle versus w are known as frequency response plots, and provide a great deal of 
information concerning the nature of the system response, much more than time doma~n 
plots. The response to harmonic forces is presented in Ch. 3. 

The power of the superposition principle becomes evident in the response to peri- 
odic excitations. From Sec. l. l l ,  we recall that periodic excitations can be represented by 
Fourier series, i.e., series of harmonic functions. The response to each of these harmonic 
excitations is also harmonic, as indicated in the preceding paragraph. Then, invoking 
the superposition principle, the response to periodic excitations can be expressed in the 

F(t - z) ~ ( t  - Z) > Linear time-invariant system 

FIGURE 1.43 
Excitation-response relation for linear time-invariant systems 
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form of a series of these harmonic responses. Hence, the response to periodic excitations 
is a steady-state response as well. The response to periodic excitations is also discussed 
in Ch. 3. 

As pointed out in Sec. 1.1 1, an arbitrary excitation can be regarded as a superpo- 
sition of impulse forces of different magnitude and applied at different times. But, the 
response to a unit impulse applied at t = 0 defines the impulse response and it represents 
a characteristic of the system. Indeed, it is a function of time reflecting the system in- 
ertia, damping and stiffness properties. Assuming that the impulse response is known, 
the response of a linear system with constant coefficients can be expressed as a superpo- 
sition of impulse responses of different magnitudes and applied at different times. This 
superposition is called the convolution integral, or the superposition integral. A more 
detailed discussion of the convolution integral and of practical ways of evaluating it on 
a digital computer is presented in Ch. 4. 

The principle of superposition lies at the basis of linear analysis and is largely 
responsible for the theory of vibrations of linear systems being so well developed. Indeed, 
the consequences of the principle are so pervasive that many of them are taken for 
granted. A prime example is the fact that the solution of the equations of motion to 
initial excitations, or the homogeneous solution, and the solution to applied forces, or 
the nonhomogeneous solution, can be obtained separately and then combined linearly 
to obtain the complete solution. This fact applies to linear systems alone. At this 
point, a word of caution is in order. Whereas the superposition of solutions is valid for 
linear systems without restrictions, there are cases in which the rationale for superposing 
solutions must be questioned. In this regard, we recall that initial displacements and 
velocities are transient excitations, with the response to such excitations best described in 
the time domain beginning at t = 0. On the other hand, constant, harmonic and periodic 
forces are steady-state excitations, the latter two more meaningfully described in the 
frequency domain. But, responses to steady-state harmonic and periodic excitations are 
also steady state, so that they too are better described in the frequency domain than in the 
time domain. Hence, although the principle of superposition permits it, from a physical 
point of view it is difficult to justify the addition of the response to initial excitations to 
a steady-state response. 

There remains the question of the response to random excitations. To answer this 
question, it is necessary to introduce a whole variety of new concepts concerning the 
nature of random functions, such as the mean value, mean square value, autocorrelation 
function, power spectral density function, etc. Clearly, if the excitation is a random func- 
tion, so is the response. To obtain the various quantities just mentioned for the response, 
it is convenient to use Fourier transforms, which implies working in the frequency do- 
main rather than the time domain. Still, the results are defined neither in the frequency 
domain nor in the time domain but in terms of probability distributions. The entire Ch. 
12 is devoted to the response of linear systems to random excitations. 

1.13 VIBRATION ABOUT EQUILIBRIUM POINTS 

In Sec. 1.10, we introduced the concepts of equilibrium and displacements from equi- 
librium and used them to simplify the equations of motion. These concepts have signif- 



FIGURE 1.44 
Mass subjected to nonlinear force 

icantly wider implications than it may appear. In this section, we propose to examine 
these implications, before we proceed with the actual solution of the equations of motion 
in the following chapters. 

We consider the single-degree-of-freedom system shown in Fig. 1.44 and described 
by the generic differential equation of motion 

where m is the mass and F ( y  , j )  is in general a nonlinear function of the displacement y 
and velocity j .  We assume that general solutions of Eq. (1.149) are not possible, and our 
interest lies in special solutions capable of shedding some light on the system behavior. 
To this end, we assume that Eq. (1.149) admits the special constant solutions 

y = ye = constant, j = i; = 0 (1.150) 

Because the velocity and acceleration are zero, the constant solutions defined by Eqs. 
(1.150) represent equilibrium points, not unlike the static equilibrium of Sec. 1.10; they 
can be obtained by inserting Eqs. (1.150) into Eq. (1.149) and solving the equilibrium 
equation 

Equation (1.15 1 )  represents an algebraic equation in ye. If F ( y e ,  0 )  is a polynomial, 
there are as many solutions as the degree of the polynomial, and if F(y,, 0 )  is linear, 
then there is just one solution. On the other hand, if F ( y e ,  0 )  is a transcendental function, 
then mathematically there could be an infinite number of solutions. Physically, however, 
there is only a finite number of equilibrium points, as many of these solutions represent 
the same point, as shown in Example 1.9. If ye = 0 is a solution of Eq. (1.151), then the 
corresponding equilibrium point is said to be trivial. 

A problem of considerable importance in vibrations is how the system behaves 
when disturbed from equilibrium, and in particular whether the subsequent motion re- 
mains confined to the neighborhood of the equilibrium point or not. This is the same 
as asking whether the equilibrium point is stable or not. The subject is discussed in a 
rigorous manner in Ch. 11. At this point, we are content with some simple definitions, 
as follows: 

1. If a system disturbed from an equlibrium point returns to the same equilibrium point, 
then the motion (or the equilibrium point) is said to be asymptotically stable. 
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2. If a system disturbed from an equlibrium point oscillates about the same equilibrium 
point without exhibiting any secular trend, i.e., the system neither returns to the equi- 
librium point nor moves away from it with time, then the motion (or the equilibrium 
point) is merely stable. 

3. If a system disturbed from an equlibrium point moves away from it with time, then 
the motion (or the equilibrium point) is unstable. 

To lend the discussion some quantitative substance, we let the solution of Eq. 
(1.149) have the form 

Y ( t )  = ye + x ( t )  (1.152) 

where x ( t )  is a relatively small displacement from equilibrium. In view of Eqs. (1.150), 
it follows that 

j ( t )  = i ( t ) ,  j ( t )  = i ( t )  (1.153) 

Next, we expand F ( y ,  j )  in a Taylor series about an equilibrium point ye, consider Eq. 
(1.152) and the first of Eqs. (1.153) and write 

in which 0 ( x 2 )  denotes terms of second order and higher in x and i ,  i.e., nonlinear terms. 
Then, inserting the second of Eqs. (1.153) and Eq. (1.154) into Eq. (1.149), considering 
Eq. (1.15 I), introducing the notation 

and assuming that displacements from equilibrium are sufficiently small that the nonlin- 
ear terms can be ignored, we obtain 

Equation (1.156) represents the linearized equation of motion about equlibrium, and 
the assumption permitting linearization of Eq. (1.149) is called the small motions as- 
sumption. We propose to use Eq. (1.156) to investigate the motion characteristics in the 
neighborhood of equilibrium. Of course, these characteristics depend on the parameters 
a and b,  which differ from one equilibrium point to another. 

Equation (1.156) is linear with constant coefficients, so that its solution has the 
exponential form 

where A is an inconsequential amplitude and s is a constant exponent. Clearly, the 
behavior of the system in the neighborhood of equilibrium is dictated by the values 
of s. Note that, because Eq. (1.156) is of second order, there are two such values. To 



obtain these values, we introduce Eq. (1.157) into Eq. (1.156), divide through by AeSt 
and conclude that the exponent s must satisfy the algebraic equation 

s 2 + a s + b = 0  (1.158) 

which is known as the characteristic equation. The roots of Eq. (1.158) are 

so that the solution of Eq. (1.156) is 

and we note that sl and $2 are in general complex. The nature of the motion in the 
neighborhood of an equlibrium point can be investigated by considering the s-plane of 
Fig. 1.45, a complex plane containing sl and s2. To this end, we observe that the roots sl 
and sz of the characteristic equation can be real, pure imaginary, or conlplex. Because 
x ( t )  must be real, if sl and s2 are either pure imaginary or complex, then they are the 
complex conjugates of one another, and so are A1 and A2. From Eq. (1.160), we see that 
when sl and s2 are both real and negative the solution approaches zero asymptotically. If 
the roots sl and s2 are complex, the magnitude of the solution is controlled by the real part 
of the roots. Indeed, an exponential function with complex exponent can be expressed 
as the product of two factors, one corresponding to the real part of the exponent and the 
other corresponding to the imaginary part. The factor corresponding to the real part plays 
the role of a time-dependent amplitude and the factor corresponding to the imaginary 
part varies harmonically with time, as can be concluded from Eq. (1.135). Hence, if 
sl and s2 are complex conjugates with negative real part, the solution approaches zero 
in an oscillatory fashion as t + oo. It follows that in all cases in which sl and s2 
are both real and negative or complex conjugates with negative real part the motion 

Stable I i 1 m s  

FIGURE 1.45 
Stability statements in the complex s-plane 
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FIGURE 1.46 
Stability statements in the parameter plane 

in the neighborhood of an equilibrium point is asymptotically stable. This situation 
corresponds to the cases in which both sl and sz lie in the left half of the s-plane of Fig. 
1.45. When sl and sz are pure imaginary complex conjugates, the solution is harmonic, 
so that the system neither tends to the equilibrium point nor does it move away from 
it as t + oo. Hence, in all cases in which sl and s2 are pure imaginary the motion is 
merely stable. These cases are represented by the imaginary axis in Fig. 1.45. Finally, 
if either sl or s2 is real and positive, or both sl and sz are real and positive, or sl and s2 
are complex conjugates with positive real part, the solution diverges, so that the motion 
is unstable. This situation corresponds to the cases in which at least one of the roots of 
the characteristic equation lies in the positive half of the s-plane, as shown in Fig. 1.45. 

The above stability statements can be rendered more explicit by using Eq. (1.159) 
to tie them directly to the system parameters a and b. The whole range of stability 
possibilities and of the corresponding types of motion are displayed in the parameter 
plane a versus b of Fig. 1.46. The following review of the information contained in Fig. 
1.46 should prove rewarding: 

1. Asymptotically stable motion. This region covers the first quadrant of the parameter 
plane, a > 0, b > 0. The parabola a2 = 4b separates the region into two subregions. 
In the subregion above the parabola, a2 > 4b and the roots sl and s2 are real and 
negative, so that the motion decays aperiodically. A typical plot is shown in Fig. 1.47. 
In the subregion below the parabola, a2 < 4b and the roots sl and sz are complex 
conjugates with negative real part. As explained above, the motion in this case is 
a decaying oscillation, as depicted in Fig. 1.48. The parabola a2 = 4b represents a 



t 

0 

FIGURE 1.47 
Aperiodically decaying motion 

FIGURE 1.48 
Decaying oscillation 

borderline case corresponding to the repeated root sl = s2 = a/2;  the motion in this 
case also decays aperiodically. 

2. Stable motion. This region is simply the line a = 0, b > 0. In this case the roots sl 

and s2 are pure imaginary complex conjugates, so that the motion is pure harmonic 
oscillation, as shown in Fig. 1.49. Note that this harmonic motion is different from 
the steady-state harmonic response of the type encountered in Sec. 1.12. 

3. Unstable motion. This region covers the remaining three quadrants, b < 0 and a < 0, 
b > 0. In the region between the parabola a2 = 4b and the positive b-axis, the roots 
sl and sz are complex conjugates with positive real part, so that the motion represents 
divergent oscillation. A typical plot is shown in Fig. 1.50. In the region below the 
parabola a2 = 4b in the fourth quadrant and in the second and third quadrants, both 
roots are real with at least one root being positive, so that the motion diverges aperi- 
odically, as depicted in Fig. 1.51. The statements concerning the motions displayed 



FIGURE 1.49 
Pure harmonic oscillation 
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FIGURE 1.50 
Diverging oscillation 

FIGURE 1.51 
Aperiodically diverging motion 



in Figs. 1.50 and 1.51 must be tempered by the realization that the plots represent 
only trends. Indeed, at some point x ( t )  violates the small motions assumption, so 
that the plots become meaningless. 

The study of vibrations is concerned mainly with the cases in which the motion is 
asymptotically stable or  merely stable. 

Example 1.8. Consider the washing machine described by Eq. (1.123), rewrite the equation 
in the form of Eq. (1.149), determine the equilibrium position and investigate the nature of 
the motion about the equilibrium. 

Equation (1.123) can be rewritten in the form 

so that, comparing Eq. (a) to Eq. (1.149), we conclude that m = M  and 

Hence, in this particular case F(y , j )  is linear and no Taylor series expansion is necessary. 
Consistent with this, the equilibrium equation is 

from which we obtain the sole equilibrium point 

which corroborates the statement made earlier in this section that linear systems admit a 
single equilibrium position. Note that, except for the sign, this is the same result as that 
obtained in Sec. 1.10. 

Next, we consider the transformation 

and observe that the right side of Eq. (e) is identical to Eq. (1.125) with SSt as given by 
Eq. (1.124). Hence, the difference in sign mentioned above can be traced to the fact that 
the equilibrium position implied here is opposite in direction to that assumed in Sec. 1.10. 
Introducing Eq. (e) into Eq. (a) and rearranging, we obtain 

which is the same as Eq. (1.156), provided that 

Because both a and b are positive, we conclude from Fig. 1.46 that the motion about 
equilibrium is asymptotically stable. If c2 > 4 k M ,  the motion decays aperiodically, and 
if c2 < 4kM the motion represents oscillatory decay. In the borderline case c2 = 4kM 
the motion also decays aperiodically. As we shall see in Ch. 2, the three cases represent 
overdamping, underdamping and critical damping, respectively. 



Example 1.9. From Example 1.1, the equation of motion of a simple pendulum is 

Determine the equilibrium points and investigate the nature of the motion in the neighbor- 
hood of equilibrium. 

Comparing Eq. (a) to Eq. (1.149), we conclude that m = 1, y = 8 and 

so that the function does not depend on 8. The equilibrium equation is simply 

which has the solutions 

8, = 0 ,  &T, *27r,. . . 

Hence, mathematically there is an infinite number of solutions. Physically, however, many 
of these solutions represent the same equilibrium points, and in fact there are only two 
equilibrium positions 

eel = 0 ,  8,2 = n (e) 

Of course, the first one is recognized as the trivial one, in which the pendulum is at rest 
hanging down. In the second equilibrium point, the pendulum is at rest in the upright 
position. 

Introducing the transformation 

~ ( t )  = 0, + MI  (f) 

in Eq. (a), we can write the linearized equation, Eq. (1.149), in the form 

;F,+b4=0 (8) 

so that a = 0. Moreover, from the first of Eqs. (1.155), 

Hence, in the case of the trivial equilibrium, Qel = 0,  we have 

g b = - > O  
L 

(i) 

From Fig. 1.46, we conclude that the parameters lie on the positive b-axis, so that motion 
in the neighborhood of the trivial equilibrium is stable. On the other hand, for Qe2 = n we 
obtain 

g b = - - < 0  
L (i) 

so that, from Fig. 1.46, we conclude that the parameters lie on the negative b-axis, so that 
motion in the neighborhood of the upright equilibrium position is unstable. 

The above results conform to expectations. Any small disturbance from the equilib- 
rium position in which the pendulum hangs down results in oscillation about the equilibrium. 
On the other hand, any small disturbance of the pendulum from the upright equilibrium posi- 
tion causes the pendulum to move away from equilibrium, soon violating the small motions 
assumption. The case in which the pendulum oscillates about = 0 is by far the most 
important one, which explains why the equilibnum position Oe2 = 7r is seldom mentioned 
in vibrations. 



1.14 SUMMARY 

The study of vibrations is concerned with the motion of a variety of systems, ranging 
from the oscillation of a simple pendulum to the vibration of a complex structure. These 
systems have one thing in common, namely, they all involve restoring forces. In the case 
of a simple pendulum the restoring force is due to gravity, and in the case of a structure 
the restoring forces are due to elasticity. 

The motion of vibrating systems is governed by laws of mechanics, and in particu- 
lar by Newton's second law in one form or another. Although such material is generally 
taught in a sophomore course on dynamics, the equations of motion are of such impor- 
tance in vibrations that the ability to derive them cannot be taken for granted. Hence, the 
inclusion of material on the derivation of the equations of motion for vibrating systems 
is highly desirable, and has the added advantage of making this text self-contained. 

For the most part, particularly in applications from aerospace, civil and mechanical 
engineering, vibration is undesirable and is to be avoided, or at least reduced. This can 
be done through proper design, or by means of controls. To this end, it is necessary 
to be able to predict how the system responds to various stimuli. When the system is 
complex, this response must be predicted on the basis of a simplified model acting as a 
surrogate for the actual system. Such a model must be sufficiently accurate to retain the 
essential dynamic characteristics of the actual system and yet sufficiently simple to lend 
itself to reasonable mathematical description. The main factors affecting the behavior of 
vibrating systems are the mass and stiffness properties, as well as the damping properties. 
Implicit is the manner in which these quantities are distributed throughout the system. In 
general, a model can be regarded as an aggregation of individual components. Modeling 
amounts to identifying the individual components and their inertia, stiffness and damping 
properties, as well as how the individual components are connected to one another so 
as to act together as a whole system. It should be said that modeling is more of an art 
than an exact science, as there are no particular guidelines to rely on. In fact, a model is 
not unique for a system, and the same system can be modeled in various ways so as to 
reflect different objectives. 

The equations describing the vibration of lumped models are in general ordinary 
differential equations. In deriving the equations by some suitable form of Newton's 
second law, it is necessary to draw one free-body diagram for each mass in the system, 
i.e., a diagram of a given mass isolated from all other masses in the system and showing 
all forces acting upon the mass, which includes both externally applied forces and internal 
forces. Note that, in cutting through internal forces in the process of isolating the mass, 
these internal forces are to be treated as external. The number of ordinary differential 
equations for a system generally coincides with the number of degrees of freedom of 
the system, where the latter represents the minimum number of coordinates required to 
describe the motion of the system fully. On occasion, when internal forces are carried 
as unknowns, the number of equations exceeds the number of degrees of freedom by the 
number of unknown forces. 

To derive the system response, it is necessary to solve the differential equations of 
motion. The nature of the response depends on the excitations and on the system charac- 
teristics. The excitations represent external factors and consist of initial displacements 
and velocities and applied forces and/or moments. For linear systems, it is possible to 



invoke the principle of superposition and determine the response to initial excitations 
and the response to applied forces separately and combine them linearly to obtain the 
system total response. In the absence of applied forces, the response to initial excitations 
can be expressed in exponential form, where the exponents are in general complex, with 
the real part defining the amplitude of the response and the imaginary part defining the 
frequency. The type of applied forces determines not only the nature of the response but 
also the choice of method by which the response is to be obtained. The simplest type 
consists of harmonic forces, in which the response is also harmonic and having the same 
frequency as the excitation. They are referred to as steady-state excitation and steady- 
state response, respectively. Periodic forces can be expanded in Fourier series, which 
are series of harmonic functions with frequencies that are integer multiples of the lowest 
frequency, where the latter is known as the fundamental frequency. Then, by virtue of 
the superposition principle, the individual responses to these harmonic components can 
be combined linearly to obtain the response to the periodic force. In a somewhat similar 
approach, a nonperiodic force can be regarded as a linear combination of impulses and, 
invoking the superposition principle, the response can be obtained in the form of a linear 
combination of impulse responses, where the combination becomes in the limit the con- 
volution integral. Clearly, linearity is a system property of crucial importance, because 
the superposition principle applies only to linear systems, which makes solutions for 
nonlinear systems much more difficult to obtain than solutions for linear systems. 

On occasion, particularly in preliminary design, explicit expressions for the system 
response are not really necessary, and a statement concerning system stability suffices. 
This is particularly true if the system is nonlinear. To produce such qualitative state- 
ments, it is necessary to identify special solutions of the equations of motion; they are 
constant solutions known as equilibrium points. Then, assuming small motions in the 
neighborhood of a given equilibrium point, the equations of motion can be linearized 
about that equilibrium point, and a stability statement can be based for the most part on 
the eigenvalues of the linearized system. Cases in which the analysis based on linearized 
equations is not valid are discussed in Ch. 11. 

PROBLEMS 

1.1. Two masses sliding on smooth inclined planes are each connected to a massless pulley (Fig. 
1.52). The two pulleys are rigidly attached to one another and the diameter of one is twice the 
diameter of the other. Use Newton's second law to derive an expression for the acceleration 
of mass mz. 

FIGURE 1.52 
Masses sliding on inclined planes 



1.2. A bead of mass rn is free to slide along a smooth circular hoop rotating about a vertical axis with 
the constant angular velocity i2 (Fig. 1.53). Use Newton's second law to derive the equation 
of motion for the angle 0 working with the transverse component of force and acceleration. 
Hint: the rotation of the hoop gives rise to a centripetal acceleration perpendicular to the 
vertical axis, in addition to the transverse component of acceleration RQ. Note that the radial 
component - R Q ~  does not enter the picture. 

FIGURE 1.53 
Bead sllding along a rotatlng 
hoop 

1.3. A simple pendulum of mass rn = 5 kg and length L = 2 m is released from rest in a position 
defined by the angle Oo = 60" with respect to the vertical. Assuming that the string is 
inextensible, determine the tension in the string in the positions O1 = 30' and O2 = 0. 

1.4. A compound pendulum in the form of a uniform bar hinged at point 0 is hanging at rest 
when struck at a point a distance h from 0 by a horizontal force F, as shown in Fig. 1.54. 
Determine h so that the horizontal reaction at 0 is zero. Note that such a point is called the 
center of percussion. 

FIGURE 1.54 
Compound pendulum struck by a 
force 



1.5. A uniform rectangular door hangs at an angle a with respect to the vertical (Fig. 1.55). 
Assume that the door is displaced initially with respect to the vertical plane and then allowed 
to oscillate. Derive the equation for the oscillatory motion O(t) of the door by Newton's 
second law; the angle 0 can be arbitrarily large. 

FIGURE 1.55 
Oscillating door 

1.6. Use Newton's second law to derive the equation of motion for a compound pendulum con- 
sisting of a uniform rod of total length L and mass per unit length m and a disk of radius R 
and total mass M, as shown in Fig. 1.56. 

FIGURE 1.56 
Compound pendulum 



1.7. A uniform bar of mass m and length &R slides inside a smooth circular surface of radius R 
(Fig. 1.57). Use Newton's second law to derive the equation of motion for arbitrarily large 
angles 0 and determine the forces exerted by the surface on the bar. 

FIGURE 1.57 
Bar sliding inside a smooth circular surface 

1.8. A disk of mass m and radius r rolls without slip inside arough circular surface of radius R ,  as 
shown in Fig. 1.58. Derive the differential equation for the angular motion Q by writing two 
equations of motion, one for the translation of C and one for the rotation of the disk about C, 
and then eliminating the force at the point of contact A. The angle 8 can be arbitrarily large. 

FIGURE 1.58 
Disk rolling without slip 

1.9. A double pendulum consists of two bobs of mass ml and rnz suspended by inextensible, 
massless strings of length L1 and L2 (Fig. 1.59). Use Newton's second law to derive four 
equations of motion for the rectangular coordinates xl  , yl , x2 and y2. Then, express X I ,  y1, x2 

and yz in terms of the angles Q1 and 82, eliminate the tensions Ti and T2 in the strings and 
obtain two equations of motion for Q1 and 02. 



FIGURE 1.59 
Double pendulum 

1.10. Solve Problem 1.9 by defining the motion directly in terms of the angular displacements 81 
and Q2. 

1.11. The system depicted in Fig. 1.60 consists of two uniform rigid links of mass ml and m2 and 
length L1 and L2. Use Eq. (1.58) for link 1 and Eqs. (1.63) and (1.64) for link 2 to obtain 
four equations of motion. Then, eliminate the constraint forces between the links and derive 
two equations of motion in terms of Q1 and 82. 

FIGURE 1.60 
Two-link system 

1.12. Determine the equivalent spring constant for the system of Fig. 1.61. 

FIGURE 1.61 
System with springs in parallel and in series 



1.13. Derive the equivalent spring constant for the system of Fig. 1.62. 

FIGURE 1.62 
System supported by springs through a 
rigid link 

1.14. The system shown in Fig. 1.63 consists of two gears A and B mounted on uniform circular 
shafts of equal stiffness G J I L ;  the gears are capable of rolling on each other without slip. 
Derive an expression for the equivalent spring constant of the system for the radii ratio 
R A / R ~  = n. 

FIGURE 1.63 
Two gears rolling on one another 
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1.15. The circular shaft of Fig. 1.64 has the torsional stiffness G J ( x )  = G J[1-  ( X ~ L ) ~ ] .  Obtain 
the equivalent spring constant corresponding to a torqu,e at x = L. 

FIGURE 1.64 
Nonuniform shaft acting as a torsional spring 

1.16. Consider a uniform cantilever beam of bending stiffness E I and obtain the equivalent spring 
constant corresponding to a bending moment applied at the free end x = L. 

1.17. A cantilever beam in bending is made of two uniform sections, as shown in Fig. 1.65. Obtain 
the equivalent spring constant corresponding to a vertical force applied at the free end x = L. 

FIGURE 1.65 
Nonuniform beam acting as a spring 

1.18. Verify the expression in Table 1.2 for the equivalent spring constant for a uniform pinned- 
pinned beam with an overhang and a force at the tip. 

1.19. Verify the expression in Table 1.2 for the equivalent spring constant for a uniform clamped- 
pinned beam with an overhang and a force at the tip. Hint: Regard the problem as a combi- 
nation of two problems, one of a cantilever beam with the load at the tip x = L +a and the 
other of a cantilever beam loaded with the pin reaction at x = L. Then, determine the pin 
reaction and subsequently the spring constant by setting the displacement at x = L equal to 
zero. 

1.20. The two gears of the system of Fig. 1.63 have mass polar moments of inertia I A  and IB.  Derive 
an expression for the equivalent mass polar moment of inertia for the radii ratio RA/ Re = n. 
Hints: (1) The reaction forces on the gears at the point of contact are equal in magnitude and 
opposite in direction, (2)  the angular acceleration of gear B is n times the angular acceleration 
of gear A and (3) write one torque equation for each of the gears separately with the shafts 
absent. 



74 CONCEPTS FROM VIBRATIONS 

1.21. Devise a model for the windmill of Fig. 1.66. 

FIGURE 1.66 
Windmill 

1.22. Devise a model for the automobile antenna of Fig. 1.67. 

FIGURE 1.67 
Automobile antenna 
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1.23. Devise two different models for the boat shaft and propeller of Fig. 1.68. 

FIGURE 1.68 
Boat shaft and propeller 

1.24. Devise a model for the radar antenna tower of Fig. 1.69. 

FIGURE 1.69 
Radar antenna tower 



1.25. Devise a model for the construction crane of Fig. 1.70. 

FIGURE 1.70 
Construction crane 

1.26. Devise a lumped model for the n-story building subjected to a horizontal earthquake excitation 
(Fig. 1.71). 

- 
FIGURE 1.71 
n-story building subjected to earthquake excitation 
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Devise model for a motorcycle and rider (Fig. 1.72). 

FIGURE 1.72 
Motorcycle and rider 

1.28. Derive the differential equation of motion for the system of Fig. 1.62 and verify the expression 
for the equivalent spring constant derived in Problem 1.13. Hint: Write an equation for the 
rotation 0 about 0 and an equation for the translation x of mass m and then eliminate 8 to 
obtain a single equation. 

1.29. A mass rn is suspended on a massless beam of uniform bending stiffness EZ, as shown in 
Fig. 1.73. Derive the differential equation of motion for the system. 

FIGURE 1.73 
Mass suspended on a massless beam through a spring 



1.30. A mass rn is connected to a spring of stiffness k through a string wrapping around a rigid 
pulley of radius R and mass moment of inertia I (Fig. 1.74). Derive the equation of motion 
for the system. 

FIGURE 1.74 
Mass connected to a 
spring through a 
pulley 

1.31. An L-shaped massless rigid member with a mass rn at the tip and supported by a spring of 
stiffness k is hinged at point 0, as shown in Fig. 1.75. It is required to: 

L L 

FIGURE 1.75 
Mass supported by a spring through an L-shaped rigid 
member 

(a) Derive the equation for the angular motion 8(t) about 0. 
(b) Determine the equilibrium angle 8,. 
(c) Derive the differential equation for small angular motions Q1 ( t )  about 8,. 
(d) Determine the height H for which the system becomes unstable. 

1.32. An inverted pendulum is supported by a linear spring, as shown in Fig. 1.76. It is required 
to: 
(a) Derive the equation for the angular motion 8(t) about 0. 
(b) Determine the equilibrium positions. 
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(c) Derive the differential equation for small angular motions Q1 (t) about 0, for each equi- 
librium position. 

(d) Determine the stability nature of each equilibrium position. 

FIGURE 1.76 
Inverted pendulum supported by a 
spring 

1.33. A uniform rigid bar of total mass m and length L is hinged at point 0 to a shaft rotating with 
the constant angular velocity L2 about a vertical axis, as shown in Fig. 1.77. It is required to: 
(a) Derive the equation for the angular motion 0(t) about 0. 
(b) Determine the equilibrium positions, assuming that the angle 0 can range from 0 to T.  

(c) Derive the differential equation for small angular motions Ql (t) about 0, for each equi- 
librium position. 

(d) Determine the stability nature of each equilibrium position. 

FIGURE 1.77 
Rigid bar hinged to a rotating shaft 



CHAPTER 

RESPONSE OF 
SINGLE-DEGREE-OF-FREEDOM 
SYSTEMS TO INITIAL EXCITATIONS 

The most basic mechanical system is the single-degree-offreedom system, which is 
characterized by the fact that its motion is described by a single variable, or coordinate. 
As shown in Sec. 1.10, this motion is governed by a single ordinary differential equation, 
such as Eq. (1.128), relating the displacement x ( t )  to the force F ( t ) ,  referred to as 
response and excitation, respectively. 

As indicated in Sec. 1.11, excitations can be broadly divided into two types, initial 
excitations and applied forces. By virtue of the superposition principle (Sec. 1.12), for 
linear systems with constant coefficients, which include most systems discussed in this 
text, the response to initial excitations and the response to applied forces can be obtained 
separately and combined linearly. 

The vibration of a system in response to initial excitations, consisting of initial 
displacements andlor initial velocities, is commonly known as free vibration. To obtain 
the response to initial excitations, we must solve a homogeneous ordinary differential 
equation, i.e., one with zero applied forces, such as that given by Eq. (1.126). We study 
the free vibration of single-degree-of-freedom systems in this chapter. 

The vibration caused by applied forces is referred to as forced vibration, and it 
represents a problem considerably wider in scope than the free vibration problem, which 
is due to the large variety of applied forces. The forced vibration of single-degree-of- 
freedom systems is discussed in Chs. 3 and 4. 
80 



2.1 UNDAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEMS. 
HARMONIC OSCILLATOR 

We consider the free vibration of an undamped single-degree-of-freedom system of the 
type shown in Fig. 2.1. The system represents a special case of the model of the washing 
machine of Fig. 1.28b; its equation of motion was derived in Sec. 1.10. Hence, letting 
M = m and c = 0 in Eq. (1.126), the equation of motion for the free vibration of an 
undamped single-degree-of-freedom system is 

where x ( t )  is the displacement from the static equilibrium position, m the mass and k 
the spring constant. Dividing through by m,  Eq. (2.1) can be written in the form 

i ( t )  + w,2x(t) = 0 (2.2) 

in which 

w , = J k l m  (2.3) 

is a real constant. The solution of Eq. (2.2) is subject to the initial conditions 

x (0 )  = xo, i ( 0 )  = vo (2.4) 

where xo and vo are the initial displacement and initial velocity, respectively. 
Equation (2.1), or Eq. (2.2), represents a system with constant coefficients of the 

type studied in Sec. 1.13. Its solution has the exponential form 

Inserting Eq. (2.5) into Eq. (2.2) and dividing through by Aest, we obtain the character- 
istic equation 

2 2 s +w,=O (2.6) 

which has the two pure imaginary complex conjugate roots 

FIGURE 2.1 
Force-free undamped system 



where i = a. Introducing Eq. (2.7) in Eq. (2.5), the general solution of Eq. (2.2) can 
be written as 

in which A1 and A2 are constants of integration, both complex quantities. Because 
x ( t )  must be real and ePi"nt is the complex conjugate of ei"nt, it follows that A2 is 
the complex conjugate A1 of A1. But, any complex number can be expressed as the 
product of its magnitude multiplied by an exponential with pure imaginary exponent. 
For convenience, we use the notation 

where C and q5 are real constants. Inserting Eqs. (2.9) into Eq. (2.8) and recalling that 
eiol + e-" "-- - 2 cos a, we obtain the response 

so that now the constants of integration are C and 4. 
Equation (2.10) represents harmonic oscillation, for which reason a system de- 

scribed by Eq. (2.2) is called a harmonic oscillator. In Sec. 1.10, we discussed the nature 
of harmonic functions as excitations. Whereas many of the concepts and definitions re- 
main the same, a discussion of harmonic functions as response to initial excitations is in 
order. To this end, we plot the response given by Eq. (2.10), as shown in Fig. 2.2. There 
are three quantities defining the response, the amplitude C, the phase angle q5 and the 
frequency w,, the first two depending on external factors, namely, the initial excitations, 
and the third depending on internal factors, namely, the system parameters. It follows 
that the amplitude and phase angle of the response differ from case to case, according 
to the initial conditions. On the other hand, for a given system, the frequency of the 
response is a characteristic of the system that stays always the same, independently of 
the initial excitations, as can be concluded from Eq. (2.3). For this reason, w, is called 
the natural frequency of the harmonic oscillator. 

slope = vo x(t) ,- 

FIGURE 2.2 
Response of a harmonic oscillator to initial excitations 



To determine the constants of integration C and 4, we must insist that solution 
(2.10) match the initial conditions, Eqs. (2.4). Hence, we write 

Equations (2.11) can be solved for the amplitude and phase angle, with the result 

Equation (2.10) defines the harmonic oscillation fully for given initial conditions xo and 
vo and natural frequency w,, where the dependence on xo and vo is only implicit, through 
Eqs. (2.12). An explicit expression can be obtained by recalling from trigonometry that 
cos(a - p) = cos a cos p + sin a sin p, considering Eqs. (2.11) and writing 

vo . 
= X O C O S W , ~  + -sinw,t (2.13) 

w n 

Although Eq. (2.13) has a simpler appearance than Eq. (2.10), it represents the sum of 
two trigonometric functions and is not so easy to plot as Eq. (2.10). 

The amplitude is identified in Fig. 2.2 as the maximum displacement, and the phase 
angle as a measure of the amount of time necessary for the displacement to reach its 
peak. Moreover, we recognize that the slope of the curve at t = 0 represents the initial 
velocity vo. Also identified in Fig. 2.2 is the period T, defined as the time necessary 
for the system to complete one vibration cycle, or as the time between two consecutive 
peaks. The period of oscillation is also a characteristic of the system, in the sense that it 
is determined by the system parameters and not by external factors. It is related to the 
natural frequency by 

2x T = -  (2.14) 
Wn 

where T has units of seconds (s) and w, has units of radians per second (radls). Note 
that the natural frequency can also be defined as the reciprocal of the period, or 

in which case it has units of cycles per second (cps), where one cycle per second is 
known as one hertz (Hz). 

As can be concluded from Eq. (2.10) and Fig. 2.2, once the system has been set 
in motion by the initial excitations, the oscillation will continue indefinitely with the 
same amplitude. This is because the system neither dissipates nor gains energy, so that a 
harmonic oscillator is a conservative system. It corresponds to the positive imaginary axis 
in the s-plane of Fig. 1.45 and the positive b-axis of the parameter plane of Fig. 1.46, and 
it represents stable motion and pure oscillation, respectively. The harmonic oscillator is 
an idealized system at odds with the physical world. Indeed, in reality physical systems, 
even those assumed to be conservative, tend to dissipate energy to some degree, so that 
free vibration comes eventually to rest. Still, the concepts of harmonic oscillator and 



natural frequency are very useful and can be justified when the rate of energy dissipation 
is so small that it takes many oscillation cycles before a reduction in the amplitude can 
be discerned. 

A large variety of dynamical systems behave like harmonic oscillators, quite often 
when restricted to small motions. A typical example is a simple pendulum oscillating 
about the trivial equilibrium 8 = 0, such as that of Example 1.9. For small motions, the 
differential equation is 

which describes a harmonic oscillator with the natural frequency 

We note that Eq. (2.16) represents the linearized version of the nonlinear equation 

where the linearization is valid as long as sin0 2: 8, which is approximately true for 
surprisingly large values of 8. For example, for 0 = 30" = 0.5236, sin0 = sin30° = 
0.5000, there is less than 5% error in using 8 instead of sin0, and for 8 = 20" the error 
drops to about 2%. 

In the following, we illustrate the variety of systems that can be modeled as har- 
monic oscillators by means of several examples. 

Example 2.1. Show that the water tank of Fig. 2.3a can be modeled as a harmonic oscillator 
and determine the natural frequency on the assumption that the tank and water act as a rigid 
body and that the support column is a massless uniform cantilever beam of bending stiffness 
EI. 

a. 
FIGURE 2.3 
a. Model of a water tank, b. Equivalent single-degree-of-freedom system 



The stated assumptions permit us to treat the tank as a single-degree-of-freedom 
system, as shown in Fig. 2.3b. From Sec. 1.8, the support column can be regarded as an 
equivalent spring with the spring constant given by Eq. (1.1 14), or 

Hence using the analogy with the system of Fig. 2.1 and Eq. (2.1), the equation of motion 
is 

mx ( t )  + keqx ( t )  = 0 (b) 

Example 2.2. A manometer is a device for measuring gas or liquid pressure. Derive the 
differential equation of motion for the U-tube manometer of Fig. 2.4 and obtain the period of 
oscillation. Denote the density of the liquid by p, the cross-sectional area of the manometer 
by A and the total length of the column of liquid by L. 

Assuming that the viscosity of the liquid is negligibly small, the system is conser- 
vative, so that we can use Eq. (1.26) to derive the equation of motion. To this end, we 
observe that the potential energy is due to the weight dislocated from equilibrium. Hence, 
regarding the weight above the reference line as positive and the one below the reference 
line as negative, we can write the potential energy 

where g is the gravitational constant and A the cross-sectional area of the tube. Moreover, 
the kinetic energy is simply 

so that the total energy is 

1 
E = T + v =   PAL^^ + p g ~ x 2  = P A L  

2 
(c) 

Hence, using Eq. (1.26), we obtain 

2g ~ = ~ A ~ ( i i + - x . k ) = p A ~ . k  
L 

(dl 

FIGURE 2.4 
U-tube manometer 



from which we obtain the differential equation of motion 

It follows that the manometer behaves like a harmonic oscillator with the natural frequency 

and the period 

No confusion should arise from the fact that we used the same notation for the kinetic energy 
and the period. 

Example 2.3. A uniform rigid disk of radius r rolls without slipping inside a circular track 
of radius R,  as shown in Fig. 2.5a. Derive the equation of motion for arbitrarily large angles 
8. Then, show that in a small neighborhood of the trivial equilibrium, B = 0, the system 
behaves like a harmonic oscillator, and determine the natural frequency of oscillation. 

To derive the equation of motion, we refer to the free-body diagram of Fig. 2.5b, as 
well as to Eqs. (1.63) and (1.64) and write the force equation in the transverse direction 

and the moment equation about the mass center 

respectively. At this point, we are faced with the problem of having two equations and three 
unknowns, F, Q and 4, and there is only one degree of freedom. But, the two equations 
can be combined into one by eliminating the reaction force F. Another unknown can be 
eliminated by observing that the angular velocities 8 and 4 are related, so that one of them 
is redundant. To this end, we calculate the velocity vc of the mass center of the disk in two 
different ways, first by regarding point C as moving on a circular path about point 0, and 
then by recognizing that point A on the disk is instantaneously at rest. Hence, we write 

a. 
FIGURE 2.5 
a. Disk rolling inside a circular track, b. Free-body diagram 



Then, combining Eqs. (a), (b) and (c), we obtain the desired equation of motion 

3 
=-m(R-r )8+rngs in~  = O  

2 
which can be rewritten in the form 

In a small neighborhood of 0 = 0, sin0 can be approximated by 0, so that Eq. (e) 
reduces to 

which represents the equation of a harmonic oscillator with the natural frequency 

2.2 VISCOUSLY DAMPED SINGLE-DEGREE-OF-FREEDOM 
SYSTEMS 

A typical model of a viscously damped single-degree-of-freedom system in free vibration 
about the static equilibrium is as shown in Fig. 2.6. We encountered this system in Sec. 
1.9 in connection with the model of the washing machine depicted in Fig. 1.28b. Then, 
in Sec. 1.10 we derived the equation of motion, Eq. (1.126), which we rewrite here in 
the form 

where m is the mass, c the coefficient of viscous damping and k the spring constant. It 
is convenient to divide Eq. (2.19) by m and write 

FIGURE 2.6 
Force-free, viscously damped system 



in which w, is the natural frequency of undamped oscillation having the form given by 
Eq. (2.3) and 

is a nondimensional quantity known as the viscous damping factor. The solution of Eq. 
(2.20) must satisfy the initial conditions 

As in the case of undamped systems, Eq. (2.20) has the exponential solution 

so that, following the same steps as in Sec. 2.1, it is not difficult to verify that the exponent 
s must satisfy the characteristic equation 

Equation (2.24) is quadratic in s and has the roots 

As discussed in Sec. 1.13, the nature of the motion about equilibrium depends on the 
roots sl and s2, which in turn depend on the value of the parameter C. As in Sec. 1.13, we 
can use the s-plane to display this dependence, except that here we can be more explicit. 
FromEq. (2.21), we recognize that < 2 0, so that we can plot the locus of the roots sl and 
sz as functions of the parameter C and for a given value of w,, as shown in Fig. 2.7. This 
s-plane diagram provides a complete picture of the manner in which the roots sl and s2 
change with C. Even more insight into the system behavior can be gained by connecting 

FIGURE 2.7 
Root-locus diagram for a viscously damped system 



< and w, to the parameter plane of Fig. 1.46. Indeed, contrasting Eqs. (1.158) and (2.24), 
we conclude that the parameter plane in terms of C and wn is 2Cw, versus w:. In our 
particular case, the interest lies only in the first quadrant, as shown in Fig. 2.8, so that 
the system is guaranteed to be stable and the only question to be addressed is how the 
system responds. 

For C = 0, the roots sl and s2 correspond to the points iw, and -iw, on the 
imaginary axis of the s-plane, Fig. 2.7, and to all the horizontal axis of the parameter 
plane of Fig. 2.8. Clearly, in this case the motion represents harmonic oscillation with 
the natural frequency w,. This case was discussed in detail in Sec. 2.1. 

For 0 cc 5 < 1, the roots sl and sz are complex conjugates and they correspond to 
pairs of points in the s-plane symmetrically located with respect to the real axis. As 5 
changes, the pairs of points move on a semicircle of radius w,, as can be seen from Fig. 
2.7. The same points correspond to a region in the parameter plane of Fig. 2.8 between 
the horizontal axis and the parabola < = 1. From Fig. 2.8, we conclude that in this case 
the motion represents oscillatory decay. The case in which 0 < ( < 1 is commonly 
referred to as underdamping. 

For < = 1, the roots sl and sz coalesce at the point -w, on the real axis of the 
s-plane, as shown in Fig. 2.7, and they correspond to the parabola C = 1 in the parameter 
plane of Fig. 2.8. This case is known as critical damping and the motion represents 
aperiodic decay. 

Finally, for 5 > 1, both roots, sl and sz, are located on the negative real axis of 
the s-plane, with sl between the point -wn and the origin and with s2 to the left of 
-w,, as can be seen from Fig. 2.8. As < increases, sl tends to 0 and s2 to -oo. This 
case corresponds to the region between the parabola < = 1 and the vertical axis in the 
parameter plane of Fig. 2.8, and is characterized by aper.iodic decay. The case is referred 
to as overdamping. In retrospect, we must conclude that the term "critical damping" is 
a misnomer, as there is nothing critical about it. Indeed, it merely corresponds to the 
lowest value of C for which the motion decays aperiodically. 

In the preceding analysis, the emphasis has been on the effect of the viscous 
damping factor on the nature of motion. This is fully justified by the fact that the 
natural frequency does not affect the type of response. In this regard, we should men- 
tion that the parameter plane of Fig. 2.8 contains more information than the s-plane of 

decay 

0 ' 
FIGURE 2.8 
Parameter plane for a viscously damped system 



Fig. 2.7, as the parameter plane is in terms of both < and w ,  and the root locus in the 
s-plane is a plot of the roots sl and s2 as functions of C alone, with w, being regarded 
as a given constant. To include the effect of w, in the s-plane, we must plot the root 
locus for different values of w,; some of these plots are shown in dashed line in Fig. 2.7. 
Hence, the complete root locus picture consists of the imaginary axis for C = 0 ,  concen- 
tric semicircles of increasing radius with increasing w, for 0 < < < 1 and the negative 
real axis for < 2 1. 

The foregoing discussion was qualitative in nature, in the sense that we could only 
establish how the parameters, and in particular the viscous damping factor, dictate the 
type of motion. To obtain a more quantitative picture, it is necessary to solve the equation 
of motion, Eq. (2.20), for the response. Here too, the parameter < is the dominant factor, 
as the nature of the solution and the type of motion change with (. Before considering the 
different types of motion, however, we carry out a number of steps toward the solution 
common to all types. To this end, we recognize that the general solution, Eq. (2.23), 
becomes 

where A1 and A2 are constants of integration depending on the initial conditions. To 
determine these constants, we insert Eq. (2.26) into Eqs. (2.22) and write 

which can be solved for Al and Az, with the result 

Hence, substituting these values in Eq. (2.26), we obtain the solution 

-s2x0 + uo 
x ( t )  = 

t + S I X O  - vo eszt 

$1 - $2 S1 - S2 

which is valid for all cases. In the following, we specialize this solution to the various 
types of damping identified earlier. 

For underdamped systems, 0 < C < 1, it is convenient to express the roots of the 
characteristic equation, Eqs. (2.25), in the form 

where 

wd = Jg wn 

is known as the frequency of damped vibration, for reasons that will become obvious 
shortly. Inserting Eqs. (2.30) into Eq. (2.29) and recalling from complex analysis that 



eia - e-la = 2i sin a and e" + e-" = 2 cos a, we obtain 

sin wdt + xo cos wdt 

where C and q5 represent the amplitude and phase angle of the response, respectively, 
having the values 

To plot the response x(t) as a function of time, it is convenient to regard Eq. (2.32) as 
the produ@t of two factors, ce-CWnt and cos(wdt - 4). The factor ce-C"nt represents 
an exponentially decaying function and cos(wdt - 4) is a harmonic function similar to 
that depicted in Fig. 2.2, except that the amplitude is 1 and the frequency is wd instead 
of w,. Hence, the product of the two can be interpreted as an oscillation with a decaying 
amplitude. This interpretation is consistent with our earlier qualitative analysis of the 
motion, and can be used for plotting purposes. As shown in Fig. 2.9, the time-varying 
amplitude provides the exponentially narrowing envelope &ce-Cwnt modulating the 
harmonic function cos(wdt - 4). This also explains the term "frequency of damped 
vibration" for wd. 



Next, we consider the case of overdamping, < > 1,  in which case the roots sl and 
s2 are as given by Eqs. (2.25), and they are both real and negative. Hence, inserting Eqs. 
(2.25) into Eq. (2.29) and recognizing that e" - e-" = 2 sinh a and e" + e-" = 2 cosh a, 
we obtain the response 

+ [(-<w, + JG w,) xO - uo] e - m ~ n t ]  

slnh d m  w, t + xo cosh 4- w, t (2.34) 

which represents aperiodic decay. Figure 2.10 shows the response for several values of 
< for given w,, xo and uo, from which we conclude that the peaks decrease in magnitude 
and the decay slows down as C increases. 

Finally, we turn our attention to critically damped systems, < = 1 ,  characterized by 
the double root sl = sz = -w,. In this case, the response can be obtained conveniently 
by the Laplace method (Appendix B). It is simpler, however, to obtain the response as a 
limiting case of Eq. (2.34) obtained by letting ( approach 1. In particular, we observe 
that 

The result on the left side of Eq. (2.35) can be obtained by expanding a series for 

0 ' 0.5 1 1.5 2 2.5 3 3.5 
FIGURE 2.10 
Response of a critically damped (C = 1) and overdamped (C > 1) system 
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sinh Jn w,t or by using L'Hospital's rule.' In view of this, the response is simply 

which represents aperiodic decay, as in the case of overdamping. The response is also 
plotted in Fig. 2.10, from which we observe that it reaches a higher peak and approaches 
zero faster than any overdamped system, indeed the highest peak and fastest decay of all 
systems for which < > 1. Hence, critical damping is merely a borderline case, separating 
aperioding decay for overdamping from oscillatory decay for underdamping. 

Example 2.4. The damped single-degree-of-freedom system of Fig. 2.6 is subjected to the 
initial conditions x(0) = 0, i ( 0 )  = vo = 50 cm/s. Plot the response of the system for the 
following cases: i) w, = 4 rad/s, 5 = 0.05, 0.1, 0.2, ii) w, = 4 rad/s, C = 1.2, 1.6, 2.0 
and iii) w, = 4 rad/s, 5 = I. 

In view of the fact that the initial displacement is zero and considering Eqs. (2.32) 
and (2.33), the response in case i, which represents underdamping, has the form 

where 

, = wfr (b) 

Using the given parameter values, the response is simply 

The responses for C = 0.05, 0.1 and 0.2, together with the envelope for C = 0.05, are plotted 
in Fig. 2.9. It is clear that the responses represent damped oscillation, with amplitudes 
decreasing as damping increases. 

Using Eq. (2.34) and the given parameter values, the response in case ii, which 
represents overdamping is 

*'l' = &iq wn e s~nn  \i - 1 w,t = ------ e ,." slnnily <- - 1 t (d) m 
The responses for C = 1.2, 1.6 and 2.0 are shown in Fig. 2.10; they represent aperiodic 
decay with peak amplitudes decreasing as damping increases. Note, however, that the rate 
of decay is slower for higher damping. 

Finally, in case iii, the case of critical damping, we obtain from Eq. (2.36) 

The response is also plotted in Fig. 2.10 and, as expected, it experiences the highest peak 
and the largest decay rate of all cases for which 5 > 1. 

'pipes, L A , Applzed Mathematics for Engzneers and Physzczsts, 2nd ed , McGraw-Hill, New York, 1958, p 
31 
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2.3 MEASUREMENT OF DAMPING 

The single-degree-of-freedom system described by Eq. (2.19) is defined by three param- 
eters, the mass m, the coefficient of viscous damping c and the spring stiffness k. At 
times, the parameters are not known and it is necessary to measure them. The value of 
the mass can be obtained by simply weighing it and writing m = W/g, where W is the 
weight. On the other hand, the value of the spring stiffness can be obtained by pulling 
the spring with an increasing force, measuring the elongation and taking the slope of the 
force-elongation diagram. The same approach can be used to measure the coefficient 
of viscous damping, except that in this case it is necessary to measure the time rate of 
change of the elongation of a dashpot rather than the elongation of a spring. In general, 
however, damping is a much more complex phenomenon than generally assumed. This 
may be due to a variety of factors difficult to account for, such as the nature of the con- 
nection between individual components, air resistance, etc. The process commonly used 
to measure damping differs from the simple process mentioned above in two respects: it 
measures the damping factor C instead of the damping coefficient c and it uses the whole 
system instead of the damper alone. 

A convenient measure of the amount of damping in a single-degree-of-freedom 
system is the drop in amplitude at the completion of one cycle of vibration. To illustrate 
the idea, we consider an experimental record of the displacement given by Fig. 2.1 1 and 
assume that the curve is representative of Eq. (2.32). Then, we let t l  and t 2  be the times 
corresponding to the first and second peak, denote the associated peak displacements by 
xl and xz, respectively, and form the ratio 

But, because t2  = tl + T, where T = 2r/wd is the period of damped oscillation, we can 
use Eq. (2.3 1) and obtain 

FIGURE 2.11 
Experimental record of an underdamped system response 
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In view of the exponential form of the right side of Eq. (2.38), we take the natural 
logarithm on both sides and write 

where 6 is known as the logarithmic decrement. Equation (2.39) can be solved for the 
damping factor C, with the result 

For small damping, such that (' i< 1, Eq. (2.39) yields directly 

The damping factor (' can be determined, perhaps more accurately, by measuring 
the displacements at two different times separated by a given number of periods. Letting 
xl and x,+l be the peak displacements corresponding to the times tl and t ,+l  = tl + j T, 
where j is an integer, and recognizing that the value given by the extreme right of Eq. 
(2.38) is the same for the ratio of any two consecutive peak displacements, not only for 
x l / x z ,  we conclude that 

from which we obtain the logarithmic decrement 

which can be inserted in Eq. (2.40) or Eq. (2.41), as the case may be, and obtain the 
viscous damping factor C. 

Equation (2.43) bases the calculation of the damping factor on two measurements 
alone, xl and x J + l .  Whereas this may be better than using measurements of two consec- 
utive peaks, it can still lead to errors, particularly for small damping, when differences 
between peak amplitudes are difficult to measure accurately. In such cases, accuracy 
may be improved by using Eq. (2.43) and writing 

On semilog paper, a plot In x,  versus j based on Eq. (2.44) has the form of a straight 
line with the slope -6. Because measurements are never exact, some of the intermediate 
points, In xz ,  In x3, . . . , In xl-1, may not fall exactly on this line, as shown in Fig. 2.12. 
Hence, rather than let the line pass through In xl and In xe, a more accurate value of S 
may be obtained by choosing the line so as to minimize the error, perhaps through a least 
squares fit. Such an error minimizing line is shown as a dashed line in Fig. 2.12. 

The foregoing discussion was based on the assumption that damping is viscous, 
and hence proportional to the velocity. As indicated earlier in this section, some factors 
may cause this assumption to be only approximately true. It is in this case that the error- 
minimizing approach described in the preceding paragraph is most useful, as the net 



FIGURE 2.12 
Natural logarithm of peak amplitude measurement versus measurement number 

result is to obtain a "best7' viscous damping model of some damping that is not exactly 
viscous. 

Example 2.5. Measurement of the peak amplitudes of a vibrating lightly damped single- 
degree-of-freedom system has yielded the values x i ,  .x2, . . . , X6 listed in the second column 
of Table 2.1. Develop a least squares approach based on Eq. (2.44) to calculate a corre- 
sponding viscous damping factor. 

We base the approach on Fig. 2.12, which amounts to finding a straight line to fit the 
set of six points representing the natural logarithm of the measurements x l  , x2, . . . , x6. We 
express the equation of the straight line in the discrete form 

and we note that z; corresponds to In x j ,  a to -6, y j  to j - 1 and b to In x l .  Hence, 
the approach amounts to determining the constants a and b by minimizing the sum of the 
squares of the differences between the natural logarithm of the measured displacements and 
the straight line. To this end, we define the sum of the squares of the differences as the error 

Table 2.1 
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To minimize the error, we write 

Equations (c) represent two algebraic equations in the unknowns a and b, which can be 
rewritten in the more explicit form 

Inserting the values from Table 2.1 into Eqs. (d), we obtain 

which have the solution 

Hence, inserting these values into Eq. (a), we obtain the straight line 

The values of zl are listed in the last column of Table 2.1. The plots of In xJ versus yJ and 
z versus y are given in Fig. 2.13 using values from Table 2.1. 

FIGURE 2.13 
Determination of viscous damping factor by the least squares method 



The conclusion is that damping that is only approximately viscous can be treated as 
if it were viscous with the logarithmic decrement 

S =  -a =0.3131 (h) 

and with the viscous damping factor 

2.4 COULOMB DAMPING. DRY FRICTION 

Coulomb damping arises when bodies slide on dry surfaces. For motion to begin, there 
must be a force acting upon the body that overcomes the resistance to motion caused 
by friction. The dry friction force is parallel to the surface and proportional to the force 
normal to the surface; in the case of the mass-spring system of Fig. 2.14, the normal force 
is equal to the weight W. The constant of proportionality is the static friction coefficient 
ps,  a number varying between 0 and 1 depending on the surface materials. Once motion 
is initiated, the force drops to pk W ,  where pk is the kinetic fiiction coefficient, whose 
value is generally smaller than that of p,. The friction force is opposite in direction to 
the velocity, and remains constant in magnitude as long as the forces acting on the mass 
m, namely, the inertia force and the restoring force due to the spring, are sufficient to 
overcome the dry friction. When these forces are no longer sufficient, the motion simply 
stops. 

Denoting by Fd the magnitude of the damping force, where Fd = pk W ,  the equa- 
tion of motion can be written in the form 

where the symbol "sgn" denotes the signum function, or the sign of, and represents 
a function having the value +1 if the argument i is positive and the value -1 if the 

FIGURE 2.14 
Mass-spring system subjected to Coulumb damping 



COULOMB DAMPING. DRY FRICTION 99 

argument is negative. Mathematically, the function can be expressed as 

Equation (2.45) is nonlinear, but it can be separated into two linear equations, one for 
positive and another one for negative i ,  as follows: 

m i + k x = - F d  f o r i > O  

m i + k x  = Fd for i < 0 

Although Eqs. (2.47) are nonhomogeneous, so that they can be regarded as representing 
forced vibration, the damping forces are passive in nature, so that discussion of these 
equations in this chapter is in order. 

The solution of Eqs. (2.47) can be obtained for one time interval at a time, depend- 
ing on the sign of i. Without loss of generality, we assume that the motion starts from 
rest with the mass m in the displaced position x (0)  = xo, where the initial displacement 
xo is sufficiently large that the restoring force in the spring exceeds the static friction 
force. Because the ensuing motion is from right to left, we conclude that the velocity is 
negative, so that we must solve the second of Eqs. (2.47) first, where the equation can 
be written in the form 

in which fd = Fd/ k represents an equivalent displacement. Equation (2.48) is subject 
to the initial conditions x(0)  = xo, i ( 0 )  = 0,  so that its solution is simply 

x ( t )  = (xo - f d )  cos writ + fd  (2.49) 

which represents harmonic oscillation superposed on the average response f d .  Equation 
(2.49) is valid for 0 5 t 5 t l ,  where tl is the time at which the velocity reduces to zero 
and the motion is about to reverse direction. Differentiating Eq. (2.49) with respect to 
time, we obtain 

so that the lowest nontrivial value satisfying the condition i ( t1 )  = 0 is tl = r lw,,  at 
which time the displacement is x ( t l )  = - (xo - 2 fd ) .  If x ( t l )  is sufficiently large in 
magnitude to overcome the static friction, then the mass starts moving from left to right, 
so that the velocity becomes positive and the motion must satisfy the first of Eqs. (2.47), 
namely, 

where x ( t )  is subject to the initial conditions x ( t l )  = -(xo - 2 f d ) ,  i ( t l )  = 0. The 
solution of Eq. (2.51) is 

Compared to solution (2.49), the amplitude of the harmonic component in solution (2.52) 
is smaller by 2 fd and the average response is - fd.  Solution (2.52) is valid in the time 
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I 

FIGURE 2.15 
Response of system subjected to Coulomb damping 

interval t l  5 t 5 tz, where t2 is the next value of time at which the velocity reduces to 
zero. This value is tz  = 27r/w,, at which time the velocity is ready to reverse direction 
once again, this time from right to left. The displacement at t = t2  is x (t2) = xo - 4 f d .  

The above procedure can be repeated for t > t2, every time switching back and 
forth between the first and second of Eqs. (2.47). However, a pattern seems to emerge, 
rendering this task unnecessary. Over each half-cycle the motion consists of a constant 
component equal to the average value of the solution and a harmonic component with 
frequency equal to the natural frequency w, of the simple mass-spring system, where the 
duration of every half-cycle is equal to 7r/w,. The average value of the solution alternates 
between fd and - f d ,  and at the end of each half-cycle the displacement magnitude is 
reduced by 2 fd = 2Fd/k .  It follows that for Coulomb damping the decay is linear 
with time, as opposed to the exponential decay for viscous damping. The motion stops 
abruptly when the displacement at the end of a given half-cycle is not sufficiently large 
for the restoring force in the spring to overcome the static friction. This occurs at the 
end of the half-cycle for which the amplitude of the harmonic component is smaller than 
2 fd. Denoting by n the half-cycle just prior to the cessation of motion, we conclude that 
n is the smallest integer satisfying the inequality 

The plot x ( t )  versus t can be obtained by combining solutions (2.49), (2.52), etc. 
Such a plot is shown in Fig. 2.15. 

Example 2.6. Let the parameters of the system of Fig. 2.14 have the values m = 400 kg, k 
= 14 x lo4 N/m, p, = 0.11 and pk = 0.1 and calculate the decay per cycle and the number 
of half-cy cles until oscillation stops for the initial conditions x (0) = xo = 3 cm, k (0) = 0. 

The magnitude of the average value of the solution is 
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so that the decay per cycle is 

Moreover, n must be the smallest integer satisfying the inequality 

from which we conclude that the oscillation stops after the half-cycle n = 5 with m in the 
position x( ts)  = -(xo - 10 f d )  = - (3  - 10 x 0.2803) = -0.197 cm. 

2.5 PLOTTING THE RESPONSE TO INITIAL EXCITATIONS 
BY MATLAB 

MATLAB can be used to produce numerical solutions to vibration problems not per- 
mitting analytical solutions, as well as to evaluate analytical solutions numerically. As 
an example, Eq. (2.32) represents an analytical expression for the response of an under- 
damped single-degree-of-freedom systems to given initial displacement and velocity. If 
numerical values for the initial displacement xo and initial velocity vo, as well as for 
the natural frequency of undamped oscillation w, and damping factor C, are given, then 
MATLAB can be used in conjunction with Eq. (2.32) to compute the response x(t) at 
discrete values of time. A listing of these values may not be very meaningful. Indeed, 
much more insight can be gained from plots of x(t) versus t for various values of 5, as 
can be concluded from Fig. 2.9. Such plots can be generated by means of a computer 
program written in MATLAB. Following is such a program designed to duplicate the 
plots of Fig. 2.9 using the data for case i of Example 2.4: 

% The program 'rspin1.m' plots the response of an underdamped single-degree-of- 
% freedom system to initial excitations for given values of the damping factor zeta 

clear 
clf 

wn=4; % natural frequency of undamped oscillation 
zeta = [0.05; 0.1; 0.21; % damping factors arranged as a three-dimensional vector 
xO=O; % initial displacement 
v0=50; % initial velocity 
tO=O; % initial time 
deltat = 0.01; % time increment 
tf=6; % final time 

t=[tO: deltat: tfl; 
for i=l:length(zeta), 

wd = sqrt(1-zeta(i) * 2)*wn; % frequency of damped oscillation 
x=exp(-zeta(i)*wn*t).*(((zeta(i)*wn*x0+vO)/wd)*sin(wd*t)+x0* cos(wd*t)); 

plot (t,x) 
hold on 
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title(/Response to Initial Excitationsf) 
xlabel('t(s)') 
ylabel('x(t)/) 
grid 

The program can be used to carry out a parametric study by plotting the response corre- 
sponding to various values of the frequency w, and the damping factor 5. Note that the 
program was based on the third line of Eq. (2.32). The reader is encouraged to modify 
the program so as to base it on the bottom line of Eq. (2.32), as suggested in Problem 2.28 

2.6 SUMMARY 

Excitations can be broadly divided into two classes, initial excitations, which consist 
of initial displacements and velocities, and applied forces. Linear systems possess an 
extremely important property, namely, they satisfy the superposition principle. As a 
result, if an excitation can be represented as a linear combination of excitations, the 
response can be obtained by first determining the responses to the individual excitations 
in the linear combination separately and then combining these responses linearly. In 
view of this, it is convenient to treat the response to initial excitations separately from 
the response to applied forces. 

The response of an undamped single-degree-of-freedom system to initial excita- 
tions is harmonic with amplitude and phase angle depending on the initial displacement 
and/or initial velocity, which vary from one case to another, and with a frequency de- 
pending on the system parameters, which are constant. As a result, the frequency is 
always the same for a given system, for which reason it is referred to as the natural 
frequency. Undamped single-degree-of-freedom systems are commonly known as har- 
monic oscillators. Although harmonic oscillators represent a mathematical idealization, 
as all physical systems possess some measure of damping, the concept is quite useful 
when damping is negligibly small and the time interval of interest is long relative to the 
natural period. A surprisingly large number of physical systems can be regarded in the 
first approximation as harmonic oscillators. 

Damping is a very complex phenomenon. In the first place, there are various 
types of damping, and in many cases damping cannot be readily identified and must 
be inferred from measurements; in some cases it is even nonlinear. The most common 
type is viscous damping, which manifests itself in the form of a force proportional to the 
velocity and opposite in direction to the velocity. For underdamping the motion decays 
in an oscillatory fashion, and for overdamping the motion decays aperiodically. In both 
cases the decay is exponential. Measurement of viscous damping is commonly based 
on the concept of logarithmic decrement. 

Another common type of damping is due to dry friction and occurs when bodies 
slide relative to one another; it is generally known as Coulomb damping. Although 
Coulomb damping is nonlinear, the equation of motion can be separated into two linear 
equations, one valid when the velocity is positive and the other valid when the velocity 
is negative. As a result, the equation of motion can be solved in closed form. Coulomb 
damping causes the motion to decay linearly. 



The response problems in this chapter admit analytical solutions, even in the case 
of Coulomb damping, which is nonlinear. For parametric studies, plotting the response 
seems advised. This can be done efficiently by means of MATLAB. 

PROBLEMS 

2.1. A cylindrical buoy of cross-sectional area A and total mass rn is first depressed from equi- 
librium and then allowed to oscillate (Fig. 2.16). Denote the mass density of the liquid by y 
and determine the natural frequency of oscillation. 

FIGURE 2.16 
Oscillating buoy 

2.2. Determine the natural frequency of the system of Fig. 1.61 for kl = k2 = 0.8 x lo5 N/m, 
k3 = 2.4 x lo5 N/m and m = 240 kg. 

2.3. A given system of unknown mass rn and spring constant k was observed to oscillate harmon- 
ically in free vibration with the natural period T = 27r x s. When a mass M = 0.9 kg 
was added to the system (Fig. 2.17) the new period rose to T* = 2 . 5 ~  x 1 0 - ~ s .  Determine 
the system parameters rn and k. 

FIGURE 2.17 
System with unknown mass m and 
spring k 



2.4. Consider the system of Fig. 1.62 in conjunction with the parameters a = 2m, b = 2.5m, 
kl = 5 x lo5 N/m, kz = 1.8 x lo5 N/m and m = 200 kg, assume small motions, solve for the 
equilibrium position and determine the natural frequency of oscillation about the equilibrium 
position. 

2.5. Determine the natural frequency of the system of Fig. 1.63 for the gear ratio RA/RB = n = 2. 
The gears are made of the same material and have the same thickness. 

2.6. The door of Problem 1.5 has the width B = 0.8m and hangs at an angle a = 5" with respect 
to the vertical. Assume small angles $ and determine the natural frequency of oscillation. 

2.7. The rod in the compound pendulum of Problem 1.6 has mass per unit length rn = 1 kg/m 
and total length L = 2m and the disk has the total mass M = 5kg and radius R = 0.25m. 
Assume small angles Q and determine the natural frequency of oscillation. 

2.8. Consider the rolling disk of Problem 1.8, assume small angles $ and determine the natural 
frequency of oscillation about the position Q = 0 for r = R/4. 

2.9. Determine the natural frequency of the system of Problem 1.15. 
2.10. Detennine the natural frequency of the system of Problem 1.17. 
2.11. To determine the centroidal mass moment of inertia Ic of a tire mounted on a hub, the wheel 

was suspended on a knife edge, as shown in Fig. 2.18, and the natural period T was measured. 
Derive a formula for Ic in terms of the mass m, the natural period T and the radius r from 
the center C to the support. 

FIGURE 2.18 
Wheel suspended on a knife edge 



2.12. A connecting rod of mass m = 3 x lop3 kg and centroidal mass moment of inertia Ic = 
0.432 x kg m2 is suspended on a knife edge about the upper inner surface of a wrist-pin 
bearing, as shown in Fig. 2.19. When disturbed slightly, the rod was observed to oscillate 
harmonically with the natural frequency w, = 6rad/s. Determine the distance h between 
the support and the mass center C. Hint: the distance h must be smaller than the length 
of a corresponding simple pendulum of mass m, because the mass of the connecting rod is 
distributed and that of the pendulum is lumped. 

FIGURE 2.19 
Connecting rod 
suspended on a knife 
edge 

2.13. A bead of mass m is suspended on a massless string, as shown in Fig. 2.20. Assume that 
the string is subjected to the tension T and that the tension remains constant throughout the 
vertical motion of the bead and derive the equation for small motions y ( t )  from equilibrium, 
as well as the natural frequency of oscillation. 

FIGURE 2.20 
Mass suspended on a string 
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2.14. The one-story structure shown in Fig. 2.21 can be modeled in the first approximation as a 
single-degree-of-freedom system by regarding the columns as massless beams clamped at 
both ends and the roof as a rigid slab. Derive the equation for the horizontal translation of 
the slab and determine the natural frequency. The mass of the slab is denoted by M and the 
flexural rigidity of the columns by E 1. 

2.15. The maximum acceleration of the mass in Problem 2.2 was observed to have the value 
a,,, = 1,000 cm/s2. Determine the initial velocity i (0 )  = vo for the case in which the initial 
displacement has the value x(0) = xo = 2cm. 

2.16. The system of Problem 2.2 is at rest when imparted the initial velocity V Q .  Plot on the same 
graph the response for the values vo = 10,20,30 and 40 cm/s over the time interval 0 5 t 5 Is 
and draw conclusions concerning the nature of the response. 

2.17. The upper right comer of the door of Problem 2.6 is released from rest after being held at a 
distance xo = 2 cm from the vertical plane containing the hinge axis. Plot the response over 
2.5 periods. 

2.18. A simple pendulum is immersed in viscous fluid so that there is aresisting force of magnitude 
C L B  acting on the bob, where c is the coefficient of viscous damping, L the length of the 
pendulum and 0 the angular displacement. In the case in which the mass of the bob has 
the value m = I kg and the length is L = l m  the period of small-amplitude oscillations was 
observed to be T = 2.02 s. Determine the damping coefficient c. 

2.19. A disk of mass m and radius R rolls without slip while restrained by a dashpot with coefficient 
of viscous damping c in parallel with a spring of stiffness k, as shown in Fig. 2.22. Derive 
the differential equation for the displacement x ( t )  of the disk mass center C and determine 
the viscous damping factor C and the frequency w, of undamped oscillation. 

EI - 

FIGURE 2.22 
Rolling disk restrained by a spring and a dashpot 

M 

EI - 

FIGURE 2.21 
One-story structure 



2.20. Calculate the frequency of damped oscillation of the system shown in Fig. 2.23 for the values 
m = 1 , 7 5 0 k g , c = 3 , 5 0 0 ~ . s / m , k = 7 x  1 0 ~ ~ / m , a = 1 . 2 5 m a n d b = 2 . 5 r n .  Determine 
the value of the critical damping. 

FIGURE 2.23 
Mass supported by a spring and dashpot through a rigid bar 

2.21. Consider the system of Fig. 2.6 and plot the response to the initial conditions x(0) = 2cm, 
i ( 0 )  = 0 for the values of the damping factor C = 0.1, 1 and 2. Let the frequency of undamped 
oscillation have the value w, = 5 rad/s and plot the response over the interval 0 5 t 5 5 s. 

2.22. A projectile of mass m = 10 kg traveling with the velocity v = 50 m/s strikes and becomes 
embedded in a massless board supported by a spring of stiffness k = 6.4 x lo4 Nlm in 
parallel with a dashpot with the coefficient of viscous damping c = 400 N . s/m (Fig. 2.24). 
Determine the time required for the board to reach the maximum displacement and the value 
of the maximum displacement. 

FIGURE 2.24 
Projectile striking a board restrained by a 
spring and dashpot 

2.23. Devise a vector construction representing Eq. (2.32). 
2.24. From the observation of the response of an underdamped single-degree-of-freedom system, it 

was determined that the maximum displacement amplitude during the second cycle is 75% of 
the first. Calculate the damping factor 5 and determine the maximum displacement amplitude 
during cycle 4 112 as a fraction of the first. 



2.25. Measurements of the response peak amplitudes of a vibrating single-degree-of-freedom sys- 
tem are as follows: xl = 24.86, xz = 22.98, x3 = 21.49, x4 = 20.55, xg = 19.14, xg = 17.80, 
x7 = 17.03 and xx = 15.97. Use the least squares method described in Sec. 2.3 to determine 
the "best" viscous damping factor C. 

2.26. Prove inequality (2.53). 
2.27. Plot x ( t )  versus t for the system of Example 2.6. 
2.28. Write a program in MATLAB for the response of an underdamped single-degree-of-freedom 

system to initial excitations based on the bottom line of Eq. (2.32). Plot the response using 
the data for case i in Example 2.4. 

2.29. Solve Problem 2.21 by MATLAB. 
2.30. Solve Problem 2.27 by MATLAB. 



CHAPTER 

3 
RESPONSE OF 

SINGLE-DEGREE-OF-FREEDOM SYSTEMS 
TO HARMONIC AND PERIODIC 

EXCITATIONS 

As indicated in Sec. 1.11, harmonic and periodic forces belong to a very important class 
of excitations, namely, the class of steady-state excitations. The importance of steady- 
state excitations, and in particular harmonic excitations, is due to the fact that they occur 
frequently in various areas of engineering. Hence, it is only fitting that an entire chapter 
be devoted to the response to harmonic and periodic excitations. 

Steady-state harmonic excitations differ from all other types of excitations in that 
more information concerning the behavior of the response to such excitations can be 
extracted by means of frequency domain rather than time domain techniques. Particularly 
useful are frequency-response plots, which are two companion diagrams showing how 
the amplitude and phase angle of the response vary as the excitation frequency changes. 
They provide a broader picture of the response characteristics than that provided by a 
time response, which is limited to a given excitation frequency. 

In many systems, rotating components give rise to harmonic excitations. We 
encountered such an example in the model of a washing machine depicted in Fig. 1.28b. 
Turbines, automobile tires and vibration measuring instruments can be counted among 
other typical examples. 

Periodic excitations are also steady state. But, whereas harmonic functions are 
periodic by definition, periodic functions are not necessarily harmonic. They can be 
represented, however, by infinite series of harmonic functions. As with the harmonic 
response, frequency domain techniques are more suitable for treating the response to 
periodic excitations than time domain techniques. 
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m i  ( t )  + c i  ( t )  + kx  ( t )  = F ( t )  (3.1) 

where m is the mass, c the coefficient of viscous damping, k the spring constant, x ( t )  
the displacement and F( t )  the force. The solution of Eq. (3.1) is subject to the initial 
displacement and velocity, x(0) = xo and i ( 0 )  = vo, respectively. But, according to 
the principle of superposition, the response to the applied force F (t) and to the initial 
excitations xo and vo can be obtained separately and combined linearly. Chapter 2 was 
devoted entirely to the response to initial excitations. This chapter and Ch. 4 are devoted 
to the response to applied forces. 

In this section, we are concerned with the case in which F ( t )  represents a harmonic 
force, which can be expressed for convenience in the form 

F ( t )  = k t  ( t )  = k A  cos wt (3.2) 

where 

in which w is the excitation frequency, or driving frequency, and note that f ( t )  and A 
have units of displacement. Introducing Eq. (3.2) in Eq. (3.1) and dividing through by 
m, we obtain 

where < = c/2w,m is the viscous damping factor and w, = m i s  the natural frequency 
of undamped oscillation. 

As indicated in Sec. 1.1 1, harmonic forces are steady-state excitations, for which 
time plays only a secondary role. Consistent with this, the response is also steady state. 

FIGURE 3.1 
Damped single-degree-of-freedom 
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In particular, the response is harmonic and has the same frequency as the 
frequency. Hence, we assume a solution of Eq. (3.4) in the form 

x(t) = C1 sinwt + C2 cos wt (3.5) 

in which C1 and C2 are constants yet to be determined. Inserting Eq. (3.5) into Eq. (3.4), 
we obtain 

- w2(c1 sinwt + C2 coswt) + w2<w,(C1 coswt - C2 sinwt) 

+ W:(CI sinwt + C2coswt) 

= [(w: - w2)c1 - 2<wwn ~ 2 1  sin wt + [2<wwn c1 + (w: - w2) c ~ ]  cos wt 

Equation (3.6) can be satisfied provided the coefficients of sinwt on both sides of the 
equation are equal, and the same can be said about the coefficients of coswt, which 
yields two algebraic equations in C1 and C2, as follows: 

(w,2 - w2)c1 - 2<ww,C2 = 0 
(3.7) 

2<wwnCl + (w: - w2)c2 = W:A 

Using Cramer's rule (Ref. 18, p. 233), the solution of Eqs. (3.7) is 

1 0 -2Swwn 1 

Introducing Eqs. (3.8) in Eq. (3.9, we obtain the steady-state solution 

Solution (3.9) can be cast in a form more suitable for physical interpretation. To this 
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end, we introduce the notation 

25wlwn 
= sin4 

{ [ I  - ( ~ I w n > ~ l ~  + ( 2 5 ~ / ~ , ) ~ ) ' ' ~  

1 - (w/w?d2 
= cos 4 

(11 - ( ~ I w n ) ~ l ~  + ( ~ C ~ / W , ) ~ I ' ' ~  
so that the harmonic response can be written in the compact form 

x ( t )  = Xcos(wt - $) 

where 

is the magnitude and 

4 = 4(w)  = tan-' 25wlwn 

1 - ( ~ / w n ) ~  

is the phase angle of the steady-state response. As pointed out in Sec. 1.12, a great deal 
more information can be extracted from plots X ( w )  versus w and 4(w)  versus w than 
from plots x ( t )  versus t ,  where the first two are frequency response plots and the third is a 
time domain plot. In this section, we propose to study the two frequency response plots. 
But, before that, it will prove useful for future studies to examine a more expeditious 
way of deriving the steady-state response. 

We recall from Sec. 1.1 1 that trigonometric functions can be expressed in expo- 
nential form. Hence, using Eqs. (1.136) and recognizing that A is real, we can rewrite 
Eq. (3.3) as 

f ( t )  = Ae"' (3.14) 

and Eq. (3.4) in the form 

with the understanding that, if the excitation is f ( t )  = A cos wt, the response is Re x ( t )  
and if f ( t  ) = A sin wt , the response is Im x ( t )  . The advantage of the complex notation is 
that the solution of Eq. (3.15) is much easier to obtain than a solution using real notation. 
Indeed, the solution is simply 

Inserting Eq. (3.16) into Eq. (3.15), we have 

where 



is the impedance function. Dividing Eq. (3.17) through by .Z(iw)eiwt and considering 
Eq. (3.18), we have 

It will prove convenient to introduce the nondimensional ratio 

where G(iw)  is known as the frequency response, a very important concept in vibrations. 
Inserting Eq. (3.20) into Eq. (3.16), we can express the harmonic response in the general 
form 

Clearly, G(iw)  is a measure of the system response to a harmonic excitation of frequency 
w, which explains why the function is called frequency response. 

In general, the frequency response is a complex function, which makes it difficult 
to study the nature of the response using Eq. (3.21) in the indicated form. To obtain a 
more suitable form of the harmonic response, we write 

G(iw)  = Re G(iw)  + i Im G(iw)  (3.22) 

and recognize that, as any complex quantity, the frequency response can be expressed as 

G(iw)  = ~ G ( i w ) l e - ~ ~ ( ~ )  (3.23) 

where 

G ( i w )  = [ G ( i w ) ~ ( i w ) ] " ~  = {[Re G(iw)12 + [Im ~ ( i w ) ] ' } ~ / ~  (3.24) 

is the magnitude of G ( i  w) ,  in which G ( i  w )  is the complex conjugate of G (i  w) ,  and 

-1m G ( i  w )  
#(w) = tan-' [ Re G(iw)  ] 

is the phase angle of G(iw) .  Hence, inserting Eq. (3.23) into Eq. (3.21), we obtain 

x ( t )  = A I G ( i  w )  1 e"(Wt-4) (3.26) 

Equation (3.26) is much more convenient for deriving the actual harmonic response 
than Eq. (3.21). Indeed, according to our earlier understanding, if the excitation is 
f ( t )  = A cos wt,  then the response is 

and if the excitation is f ( t )  = A sin wt, the response is 

x ( t )  =Im A ~ G ( i w ) l e ' ( ~ ~ - ~  = AlG(iw)Isin(wt -4) (3.28) 

The representation of harmonic excitations and the response to harmonic excita- 
tions by complex vectors can be given an interesting geometric interpretation by means 
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FIGURE 3.2 
Representation of harmonic excitation and response in the complex plane 

of a diagram in the complex plane. To this end, we differentiate Eq. (3.26) with respect 
to time and obtain 

Because i can be written as i = cosn/2 + i sinn/2 = e1"I2, we conclude that the velocity 
leads the displacement by the phase angle n/2 and that its magnitude is equal to the 
magnitude of the displacement multiplied by the factor w . Moreover, because - 1 can 
be expressed as - 1 = cos ri + i sin ri = em",t follows that the acceleration leads the 
displacement by the phase angle ri and that its magnitude is equal to the magnitude of 
the displacement multiplied by the factor w2. 

In view of the above, we can represent Eq. (3.15) in the complex plane by the 
diagram shown in Fig. 3.2. The diagram can be interpreted as stating that the sum of the 
complex vectors i ( t ) ,  2Cwni(t) and w:x(t) balances w:AeZWt, which is precisely what 
Eq. (3.15) states. Consistent with the nature of the complex vector ewvFig. 1.37), we 
conclude that, as t increases, the entire diagram of Fig. 3.2 rotates in the complex plane 
with the angular velocity w. It is clear that considering only the real part of the response 
is equivalent to projecting the diagram onto the real axis. We can just as easily retain 
the projections on the imaginary axis, or any other axis, without affecting the nature 
of the response. In this regard, we observe that projecting the excitation and response 
on an axis making an angle $ with respect to the real axis is equivalent to multiplying 
both sides of Eq. (3.15) by the constant factor e-'$. Clearly, this has no effect on the 
magnitude (G(iw)l and phase angle $(w) of the harmonic response. 

3.2 FREQUENCY RESPONSE PLOTS 

Equation (3.27), or Eq. (3.28), defines the harmonic response in the time domain for any 
excitation frequency w. A broader picture of the harmonic response can be obtained by 
examining how the magnitude 1 G(i w) 1 and phase angle $(w) of the frequency response 
G(iw) vary with w. Insertion of Eq. (3.20) into Eq. (3.24) yields the magnitude of the 



frequency response 

Before we attempt to derive the phase angle $(w),  it is advisable to cast G ( i w )  in a form 
exhibiting the real and imaginary parts of the frequency response explicitly. To this end, 
we multiply the top and bottom of Eq. (3.20) by the complex conjugate G ( i w ) ,  use Eq. 
(3.30) and write the desired form 

so that 

Hence, introducing Eqs. (3.32) in Eq. (3.25), we obtain the phase angle of the frequency 
response 

-1m G ( i w )  
$(w)  = tan-' [ ] = tan-' 2CwIwn 

Re G ( i w )  1 - ( w / w d 2  

Considerable insight into the system behavior can be gained by examining how the 
magnitude and phase angle of the frequency response vary with the excitation frequency. 
The corresponding nondimensional plots, 1 G ( i w )  1 versus w/w,  and $(w) versus wlw,, 
are known as frequency response plots. The plots are made even more informative by 
using the viscous damping factor < as a parameter. The plot IG(iw)J versus w/w, is 
shown in Fig. 3.3, from which we observe that damping tends to reduce amplitudes and 
to shift the peaks to the left of the vertical through w/w,  = 1. To find the location and 
value of the peaks, we use the standard technique of calculus for finding the maximum 
of a function, namely, setting the derivative equal to zero. Hence, we write 

from which we conclude that peaks occur at 

thus corroborating the statement that they occur for wlw, < 1. Clearly, for ( > 1 /2 /2  
the response has no peaks. We observe that in the undamped case, 5 = 0 ,  the response 



W / w ,  
FIGURE 3.3 
Magnitude of the frequency response 

increases indefinitely as the driving frequency w approaches the natural frequency w,. 
In this case, the system experiences a resonance condition characterized by violent 
vibration. Clearly solution (3.27), or (3.28), is no longer valid at resonance, and a new 
solution of Eq. (3.4) corresponding to 5 = 0 and w = w, must be generated; we discuss 
such a solution later in this section. Inserting Eq. (3.35) back into Eq. (3.30), we obtain 
the value of the peak amplitudes 

1 
IG(iw) lmax 

25- 
There is considerable interest in the case of light damping, such as when 5 < 0.05, 

in which case peaks occur in the immediate neighborhood of wlw, = 1. Moreover, for 
small values of 5, Eq. (3.36) yields the approximation 

1 
IG(iw)lmax = Q E - 

25 
(3.37) 

where Q is known as the quality factor, because in many electrical engineering applica- 
tions, such as the tuning circuit in a radio, the interest lies in amplitudes at resonance as 



large as possible. The symbol is often referred to as the Q factor of the circuit. Equation 
(3.37) can be used as a quick way of estimating the viscous damping factor of a system by 
producing the plot I G ( i w )  1 versus w/wn experimentally, measuring the peak amplitude 
Q and writing 

The points P1 and P2, where the amplitude of IG(iw)l falls to & / A ,  are called half- 
power points, because the power absorbed by the resistor in an electric circuit or by 
the damper in a mechanical system subjected to a harmonic force is proportional to the 
square of the amplitude (see Sec. 3.8). To obtain the driving frequencies corresponding 
to PI and P2, we use Eqs. (3.30) and (3.37) and write 

which yields the quadratic equation in ( w ~ w , ) ~  

Ignoring the term in c3, Eq. (3.40) has the solutions 

where wl and w2 are the excitation frequencies corresponding to P1 and P2, respectively, 
so that 

Then recognizing that for light damping wl + w2 2 2w,, Eq. (3.42) yields 

The increment of frequency Aw associated with the half-power points PI and P2 is 
referred to as the bandwidth of the system. Inserting Eq. (3.43) into Eq. (3.37), we 
obtain 

so that the requirement of high quality factor is equivalent to small bandwidth. 
At this point, we turn our attention to the frequency response plot for the phase 

angle. To this end, we use Eq. (3.33) and plot $(w)  versus w/wn with C acting as a 
parameter, as shown in Fig. 3.4. We observe that all curves pass through the point 
q5 = n / 2 ,  w/wn = 1. Moreover, for w/w,  < 1, the phase angle tends to zero as < -+ 0 ,  
and for w j w ,  > 1 the phase angle tends to n as < + 0. For < = 0 ,  the phase angle is 
zero for w/w,  < 1, it experiences a discontinuity at w/wn = 1, jumping from 0 to n / 2  



FIGURE 3.4 
Phase angle of the frequency response 

and then to T ,  and it continues with the value 7r for wlw, > 1. Note that, letting 5 + 0, 
we can conclude from Fig. 3.4 that the phase angle at resonance is n-12. 

The case in which the system is undamped, = 0, can be perhaps better explained 
by considering it separately. In fact, because the differential equation does not contain 
odd-order derivatives, there is no reason to use complex notation. Hence, letting 5 = 0 
in Eq. (3.4), we can write 

i ( t )  + w:x (t) = W ~ A  cos wt (3.45) 

Then, assuming a solution in the form (3.5) with C1 = 0, it is easy to verify that the 
response is 

1 
L 

x ( t )  = Acoswt = AG(w)coswt (3.46) 
1 - (wlwn>2 

where now the frequency response is simply 

Hence, in contrast with Eq. (3.20), in the undamped case the frequency response, Eq. 
(3.47), is a real function. Consistent with this, it is not really necessary to have two 
frequency response plots, magnitude and phase angle, and a single plot suffices. Indeed, 
the plot G(w) versus wlw, displayed in Fig. 3.5 contains all the needed information. 



FIGURE 3.5 
Frequency response for an undamped system 

It shows that G(w)  is positive for wlw,  < 1, so that the response is in phase with the 
excitation when the driving frequency is below resonance, and is negative for wlw,  > 1, 
so that the response is 180" out of phase with the excitation when the driving frequency 
is above resonance. Moreover, for wlw,  = 1, the response jumps from +w to -w. Of 
course, this is the case in which the system experiences resonance, and solution (3.46) 
is invalid, as it violates the small motions assumption implied by the linear restoring 
force in the spring. Hence, when the driving frequency approaches resonance, w -+ w,, 
the magnitude frequency response plot G(w)  versus wlw,  permits us only to make the 
qualitative statement that the system experiences violent vibration, rather than to obtain 
an exact vibration amplitude. 

The question remains as to how to obtain a more quantitative statement concerning 
the system behavior at resonance. To answer this question, we let w = w, in Eq. (3.45) 
and write 

Clearly, a steady-state solution in the form of Eq. (3.5) with w = w, will not work here, 
because it leads to an infinite response, which at some point violates the assumption that 
the spring behaves linearly. Indeed, here the interest lies in a solution showing how the 
response builds up before it exceeds the linear range, which implies a transient solution. 
Techniques for solving Eq. (3.48) are studied in Ch. 4 in conjunction with transient 
solutions. At this point, we must be content with the statement that the particular solution 
of Eq. (3.48) has the form 

which can be verified by substitution. Equation (3.49) represents oscillatory response 
with an amplitude increasing linearly with time. The response x ( t )  is displayed as a 
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. 
FIGURE 3.6 
Response of an undamped system at resonance 

function of time in Fig. 3.6, in which the straight lines f (A/2)wnt provide a linearly 
widening envelope. This implies that the response undergoes increasingly wild fluctua- 
tions as time increases, as expected. Here too, the validity of the solution is limited by 
the small motions assumption implicit in a linear system. Still, the solution provides a 
more quantitative picture of the response not available before. In this regard, we observe 
that the excitation is proportional to cos wnt and the response is proportional to sinw,t. 
But, sinwnt = cos(w,t - 7r/2), so that we conclude that the response experiences a 90" 
phase angle with respect to the excitation. This is entirely consistent with the conclusion 
reached from the phase angle plot of Fig. 3.4 for the case < = 0, wlw, = 1. 

3.3 SYSTEMS WITH ROTATING UNBALANCED MASSES 

There is a variety of engineering systems subjected to harmonic excitations, many of 
them involving rotating unbalanced masses. Of course, our first encounter with such 
systems was in Sec. 1.10, in which we used the model of a washing machine with 
nonuniformly distributed clothes to demonstrate that the effect of a rotating unbalanced 
mass is to exert a harmonic force upon the body of the machine. Moreover, the equation 
of motion for the model of Fig. 1.34a, Eq. (1.128), was shown to be 

M i  (t) c l  (t) + k x  (t) = mew2 sin wt  (3.50) 

where x(t) is the displacement, M the total mass of the system, c the coefficient of 
viscous damping of the support, k the spring constant of the support, m the rotating 
mass and e the eccentricity of m. Dividing Eq. (3.50) through by M and introducing the 
notation c/M = 2cwn, k/M = wi, where < is the viscous damping factor and w, the 
natural frequency of undamped oscillation, we can rewrite Eq. (3.50) in the form 
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which is similar to Eq. (3.4), except that the harmonic force is proportional to sinwt 
instead of coswt and the proportionality factor is (m/M)ew2 instead of #:A. Hence, 
with these modifications, we can use the solution obtained in Sec. 3.1. 

The general solution of Eq. (3.4) was shown in Sec. 3.1 to be given by Eq. (3.27), 
where IG(iw)l is the magnitude and 4(w) the phase angle of the frequency response, 
Eqs. (3.30) and (3.33), respectively. But, because the harmonic force is proportional to 
sinwt instead of coswt, we must use the response given by Eq. (3.28) instead of that 
given by Eq. (3.27). Moreover, comparing ( m / ~ ) e w ~  with W:A, we conclude that the 
constant A in Eq. (3.28) must be replaced by (m/M)ew2/w:. Hence, the solution of Eq. 
(3.51) is simply 

To determine a nondimensional ratio capable of describing the magnitude of the response 
as a function of the driving frequency w, we invoke once again the analogy with the 
approach of Sec. 3.1 and write the response in the form 

so that, contrasting Eqs. (3.52) and (3.53), the indicated nondimensional ratio for the 
problem at hand is 

instead of I G(iw) 1 alone. Hence, Fig. 3.3 is not applicable. Indeed, in the case at hand, 
the magnitude of the response is described by plots ( ~ / w , ) ~ [ ~ ( i w ) l  versus wlw, with 
< as a parameter; such plots are shown in Fig. 3.7. On the other hand, the phase angle 
plots 4(w) versus wlw, for different values of < remain as in Fig. 3.4. 

Comparing Fig. 3.7 to Fig. 3.3, we observe that the response of the system with 
the rotating eccentric mass, Fig. 3.7, differs from the response of the system subjected 
to a mere harmonic force, Fig. 3.3, in three respects: i) all curves begin at 0, as opposed 
to beginning at 1, ii) the peaks occur for wlw, > 1, rather than for w/w, < 1, and iii) as 
wlw, becomes very large, the magnitude of the response tends to 1, instead of tending 
to 0. The latter has some interesting implications. To explain this statement, we propose 
to determine the position of the system mass center for large wlw,. Referring to Figs. 
1.34b and 1.34c, we note that the main mass M - m undergoes the displacement x and 
the eccentric mass m the vertical displacement x + e sinwt, so that using Eq. (1.39) we 
conclude that the position of the mass center relative to the equilibrium position is given 

by 

But, from Figs. 3.7 and 3.4, as wlw, becomes very large, we can write 

2 

w , ! , m  ( y ) JG(iw)l=l ,  lim 4 ( w ) = ~  
w/w,+oo 

(3.56) 
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so that, using Eq. (3.52), 

m .  m lim x=-esin(wt-n)=--esinwt 
w/w,+ca M M (3.57) 

Hence, inserting Eq. (3.57) into Eq. (3.55), we conclude that 

or, for large driving frequencies w, the masses M - m and m move in such a way that 
the system mass center remains at rest. This statement is true regardless of the amount 
of damping. 

3.4 WHIRLING OF ROTATING SHAFTS 

Many mechanical systems involve a heavy rotating disk, known as a rotor, attached to 
a flexible shaft mounted on bearings. Typical examples are electric motors, turbines, 
compressors, etc. If the rotor has some eccentricity, i.e., if the mass center of the disk 



does not coincide with the geometric center, then the rotation produces a centrifugal 
force causing the shaft to bend. The rotation of the plane containing the bent shaft 
about the bearing axis is known as whirling. For certain rotational velocities, the system 
experiences violent vibrations, a phenomenon we propose to investigate. 

Figure 3.8a shows a shaft rotating with the constant angular velocity w relative to 
the inertial axes x ,  y. The shaft carries a disk of total mass m at midspan and is assumed 
to be massless. Hence, the motion of the system can be described by the displacements 
x and y of the geometric center S of the disk. Although this implies a two-degree-of- 
freedom system, the x and y motions are independent, so that the solution can be carried 
out as if there were two systems with one degree of freedom each. 

As a preliminary to the derivation of the equations of motion, we wish to calculate 
the acceleration of the mass center. To this end, we denote the origin of the inertial 
system x, y by 0 and the center of mass of the disk by C. Due to some imperfection of 
the rotor, the mass center C does not coincide with the geometric center S. We denote the 
distance between S and C by e, as shown in Fig. 3.8b, where e represents the eccentricity. 
To calculate the acceleration ac of the mass center C, we first write the radius vector rc 
from 0 to C in terms of rectangular components as follows: 

rc = (x + e cos wt)i + (y + e sinwt)j (3.59) 

where i and j are constant unit vectors along axes x and y, respectively. Then, differ- 
entiating Eq. (3.59) twice with respect to time, we obtain the acceleration of C in the 
form 

a, = (I - ew2 coswt)i + ( j i  - ew2 sinwt)j (3.60) 

To derive the equations of motion, we assume that the only forces acting on the 
disk are restoring forces due to the elasticity of the shaft and resisting forces due to 
viscous damping, such as caused by air friction. The elastic effects are represented by 
equivalent spring constants k, and k y  associated with the deformation of the shaft in the 

a. b. 
FIGURE 3.8 
a. Rotor on a rotating shaft, b. Diagram showing mass center C and geometric center S 



x and y directions, respectively. Moreover, we assume that the coefficient of viscous 
damping is the same in both directions and equal to c. The elastically restoring forces 
and the viscous damping forces are acting at point S. Considering Eq. (3.60), the x and 
y components of Newton's second law, Eqs. (1.63), are 

2 -kxx - c i  = m(3 -ew coswt) 

- k,y - c j  = m ( j  - ew2 sinwt) 

which can be rearranged in the form 

where 

are viscous damping factors and natural frequencies. 
Equations (3.62) are of the same type as Eq. (3.51) of Sec. 3.3. This should come 

as no surprise, as a rotating flexible shaft carrying an unbalanced rotor is equivalent to a 
system with a rotating unbalanced mass. Hence, the steady-state solution of Eqs. (3.62) 
can be obtained by the pattern established in Sec. 3.3. Indeed, following that pattern, we 
can write the solutions 

where the individual amplitudes are 

in which 

IG,(iw)I = 
{[I - ( w l ~ n , ) ~ ] ~  + (2<~w/wny)211'2 

are magnitudes and 

are phase angles. 
We consider first the most common case, namely, that of a shaft of circular cross 

section, so that the stiffness is the same in both directions, kx = k,, = k. In this case, the 
two natural frequencies coincide and so do the viscous damping factors, or 



Moreover, in view of Eqs. (3.68), we conclude from Eqs. (3.66) and (3.67) that the 
magnitudes on the one hand and the phase angles on the other hand are the same, or 

It follows immediately, from Eqs. (3.64), that the amplitudes of the motions x and y are 
equal to one another, or 

But, from Fig. 3.9 and Eqs. (3.64), we can write 

Y tan0 = - = tan(wt - 4 )  
X 

from which we conclude that 

Q = w t - 4  

and that 

i3 = w 

Hence, in this case the shaft whirls with the same angular velocity as the rotation of the 
disk, so that the shaft and the disk rotate together as a rigid body. This case is known 
as synchronous whirl. It is easy to verify that in synchronous whirl the radial distance 
from 0 to S for a given w is constant, or 

2 

ros  = = e ( z )  IG(iw) 1 = constant 

FIGURE 3.9 
Diagram showing the relation between the 
whirling angle 8 of the shaft and the rotation 
angle w t  - 4 of the rotor 



so that point S describes a circle about point 0. To determine the position of C relative 
to the whirling plane, we consider Eq. (3.72). The relation between the angles 0, wt 
and q5 is depicted in Fig. 3.9. Indeed, from Fig. 3.9, we can interpret the phase angle 
q5 as the angle between the radius vectors ros and rsc. Hence, recalling the second of 
Eqs. (3.69), we conclude that q5 < 5712 for w < w,, q5 = 5712 for w = w, and q5 > 5712 for 
w > w,. The three configurations are shown in Fig. 3.10. 

As a final remark concerning synchronous whirl, we note from Eqs. (3.69) that the 
magnitude and the phase angle have the same expressions as in the case of the rotating 
unbalanced mass discussed in Sec. 3.3, which corroborates our earlier statements that 
the two systems are analogous. 

Next, we return to the case in which the two stiffnesses are different and consider 
the undamped case, c = 0. In this case, solutions (3.64) can be written as 

where 

Dividing the first of Eqs. (3.75) by X (w) and the second by Y (w), squaring and adding 
the results, we obtain 

which represents the equation of an ellipse. Hence, as the shaft whirls, point S describes 
an ellipse with point 0 as its geometric center. To gain more insight into the motion, we 
consider Eqs. (3.75) and write 

Y Y  tan0 = - = - tanwt (3.78) 
x X 

FIGURE 3.10 
Phase angle 4 for synchronous whirl 



Differentiating both sides of Eq. (3.78) with respect to time and considering Eqs. (3.75), 
we obtain 

But, the denominator on the right side of Eq. (3.79) is always positive, so that the sign 
of 8 depends on the sign of XY. By convention, the sign of w is assumed as positive, 
i.e., the disk rotates in the counter-clockwise sense. We can distinguish the following 
cases: 

1. w < w,, and w < uny In this case, we conclude from Eqs. (3.76) that XY > 0, so 
that point S moves on the ellipse in the same sense as the rotation w. 

2. wnx < w < wny or wny < w < wnx. In either of these two cases XY < 0, so that S 
moves in the opposite sense from w.  

3. w > w,, and w > w,,. In this case X Y  > 0,  so that S moves in the same sense as w. 

The three cases are displayed in Fig. 3.1 1. 
Examining solutions (3.75) and (3.76) for the undamped case, we conclude that 

the possibility of resonance exists. In fact, there are two frequencies for which resonance 
is possible, namely, w = w,, and w = w,, . Of course, in the case of resonance, solutions 
(3.75) and (3.76) are no longer valid. Following the approach of Sec. 3.1, it is easy to 
verify by substitution that the particular solutions in the two cases of resonance are 

The plot x(t) versus t resembles that of Fig. 3.6. In fact, it is the same for A = e. The 
plot y(t) versus t also resembles that of Fig. 3.6 except that w,, and sinw,,t must be 
replaced by w,, and sin(w,,t - 7r/2), respectively. This is easily explained by the fact 
that sin(w,,t - 7r/2) = - cosw,,t. The two frequencies w = w,, and w = w,, represent 
critical frequencies, more commonly known as critical speeds. 

o < o , a n d o < o ,  o n x < o < o , o r w , < o < w , ,  o>w,and o > o ,  

FIGURE 3.11 
Diagrams showing the shaft angular velocity 4 and the rotor angular velocity w 



3.5 HARMONIC MOTION OF THE BASE 

On occasions, sensitive equipment must be placed on a foundation undergoing undesir- 
able vibration. To protect the equipment, it is necessary to isolate it from the damaging 
effects of the vibrating foundation. This can be achieved through rubber mounts acting 
both as springs and dampers in the same manner as the supports of washing machines 
discussed in Sec. 1.10. A similar example is a vehicle traveling on a wavy road, in which 
case the suspension must isolate the body from the motion induced by the wavy road. 
Yet another example is an engine mounted on a vibrating aircraft wing. 

We assume that each of the various systems mentioned above can be modeled as a 
single-degree-of-freedom system mounted on a base undergoing the displacement y (t), 
as depicted in Fig. 3.12a. The corresponding free-body diagram is shown in Fig. 3.12b. 
Using Newton's second law, we obtain the equation of motion 

Dividing through by m and rearranging, we can write 

We are interested in the case in which the motion of the base is harmonic. Hence, 
following the procedure of Sec. 3.1, we express the displacement of the base in the 
exponential form 

y (t) = Re ~e~~~ (3.83) 

and the response in the corresponding form 

with the understanding that, if the excitation is A coswt, the response is Re x(t) and if 
the excitation is A sinwt, the response is Im x(t). Inserting Eqs. (3.83) and (3.84) into 

a. b. 
FIGURE 3.12 
a. Mass-damper-spring system with moving base, b. Free-body diagram 



Eq. (3.82), dividing through by emt and solving for X( iw) ,  we obtain 

in which G(iw)  is the frequency response, Eq. (3.20). 
As in Sec. 3.1 we will find it convenient to express X( iw)  in the form 

X( iw)  = ~ ~ ( i w ) l e - ~ ~ ( ~ )  (3.86) 

so that the response can be written as 

x ( t )  = J ~ ( i w ) J e ~ ( ~ ~ - ~ )  

Using the analogy with Eq. (3.24), the magnitude of X  ( iw)  can be determined by writing 

X ( i w ) l =  ,/a = J ( 1  + i 2 C w / w n ) ~ ( i w ) ( l  - i2<w/wn)G(iw) A 

0  1 2  3  
w /w ,  

FIGURE 3.13 
Nondimensional response magnitude for system with harmonically-moving base 



FIGURE 3.14 
Response phase angle for system with harmonically-moving base 

in which IG(iw) 1 is given by Eq. (3.30). Moreover, before we can determine the phase 
angle 4 ( w )  of X ( i w ) ,  we write 

Hence, by analogy with Eq. (3.33), the phase angle is simply 

Equation (3.87) represents a steady-state harmonic response. As in all previous 
cases of harmonic response, a time-domain plot of the response is not very illuminating, 
and frequency-response plots provide a much broader picture of the nature of the re- 
sponse. From Eq. (3.88), the indicated nondimensional ratio descriptive of the response 



magnitude for the case at hand is 

where the ratio IXi w )  1 / A  is known as transmissibility for reasons to be explained in Sec. 
3.6. Curves IX ( iw)  l / A  versus w/w,  with C as a parameter are plotted in Fig. 3.13. We 
observe by substitution into Eq. (3.91) that for w/w,  = the response has the same 
magnitude as the excitation, and it is magnified relative to the excitation for wlw, < 
and reduced for w/w, > f i, the amount of magnification and reduction depending on 
the viscous damping factor 5. These are facts to be considered in designing the isolation 
parameters 5 and w,. Moreover, curves $(w) versus wlw,  with 5 acting as a parameter 
are plotted in Fig. 3.14. As in previous cases, such as in Fig. 3.4, for = 0 the response 
is in phase with the excitation for w/w,  < 1 and 180" out of phase with the excitation 
for w/w, > 1. 

3.6 VIBRATION ISOLATION 

In many systems of the type shown in Fig. 3.1, we are interested in transmitting as little 
vibration as possible to the base. This problem can become critical when the excitation 
is harmonic. Clearly, the force is transmitted to the base through springs and dampers. 
From Fig. 3.2, we conclude that the amplitude of that force is 

where the amplitude of the velocity is simply wx .  Hence, because mw; = k, we have 

But from Eq. (3.26), if we recall that the phase angle is of no consequence as far as the 
force amplitude is concerned, we conclude that 

In view of the fact that Ak is the amplitude of the actual excitation force, which we 
denote here by Fo, the nondimensional ratio F,/Fo is a measure of the force transmitted 
to the base. The ratio can be written as 

and is recognized as the transmissibility given by Eq. (3.91). Hence, the plots Ft,/Fo 
versus w/wn are the same as the plots IXI /A versus w/w,  shown in Fig. 3.13. From 
Sec. 3.5, when w/w, = f i  the full force is transmitted to the base, Fe/Fo = 1. For 
w/w, > f i  the force transmitted tends to decrease with increasing dnving frequency w,  



regardless of 5. Interestingly, damping does not alleviate the, situation and in fact, for 
wlw ,  > 4, the transmitted force increases as damping increases. However, because in 
increasing the driving frequency to values w > A w n  we must go through resonance, we 
conclude that a certain amount of damping is necessary to prevent displacements from 
becoming unduly large. 

3.7 VIBRATION MEASURING INSTRUMENTS 

The most common vibration measuring instruments are used to measure displacements 
and accelerations. Many instruments consist of a case containing a mass-damper-spring 
system of the type depicted in Fig. 3.15 and a transducer measuring the displacement of 
the mass relative to the case. We note that a transducer is a device converting one form 
of energy into another, generally mechanical into electrical in the case of instruments 
measuring vibration. The mass, referred to as a seismic mass, or a proof mass, is 
constrained to move along a given axis and damping may be provided by a viscous fluid 
inside the case. It is easy to see that the system of Fig. 3.15, except for the transducer, 
is of the type discussed earlier in this chapter. 

The displacement of the case, the displacement of the mass relative to the case and 
the absolute displacement of the mass are denoted by y ( t ) ,  z ( t )  and x(t), respectively, 
so that 

The system of Fig. 3.15 resembles the system of Fig. 3.12a entirely, so that from Eq. 
(3.81), we can write the equation of motion 

The objective is to determine the motion y ( t )  of the case from measurements of the 
relative displacement z ( t ) .  To this end, we use Eq. (3.96) to eliminate x ( t )  and rewrite 

FIGURE 3.15 
Vibration measuring instrument 



Eq. (3.97) as 

Next, we assume that the vibration to be measured is harmonic and of the form 

so that Eq. (3.98) becomes 

which is of the same type as Eq. (3.50). By analogy with Eq. (3.52), the response is 

where the phase angle I$ is given by Eq. (3.33). Introducing the notation 

in which Zo is the measurement amplitude, we conclude that 

so that the plot Zo /Yo  versus wlw, is identical to that given in Fig. 3.7. The plot is 
shown again in Fig. 3.16 on a scale more suitable for our current application. The phase 
angle plot 4 versus wlw,  is as given by Fig. 3.4. 

3.7.1 Accelerometers-high frequency instruments 

For small values of the ratio wlw, the magnitude IG(iw)l is nearly unity, so that the 
measurement amplitude Zo  can be approximated by 

Because yow2 represents the acceleration of the case, it follows that the measurement 
amplitude Zo is proportional to the acceleration of the case, where the proportionality 
constant is 1/w;. Hence, if the natural frequency w, of the measuring instrument is 
sufficiently high relative to the frequency w of the harmonic motion to be measured that 
the amplitude ratio Zo /  Yo can be approximated by the parabola ( w l ~ , ) ~  (see dashed 
line in Fig. 3.16), the instrument is known as an accelerometer. Because the range of 
wlw,  in which the amplitude ratio can be approximated by ( ~ / w , ) ~  is the same as the 
range in which I G ( i w )  1 is approximately equal to unity, it is advantageous to refer to 
the plot ( G ( i w ) (  versus w/w, instead of the plot Zo /Yo  versus w / u ,  to determine the 
range of utility of the instrument. Figure 3.17 shows enlarged plots I G ( i w )  I versus wlw, 
corresponding to the magnitude range 0.95 I: I G ( i w )  ( I 1.05 and the frequency ratio 
range 0 5 w/w, 5 1 with ( acting as a parameter. From Fig. 3.17, we conclude that the 
range in which I G ( i  w )  1 is approximately unity is very small for light damping, which 
implies that the natural frequency of lightly damped accelerometers must be appreciably 
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FIGURE 3.16 
Detailed frequency response magnitude plots for accelerometers 

larger than the frequency of the harmonic motion to be measured. To increase the range 
of utility of the instrument, larger damping is necessary. It is clear from Fig. 3.17 that 
the approximation is valid for a larger range of wlw,  if 0.65 < C < 0.70. Indeed, for 
C = 0.7 the accelerometer can be used in the range 0 5 wlw,  ( 0.4 with less than 1 
percent error, and the range can be extended to wlw,  5 0.7 if proper corrections, based 
on the instrument calibration, are made. 

In the preceding discussion, it was tacitly assumed that the accelerometer axis 
is parallel to the local vertical (defined as the direction of a radius vector from the 
center of the earth to the location of the instrument) and hence parallel to the force 
due to gravity, so that the weight mg causes the seismic mass to undergo the static 
displacement = m g l k ,  as discussed in Sec. 1.10. In general, the instrument will 
interpret the reading erroneously as an acceleration of the case equal to j = g. This 
problem can be disposed of easily by calibrating the instrument so as to measure x ( t )  
from the static equilibrium. The situation is not so simple if the accelerometer is used to 

FIGURE 3.17 
Diagram showing the accuracy of accelerometer measurements for various viscous damping 
factors 



measure vibration in aircraft and missile structures, as in such cases the accelerometer 
axis is not guaranteed to coincide with the direction of the gravitational force. If the 
accelerometer axis tilts by an angle B with respect to the local vertical, then the deflection 
is only rng cos 8 /  k, causing a false reading of the instrument. This problem can be taken 
care of by using a precision tilt table, thus permitting a continuous calibration of the 
instrument. 

The most commonly used accelerometers are the compression-type piezoelectric 
accelerometers. They consist of a mass resting on a piezoelectric ceramic crystal, such 
as quartz, barium titanate, or lead zirconium titanate, with the crystal acting both as 
spring and sensor. The accelerometers have a preload providing a compressive stress 
exceeding the highest dynamic stress expected. Any acceleration increases or decreases 
the compressive stress in the piezoelectric element, thus generating an electric charge 
appearing at the accelerometer terminals. Piezoelectric accelerometers have negligible 
damping and they typically have a frequency range from 0 to 10,000 Hz (and beyond) 
and a natural frequency range from 30,000 to 50,000 Hz. They tend to be very light, 
weighing less than 20 g, and are relatively small, measuring less than 2 cm in diameter. 

3.7.2 Seismometers-low frequency instruments 

Also from Fig. 3.16, we notice that for very large values of wlw,, the ratio Zo/  Yo = 
( w / w , ) ~ ~ G ( ~ w ) ]  approaches unity, regardless of the amount of damping. Hence, if the 
object is to measure displacements, then we should make the natural frequency of the 
instrument very low relative to the frequency to be measured, in which case the instrument 
is called a seismometer. For a seismometer, which is an instrument designed to measure 
ground displacements, such as those caused by earthquakes, or underground nuclear 
explosions, the requirement for a low natural frequency dictates that the spring be very 
soft and the mass relatively heavy, so that, in essence, the mass remains nearly stationary 
in inertial space while the case, being attached to the ground, moves relative to the mass. 
Displacement-measuring instruments typically have a frequency range from 10 to 500 
Hz and a natural frequency between 1 and 5 Hz. 

To examine the utility range of displacement-measuring instruments, we consider 
enlarged plots of (w/wnl2 ( ~ ( i w )  ( versus wlw,, Fig. 3.16, for several values of 5. The 
enlarged plots correspond to the amplitude range 0.95 I ( w / w , ) ~  I G ( i w )  1 I 1.05 and the 
frequency ratio range 1 ( w/w ,  5 10, as shown in Fig. 3.18. We see that when C = 0 the 
error remains below 5% for frequency ratios w/w ,  > 5. The error falls to 1 % for ( = 0.6 
and w/w ,  > 5 ,  < = 0.65 and w/w,  > 3.25 and ( = 0.7 and w/w,  > 2.6. If errors of 5% 
are acceptable, then, the range for ( = 0.6 extends down to w/w,, > 1.2, for ( = 0.65 to 
w/w,  > 1.4 and for ( = 0.7 to w/w ,  > 1.75. Significantly, the instrument is virtually 
free of errors for < = 0.7 and w/w,  > 5. 

Depending on the transducer, the instrument can measure displacements or veloc- 
ities. Indeed, we see from Eqs. (3.99), (3.102) and (3.103) that 

so that the ratio of velocity amplitudes is the same as the ratio of displacement ampli- 
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FIGURE 3.18 
Detailed frequency response magnitude plots for seismometers 

tudes. If the transducer measures velocities, the instrument is known as a vibrometer, 
or velometer. In such cases, the instrument output can be integrated once to obtain 
displacements, or differentiated once to obtain accelerations. 

Because seismometers require a much larger mass than accelerometers and the 
relative motion of the mass in a seismometer is nearly equal in magnitude to the motion 
to be measured, seismometers are considerably larger in size than accelerometers. In 
view of this, if the interest lies in displacements, it may prove more desirable to use 
an accelerometer to measure the acceleration of the case, and then integrate twice with 
respect to time to obtain the displacement. 

The above discussion has focused on the measurement of harmonic motion. In 
measuring more complicated motions, not only the amplitude but also the phase angle 
comes into play. As an example, if the motion consists of two harmonics, or 

y ( t )  = Yl cos wl t + Y2 cos w2t (3.106) 

and the accelerometer output is 

where and 4 2  are two distinct phase angles, then the accelerometer fails to reproduce 
the motion y ( t ) ,  because the two harmonic components of the motion are shifted relative 
to one another. There are two cases in which the accelerometer output is able to reproduce 
the motion y ( t )  without distortion. The first is the case of an undamped accelerometer, 
< = 0, in which case the phase angle is zero. The second is the case in which the phase 
angle is proportional to the frequency, or 

Indeed, introducing Eqs. (3.108) into Eq. (3.107), we obtain 

ya ( t )  = Yl cos wl  ( t  - C )  + Y2 cos ~2 ( t  - C )  (3.109) 



so that both harmonics are shifted to the right on the time scale by the same time interval, 
thus retaining the nature of the motion y(t). To explore the possibility of eliminating 
the phase distortion, we consider the case of small wlw,, in which case the phase angle 
4 is small, as can be concluded from Eq. (3.33). Then, assuming that the phase angle 
increases linearly with the frequency, we can write 

1 2  1 2  s in$E$=cw,  c o s 4 E l - - $ = 1 - - ( c w )  
2 2 

(3.1 10) 

Inserting Eqs. (3.110) into Eq. (3.33), we obtain 

which is satisfied provided 

In general, any arbitrary motion can be regarded as a superposition of harmonic com- 
ponents. Hence, an accelerometer can be used for measuring arbitrary motions if the 
damping factor < is either equal to zero or equal to 0.707. 

3.8 ENERGY DISSIPATION. STRUCTURAL DAMPING 

Damped systems dissipate energy, so that such systems are nonconservative. In Ch. 2, we 
considered two types of damping, viscous damping and Coulomb damping. Of the two, 
viscous damping is more important for a variety of reasons. In the first place, viscous 
damping is widely used for vibration reduction devices, such as shock absorbers and 
base isolation. Another reason is that viscous damping is linear in velocity and permits 
easy analytical treatment, which makes it very desirable as a mathematical model for 
damping. 

Experience shows that energy is dissipated in all real systems, including those 
regarded as conservative. For example, energy is dissipated in real springs as a result of 
internal friction. In contrast to viscous damping, damping due to internal friction does 
not depend on velocity. In general, this type of damping does not lend itself to easy 
modeling. Under certain circumstances, however, it is possible to model damping due 
to internal friction as viscous damping, thus making an analytical treatment of systems 
with internal damping possible. 

The analogy between viscous damping and damping caused by internal friction is 
based on energy dissipation. To show this, we begin by determining the energy loss in 
viscous damping. In Sec. 3.1, we have shown that the response of a mass-damper-spring 
system subjected to a harmonic excitation equal to the real part of 

in which A is a real constant and k is the spring constant, is given by the real part of 
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FIGURE 3.19 
Hysteresis loop 

Eqs. (3.1 19) and (3.120), we conclude that systems possessing structural damping and 
subjected to harmonic excitation can be treated as if they possessed viscous damping 
with the equivalent coefficient 

Under these circumstances, we can write Eq. (3.1) in the form 

a: 
m i ( t )  + -x ( t )  + k x  ( t )  = F ( t )  = Akeiwt 

n-W 
(3.122) 

where consideration has been given to Eqs. (3.1 13) and (3.121). Because i = iwx,  we 
can rewrite Eq. (3.122) as 

where 

is called the structural damping factor. The quantity k ( l  + i y )  is called complex stifiess, 
or complex damping. Dividing Eq. (3.123) through by m ,  we obtain 

Following the procedure of Sec. 3.1 and recalling that the excitation is Re AkeCwt, 
the steady-state solution of Eq. (3.125) can be shown to be 

where 



0 1 2 
W / w ,  

FIGURE 3.20 
Magnitude of frequency response for structural damping 

is the equivalent frequency response for structural damping, 

is its magnitude and 

$*(w) = tan-' Y 
1 - ( ~ I w n ) ~  

is its phase angle. The plots I G* ( w )  1 versus wlw,  and @+ ( w )  versus wlw,  are shown in 
Figs. 3.20 and 3.21, respectively. We observe that, in contrast with the case of viscous 
damping, for structural damping the maximum response amplitude is obtained exactly 
for w = w,. 

One word of caution is in order. The analogy between structural and viscous 
damping is valid only for harmonic excitation, because the response of a system to 
harmonic excitation with the driving frequency w is implied throughout the foregoing 
developments. 



FIGURE 3.21 
Phase angle of frequency response for structural damping 

3.9 RESPONSE TO PERIODIC EXCITATIONS. 
FOURIER SERIES 

Certain excitations repeat themselves every time interval T. Such excitations are said 
to be periodic, and the time interval T is known as the period. A classical example of 
a mechanism generating a periodic excitation is the cam and follower depicted in Fig. 
3.22. It is not difficult to verify that the equation of motion for the system is 

FIGURE 3.22 
Cam and follower exerting a periodic force 



FIGURE 3.23 
Periodic displacement 

If the cam rotates about a fixed point at the constant angular velocity wo, the follower 
undergoes periodic motion whose nature depends on the shape of the cam. As an 
example, in the case in which the radial distance from the center of rotation to the rim of 
the cam increases linearly from rl to rz and then drops abruptly back to rl, the follower 
undergoes the periodic displacement y (t) shown in Fig. 3.23, where the period is simply 
T = 2.ir/wo. 

Whereas harmonic functions are periodic, in general periodic functions are not 
harmonic, as can be easily concluded from Fig. 3.23. However, periodic functions can 
be expressed as linear combinations of harmonic functions known as Fourier series 
(Appendix A). The series can be in terms of trigonometric functions or exponential 
functions, referred to at times as the real form or the complex form of Fourier series, 
respectively. We observe that, as with pure harmonic functions, in the case of periodic 
functions time plays only a secondary role. Hence, periodic excitations represent a more 
general class of steady-state excitations. 

From Appendix A, we conclude that a given periodic function f (t) with period 
T, such as that displayed in Fig. 3.23, can be expanded in the trigonometric form of the 
Fourier series 

1 O0 

f (t) = -an + (a, cospwot + b, sin pwot), wo = 2n/ T (3.131) 
2 

p=l 

where wo is called the fundamental frequency and p = 1,2, . . . are integers. Because the 
frequencies pwo (p = 1,2,  . . . ) represent integral multiples of the fundamental frequency 
wg, they are referred to as harmonics, with the fundamental frequency being the first 
harmonic. The coefficients a, (p = 0,1, . . . ) and b, (p = 1,2, . . . ) are known as Fourier 
coeficients and, provided f ( t )  is specified as a function of time over a full period, they 
can be calculated by means of the formulas 

ap  = - : ~ T / ( t ) C O S P W o t d t ,  p = 0 , 1 ,  ... 

T 
(3.132) 

f (t)sinpwot dt,  p = 1,2, ... 

As shown in Appendix A, derivation of the formulas for the Fourier coefficients, Eqs. 
(3.132), is based on the orthogonality of the trigonometric functions. The Fourier coef- 



ficients represent a measure of the participation of the harmonic components cos pwot 
and sin pwot (p = 1,2, . . . ) in the function f (t), respectively, and ao/2 is the average 
value of f (t). We note that the limits of integration can be replaced by more convenient 
ones, as long as the interval of integration is exactly one period. The Fourier series rep- 
resentation is possible provided the integrals in Eqs. (3.132) exist, which can be safely 
assumed to be the case for the physical problems of interest in this text. 

Under certain circumstances, the Fourier series, Eq. (3.131), can be simplified. To 
this end, we plot the trigonometric functions cospwot and sinpwot, as shown in Fig. 
3.24, and observe that cos pwot (p  = 0,1, . . . ) are even functions, defined mathematically 
as 

and sin pwot (p = 1 ,2 .  . . ) are odd functions, defined as 

f (t) = -f (-t) (3.134) 

Then, it is intuitively obvious, and can be demonstrated mathematically that, if the 
periodic function is an even function of time, the Fourier series cannot contain any 
sin pwot terms, so that bp = 0 (p  = 1,2, . . . ). It follows that even periodic functions can 
be expanded in the Fourier cosine series 

where the coefficients ap  (p = 0,1, . . . ) are given by the first of Eqs. (3.132). Using 
a similar argument, we conclude that odd periodic functions can be expanded in the 

I sin pwot 

FIGURE 3.24 
Even functlon and odd functlon 



Fourier sine series 

in which the coefficients bp (p = 1,2, . . .) are given by the second of Eqs. (3.132). 
A question of interest is how to convey the information concerning the participation 

of the individual harmonic components in the periodic function f (t) in the most effective 
manner. Of course, the coefficients up and bp provide this information, so that the 
question reduces to how to express it. Because sinpwot and cospwot represent the same 

harmonic, we recognize that the amplitude of the pth harmonic is simply cp = Ja: + ba. 

Clearly, the plot cp versus p displays in one diagram the degree of participation of each 
harmonic in f (t), a diagram known as a frequency spectrum. Because the diagram has 
entries only at the discrete frequencies w = wo, 2w0, 3w0,. . . , it represents a discrete 
frequency spectrum. In using frequency spectra to characterize a periodic function, time 
is relegated to a secondary role, with the primary role being played by the amplitude and 
frequency of each harmonic, thus justifying a statement to this effect made earlier in this 
section. We show frequency spectra in Example 3.1 at the end of this section. 

Although the expansion of a periodic function in a Fourier series yields useful 
information concerning the frequency content of the function, this information does not 
represent an end in itself. Indeed, our interest in expanding periodic functions in series of 
harmonic functions is motivated by a desire to obtain the response to periodic excitations 
with relative ease. In this regard, we recall from Sec. 3.1 that the response to a hannonic 
excitation of frequency w is a hannonic function having the same frequency w and an 
amplitude proportional to the excitation amplitude, where the proportionality factor is 
the frequency response function. Hence, invoking the superposition principle, we can 
express the response to a periodic function as a superposition of harmonic responses. We 
also recall from Sec. 3.1 that, in deriving the system response, it is more advantageous 
to express a harmonic excitation in exponential form rather than in trigonometric form, 
and there are reasons to believe that the same is true for periodic excitations and the 
response to such excitations. 

In view of the above, we consider a periodic excitation f (2) and use developments 
from Appendix A to express f (t) in the exponential form of Fourier series 

00 

f (t) = ~ ~ e ' ~ ~ ~ ~ ,  wo = 2n/ T (3.137) 
p=-00 

in which Cp are complex coefficients given by 

As in the case of the trigonometric form of the Fourier series, the coefficient Co is real 
and can be recognized as the average value of f (t). 

There are two objections to working with Eqs. (3.137) and (3.138), namely, they 
contain negative frequencies and are not in a form that can be used readily to obtain the 



system response. To remove these objections, we use the analogy with Eq. (3.14) and 
rewrite the exponential form of the Fourier series as follows: 

where 

in which A. is a real coefficient, equal to twice the average value of f ( t ) ,  and A, ( p  = 
1 , 2 , .  . .) are in general complex coefficients. Here too, the integration limits can be 
changed, provided the integral covers one full period. For this exponential form of 
the Fourier series, the frequency spectrum is given by lAp 1 versus p,  where ( A p  1 = 

J(Re + (Im is the magnitude of A,. It is not difficult to verify that the three 
forms of Fourier series, Eqs. (3.131), (3.137) and (3.139), are equivalent. 

At this point, we turn our attention to the response to periodic excitations. In Sec. 
3.1, we have shown that if a system described by the differential equation 

mi( t )+c . i ( t )+kx( t )  = F ( t )  = k f  ( t )  (3.141) 

is acted upon by the harmonic excitation 

f ( t )  = ~ e ( ~ e " ' )  (3.142) 

then the response is 

where G( iw)  is the frequency response, Eq. (3.20), and I G (iw)  1 and are the magnitude 
and phase angle of G(iw) ,  Eqs. (3.30) and (3.33), respectively. Moreover, from Eq. 
(3.141), it is easy to see that the constant excitation Ao/2 produces the constant response 
Ao/2. Hence, invoking the superposition principle (Sec. 1.12), we conclude that the 
response to a periodic excitation f ( t )  in the form of Eq. (3.139) is simply 

in which, by analogy with Eq. (3.20), 

1 
G, = 

1 - ( P W O ~ W , ) ~  + i2Cpwo/wn 

and, by analogy with Eqs. (3.30) and (3.33), 



and 

4p = tan-' ~ C P W O / W ~  

1 - ( P W O ~ W ~ ) ~  

We observe that, even though each harmonic component in x ( t ) ,  Eq. (3.144), is shifted by 
the phase angle $p,  the response remains periodic and with the same period T = 27r/wo 
as the excitation. We also observe that, as p increases, 1 G p  1 tends to a value inversely 
proportional to p2, so that the participation of the higher harmonics in the response 
decreases rapidly. 

As pointed out earlier in this section, frequency domain descriptions of periodic 
functions reveal a great deal more information than time domain descriptions. Of course, 
for periodic excitations and for the response to periodic excitations, these descriptions 
are in the form of discrete frequency spectra. From Eq. (3.139), the excitation frequency 
spectrum consists of the plot I Ap I versus p and, from Eq. (3.144), the response frequency 
spectrum is given by the response magnitude plot 1 Ap 1 1 G p  1 versus p. Some information 
can be gained from the response phase angle plot 4p versus p, but this information is 
not as significant as that obtained from the magnitude plot. 

We recall from Eq. (3.141) that f ( t )  is only a normalized excitation having units 
of displacement, and the actual force excitation is F ( t )  = k f  ( t ) .  In this connection, it 
should be pointed out that the equation describing the cam and follower of Fig. 3.22, 
Eq. (3.130), differs somewhat from Eq. (3.141), so that if the follower displacement 
y ( t )  is given by Eq. (3.139), the response x ( t )  is given by Eq. (3.144) multiplied by 
k2/(k l  + k2).  Of course, in this case the parameters < and wn must also be modified so 
as to read 

4- = C/~V'= (3.148) 

and 

Example 3.1. Calculate the response of a damped single-degree-of-freedom system to 
the periodic excitation f ( t )  depicted in Fig. 3.25 by means of the exponential form of the 
Fourier series. Plot the excitation and response frequency spectra, the latter for the case 
( = 0.1 and w, = 4wo. Plot x ( t )  versus t ,  thus verifying that the response is periodic. 

FIGURE 3.25 
Periodic excitation 



We observe from Fig. 3.25 that the average value of the excitation is zero, so that 
A. = 0. Hence the exponential form of the Fourier series is given by Eq. (3.139) with 
A. = 0 and the coefficients Ap are given by Eq. (3.140). Over the period 0 < t < T, the 
excitation is simply 

i A for 0 < t < T/2 
f (t) = (a) 

-A for T/2 < t < T 

so that, inserting Eq. (a) into Eq. (3.140), we can calculate the Fourier coefficients 

-4iA/p.ir for p = 1,3,  ... 
[1 - (- 1)P] = 

Oforp=2 ,4 ,  . . .  

Introducing Eqs. (b) in Eq. (3.139) with A. = 0, we obtain the Fourier series for the excitation 

The response is given by Eq. (3.144) with A. = 0 and with the magnitude and phase 
angle of the frequency response to be determined by Eqs. (3.146) and (3.147), respectively, 
Hence, letting C = 0.1 and wn = 4wo in Eqs. (3.146) and (3.147), we can write simply 

and 

respectively. Inserting Eqs. (b) and (d) into Eq. (3.144) with A0 = 0, we obtan the response 
Fourier series 

The excitation frequency spectrum 1 A, 1 versus p is depicted in Fig. 3.26a and the 
response frequency spectra I A, 1 1  G, I versus p and 4, versus p are displayed in Figs. 3.26b 
and 3.26c, respectively. The response x(t) is plotted as a function of time in Fig. 3.27 and 
is indeed periodic. 



FIGURE 3.26 
a. Excitation frequency spectrum, b. Response magnitude frequency spectrum, c 
Response phase angle frequency spectrum 

FIGURE 3.27 
Periodic response 



3.10 FREQUENCY RESPONSE PLOTS BY MATLAB 

In Sec. 3.1, we derived an analytical expression for the frequency response G(iw) in the 
form of Eq. (3.20). The frequency response is a very important concept in vibrations, as 
well as in other areas of engineering, most notably in controls. It relates the harmonic 
response to harmonic excitations. Of particular interest are the magnitude IG(iw)J and 
phase angle 4(w) of the frequency response given by Eqs. (3.30) and (3.33) and plotted 
in Figs. 3.3 and 3.4, respectively. The plots reveal in two diagrams how the magnitude 
and phase angle of the harmonic response vary with the driving frequency for various 
values of the damping factor 5. The plots can be conveniently obtained by MATLAB, 
and can be programed in several ways. One way is as follows: 

% The program 'frqrsp1.m' plots the magnitude and phase angle of the frequency 
% response for a single-degree-of-freedom system 

clear 
figure (1); clf 
figure (2); clf 

zeta=[0.05; 0.1; 0.15; 0.25; 0.5; 1.00; 1.251; % damping factors arranged as a seven- 
% dimensional vector 
r=[O: 0.01: 31; % ratio of the excitation frequency to the natural frequency of un- 
% damped oscillation 

for i=l:length (zeta), 
G=l./sqrt((l-r.^ 2).^ 2+(2*zeta(i)*r).^ 2); % magnitude of the frequency response 
phi=atan2(2*zeta(i)*r,l-r.^ 2); % phase angle of the frequency response 

figure (1) 
plot (r,G) 
hold on 

figure (2) 
plot (r,phi) 
hold on 

end 

figure ( 1) 
title ('Frequency Response Magnitude') 
xlabel ('\omega/\omega-n') 
ylabel ('1 G(i\omega) 1') 
grid 

figure (2) 
title ('Frequency Response Phase Angle') 
xlabel ('\omega/\omega-n') 
ylabel ('\phi(\omega)') 
ha=gca; 

set(ha, 'ytick', [O: pil2: pi]) 



grid 

set(ha, 'FontNamef , ' Symbol ' , ' ylim', [0 pi]) 
set(ha, 'yticMabelf , {' 0 '; 'pI2'; 'p'}) 

Another way of plotting the frequency response magnitude and phase angle by 
MATLAB is by using complex notation. In this regard, we recognize that the desired 
complex form for the frequency response is given by Eq. (3.31). 

3.11 SUMMARY 

Harmonic excitations are quite common in engineering applications, and in particular in 
systems with rotating unbalanced masses. Because harmonic excitations keep repeating 
themselves continuously, so that they can be regarded as having no beginning and no end, 
they are said to be steady-state excitations. This, of course, is a physical impossibility, 
but if the excitations repeat themselves over a time interval considerably larger than their 
period, then the steady-state concept can be justified. In view of the fact that the shape of 
sine functions, or cosine functions, is well known, harmonic excitations can be regarded 
as being fully defined by the amplitude and frequency. The implication is that time is 
not really necessary to describe harmonic excitations. 

The response to a harmonic excitation is also harmonic, and hence steady state. The 
response frequency is the same as the excitation frequency, but the response amplitude 
differs from the excitation amplitude. Moreover, the response tends to lag the excitation 
by a phase angle. Both the amplitude and phase angle of the harmonic response can 
be obtained by expressing the frequency response function in exponential form, where 
the frequency response can be broadly defined as the ratio of the harmonic response 
to the harmonic excitation. The frequency response function depends on the excitation 
frequency, as well as on the system parameters. A great deal of information can be 
extracted by examining how the amplitude and phase angle of the harmonic response 
vary as the excitation frequency changes. This can be done conveniently through two 
plots, namely, the magnitude and phase angle of the frequency response versus the driving 
frequency. These two plots provide such a broad picture of the harmonic response that 
any time description appears very limited in scope and very inefficient in conveying 
information. This picture can be enhanced by using the viscous damping factor as a 
parameter to generate families of plots of the frequency response magnitude and phase 
angle. The magnitude plot reveals significantly more information than the phase plot. In 
particular, it highlights the violent vibration likely to ensue when the driving frequency 
is in the proximity of the natural frequency. Note that the frequency response magnitude 
and phase angle can be plotted conveniently using MATLAB. 

In many systems with rotating parts, such as the washing machine of Fig. 1.34a, 
the rotation is produced by an electric motor. When the system is turned on, the driving 
frequency starts from zero and increases until it reaches a constant operational frequency. 
Hence, if possible, the system should be designed so that the operational frequency 
remains below the natural frequency, thus avoiding violent vibration. If this is not 
possible, then the magnitude plot can be used to decide on the amount of damping 
necessary to mitigate the undesirable effects of the vibration. 



Portions of the frequency response magnitude plot can be used in conjunction 
with instruments measuring vibration. In particular, for accelerometer measurements 
the interest lies in the portion corresponding to low ratios of the driving frequency to the 
natural frequency of the instrument. Because low ratios can be achieved by making the 
natural frequency large, the accelerometer is a high frequency instrument. By contrast, 
for seismometer measurements, the portion corresponding to the high frequency ratio is 
used, which makes the seismometer a low frequency instrument. 

A different type of damping is structural damping. For simplicity, it is common 
to treat structural damping as if it were viscous. However, the analogy is valid only in 
harmonic vibration. 

Periodic excitation is a more general type of steady-state excitation than harmonic 
excitation. But, periodic excitations can be expanded in Fourier series of harmonic 
functions. Hence, using the superposition principle, the response to periodic excitations 
can be expressed in the form of infinite series of harmonic responses. 

Finally, we raise the question of the role of the response to initial excitations in 
the context of steady-state response. We recall from Chs. 1 and 2 that the response to 
initial excitations is a transient response, which begins at t = 0 and tends to fade away 
with time, even for conservative systems. On the other hand, the steady-state response 
persists forever, entirely oblivious to time. It follows that, in the case of steady-state 
excitation, the use of the principle of superposition to combine the response to initial 
excitations with the response to applied forces is meaningless. 

PROBLEMS 

3.1. A control tab of an airplane elevator is hinged about an axis in the elevator, shown as point 
0 in Fig. 3.28, and activated by a control linkage behaving like a torsional spring of stiffness 
k T .  The mass moment o f  inertia o f  the control tab is lo, so that the natural frequency of 
the system is w, = d m .  Because kT cannot be calculated exactly, it is necessary to 

Fixed elevator 

1 
y(t)  = A cos wt 

- 

I- L -4 
FIGURE 3.28 
Control tab of airplane elevator 



obtain the natural frequency w, experimentally. To this end, the elevator is held fixed and 
the tab is excited harmonically by means of the spring k2 while restrained by the spring k l ,  
as shown in Fig. 3.28, and the excitation frequency w is varied until the resonance frequency 
w, is reached. Calculate the natural frequency w, of the control tab in terms of w, and the 
parameters of the experimental setup. 
A machine of mass M rests on a massless elastic floor, as shown in Fig. 3.29. If a unit load is 
applied at midspan, the floor undergoes a deflection x,t. A shaker having total mass m ,  and 
carrying two rotating unbalanced masses (similar to the rotating mass shown in Fig. 1.34a) 
produces a vertical harmonic force mlw2 sin wt,  where the frequency of rotation can vary. 
Show how the shaker can be used to derive a formula for the natural frequency of flexural 
vibration of the structure. 

k b  Shaker 

1- L / 2  -1- L / 2  

FIGURE 3.29 
Shaker for measuring the natural frequency of structures 

3.3. Derive the differential equation of motion for the inverted pendulum of Fig. 3.30, where 
A cos wt represents a displacement excitation. Then assume small amplitudes and solve for 
the angle Q as a function of time. 

FIGURE 3.30 
Inverted pendulum excited harmonically 



3.4. One side of the manometer tube of Example 2.2 is subjected to the pressure p(t) = po cos wt, 
where po has units of newtons per square meter (N/m2). Derive the differential equation of 
motion, and obtain the resonance frequency. 

3.5. The left end of the cantilever beam shown in Fig. 3.31 undergoes the harmonic motion 
x(t) = A cos wt. Derive the differential equation for the motion of the mass M and determine 
the resonance frequency. Assume that the beam is massless and that its bending stiffness EI  
is constant. 

1 ii: '.. ... - ... ..., ."'. ,,,. ,..' ,'.. 
,::: ... EI = const / 01 

FIGURE 3.31 
Cantilever beam with harmonically-excited end 

3.6. The foundation of the building in Problem 2.14 undergoes the horizontal motion y ( t )  = 
yo sinwt. Derive the system response. 

3.7. Gear A in Problem 1.14 is subjected to the torque M A  = MO cos wt. Derive an expression 
for the angular motion of gear B. 

3.8. Solve the differential equation 

describing the motion of a damped single-degree-of-freedom system subjected to a harmonic 
force. Assume a solution in the form x (t) = X (w) sin(wt - 4) and derive expressions for X 
and 4 by equating coefficients of sin wt and cos wt on both sides of the equation. 

3.9. Assume a solution of Eq. (3.15) in the form x(t) = ~(w)el(""-4) and show that this form 
contains the solutions to both f (t) = A coswt and f (t) = A sinwt. 

3.10. A mass-damper-spring system of the type shown in Fig. 3.1 has been observed to achieve 
a peak magnification factor Q = 5 at the driving frequency w = 10 rad/s. It is required to 
determine: (1) the damping factor, (2) the driving frequencies corresponding to the half-power 
points and (3) the bandwidth of the system. 

3.11. A piece of machinery can be regarded as a rigid mass with two reciprocating rotating unbal- 
anced masses such as that in Fig. 1.34a. The total mass of the system is 12 kg and each of the 
unbalanced masses is equal to 0.5 kg. During normal operation, the rotation of the masses 
varies from 0 to 600 rpm. Design a support system so that the maximum vibration amplitude 
will not exceed 10 percent of the rotating masses' eccentricity. 

3.12. The rotor of a turbine having the form of a disk is mounted at the midspan of a uniform steel 
shaft, as shown in Fig. 3.32. The mass of the disk is 1.5 kg and its diameter is 0.3 m. The disk 
has a circular hole of diameter 0.03 m at a distance of 0.12 m from the geometric center. The 
bending stiffness of the shaft is E I  = 1,600N .m2. Determine the amplitude of vibration 
if the turbine rotor rotates with the angular velocity of 6,000 rpm. Assume that the shaft 
bearings are rigid. 



FIGUFU? 3.32 
Turbine rotor with mass eccentricity 

3.13. Consider the system of Fig. 3.15. When the support is fixed, y = 0, and the mass is allowed 
to vibrate freely, the ratio between two consecutive maximum displacement amplitudes is 
~21x1  = 0.8. On the other hand, when the mass is in equilibrium, the spring is compressed 
by an amount xSt = 2.5 mm. The weight of the mass is mg = 100 N. Let y(t) = Acoswt, 
x(t) = Xcos(wt - 4) and plot X/A versus w/wn and 4 versus w/wn for 0 < w/w, < 2. 

3.14. The system shown in Fig. 3.33 simulates a vehicle traveling on a rough road. Let the vehicle 
velocity be uniform, v = const, and calculate the response z ( t ) ,  as well as the force transmitted 
to the vehicle. 

FIGURE 3.33 
Vehicle traveling on a rough road 

3.15. The support of the viscously damped pendulum shown in Fig. 3.34 undergoes harmonic 
oscillation. Derive the differential equation of motion of the system, then assume small 
amplitudes and solve for Q(t). 



I-- ~ ( t )  = x sin wt 

FIGURE 3.34 
Pendulum with harmonically-moving support 

3.16. The system of Fig. 1.34a has the following parameters: M = 80 kg, m = 5 kg, k = 8,000 
Nlm, e = 0.1 m. Design a viscous damper so that at the rotating speed w = 4w, the force 
transmitted to the support does not exceed 250 N. 

3.17. It is observed that during one cycle of vibration a structurally damped single-degree-of- 
freedom system dissipates energy in the amount of 1.2 percent of the maximum potential 
energy. Calculate the structural damping factor y. 

3.18. The cam and follower of Fig. 3.35a impart a displacement y ( t )  in the form of a periodic 
sawtooth function to the lower end of the system, where y ( t )  is shown in Fig. 3.35b. Derive 
an expression for the response x ( t )  by means of a Fourier analysis. 

a. b. 
FIGURE 3.35 
a. System excited by cam and follower, b. Periodic displacement generated by the 
follower 



3.19. Solve the differential equation 

m.?(t) + c i ( t )  Jr k x ( t )  = k f ( t )  

by means of a Fourier analysis, where f ( t )  is the periodic function shown in Fig. 3.36. 

FIGURE 3.36 
Periodic excitation 

3.20. Write a MATLAB program for plotting the frequency response magnitude and phase angle 
based on Eq. (3.3 1) and using complex notation. 

3.21. Use MATLAB to plot Fig. 3.7. 
3.22. Use MATLAB to plot Figs. 3.13 and 3.14. 



CHAPTER 

RESPONSE OF 
SINGLE-DEGREE-OF-FREEDOM SYSTEMS 

TO NONPERIODIC EXCITATIONS 

Chapter 3 was devoted entirely to the response of single-degree-of-freedom systems to 
periodic excitations, of which the harmonic excitations are the most important ones. 
Harmonic and mere periodic forces represent steady-state excitations; they are conve- 
niently described in the frequency domain, and the same can be said about the response 
to steady-state excitations. Although frequency domain techniques can be extended to 
the treatment of nonperiodic excitations, these techniques are different from those en- 
countered in Ch. 3; they will be used in Ch. 12 in conjunction with random vibrations. 
This chapter is devoted to time domain techniques, which are more suitable for systems 
subjected to deterministic nonperiodic excitations than frequency domain techniques. 

Nonperiodic excitations are often referred to as transient, although some of them 
can last a long time. The term transient is to be interpreted in the sense that nonperiodic 
excitations are not steady state. In fact, nonperiodic excitations are assumed for the most 
part to start at t = 0. This point can be best illustrated by the example of a force that is 
zero for t < 0 and has the form of a sine function for t g 0 (Fig. 4.1). The one-sided 
sine function is regarded as transient even though it is harmonic for t , 0 and lasts 
indefinitely. 

By virtue of the superposition principle (Sec. 1.12), the response of linear systems 
to nonperiodic excitations can be combined with the response to initial excitations to 
obtain the total response, which is consistent with the fact that both types of excitations 
are regarded as transient. Of course, we discussed the response to initial excitations in 
Ch. 2, so that in this chapter we concentrate on the response to applied forces. 
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I sin t 

FIGURE 4.1 
One-sided sine function 

We begin this chapter with a discussion of three important and useful functions, 
the unit impulse, the unit step function and the unit ramp function. The response to these 
functions, known as impulse response, step response and ramp response, respectively, can 
be used to synthesize the response to a variety of complicated forces, including entirely 
arbitrary forces. Indeed, the response of linear systems with constant coefficients to 
arbitrary excitations can be expressed as a superposition of impulse responses by means 
of the well-known convolution integral. 

In studying the behavior of linear systems with constant coefficients, as well as 
in obtaining the response of such systems, the Laplace transformation method and the 
concept of state transition matrix prove very useful. However, except for some simple 
cases, analytical evaluation of the response is not possible, so that numerical evaluation 
on a digital computer is an absolute necessity. This requires that time be regarded as a 
discrete rather than a continuous variable; the corresponding formalism for computing 
the response is referred to as discrete-time systems. All these subjects are discussed in 
this chapter. Moreover, programs written in MATLAB for discrete-time computation of 
the response of single-degree-of-freedom systems to arbitrary excitations are included. 

4.1 THE UNIT IMPULSE. IMPULSE RESPONSE 

Among nonperiodic functions, there is a family of functions of special interest in vi- 
brations, namely, the unit impulse, the unit step function and the unit ramp function. 
They are not only useful in their own right, but they can also be used to synthesize more 
complicated functions. We discuss the unit impulse in this section and the other two in 
the following two sections. 

The unit impulse, also known as the Dirac delta$nction, is defined mathematically 
as 

The unit impulse is depicted in Fig. 4.2; it has units of seconds-l, which can be easily 
explained by the fact that the value of the integral in (4.1) is nondimensional. The impli- 
cation of Eqs. (4.1) is that the function is zero everywhere, except in the neighborhood 



FIGURE 4.2 
Unit impulse, or Dirac delta function 

o f t  = a,  where it reaches very high amplitudes over a very short time interval E in such 
a way that the area under the graph S(t - a)  versus t is equal to 1. 

The Dirac delta function is particularly suited for describing impulsive forces. 
Indeed, if a very large force acts over a very short time interval at t = a ,  then such a 
force can be expressed in the form 

where k is the magnitude of the impulse and has units newtons per second (N/s). 

FIGURE 4.3 
Sampling property of Dirac delta function 



Linear 
system 

FIGURE 4.4 
Block diagram relating the impulse response to the 
unit impulse 

The unit impulse has a very interesting and useful property. Multiplying a contin- 
uous but otherwise arbitrary function f ( t )  by S(t -a ) ,  integrating with respect to time 
and recognizing that for d l  practical purposes f ( t )  does not change over the duration of 
the impulse, we can write 

so that the effect of integrating a function f ( t )  weighted by the Dirac delta function 
applied at t  = a is simply to evaluate f ( t )  at t  = a.  The process is illustrated in Fig. 4.3. 
This property of the delta function is sometimes referred to as the sampling property and 
it represents a simple way of evaluating integrals involving delta functions. Clearly, the 
above result is valid also for finite limits of integration as long as these limits bracket the 
time t  = a. 

One of the most important concepts in vibrations is the impulse response, denoted 
by g(t)  and defined as the response to S(t),  i.e., the response of a system to a unit impulse 
applied at t  = 0, with the initial excitations being equal to zero. The relation between the 
unit impulse and the impulse response is depicted schematically by the block diagram 
of Fig. 4.4. The importance of the impulse response derives from two facts. In the first 
place, g(t)  embodies in a single function a11 the system characteristics. More important, 
howevel; is the fact that the impulse response can be used to synthesize the response 
of linear time-invariant systems to arbitrary excitations. Reference is made here to the 
celebrated convolution integral, a subject discussed in detail in Sec. 4.4. 

We have considerable interest in the impulse response of the mass-damper-spring 
system of Fig. 3.1. Letting x ( t )  = g(t)  and F(t )  = 6(t)  in Eq. (3.1), we can write the 
equation for the impulse response in the form 

where m is the mass, c the coefficient of viscous damping and k the spring constant. 
But, the impulse response g(t)  is subject by definition to the initial conditions 

so that, integrating Eq. (4.4) over the duration E of the impulse, we have 

Next, we take the limit of the integral on the left side of Eq. (4.6) as E approaches zero 
and evaluate the integral. To this end, we assume that g(t)  is continuous and i ( t )  is not, 



consider Eqs. (4.5) and write 

lim 1 cg(t)dt = lim cg(t)  1 = lim c [g ( r )  - g(O)] = 0 
e7-0 0 E J O  E+O 

where g(O+) denotes the slope of the impulse response curve at the termination of the 
impulse, as opposed to g(0) = 0 at the initiation of the impulse, according to the second 
of Eqs. (4.5). Hence, inserting Eqs. (4.7) into Eq. (4.6) and taking the limit as E + 0, 
we obtain 

lim SE(rnk  + cg + kg)& = rng(O+) = 1 
E+O 0 

(4.8) 

from which we conclude that the effect of a unit impulse at t = 0 is to produce an 
equivalent initial velocity 

which explains a statement made in Sec. 1.11 that impulsive forces produce initial ve- 
locities. 

At this point, the derivation of the impulse response is relatively simple. Indeed, 
instead of considering a nonhomogeneous system subjected to a unit impulse, we con- 
sider a homogeneous system subjected to an equivalent initial velocity as given by Eq. 
(4.9). We recall that we derived the response of a mass-damper-spring system to initial 
excitations in Sec. 2.2. Hence, inserting Eq. (4.9) into Eqs. (2.33), we have 

so that, using Eq. (2.32) with x ( t )  replaced by g( t ) ,  we obtain the impulse response of 
a mass-damper-spring system in the f o m  

sin wdt for t > 0 
g ( t )=  (4.11) 

0 fort i 0 

where we recognized that the response must be zero before the impulse has occurred. 
Note that the symbols appearing in Eq. (4.1 1) were defined in Sec. 2.2 as the viscous 
damping factor 5 = c/2inwn, the natural frequency wn = && and the frequency of 
damped oscillation wd = w , J m .  Equation (4.1 1) implies an underdamped system, 
5 < 1. A typical plot of the impulse response based on Eq. (4.11) is shown in Fig. 4.5. 



FIGURE 4.5 
Impulse response of a mass-damper-spring system 

4.2 THE UNIT STEP FUNCTION. STEP RESPONSE 

Another function of great importance in vibrations is the unit step function, depicted in 
Fig. 4.6 and defined mathematically as 

0 for t < a 
m(t - a )  = 

1 for t > a 

The function is clearly discontinuous at t = a,  at which points its value jumps from 0 to 
1. If the discontinuity occurs at t = 0, then the unit step function is denoted simply by 
~ ( t ) .  The unit step function is dimensionless. 

An interesting feature of the unit step function is that multiplication of an arbitrary 
function f ( t )  by w(t - a )  annihilates the portion of f ( t )  corresponding to t < a and 
leaves unaffected the portion for t > a. We can put this feature to use immediately by 
rewriting the impulse response, Eq. (4.1 I), in the compact form 

There is a close relationship between the unit step function ~ ( t  - a )  and the unit 
impulse S(t -a) .  In particular, the unit step function is the integral of the unit impulse, 
or 

where T is a mere dummy variable of integration. Conversely, the unit impulse is the 

FIGURE 4.6 
Unit step function 



time derivative of the unit step function, or 

The step response, denoted by s(t), is defined as the response of a system tom(t), 
i.e., to a unit step function applied at t = 0, with the initial conditions being equal to 
zero. The step response is related to the impulse response in the same manner as the unit 
step function is related to the unit impulse. To demonstrate this relation, we rewrite Eq. 
(4.4) in the symbolic form 

Similarly, the relation between the step response and the unit step function can be ex- 
pressed as follows: 

Integrating Eq. (4.16) with respect to time, assuming that the order of the integration and 
differentiation processes is interchangeable and using Eq. (4.14), we obtain 

Hence, comparing Eqs. (4.17) and (4. 18), we conclude that 

or, the step response is the integral of the impulse response. Although we demonstrated 
relation (4.19) by means of a mass-damper-spring system, the relation is valid for any 
linear time-invariant system. 

Equation (4.19) can be used as a convenient way of determining the step response 
of a system. As an illustration, we propose to use Eq. (4.19) to derive the step response 
of a mass-damper-spring system. To this end, we introduce Eq. (4.13) into Eq. (4.19) 
and write 

5(t) = - St  eCCWnT sin wdrm(7-)d7 = - S t  e-CwnT sinwd.r d7- (4.20) 
mud -oo mud 0 

The integration can be carried out with relative ease by recognizing that 



FIGURE 4.7 
Step response of a mass-damper-spring system 

Hence, inserting Eq. (4.21) into Eq. (4.20), we can write 

in which we used the relations mu: = k, wi = ( 1  - C2)w:, as well as the formula 

Moreover, we multiplied the result by the unit step function w(t )  to account for the fact 
that s ( t )  = 0 for t < 0. A typical plot s ( t )  versus t is shown in Fig. 4.7. 

Certain excitation functions, such as a rectangular pulse, can be represented as lin- 
ear combinations of step functions. Then, using the superposition principle, the response 
to a force in the form of a rectangular pulse can be expressed as like combinations of 
step responses, as shown in the following example. 

Example 4.1. Use the concept of step response to calculate the response x ( t )  of an un- 
damped single-degree-of-freedom system to the rectangular pulse shown in Fig. 4.8. Plot 
x ( t )  versus t .  



FIGURE 4.8 
Rectangular pulse 

It is easy to verify that the rectangular pulse depicted in Fig. 4.8 can be expressed as 
a combination of step functions of the form 

F(t) = Fo [ ~ ( t )  -m(t - T)] ( 4  

so that the response can be expressed as a like combination of step responses, as follows: 

x(t) = Fo[&(t) -5(t - T ) ]  (b) 

But, from Eq. (4.22) with C = 0 and wd = w,, the response of an undamped single-degree- 
of-freedom system to a unit step function initiated at t = a is 

1 
5(t  - a)  = - [ I -  cos w, (t - a)]m(t -0) 

k 
(c) 

Hence, inserting Eq. (c) into Eq. (b), we conclude that the response of an undamped single- 
degree-of-freedom system to the rectangular pulse of Fig. 4.8 is simply 

Fo x(t) = - ((1 - cos w,t)m(t) - [I - cos W, (t - T)]m(t - T)) 
k 

(dl 

The plot x(t) versus t is displayed in Fig. 4.9. 

FIGURE 4.9 
Response of a mass-spring system to a rectangular pulse 

4.3 THE UNIT RAMP FUNCTION. RAMP RESPONSE 

Yet another function of interest in vibrations is the unit rampfunction, defined as 

r (t - a )  = (t - a)c*(t - a )  (4.24) 

The function is shown in Fig. 4.10. Clearly, the unit ramp function has units of second(s). 



slope = 1 

FIGURE 4.10 
Unit ramp function 

The unit ramp function is closely related to the unit step function. Indeed, it can 
be expressed as the integral of the unit step function, or 

r ( t - a ) =  ~ ( r - a ) d r  100 (4.25) 

Consistent with this, the unit step function can be expressed as the time derivative of the 
unit ramp function, or 

The ramp response, denoted by +(t),  is defined as the response of a system to r ( t ) ,  
i.e., to a unit ramp function beginning at t = 0, and with zero initial conditions. Using 
the same approach as in Sec. 4.2, we can demonstrate that the ramp response is closely 
related to the step response. To this end, we use the mass-damper-spring system and 
write the relation between the ramp response and the unit ramp function in the symbolic 
form 

Then, integrating Eq. (4.17) with respect to time, assuming that the order of the integra- 
tion and differentiation processes is interchangeable and using Eq. (4.25), we obtain 

Contrasting Eqs. (4.27) and (4.28), we arrive at the conclusion that 

&(t)  = 5 ( 7 ) d ~  lm (4.29) 

or, the ramp response is equal to the integral of the step response. Relation (4.29) holds 
true for any linear time-invariant system, and is not restricted to mass-damper-spring 
systems. Equation (4.29) can be used as a convenient way of deriving the ramp response 
of a system, as demonstrated in Example 4.2. 



FIGURE 4.11 
Trapezoidal pulse 

The unit ramp function, sometimes in conjunction with the unit step function, can 
be used to express certain excitation functions in a simple form, thus permitting the 
derivation of the response in the same simple form. As an illustration, the trapezoidal 
pulse of Fig. 4.1 1 can be described as follows: 

( 0 fort  ( 0  

( 0 f o r t > 2 T  

It can be expressed more conveniently, and more compactly, in the form 

Then, the response of a system to F(t) is simply 

where &(t) is the ramp response and&(t) the step response of the system. 

Example 4.2. Use Eq. (4.29) to denve the ramp response of the mass-spring system of 
Example 4.1. 

From Eq. (c) of Example 4.1, the step response of a mass-spring system is 

1 
&(t) = - (1 - cos w,t)m(t) 

k - (a) 

Hence, inserting Eq. (a) into Eq. (4.29) and carrying out the integration, we obtain 

where we multiplied the result by m(t) in consideration of the fact that the response is zero 
for t < 0. The ramp response is displayed in Fig. 4.12. 



FIGURE 4.12 
Ramp response of a mass-spring system 

4.4 RESPONSE TO ARBITRARY EXCITATIONS. 
THE CONVOLUTION INTEGRAL 

In Ch. 3, we discussed the response of linear time-invariant systems to harmonic and 
periodic excitations. Then, earlier in this chapter, we considered the response to a unit 
impulse, a unit step function, a unit ramp function and linear combinations of the latter 
two. In one form or another, all these excitations have one thing in common, namely, 
they can all be described as explicit functions of time. The question remains as to how 
to obtain the response to arbitrary excitations. 

For complicated excitations, the general approach is to express them as linear com- 
binations of simpler excitations, sufficiently simple that the response is readily available, 
or can be produced without much difficulty. In this regard, we should point out that the 
harmonic response, impulse response, step response and ramp response fall in this cat- 
egory. We used this approach in Sec. 3.9, in which we expressed periodic excitations as 
Fourier series of harmonic components and then the response to periodic excitations as 
linear combinations of harmonic responses. Then, in Sec. 4.2 we represented a trape- 
zoidal pulse as a linear combination of step and ramp functions and the response to the 
trapezoidal pulse as a corresponding linear combination of step and ramp responses. It 
turns out that the same approach can also be used in the case of arbitrary excitations. 

There are two ways of deriving the response to arbitrary excitations, depending 
on the manner in which the excitation function is described. One way is to regard 
the arbitrary excitation as periodic and represent it by a Fourier series. Then, using a 
limiting process whereby the period is allowed to approach infinity, so that in essence 
the function ceases to be periodic and becomes arbitrary, the Fourier series becomes 
a Fourier integral. This is the frequency-domain representation of functions, which is 
more suitable for random excitations than for deterministic excitations. This approach 
is discussed in detail in Ch. 12. The second approach consists of regarding the arbitrary 
excitation as a superposition of impulses of varying magnitude and applied at different 
times. This is the time-domain representation of functions, and is the one used in this 
section. 

We consider an arbitrary excitation F ( t ) ,  such as that depicted in Fig. 4.13, and 
focus our attention on the contribution to the response of an impulse corresponding to the 
time interval T < t < T + AT. Assuming that the time increment AT is sufficiently small 



I AT 
FIGURE 4.13 
Arbitrary excitation 

that F ( t )  does not change very much over this time increment, the shaded area in Fig. 
4.13 can be regarded as an impulse acting over T < t < T + A r  and having the magnitude 
F ( r ) A r .  Hence, recalling Eq. (4.2), the excitation corresponding to the shaded area can 
be treated as an impulsive force having the form I 

But, as shown in Fig. 4.14, the response of a linear time-invariant system to the impulsive 
force given by Eq. (4.33) is simply 

where g ( t  - r)  is the impulse response delayed by the time interval T .  Then, regarding the 
excitation F ( t )  as a superposition of impulsive forces, we can approximate the response 
by writing 

In the limit, as AT + 0, we can replace the summation by integration and obtain the 
exact response 

Equation (4.36) is known as the convolution integral, and expresses the response as a 
superposition of impulse responses. For this reason, Eq. (4.36) is also referred to at times 
as the superposition integral. 

We observe that the impulse response in the convolution integral is a function of 
t - T ,  rather than of r ,  where 7 is the variable of integration. As demonstrated later in 

Linear 

FIGURE 4.14 
Block diagram relating the response to an excitation in the form of 
an impulse of magnitude F (T) AT 



this section, to obtain g(t  - r )  from g ( r ) ,  it is necessary to carry out two operations, 
namely, shifting and "folding." There is a second version of the convolution integral in 
which the shifting and folding operations are carried out on F ( T )  instead of on g ( ~ ) ,  
which may be more convenient at times. To derive the second version of the convolution 
integral, we introduce a transformation of variables from 7 to A, as follows: 

which requires the change in the integration limits 

Introducing Eqs. (4.37) and (4.38) in Eq. (4.36), we obtain 

which is the second form of the convolution integral. Recognizing that T in Eq. (4.36) 
and X in Eq. (4.39) are mere dummy variables of integration, we can combine Eqs. (4.36) 
and (4.39) into 

from which we conclude that the convolution integral is symmetric in the excitation F  ( t )  
and the impulse response g( t ) ,  in the sense that the result is the same regardless of which 
of the two functions is shifted and folded. The question can be raised as to which form 
of the convolution integral to use. The choice depends on the nature of the functions 
F ( t )  and g ( t ) ,  and must be the one making the integration task simpler. 

The convolution integral lends itself to a geometric interpretation that is not only 
interesting but at times also quite useful. This interpretation involves the various steps 
implicit in the evaluation of the integral. To review these steps, we consider the first 
version of the convolution integral, Eq. (4.36). Figure 4.15a shows an arbitrary excitation 
F ( T )  and Fig. 4.15b a typical impulse response g ( r )  corresponding to an underdamped 
mass-damper-spring system, both with t  replaced by the variable of integration T .  The 
first step is to shift the impulse response backward by the time interval t ,  which yields 
g ( ~  + t ) ,  as shown in Fig. 4.15~. The second step is the "folding," which results in 
g( t  - T ) ,  as depicted in Fig. 4.15d. The step consists of taking the mirror image of 
g ( ~  + t )  = g(t  + T )  with respect to the vertical axis, which amounts to replacing T by 
-7. The third step is to multiply F ( T )  by g(t  - T ) ,  yielding the curve shown in Fig. 
4.15e. The final step is the integration of the curve F ( r ) g ( t  - T ) ,  which is the same 
as determining the area under the curve in Fig. 4.15e. The result is one point on the 
response x ( t )  corresponding to the chosen value of t ,  as illustrated in Fig. 4.15f. The 
full response is obtained by letting t  vary between 0 and any desired value. 

If the excitation F ( t )  is a smooth function of time, the above geometric inter- 
pretation is primarily of academic interest. However, if the excitation function is only 
sectionally smooth, such as the rectangular pulse of Fig. 4.8, then the limits of integra- 
tion in the convolution integral must be chosen judiciously. In this regard, the preceding 
geometric interpretation is vital to a successful determination of the response, as the 



FIGURE 4.15 
a. Arbitrary excitation, b. Impulse response, c. Impulse response shifted backward, d. Impulse 
response shifted backward and "folded," e. Product of F ( T )  and g ( t  - T ) ,  f. Point on the 
response curve 

choice of limits is not immediately obvious. These points are demonstrated in Examples 
4.3 and 4.4. 

The convolution integral given by Eq. (4.40) represents a special case in the sense 
that one of the functions involved is the excitation F ( t ) ,  the other is the impulse response 
g( t )  and the result is the response x ( t ) .  Indeed, a general definition of the convolution 
integral involves two arbitrary functions fl ( t )  and f2( t ) ,  not necessarily the excitation 
F ( t )  and the impulse response g( t ) ,  and the result does not necessarily represent a 
response. The general form of the convolution integral can be demonstrated by means 
of the Laplace transformation method, and is presented in Appendix B. 

Quite often, the excitation is such a complicated function of time that closed-form 
evaluation of the convolution integral is likely to cause considerable difficulties. In other 
cases, the excitation cannot even be expressed in terms of known functions and is given 
either in the form of a graph or a list of values at discrete times. In all these cases, 
evaluation of the convolution integral must be carried out numerically. Later in this 
chapter, we present a formal algorithm for the numerical processing of the convolution 
integral on a digital computer. 



Example 4.3. Determine the response of a mass-spring system to the one-sided harmonic 
excitation 

F(t)  = Fo sinwt w(t) (a) 

by means of the convolution integral, where w(t) is the unit step function. 
As pointed out in the beginning of this chapter, albeit harmonic, the excitation cannot 

be regarded as steady state, because it is zero for t < 0. Indeed, for the excitation to be 
steady state it should be defined for all times, -oo < t < oo. Hence, the excitation given 
by Eq. (a) must be regarded as transient, so that the use of the convolution integral to obtain 
the response is quite appropriate. 

Letting < = 0, wd = w, in Eq. (4.13), we obtain the impulse response of amass-spring 
system in the form 

1 
g(t) = - sin w,t m(t) 

mwn 
(b) 

Clearly, in this case it does not matter whether we shift the excitation or the impulse response. 
Hence, inserting Eqs. (a) and (b) into Eq. (4.36) and recalling the trigonometric relation 
sinolsinp = i[cos(a - p) - cos(cu+P)j, we can write 

- W .  - F0 (sin wt - - s ~ n  w, t)w(t) 
k[ l -  ( w / ~ n ) ~ ]  WJI 

(c) 

where we multiplied the result by m(t) in recognition of the fact that the response must be 
zero for t < 0. 

Example 4.4. Determine the response of a mass-damper-spring system to the rectangular 
pulse of Fig. 4.8 by means of the convolution integral in conjunction with the geometric 
interpretation of Fig. 4.15, but with the excitation shifted instead of the impulse response. 
Show that straight application of the convolution integral formula may yield erroneous 
results in the case of discontinuous excitations. 

The problem statement calls for the use of the second version of the convolution 
integral, Eq. (4.40), or 

x(t)= F ( t - r ) g ( r ) d r  I' (a) 
Because the rectangular pulseis discontinuous, the geometric interpretation is more involved 
than that of Fig. 4.15. We begin by redrawing Fig. 4.8, but with t replaced by 7,  as shown 
in Fig. 4.16a. From Eq. (4.13), the impulse response for a mass-damper-spring system is 



g. h. 
FIGURE 4.16 
a. Rectangular pulse, b. Impulse response, c. Shifted pulse for t < 0, d. Shifted and foleded pulse 
for t < 0, e. Shifted pulse for 0 < t < T, f. Shifted and folded pulse for 0 < t i T, g. Shifted pulse 
for t > T, h. Shifted and folded pulse for t > T 

It is displayed in Fig. 4.16b with t  replaced by r. In view of the discontinuous nature of 
F  ( T ) ,  the shifting and folding require careful consideration. We first consider the case t < 0, 
in which case F ( r  + t )  and F ( t  - 7 )  are as shown in Figs. 4 . 1 6 ~  and4.16d, respectively. It 
is clear that for t < 0 there is no overlap between F ( t  - r) and g ( r ) ,  so that the product of 
the two is zero, yielding 

F(t -7) 

-- 

7 

Fo -- 

0 

as is to be expected. For 0 < t < T ,  the functions F ( r  + t )  and F ( t  - T )  are as depicted in 
Figs. 4.16e and Fig. 4.16f, respectively. Hence, using Eqs. (a) and (b) ,  together with Eqs. 

c. d. 

F(t + 7) 

t < 0 Fo 

z 
Itl T+ Itl -T-  Itl -It1 0 



(4.20) - (4.22), we obtain 

x(t) =- e-CWn7 sin wdr m(r )dr  
Fo S t  mWd 0 

In the case in which t > T, the functions F ( r  + t) and F (t - r )  are as shown in Figs. 4.16g 
and 4.16h, respectively, so that 

For a straight application of the convolution integral, we insert Eq. (a) of Example 
4.1 and Eq. (b) of the present example into the first version of the convolution integral, Eq. 
(4.36), and write 

Then, introducing the change in variables, t - 7- = A, d r  = - dX, with the appropriate 
change in the integration limits, and using Eq. (e), we obtain 

Comparing Eqs. (e) and (g), we conclude that straight application of the convolution integral 
yielded only the response following the termination of the pulse, which demonstrates the 
fact that, for functions F(t) not defined by a single expression for all times t > 0, guidance 
must be sought from the geometric interpretation of the convolution integral in determining 
the proper integration limits. 

4.5 SHOCK SPECTRUM 

Many structures are subjected on occasions to relatively large forces applied suddenly 
and over periods of time that are short relative to the natural period of the structure. 
Such forces can produce local damage, or they can excite undesirable vibration of the 
structure. Indeed, at times the vibration results in large cyclic stress damaging the 



structure or impairing its performance. A force of this type has come to be known as a 
shock. The response of structures to shocks is of vital importance in design. The severity 
of the shock is generally measured in terms of the maximum value of the response. For 
comparison purposes, it is customary to use the response of an undamped single-degree- 
of-freedom system. The plot of the peak response of a mass-spring system to a given 
shock as a function of the natural frequency of the system is known as shock spectrum, 
or response spectrum. 

A shock F(t)  is generally characterized by its maximum value Fo, its duration 
T and its shape, or alternatively the impulse 1: F(t)dt. These characteristics depend 
on the force-producing mechanism and on the properties of the interface material. A 
reasonable approximation for the force is the half-sine pulse shown in Fig. 4.17; we 
propose to derive the associated shock spectrum. 

The half-sine pulse of Fig. 4.17 can be regarded as the superposition of two one- 
sided sine functions, one initiated at t = 0 and the second initiated at t = T = T/W. 
Hence, using the procedure introduced in Sec. 4.2, we can describe the half-sine pulse 
for all times in the form 

F(t) = Fo[sinwt ~ ( t )  + sinw(t - T)m(t - T)] (4.41) 

But, the response of an undamped single-degree-of-freedom system to the one-sided 
sine function initiated at t = 0 was obtained earlier in the form of Eq. (c) of Example 
4.3. Using this result, it follows that the response to the half-sine pulse of Fig. 4.17 is 
simply 

W .  
sinw(t - T) - - sin w, (t - T) 

Wn 

To generate the shock spectrum, we must find the maximum response. To this 
end, we recognize that, although Eq. (4.42) describes the response for all times, the 
response during the pulse differs from the response after the termination of the pulse, so 
that we must consider the response for each time interval separately. From Eq. (4.42), 
the response during the pulse is 

FIGURE 4.17 
Half-sine pulse 



To obtain the maximum response, we must solve for the time t, for which i = 0 and 
then substitute this value of t, in Eq. (4.43). Differentiating Eq. (4.43) with respect to 
time, we obtain 

i ( t )  = (coswt - cosw,t) 
4 1 -  ( ~ l w , ) ~ 1  

so that, using the relation cos a-cos /3 = -2 sin (a + /3) sin i ( a  - p), we conclude that 
t,  must satisfy the equation 

1 sin i (w, + w)t, sin (w, - w)t, = 0 (4.45) 

which has two families of solutions 

Substituting the above values in Eq. (4.43), we obtain 

Fo sin 
2inw/w, 

x ( t k )  = 
k(1- wlw,) 1 + wlw, 

(4.47) 
Fo 2i.irw/wn 

x ( t 1 )  = sin 
k(l + wlw,) 1 - wlw, 

It is obvious from Eqs. (4.47) that the response corresponding to t = tk achieves higher 
values than the response corresponding to t = t i .  The question remains as to how to 
determine the value of the integer i .  To answer this question, we recall that t; must 
occur during the pulse, so that from Eqs. (4.46) we must have [2i.ir/(wn + w)]  < T / W .  

Hence, we conclude that for 0 < t < n l w  we have the maximum response 

Also from Eq. (4.42), the response for any time after the termination of the pulse 
can be verified to be 

As before, to obtain the maximum response, we must first determine t = t,, at which 
time i ( t )  = 0. To this end, we write first 

i ( t )  = 
FOW,~/W 

[COS w,t + cos W ,  ( t  - T ) ]  
k[l- ( ~ n / w ) ~ 1  

Then, recalling that cos a + cos /3 = 2 cos (a + P )  cos i ( a  - /3), we conclude that t, 
must satisfy the equation 

cos W ,  (t,, - T )  cos i w ,  T = 0 (4.51) 

which yields the solutions 



FIGURE 4.18 
Shock spectrum 

Introducing t = t ,  in Eq. (4.49), we obtain the maximum response for t > r / w  in the 
form 

2Fown l w  r wn 
Xmax = COS - - 

k [ l  - ( w , / w ) ~ ]  2 w 

The response spectrum is simply the plot x,, versus w,/w, in which both Eqs. 
(4.48) and (4.53) must be considered. Of course, only the larger of the two values must 
be used. We note that solution (4.48) is not valid for w, < w, but both solutions are valid 
for w, > w. It turns out that the maximum response is given by Eq. (4.53) for w, < w 
and by Eq. (4.48) for w, > w. The response spectrum is shown in Fig. 4.18 in the form 
of the nondimensional plot xm,k/Fo versus w,/w. 

For different pulse shapes, different shock spectra can be anticipated. For a rect- 
angular pulse, or a triangular pulse, the ratio wn/w has no meaning, because there is no 
w in the definition of these pulses. However, these pulses can be defined in terms of their 
duration T ,  so that in these cases the shock spectrum is given by xm,,k/ Fo versus T /  T,, 
or xm,k/Fo versus 2T/T,, where T, = 2n/w, is the natural period of the mass-spring 
system. 

4.6 SYSTEM RESPONSE BY THE LAPLACE 
TRANSFORMATION METHOD. TRANSFER FUNCTION 

The solution of many problems in vibrations by direct means can cause serious difficul- 
ties, and may not even be possible, unless some type of transformation is used. There 
is a large variety of transformations, but the general idea behind all of them is the same, 
namely, transform a difficult problem into a simple one, solve the simple problem and 
inverse transform the solution of the simple problem to obtain the solution of the original 
difficult problem. In this section, we consider the most widely used transformation in 
vibrations, namely, the Laplace transformation. 



The Laplace transformation method has gained wide acceptance in the study of 
linear time-invariant systems. In addition to providing an efficient method for solving 
linear ordinary differential equations with constant coefficients, the Laplace transforma- 
tion permits the writing of a simple algebraic expression relating the excitation and the 
response of systems. In this regard, we are reminded of the symbolic block diagrams 
of Figs. 1.41 and 1.42, used to relate the response of a system to the excitation and to 
demonstrate the principle of superposition for linear systems, respectively. However, 
the block diagrams merely served to bring the inherent characteristics of the system into 
sharp focus, but they did not help in any way toward the solution of the response problem. 
By contrast, the Laplace transformation method can be used not only to define a genuine 
block diagram relating the response to the excitation by means of an algebraic expres- 
sion but also to help produce a solution to the response problem. Significant advantages 
of the method are that it can treat discontinuous functions without particular difficulty 
and that it takes into account initial conditions automatically. Sufficient elements of 
the Laplace transformation to provide us with a working knowledge of the method are 
presented in Appendix B. Here we concentrate mainly on using the method to study 
response problems. 

The (one-sided) Laplace transformation of x( t ) ,  written symbolically as X ( s )  = 
9 x  ( t )  is defined by the definite integral 

X(s)  = 9 x ( t )  = eCstx(t)dt  I" (4.54) 

where s is in general a complex quantity referred to as a subsidiary variable. The function 
ePst is known as the kernel of the transformation. Because this is a definite integral, with 
t  as the variable of integration, the transformation yields a function of s .  To solve Eq. 
(3.1) by the Laplace transformation method, it is necessary to evaluate the transforms of 
the derivatives dxldt  and d2x/d t2 .  A simple integration by parts leads to 

where n (0)  is the value of the function x  ( t )  at t  = 0 .  Physically, it represents the initial 
displacement of the mass m. Similarly, it is not difficult to show that 

where i ( 0 )  is the initial velocity of m. The Laplace transformation of the excitation 
function is simply 

F 0 0  

F ( s )  = Y F  ( t )  = 1, eCst F  ( t )dt  

Transforming both sides of Eq. (3.1) and rearranging, we obtain 

(ms2 + cs + k ) X  ( s )  = F ( s )  + m i ( 0 )  + (ms + c)n(O) (4.58) 



In the following discussion, we concentrate on the effect of the forcing function F( t ) ,  
although we could have just as easily regarded the right side of Eq. (4.58) as a general 
transformed excitation. Hence, ignoring the homogeneous solution, which is equivalent 
to letting x(0) = i ( 0 )  = 0,  we can write the ratio of the transformed excitation to the 
transformed response in the form 

where the function Z(s )  is known as the generalized impedance of the system. The 
concept of impedance was introduced first in Sec. 3.2 in connection with the steady-state 
response of systems. 

In the study of systems, we encounter a more general concept relating the trans- 
formed response to the transformed excitation. This general concept is known as the 
systemfunction, or transfer function. For the special case of the second-order system 
described by Eq. (3. I), the transfer function has the form 

and it represents an algebraic expression in the s-plane, namely, a complex plane some- 
times referred to as the Laplace plane, or Laplace domain. Note that, by letting s = iw 
in G(s)  and multiplying by m,  we obtain the frequency response G(iw),  Eq. (3.20). 

Equation (4.60) can be rewritten as 

Equation (4.61) represents the solution to the simple problem mentioned in the intro- 
duction to this section and can be expressed schematically by the block diagram of Fig. 
4.19. This is a genuine block diagram, stating that the transformed response X ( s )  can be 
obtained by merely multiplying the transformed excitation F (s) by the transfer function 
G(s) .  The final step is to carry out an inverse transformation to obtain the solution to the 
original problem, namely, the response x ( t ) .  To this end we simply evaluate the inverse 
Laplace transformation of X(s) ,  defined symbolically by 

The operation 2-' involves in general a line integral in the complex s-domain. 
For all practical purposes, however, it is not necessary to go so deeply into the theory of 
the Laplace transformation method. Indeed, in virtually all cases solutions can be carried 
out by means of tables of Laplace transforms. The tables consist of pairs of entries f ( t )  

Transformed 
excitation 

Transfer Transformed 
function response 

FIGURE 4.19 
Block diagram relating the transformed response to the transformed excitation by 
means of the transfer funct~on 



and F ( s )  arranged in two columns, so that to an entry f ( t )  in the left column corresponds 
the Laplace transform F ( s )  = 9 f  ( t )  in the right column, where f ( t )  and F ( s )  represent 
a Laplace transform pair. Conversely, to an entry F ( s )  in the right column corresponds 
the inverse Laplace transform f ( t )  = Y P 1 F ( s )  in the left column. The process is a 
two-way street whereby one can begin with a given function f ( t )  and find its Laplace 
transform F ( s )  on the right, or begin with a given Laplace transform F ( s )  and find its 
inverse Laplace transform f ( t )  on the left. Of course, for the most part, the interest lies 
in using the tables to determine inverse Laplace tranforms, thus rendering integrations 
in the complex plane unnecessary. A modest table, yet covering many of the transform 
pairs encountered frequently in vibrations, can be found at the end of Appendix B. 

Quite often, the transformed response X ( s )  is too involved to be found readily 
in tables. In such cases, it is generally possible to decompose X ( s )  into a sum of 
functions sufficiently simple that their inverse Laplace transforms can be found in tables. 
The procedure for carrying out such decompositions is known as the method of partial 
fractions, and is presented in Appendix B. Also in Appendix B we discuss a theorem 
for the inversion of a function X ( s )  having the form of a product of two functions of s ,  
such as Eq. (4.62). This is the convolution theorem, which is applicable to the product 
of any two functions Fl ( s )  and F2(s), not necessarily the transfer function G ( s )  and the 
Laplace transform F (s) of an excitation force. 

Equation (4.62) can be used to derive the response of any linear system with 
constant coefficients subjected to arbitrary excitations. There are three excitations of 
particular interest in vibrations, namely, the unit impulse, the unit step function and the 
unit ramp function. These functions and the response to these functions were already 
discussed in Secs. 4.1 - 4.3, but in this section we wish to present the derivation of the 
response by means of the Laplace transformation method. 

The Laplace transform of the unit impulse is 

where use has been made of the sampling property of delta functions, Eq. (4.3). Inserting 
x ( t )  = g( t )  and F ( s )  = A ( s )  = 1 in Eq. (4.62), we obtain the impulse response 

Hence, the impulse response is equal to the inverse Laplace transform of the transfer 
function, so that the unit impulse and the transfer function represent a Laplace transform 
pair. Clearly, they both contain all the information concerning the dynamic characteris- 
tics of a system, the first in integrated form and the second in algebraic form. 

Next, we consider the Laplace transform of the unit step function, defined as 

Inserting x ( t )  = s ( t )  and F ( s )  = %(s) = l / s  in Eq. (4.62), we obtain the step response 



01; the step response is equal to tlze inverse Laplace transfom of the transfer function 
divided by s . 

Finally, the Laplace transform of the unit ramp function is 
00 

9 ( s )  = ep"r(t)dt = ePSt t  m(t)dt = I ePst t  d t  6" I" 
so that the ramp response is simply 

or, the ramp response is equal to the inverse Laplace transform of the transfer function 
divided by s2. 

Example 4.5. Derive the impulse response of a damped single-degree-of-freedom system 
by the Laplace transformation method. 

The transfer function of a damped single-degree-of-freedom system is given by Eq. 
(4.60), which can be rewritten in terms of partial fractions as follows: 

1 
G(s) = - c1 C2 -- t- 

m(s2+2Cw,s+w~) s - s l  s-s2 

where sl and s2 are simple poles of G(s), i.e., they are distinct roots of the equation 

s 2 + 2 ~ w , s t w , 2 = 0  (b) 

or, 

Inserting Eq. (c) into Eq. (a), we can write 
1 

C1(s-s2)+C2(~-~1) = (CI + C ~ ) S - C ~ ( - C W ~  -iWd)-C2(-CWn f iwd) = - (d) m 
which yields the coefficients 

so that the transfer function can be expressed in terms of partial fractions as follows: 

The impulse response is obtained by introducing Eq. (f) in conjunction with Eq. (c) 
in Eq. (4.64) and using the table of Laplace transforms in Appendix B, with the result 

where we multiplied the result by m(t) because the impulse response is by definition equal 
to zero for t < 0. As is to be expected, Eq. (g) represents the same expression for the 
impulse response as that obtained by classical means, Eq. (4.13). 



Example 4.6. Detennine the step response of a damped single-degree-of-freedom system 
by the Laplace transformation method. 

Introducing Eq. (4.60) in Eq. (4.66), the desired step response can be written in the 
form 

where, using results from Example 4.5, the simple poles have the values 

At this point, we could follow the procedure used in Example 4.5 to obtain the coeffi- 
cients Ck (k = 1,2,3). Instead, we evaluate the coefficients by means of formula (B. 19) of 
Appendix B, which reads 

in which A(s) is the numerator and B(s) is the denominator of the middle expression in Eq. 
(a) and the prime denotes the derivative with respect to s. In the case at hand, 

Hence, using Eqs. (b) and (c), we can write 

Inserting Eqs. (e) in conjunction with Eqs. (b) into Eq. (a) and using Laplace transform 
tables, we obtain the step response 

kamal
Highlight



=I k [I -e-cWnt ( h s i n w d t  wd +coswdt)]w(t) (f) 

which is the same result as that given by Eq. (4.22). Note that, as the final step, we multiplied 
the result by ~ ( t )  to account for the fact that&(t) = 0 fort  i 0. 

Example 4.7. Derive the response of an undamped single-degree-of-freedom system to the 
sawtooth pulse shown in Fig. 4.20 by the Laplace transformation method. Plot the response 
for the pulse duration To = 0.4 s and the natural frequency w, = 4 rad/s. For convenience, 
let Fo/m = 40. 

Letting c = 0 in Eq. (3.1), the differential equation for the response is 

where, from Fig. 4.20, the force has the expression 

From Eq. (4.62), the response can be written in the form of the inverse Laplace transforrna- 
tion 

in which, for the system of Eq. (a), the transfer function is 

Moreover, using Eq. (4.57) and integrating by parts, the transformed excitation can be 
written as 

FIGURE 4.20 
Sawtooth pulse 



FIGURE 4.21 
Response of a mass-spring system to a sawtooth pulse 

In carrying out the inverse transformation, we recall that the term ePsT0 can be 
handled in the context of the shifting theorem in the real domain (see Sec. B.5). Then, from 
Laplace transform tables, we have 

9 - I  
1 1 

= ,(1 -cosw,t) 
s(s2+w,2) w, 

9- 
1 1 

= (w, t - sin w,t) 
s2(s2+w,2) w, 

Hence, using the shifting theorem just mentioned, we obtain the response to the sawtooth 
pulse as follows: 

To 1 
[l -cosw,(t - To)lcc(t - To) + 2 ( w n t  -sinw,t)cc(t) 

n 

1 
- - [w, (t - To) - sin w, (t - To)]m(t - To) 

w t? I 
- Fo 1 -- - 1 

(writ - sinw,t)m(t) - ---- [w, ( t  - To) - sinw, (t - To)]cc(t - To) { wn To w,~ To 

-[I - cos w, (t - T o ) ] ~ ( t  - To) I (h) 

The response is plotted in Fig. 4.21. 
As a matter of interest, we observe that the solution given by Eq. (h) can be obtained 

by treating the force as a ramp function of magnitude Fo/ To initiated at t = 0, minus a ramp 
function of magnitude Fo/ To initiated at t = To and minus a step function of magnitude 
Fo initiated at t = To. The corresponding response is a ramp response of magnitude Fo/ To 
starting at t = 0, minus a ramp response of magnitude Fo/ To beginning at t = To and minus 
a step response of magnitude Fo initiated at t = To. We discussed this approach in Sec. 4.3 
in conjunction with the response to a trapezoidal pulse. 

4.7 GENERAL SYSTEM RESPONSE 

The interest lies in deriving the general response of a damped single-degree-of-freedom 
system to the arbitrary excitation F ( t )  and to the initial conditions x (0) = xo, i (0) = vo 
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by the Laplace transformation method. Hence, transforming both sides of Eq. (3.1) and 
recalling Eq. (4.58), we obtain the transformed response in the form 

The inverse transformation of X ( s )  will be carried out by considering each term 
on the right side of Eq. (4.69) separately. To obtain the inverse transformation of the 
first term, we use the convolution theorem (see Sec. B.7). To this end, we let 

Clearly, f l  (t) = F (t). Moreover, from the tables of Laplace transforms in Appendix B, 
we conclude that 

and we note that f2(t) is equal to the impulse response g(t), as can be seen from Eq. (g) 
of Example 4.5. (The reader is urged to explain why.) Hence, considering Eq. (B.7), the 
inverse transformation of the first term on the right side of Eq. (4.69) is 

Also from the tables of Laplace transforms, we obtain the inverse transform of the 
coefficient of xo in Eq. (4.69) in the form 

s + 2<w, wn -- 1 <wn e-Cwnt cos(wdt - $), $ = tan- - 
9-1 s2 + Z<w,s + w; - Wd 

(4.73) 
W d  

Moreover, the inverse transformation of the coefficient of vo can be obtained by multi- 
plying f2(t), as given by Eq. (4.71), by m. Hence, considering Eqs. (4.71) to (4.73), we 
obtain the general response 

and note that the Laplace transformation method permits us to produce both the response 
to the initial conditions and the response to the external excitation simultaneously. We 
observe that Eq. (4.72) can also be written as 



so that the general response has the alternative form 

xOWn -<writ + e  c ~ s ( w ~ t - $ ) + ~ e - ~ ~ ~ ~ s i n w ~ t  (4.76) 
Wd W d  

We shall make repeated use of Eq. (4.74), or Eq. (4.76), throughout this text. 

4.8 RESPONSE BY THE STATE TRANSITION MATRIX 

Equation (4.74) gives the response of a damped single-degree-of-freedom to any arbitrary 
excitation F(t )  in terms of a convolution integral. Except for some simple excitations, 
however, evaluation of the integral in closed form is likely to cause serious difficulties. In 
such cases, it is natural to seek a numerical solution for the response, which in one form 
or another amounts to numerical integration of the equation of motion. The equations of 
motion are generally of second order, and some of the most efficient numerical integra- 
tion algorithms are based on first-order differential equations. However, second-order 
equations can be transformed into first-order equations, as we are about to show. Al- 
though the solution of the first-order differential equations to be presented in this section 
is still in tenns of a convolution integral, implying a closed-form solution, the integral 
can be used to derive an efficient numerical algorithm, as shown in Sec. 4.10. 

For convenience, we rewrite the equation of motion of a damped single-degree- 
of-freedom system, Eq. (3. I), in the form 

Then, introducing the notation x (t  ) = xl ( t )  , i ( t )  = x2 ( t ) ,  as well as the identity i ( t )  r 
i ( t ) ,  we can replace the single second-order differential equation, Eq. (4.77), by the set 
of two first-order differential equations 

i l  ( t )  = ~ 2 0 )  

2 
(4.78) 

i 2 ( t )  = -w,x~ ( t )  - 2<wnx2(t) +m-I F( t )  

The pair of variables xl ( t ) ,  x2(t),  or ~ ( t )  and i ( t ) ,  are known as state variables and 
Eqs. (4.78) are called state equations. For any given set of initial conditions x(0)  = 
x1 ( O ) ,  i ( 0 )  = x2(0), the state equations define uniquely the state of the system for any 
future time. 

The solution of Eqs. (4.78) can be best presented in terms of matrix notation. To 
this end, we introduce the state vector 

so that Eqs. (4.78) can be rewritten in the matrix form 
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where 

are amatrix and avector of coefficients, respectively. The derivation of the solution of Eq. 
(4.80) can be carried out by premultiplying both sides of the equation by a 2 x 2 matrix 
K ( t ) ,  obtain first a solution for K ( t )  and then one for K ( t )x ( t )  and finally premultiply 
the latter by K-' ( t )  to obtain x(t) .  For details of the derivation, the reader is urged to 
consult Ref. 13. Here, we merely give the result 

in which x(0) = [xl (0) x2(0)IT is the initial state vector and 

is a matrix known as the state transition i~zatvix, in the case at hand a 2 x 2 matrix. We 
observe that Eq. (4.82) contains both the homogeneous and the particular solution, where 
the latter has the form of a convolution integral. Hence, the problem of obtaining the 
system response has been reduced to that of determining the state transition matrix and 
carrying out the indicated matrix operations. The convolution integral in Eq. (4.82) can 
be expressed in an alternative form. Indeed, introducing the transformation of variables 
defined by Eqs. (4.37) and (4.38) in Eq. (4.82) and recognizing that X is a mere dummy 
variable, we obtain 

~ ( t )  = @ (t)x(O) + @(X)bF (t  - A)(-dX) 

where the second term on the right side can be identified as the alternative form of the 
convolution integral. 

In general, the transition matrix must be computed numerically, which amounts to 
evaluating a matrix series. In view of the factorial n! at the denominator, which increases 
faster with n than (t  - r)n An, convergence of the series is assured. However, the number 
of terms required for convergence is still an open question. We consider this subject in 
Ch. 7, in conjunction with the response of multi-degree-of-freedom systems. In the case 
at hand, in which the transition matrix is 2 x 2, it is possible to derive the matrix in closed 
form. To this end, we consider the homogeneous part of Eq. (4.80), or 

which has the solution 

The solution can be verified by substitution into Eq. (4.85), or it can be identified merely 
as the first term on the right side of Eq. (4.82), or Eq. (4.84). The Laplace transform of 



Eq. (4.85) is simply 

where X(s)  = 9 x ( t ) .  Solving Eq. (4.87) for the transformed state vector X(s) ,  we 
obtain 

Hence, inverse transforming both sides of Eq. (4.88), we can write the homogeneous 
part of the state vector in the form 

Comparing Eqs. (4.86) and (4.89), we conclude that the transition matrix can be expressed 
as the inverse Laplace transform 

and we observe that the inverse Laplace transformation can be carried out entry by entry 
following the matrix inversion. To obtain the transition matrix for the single-degree-of- 
freedom system described by the state equations (4.78), we insert the first of Eqs. (4.81) 
into Eq. (4.90), use the Laplace transform tables in Appendix B and write 

1 ~d cos wdt + <wn sin wdt sin wd t 
--e-Cw"t - I (4.91) 

wd -w: sinwdt wd cos wd t - <w, sin wd t 

Finally, introducing the second of Eqs. (4.81) and Eq. (4.91) in Eq. (4.84), we 
obtain the total response in the general form 

1 wd coswdt + <wn sinwdt sin wd t 
x ( t )  =-e-Sunt 

Wd -w: sinwdt wd cos wdt - <wn sin wdt 

1 sin wd 7 
F(t - 7)dr  (4.92) 

wd cos W d 7  - <w, sinwd7 

The response given by Eq. (4.92) is complete, in the sense that it contains the response 
to both the initial excitations and the applied force. In fact, the top component in Eq. 
(4.92), representing the displacement, is identical in every way to the general response 
given by Eq. (4.76). In addition, going beyond Eq. (4.76), the bottom component of Eq. 
(4.92) represents the velocity. 

We observe that Eq. (4.92) gives the part of the state vector x(t) attributable to 
external forces in the form of a convolution integral. Hence, when the external forces 
involve discontinuities, care must be exercised in choosing the limits of integration, as 
discussed in Sec. 4.4. This problem is obviated in Sec. 4.10, in which we present a 
numerical algorithm for solving state equations in discrete time. 



4.9 DISCRETE-TIME SYSTEMS. THE CONVOLUTION SUM 

In Secs. 4.14.8, we examined various techniques for determining the response of linear, 
time-invariant systems to nonperiodic excitations. Although not stated explicitly, the 
emphasis was placed on analytical solutions. In one form or another, the response to 
arbitrary forces necessitates the evaluation of convolution integrals. But, except for 
some relatively simple forcing functions, analytical evaluation of convolution integrals 
can be very difficult, if not impossible. In fact, in many cases the excitation forces 
cannot even be described in terms of known functions of time. Hence, for the most 
part, the only viable option is to obtain the response numerically on a digital computer. 
In this section, we present an approach suitable for the numerical evaluation of scalar 
convolution integrals, such as that given by Eq. (4.72), or Eq. (4.73, and in Sec. 4.10 
we discuss a technique for the evaluation of vector convolution integrals, such as that in 
Eq. (4.82), or Eq. (4.84). 

The evaluation of solutions to vibration problems on a computer involves three 
operations, getting the input data into the computer, carrying out the computations by 
means of an algorithm stored in the computer and getting the output data out of the 
computer. To relate these operations to our vibration problems, we recognize that the 
input data corresponds to the excitation, the computational algorithm may involve the 
numerical evaluation of a convolution integral and the output data represents the response. 
But, whereas vibration phenomena evolve continuously in time, digital computers cannot 
process information involving time as a continuous independent variable, which makes 
it necessary that time be converted into a discrete variable. Moreover, the input and 
computational algorithm must be converted to discrete time from continuous time. The 
output is generated by the computer in discrete time automatically. We refer to this 
whole process as disci-etization in time, and to the associated discrete-in-time model as 
a discrete-time system. 

The process of computing the response of vibrating systems on a digital com- 
puter begins with the conversion of the continuous time t into the discrete time t, (n  = 
0,1 ,2 ,  . . . ), where t, represent sampling times. Although in general the sampling times 
to,  t l ,  t z ,  . . . can be spaced unevenly, for the most part they are chosen to be evenly 
spaced, so that t, = nT (n = 0,1,2,  . . .), in which T is known as the sampling period. 
Hence, the question of choosing the sampling times reduces to the question of choosing 
the sampling period. This is an important question, and we discuss it later in this sec- 
tion. Because the sampling period is constant, it is convenient to identify the sampling 
times t, = nT simply by n.  The operations described in the preceding paragraph are 
depicted schematically in Fig. 4.22, in which every operation is represented by a block. 
The first block represents the conversion of the continuous-time excitation F ( t )  into the 

time D / C  
processing 

FIGURE 4.22 
Computation of the response in discrete time 
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FIGURE 4.23 
Response computed in discrete time and converted to continuous time 

discrete-time input data F(t,) = F ( n ) ,  which has the form of a sequence of numbers 
F (0) ,  F  ( I ) ,  F  (2) ,  . . . obtained simply by sampling F ( t )  at t = nT (n  = 0 ,  1,2,  . . . ). 
This operation is denoted by C/ D, meaning conversion from continuous to discrete. The 
second block represents discrete-time processing of the solution to the vibration prob- 
lem on a computer. The result is the output data in the form of a sequence of numbers 
x  (1 ) ,  x (2 ) ,  . . . , representing the discrete-time response. Finally, the third block stands 
for the conversion of the discrete-time response into the continuous-time response, which 
can be done by writing simply 

This operation, denoted by D/C, generates a plot in the form of a staircase, as depicted 
in Fig. 4.23. In this regard, it should be noted that if the output data x ( n )  ( n  = 1,2,  . . .) 
is plotted, instead of merely listing the numbers, and if the resolution of the graph is 
relatively high, then the plot will appear as a continuous curve, rather than as a staircase. 
Hence, the net effect of choosing a small sampling time T is to obviate the operation 
D / C .  

At this point, we turn our attention to the discrete-time algorithm for the computa- 
tion of the response. One approach is to discretize the convolution integral, Eq. (4.40), 
in the manner discussed in Ref. 13. Perhaps a simpler approach is to regard the system 
as a discrete-time system from the beginning. To describe mathematically discrete-time 
functions, such as the input sequence, it is convenient to introduce the discrete-time unit 
impulse, or unit sample, as the discrete-time Kronecker delta (Ref. 13) 

1  for n  = k 
S(n - k )  = 

0  for n # k  

0 1 1 2 3  k  
FIGURE 4.24 
Discrete-time unit impulse, or unit sample 



0 1 2 3  k 
FIGURE 4.25 
Discrete-time excitation function 

The unit sample is shown in Fig. 4.24. Then, the discrete-time excitation can be expressed 
mathematically as 

where F (0)  , F (I), F (2), . . . is the input sequence. A typical discrete-time excitation 
function is shown in Fig. 4.25. 

Next, by analogy with continuous-time systems, we define the discrete-time im- 
pulse response g(n) as the response of a linear discrete-time system to a discrete-time 
unit impulse S(n), applied at k = 0, with all the initial conditions being equal to zero. 
The definition implies that g(n) = 0 for n < 0,  because there cannot be any response 
before the system is excited. The relation between g(n)  and S(n) is shown schematically 
in the form of the first block diagram of Fig. 4.26. At this point, we must recognize 
that discretization in time cannot change the inherent properties of a system. Hence, a 
linear time-invariant system in continuous time remains so in discrete time. It follows 
that, for linear time-invariant systems, if the excitation is delayed by the time interval 
k T ,  then the response is delayed by the same amount of time, so that the response to 
S(n - k )  is g(n - k) ,  as shown in the second block diagram of Fig. 4.26. Moreover, if 
the excitation is multiplied by F ( k ) ,  then the response is multiplied by F(k) ,  as depicted 
in the third block diagram of Fig. 4.26. Finally, because the principle of superposition 
holds for discrete-time systems in the same manner as for the associated continuous-time 
systems, we conclude that the response to the discrete-time excitation given by Eq. (4.95) 
is simply 

where we replaced the upper limit of the series by n in recognition of the fact that 
g(n - k) = 0 for n - k < 0, which is the same as k n. Equation (4.96) expresses the 
response of a linear time-invariant system in the form of a convolution sum, and it rep- 
resents the discrete-time counterpart of the convolution integral given by Eq. (4.40). 
The discrete-time response given by Eq. (4.96) consists of a sequence of numbers 
x ( l ) ,  x(2) ,  . . . , which can be used to plot x(n)  versus n. 
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- 
S(n - k) - 

- - 

FIGURE 4.26 
Block diagrams relating the discrete-time impulse response to the 
discrete-time unit impulse, relating the same quantities shifted by k 
sampling periods and relating the same quantities shifted and 
multiplied by F ( k T ) .  

Discrete-time system 

F(k) 6 ( n  - k)  - 

There remains the question as to how to obtain the discrete-time impulse response 
g(n).  To answer this question, we must first examine the nature of the discrete-time unit 
impulse S(n). From Eq. (4.94), we observe that S(n) is dimensionless, as opposed to 
S(t ) ,  which has units of s-'. Implicit in this is that S(n) corresponds not to S(t )  but to 
the area under the curve S(t)  versus t .  Hence, in discretizing excitations by means of 
Eq. (4.95), in which F(O), F ( I ) ,  F (2 ) ,  . . . sepresent the magnitude of the force F ( t )  
at t  = 0, T ,  2T ,  . . . , the time interval T between the samples is implicitly allocated to 
6(n - k) rather than to F (k). It follows that the discrete-time impulse response g(n)  can 
be obtained from the continuous-time impulse response g(t,) by writing 

gfn)  

Discrete-time system 

Finally, we must address the issue of choosing a sampling period T, as the ac- 
curacy of the discrete-time solution depends on this choice. It is reasonable to expect 
that, for a relatively small sampling period, the discrete-time response will approximate 
the continuous-time response quite well, so that the question reduces to what is small. 
This question can only be answered in the context of the excitation and of the system 
characteristics. Indeed, the net effect of replacing a convolution integral by a convolution 
sum is to approximate curves in continuous time by staircases in discrete time, because 
F ( n )  and g(n)  can be regarded as constant over the sampling period T, at the end of 
which their values jump to F ( n  + 1) and g(n + I), respectively. Hence, a small sam- 
pling period for one problem may not be small for another problem, and vice versa. To 
elaborate on this statement, we focus our attention on the system characteristics, rather 
than on the nature of the excitation. To this end, we refer to a specific system, such as 
an underdamped single-degree-of-freedom system. From Eq. (4.1 I), we recall that the 
continuous-time impulse response is given by 

g(n - k)  

Discrete-time system 

1 
g ( t )  = - e-Swnt sin wdt 

mud 

F(k)grn - k) 
F 



and, from Eq. (4.97), we conclude that the discrete-time impulse response is 

g(n) = L - e - n ~ u n r  sinnwdT (4.99) 
mud 

Hence, it is clear that the sampling period T must be sufficiently small that g(n) ap- 
proximate g(t) with the desired degree of accuracy, bearing in mind that the multiplying 
constant T plays the role of a scaling factor related to the definition of the discrete-time 
unit impulse. Except for the scaling factor T, g(n) matches g(t) exactly at t = nT, but 
this does not tell the whole story. Indeed, for all practical purposes, g(n) acts as the stair- 
case approximation of g (t), as pointed out above. How well g (n) matches g ( t )  depends 
largely on how well sinnwd T matches sinwdt, which in turn depends on the width T of 
the steps in the staircase. In view of this, we conclude that an accurate approximation 
demands that the sampling period T be only a small fraction of the period of damped 
oscillation 

perhaps of the order of lop2. 
The computational algorithm for the response by the convolution sum has many 

advantages. In the first place, the algorithm is quite simple. Moreover, it can handle 
excitations that in continuous time were discontinuous with the same ease as excitations 
that were continuous originally. Indeed, because of the discrete-in-time nature of the 
algorithm, the concept of continuity does not even apply. Finally, it has no difficulties 
in handling excitations of finite duration, such as pulses. In this regard, it is important to 
remember that, for excitations of finite duration, the discrete variable k, and hence the 
number of terms in the convolution sum, cannot exceed the number of sampling times 
no defining the duration of the discrete-time excitation. 

On the other side of the ledger, the algorithm using the convolution sum has 
several drawbacks. The first that comes to mind is that this is a scalar approach relating 
a single response to a single excitation. Then, this is not a recursive process, which 
implies that the computation of every number x(n) in the response sequence is carried 
out independently of the previously computed numbers x (I), x (2), . . . , x (n - 1). This 
implies further that all the values of F(k) and g(k) up to the sampling time n must be 
saved (k = 0,1 ,2 , .  . . , n - 1). Indeed, in a recursive process the computation of x(n) 
requires only the values of x(n - 1) and F(iz - I), and all the previous values can be 
discarded. Finally, the computation of x(n) becomes progressively longer with n, as the 
convolution sum involves n + 1 products of F(k) and g(n - k) (k = 0,1,  . . . , n - 1). An 
exception to this is the case in which the excitation sequence consists of a finite number 
no of samplings only, in which case the number of products F(k)g(n - k) is limited to 
a maximum of no. This can be explained by the fact that there is a maximum of no 
sampling times for which the sequences F(k) and g(n - k) overlap. 

In writing a program for the evaluation of the convolution sum on a computer, the 
advantage of simplicity remains. On the other, the facts that the process is not recursive 
and that the computation at each step becomes increasingly longer are primarily of 
academic interest, as the computational burden is assumed by the computer. In Sec. 4.11, 
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FIGURE 4.27 
Sawtooth pulse discretized in time 

we present a computer program for the response by the convolution sum written in 
MATLAB. 

Example 4.8. Obtain the solution to the problem of Example 4.7 by means of the con- 
volution sum for the two cases: 1) T = 0.01 s and 2) T = 0.005 s. Plot the discrete-time 
response for the two cases, as well as the continuous-time response obtained in Example 
4.7, and discuss the accuracy of the results. 

The discrete-time counterpart of the sawtooth pulse of Fig. 4.20 is shown in Fig. 
4.27, in which no = To/ T = 0.41 T is the number of sampling times. It is easy to see that 
the discretized sawtooth pulse can be expressed as 

-n for O l n s n o  
F (n) = (a) 

for n > no 

Moreover, from Eq. (4.99) with C = 0, the discrete-time impulse response is 

T 
g(n) = ---- sin nw, T 

in W, 
(b) 

It is shown in Fig. 4.28a. The shifted graph and folded graph are displayed in Figs. 4.28b 
and 4.28c, respectively. Hence, using Eq. (4.961, the discrete-time response is 

Case 1 
In this case, T = 0.01 s, no = 40, so that the response is given by the formula 

I 0.0025 k sin 0.04(n - k) for n 5 40 
k=O ' 

x(n) = 
40 

0 .025~ks in0 .04 (n  - k) for n > 40 
k=O 

no 

E ~ k s i n ( n - k ) w , ~  for n > n o  
nomw, k=O 



FIGURE 4.28 
a. Discrete-time impuIse response for a mass-spring system, b. The impulse response shifted 
backward by k periods, c. The impulse response shifted backward and folded. 

Hence, the response sequence is as follows: 

3 

x (3) = 0.0025 x k sin 0.04(3 - k )  = 0.0025 (sin 0.08 + 2 sin 0.04) = 0.000400 
k=O 



40 

x (43) = 0.0025 k sin0.04(43 - k) = 0.0025(sin 1.68 + 2 sin 1.64 + . . 
k=O 

The response x(n) versus n is marked by black circles in Fig. 4.29. 

- continuous time, discrete time with T = 0.01 s, 
discrete time with T = 0.005 s 

FIGURE 4.29 
Discrete-time response of a mass-spring system to a sawtooth pulse by the convolution sum 



Case 2 
In this case, T = 0.005 s, no = 80, so that the response has the explicit form 

which yields the response sequence 

x(n) = 

The response x(n) versus n is indicated by white circles in Fig. 4.29. 

n 

6.25 x lop4 x ksin0.02(n - k) for n 5 80 
k=O 

80 (f 
6.25 x lop4 1 k  sin0.02(n - k )  for n > 80 

k=O 



For comparison purposes, the continuous-time response plot x ( t )  versus t obtained 
in Example 4.7 is also shown in Fig. 4.29. It is clear that in case 1 the sampling period 
is too large to permit accurate results. On the other hand, in case 2 the sampling period 
is sufficiently small to yield results close in value to the exact solution. The discrete-time 
solution can be improved by further reducing the sampling period. It should be stated that 
the errors experienced in this example are worse than one would expect, because both the 
excitation and impulse response exhibit strong variations with time, thus requiring a smaller 
sampling period for good approximation. 

It should be pointed out here that the amount of detail presented in this example 
is strictly for pedagogical reasons. In practical situations, the discrete-time displacements 
x (1) , x (2), x (3), . . . are generated by a computer in the form of a sequence of numbers or in 
the form of a plot x(n) versus n .  Such a MATLAB computer program entitled 'convsum.mf 
is presented in Sec. 4.11. 

4.10 DISCRETE-TIME RESPONSE USING 
THE TRANSITION MATRIX 

In Sec 4.9, we developed a technique for calculating the discrete-time response of single- 
degree-of-freedom systems based on the convolution sum. One of the drawbacks of the 
technique is that it is not recursive. As a result, to compute the response at the sampling 
time n + 1, it is necessary to use the value of the excitation and impulse response at all 
preceding sampling times. In this section, we present a technique not suffering from this 
drawback. 

Equation (4.82) gives the continuous-time response of a single-degree-of-freedom 
system in state form, a two-dimensional vector with the top component equal to the 
displacement and the bottom component equal to the velocity. The response to external 
excitations is in the form of a convolution integral involving the state transition matrix 
@(t - r ) ,  which has the form of a matrix series, Eq. (4.83). Equations (4.82) and (4.83) 
can be used to derive a recursive algorithm for the response. To this end, we consider a 
particular sampling time t = n T ,  where T is the sampling period, and write the response 
at nT in the form 

Moreover, the response at t = (n + l ) T  is 

Then, assuming that the sampling period T is sufficiently small that the excitation can 
be approximated by a constant over the period T, or 

it is shown in Ref. 13 that x(n + 1) can be expressed in terms of x(n) and F ( n )  as follows: 



where 

@ = e  AT (4.105) 

is a 2 x 2 matrix known as the discrete-time transition matrix and 

is a two-dimensional vector. 
Equation (4.104) represents the desired recursive relation. Indeed, the relation 

permits the computation of the state vector at (n + l ) T  based on the state vector and the 
excitation at nT .  Equation (4.104) can be used to compute the discrete-time sequence 
of state vectors x ( l ) ,  x(2), . . . . Of course, before the computation of the discrete-time 
states can begin, it is necessary to generate the discrete-time transition matrix @ and the 
vector y. Note that Eq. (4.104) gives the response to both initial excitations and applied 
forces. 

The algorithm is very easy to program on a digital computer. We present such a 
program, written in MATLAB, in Sec. 4.12. 

Example 4.9. Obtain the solution to the problem of Example 4.7 by means of the approach 
based on the discrete-time transition matrix using the sampling period T = 0.005 s. The 
initial state vector x(0) is zero. Plot the top component of x(n) thus obtained, as well as the 
continuous-time response obtained in Example 4.7 and the discrete-time response obtained 
in Example 4.8 by means of the convolution sum for T = 0.005 s, and discuss the accuracy 
of the results. 

We carry out the computations by means of the recursive process given by Eq. (4.104). 
To this end, we let ( = 0,  wd = w, = 4 rad/s and t = T = 0.005 s in Eq. (4.91) and obtain 
the discrete-time transition matrix for an undamped single-degree-of-freedom system in the 
form 

cos w, T w i l  sin w, T 0.999800 0.005000 
@ = e A T =  

-w, sin w, T cos w, T 1 = [ -0.079995 0.999800 

Moreover, from Eqs. (4.81), we have 

so that, using Eq. (4.106), we can write 

[ - 0  j ] - ~ [ c o ~ ~ T  

w-I sin w, T 
y = A-'(eAT - I)b = 

-w, sin w, T cos w, T 

1 -COSW,T 0.000200 
- 
- mwi [ w,, sin w,, T ] = [ 0.079995 ] (c) 

Hence, recalling from Example 4.7 that Fo/m = 40 and from Example 4.8 that no = 80, 
we can write 
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where 

n for 0 5 n 5 80 
f (n) = 0 for n > 80 

so that, using Eq. (4.104), the computational algorithm has the form 

Recalling that x(0) = 0 and using Eqs. (e) and (f), we compute the first four state vectors 
in the response sequence. The results are 

Moreover, for comparison purposes, we list another four state vectors as follows: 

The top component in Eqs. (g) and (h) represents the displacement and the bottom 
component the velocity at the sampling times. The top component is used for the plot 
x(n) versus n marked in Fig. 4.30 by black circles. Also in Fig. 4.30, the continuous-time 
response x ( t )  versus t obtained in Example 4.7 is plotted in a solid line and the discrete-time 
response obtained in Example 4.8 by the convolution sum is indicated by white circles. We 
conclude that the approximate solution obtained by the convolution sum is more accurate 
than that obtained by the discrete-time transition matrix. This can be attributed to the fact 
that the discrete-time impulse response g(n) tends to be more accurate than the discrete- 
time transition matrix cP and the vector y. These inaccuracies disappear as the sampling 
period T is reduced. 
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- continuous time, . transition matrix, 

convolution sum 
FIGURE 4.30 
Response of a mass-spring system to a sawtooth pulse by the discrete-time transition matrix 

The above results can be obtained by the MATLAB computer program 'transm.mf 
given in Sec. 4.12. In fact, the program considers a somewhat more general problem than 
that in the present example, as it considers the response of a damped single-degree-of- 
freedom system to a sawtooth pulse, in which 5 = 0 represents one of several values of the 
damping factor. 

4.11 RESPONSE BY THE CONVOLUTION SUM USING MATLAB 

From Example 4.8, w e  conclude that the determination of the response by means of 
the convolution sum becomes increasingly laborious as the number of sampling times 
increases, so that a computer solution is an absolute necessity. In fact, the results of 
Example 4.8, given both as a sequence of computed displacements and in the form of 
a response plot, were obtained by means of a computer. The sequence of computed 
displacement was included merely to illustrate the process. 

In this section, we present a MATLAB program for the determination of the re- 
sponse by the convolution sum, Eq. (4.95), adapting the MATLAB function 'conv' to the 
problem at hand. To this end, we consider the response of the single-degree-of-freedom 
to a sawtooth pulse of Example 4.8, except that here we consider a damped system with 
the damping factor < acting as a parameter and with C = 0 being merely one of the values. 
The program is as follows: 

% The program 'convsum.m' plots the response of a single-degree-of-freedom 
% system to a sawtooth pulse 

clear 
clf 

m=l; % mass 
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wn=4; % frequency of undamped oscillation 
zeta=[O; 0.1; 0.21; % damping factors arranged as a three-dimensional vector 
T=0.01; % sampling period 
N=300; % number of sampling times 

for j=l:N, 
if j<=0.4/T+1; FQ)=lOO*T*(j-1); else; F(j)=O; end % force in the form of a 

% sawtooth pulse 

end 

for i=l :length(zeta), 
wd=sqrt(l-zeta(i) A 2)"wn; % frequency of damped oscillation 

n=[l:l:N]; 
g=(T/(m*wd))*exp(-(n- l)*zeta(i)*wn*T).*sin((n- l)*wd"T); % discrete-time 
% impulse response 

cO=conv(F,g); % convolution sum by MATLAB function 
c=cO(l:N); % limit the plot to 300 samples 

plot (c, I . ' )  

hold on 

end 

title ('Response by the Convolution Sumf) 
xlabel ('n') 
ylabel (/x(n)/) 
axis ([0 300 -2 21) 

Note that the response plots obtained by means of this program consist of dots repre- 
senting the displacement at discrete times. In fact, the plot for T = 0.01 s in Fig. 4.29 
represents the first third of the plot corresponding to ( = 0 generated by this program. 

4.12 RESPONSE BY THE DISCRETE-TIME TRANSITION MATRIX 
USING MATLAB 

In Sec. 4.11, we presented a computer program for the response of a damped single- 
degree-of-freedom system by the convolution sum, which is a scalar approach based 
on a single equation of motion, albeit of second order. For the most part, the preferred 
approach in numerical integration of equations is based on first-order equa- 
tions, which implies a state vector such as that given by Eq. (4.80). Of 
course, Eq. (4.80) is in continuous numerical integration the interest lies 
in a discrete-time formulation, such by Eq. (4.104). A computer program 
solving the response problem of Example 4. t  reads as follows: 

% The program 'tramat.mf plots the respo of a single-degree-of-freedom 
% system to a sawtooth pulse by the transition matrix 



clear 
cl f 

m=l; % mass 
wn=4; % frequency of undamped oscillation 
zeta=[O; 0.1; 0.21; % damping factors arranged in a three-dimensional vector 
b=[O llm]'; % coefficient vector, second of Eqs. (4.81) 
T=0.005; % sampling period 
N=600; % number of sampling times 

for i= 1 :length(zeta), 
A=[O 1; -wn " 2 -2*zeta(i)*wn]; % system matrix, first of Eqs. (4.81) 

Phi=eye(2)+T*A+T " 2*A " 2/2+T " 3*A " 3/6+T A 4*A " 4/24; % discrete-time 
% transition matrix 
gamma=inv(A)*(Phi-eye(2))*b; %two-dimensional vector of coefficients, Eq. (4.106) 

x(1, 1)=0; % initial displacement 
x(2, 1)=0; % initial velocity 

for n=l:N, 
if n<=0.4/T+1; F(n) = 100*T*(n- 1); else; F(n)=O; 

end 

x(:,n+l)=Phi*x(:,n)+gamrna*F(n); % discrete-time state vector 

end 

n=[O: 1: N]; 

plot (n,x(1 ,:),I .') 
hold on 

end 

title ('Response by the Transition Matrix') 
xlabel ('n') 
ylabel ('~(n)') 
grid 

Note that the program plots x(n) versus n, where x(n) is the top component of the 
discrete-time state vector, i.e., the discrete-time displacement. 

4.13 SUMMARY 

This chapter is concerned with the response of linear time-invariant systems, perhaps 
better known as linear systems with constant coefficients, to arbitrary, or transient ex- 
citations. It marks a new direction in our study in the sense that it requires different 
techniques than those encountered until now. By virtue of the superposition principle, 
the response to arbitrary excitations can be obtained separately from the response to 
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initial excitations (Ch. 2), and then the two can be combined linearly to obtain the total 
response. By contrast, the response to harmonic excitations and periodic excitations 
(Ch. 3) is steady state, in which time plays only a secondary role, so that a combination 
with the response to initial excitations, which is transient, is meaningless. 

A problem of special interest is how to describe arbitrary forces, as well as certain 
discontinuous forces. In this regard, the unit impulse, the unit step function and the omit 
ramp function can be very helpful. In particular, arbitrary forces can be represented as 
a superposition of impulses of varying magnitude. Then, the response can be obtained 
in the form of a superposition of corresponding impulse responses, giving rise to the 
superposition integral, or convolution integral. A method particularly suited for the 
determination of the response of linear time-invariant systems to both initial and arbitrary 
excitations is the Laplace transformation method, which is capable of yielding both 
responses at the same time. The Laplace transformation method can be used to relate 
the response to the excitation through an algebraic expression known as the transfer 
function, a very useful concept. It can also be used to derive the convolution integral 
in a more general manner than by means of the concept of impulse response. A most 
widely used approach to the integration of the differential equation of motion for linear 
time-invariant systems consists of transforming the second-order differential equation 
describing the motion of a single-degree-of-freedom system into a set of two first-order 
differential equations referred to as state equations. The solution of the state equations 
can be obtained by an approach based on the state transition matrix, which reduces to 
the evaluation of a vector convolution integral. 

For the most part, it is not possible to evaluate analytically convolution integrals, 
neither in scalar nor in vector form, so that the response must be obtained nulnerically 
by means of a digital computer. This implies evaluation of the response in discrete time, 
as a digital computer does not work with continuous time. Even when the response is 
plotted in continuous time, the computations must be carried out in discrete time. In this 
chapter, we develop discrete time algorithms for the determination of the response by 
both the scalar form and the vector form of the convolution integral. The first algorithm 
is the convolution sum and the second is based on the discrete-time transition matrix. 
Correspondingly, two MATLAB computer programs have been written, the first entitled 
'convsum.m' and the second 'tramat.m'. 

PROBLEMS 

4.1. UseEq. (4.11) to determine the time necessary for the impulse response of a viscously damped 
single-degree-of-freedom system to reach its peak value and then determine the peak value. 

4.2. Use Eq. (4.22) to derive the impulse response of aviscously damped single-degree-of-freedom 
system. 

4.3. Derive the response of a viscously damped single-degree-of-freedom system to the rectan- 
gular pulse shown in Fig. 4.8. Plot the response for the system parameters m = 12 kg, 
c = 24N. s/m, k = 4,800 N/m and for the pulse parameters Fo = 200 N, T = 0.5 s. 

4.4. Derive the ramp response of a viscously damped single-degree-of-freedom system. 
4.5. Derive the response of a viscously damped single-degree-of-freedom system to the force 

shown in Fig. 4.31 by regarding the force as a superposition of ramp functions. Plot the 
response for the system of Problem 4.3 over the time interval 0 5 t 5 1 s. 



FIGURE 4.31 
Force in the form of a difference of two 
ramp functions 

1 

4.6. Use the superposition principle to derive the response of a viscously damped single-degree- 
of-freedom system to the triangular pulse shown in Fig. 4.32. 

FIGURE 4.32 
Force in the form of a triangular 
pulse 

4.7. Repeat Problem 4.6 for the trapezoidal pulse shown in Fig. 4.33. 

FIGURE 4.33 
Force in the form of a trapezoidal pulse 

4.8. Repeat Problem 4.6 for the sawtooth pulse shown in Fig. 4.20. 
4.9. Derive the response of a viscously damped single-degree-of-freedom system to the force 

F ( t )  = FoeCatw(t) by means of the convolution integral. Plot the response for the system 
parameters m = 12 kg, c = 24N. s/m, k = 4,800 N/m and the force parameters Fo = 200 
N , a = l .  

4.10. Derive and plot the response of the system of Problem 4.9 to the force F ( t )  = Fo(1 - 
ePat)zo(t)  by means of the convolution integral. Then, use Eq. (4.22) to plot the response to 
a step function of magnitude Fo = 200 N ,  compare results and draw conclusions. 



4.11. Derive the response of an unda~ped single-degree-of-freedom system to the force shown in 
Fig. 4.31 by the convolution integral in conjunction with the geometric interpretation of Sec. 
4.4. 

4.12. Solve Problem 4.11 for the triangular pulse shown in Fig. 4.32. 
4.13. Solve Problem 4.1 1 for the trapezoidal pulse shown in Fig. 4.33. 
4.14. Plot the shock spectrum for the triangular pulse shown in Fig. 4.32. Compare results with 

those obtained in Sec. 4.5 and draw conclusions. 
4.15. Plot the shock spectrum for the trapezoidal pulse of Fig. 4.33. Compare results with those 

obtained in Sec. 4.5 and draw conclusions. 
4.16. Derive the response of a viscously damped single-degree-of-freedom system to the force 

F ( t )  = Foe-a'm(t) by means of the Laplace transformation method. 
4.17. Solve Problem 4.16 for the rectangular pulse shown in Fig. 4.8. 
4.18. Solve Problem 4.16 for the sawtooth pulse shown in Fig. 4.20. 
4.19. Solve Problem 4.16 for the force shown in Fig. 4.31. 
4.20. Solve Problem 4.16 for the triangular pulse shown in Fig. 4.32. 
4.21. Solve Problem 4.16 for the trapezoidal pulse shown in Fig. 4.33. 
4.22. Solve Problem 4.16 by means of the method based on the state transition matrix. 
4.23. Derive the response of a viscously damped single-degree-of-freedom system to the force 

F ( t )  = Fo (I - e-at)tz(t)  by means of the method based on the state transition matrix. 
4.24. Solve Problem 4.23 for the force shown in Fig. 4.31. 
4.25. Solve Problem 4.23 for the rectangular pulse shown in Fig. 4.8. 
4.26. Solve Problem 4.23 for the sawtooth pulse shown in Fig. 4.20. 
4.27. Solve Problem 4.23 for the triangular pulse shown in Fig. 4.32. 
4.28. Solve Problem 4.23 for the trapezoidal pulse shown in Fig. 4.33. 
4.29. Solve Problem 4.9 by means of the convolution sum. Plot the response using the sampling 

period T = 0.003 s and the number of sampling times n = 200. 
4.30. Solve Problem 4.29 for the force shown in Fig. 4.3 1 with T = 0.1 s. Caution: Do not confuse 

the symbol T in Fig. 4.3 1 with the sampling period T. 
4.31. Solve Problem 4.29 for the rectangular pulse shown in Fig. 4.8 with T = 0.1 s. Caution: Do 

not confuse the pulse duration T with the sampling period T. 
4.32. Solve Problem 4.29 for the sawtooth pulse shown in Fig. 4.20 with To = 0.1 s. 
4.33. Solve Problem 4.29 for the triangular pulse shown in Fig. 4.32 with T = 0.1 s. Caution: Do 

not confuse the pulse duration T with the sampling period T. 
4.34. Solve Problem 4.29 for the trapezoidal pulse shown in Fig. 4.33 with T = 0.1 s. Caution: 

Do not confuse the pulse duration T with the sampling period T. 
4.35. Solve Problem 4.29 by means of the method based on the discrete-time transition matrix. 
4.36. Solve Problem 4.30 by means of the method based on the discrete-time transition matrix. 
4.37. Solve Problem 4.31 by means of the method based on the discrete-time transition matrix. 
4.38. Solve Problem 4.32 by means of the method based on the discrete-time hansition matrix. 
4.39. Solve Problem 4.33 by means of the method based on the discrete-time transition matrix. 
4.40. Solve Problem 4.34 by means of the method based on the discrete-time transition matrix. 
4.41. Solve Problem 4.29 by first modifying and then using the MATLAB program of Sec. 4.1 1. 
4.42. Solve Problem 4.30 by first modifying and then using the MATLAB program of Sec. 4.11. 
4.43. Solve Problem 4.3 1 by first modifying and then using the MATLAB program of Sec. 4.1 1. 
4.44. Solve Problem 4.33 by first modifying and then using the MATLAB program of Sec. 4.1 1. 
4.45. Solve Problem 4.34 by first modifying and then using the MATLAB program of Sec. 4.11. 



4.46. Solve Problem 4.35 by first modifying and then using the MATLAB program of Sec. 4.12. 
4.47. Solve Problem 4.36 by first modifying and then using the MATLAB program of Sec. 4.12. 
4.48. Solve Problem 4.37 by first modifying and then using the MATLAB program of Sec. 4.12. 
4.49. Solve Problem 4.39 by first modifying and then using the MATLAB program of Sec. 4.12. 
4.50. Solve Problem 4.40 by first modifying and then using the MATLAB program of Sec. 4.12. 



CHAPTER 

TWO-DEGREE-OF-FREEDOM SYSTEMS 

Until now, our study has been concerned with the vibration of single-degree-of-freedom 
systems, defined as systems whose behavior can be described by a single coordinate. 
Whereas many systems fit this description, and many more can be approximated by a 
single-degree-of-freedom system, most systems require a more refined model. We en- 
countered such an example in Sec. 1.10 in the form of the automobile model depicted in 
Fig. 1.32a. Indeed, a description of the motion of this model necessitated four indepen- 
dent coordinates, the translation xb of the bodylchassis, treated as arigid slab, the rotation 
6 of the bodylchassis, the translation xf of the front tire and the translation x, of the rear 
tire. We refer to such a system as a four-degree-of-freedom system, where the number 
of degrees of freedom of a system is defined as the number of independent coordinates 
required to describe the motion fully. Systems requiring two or more coordinates are 
called multi-degree-of-freedom systems. 

An undamped single-degree-of-freedom system set in motion by initial excitations 
executes natural vibration, in the sense that the system vibrates at the system natural 
frequency. What sets apart natural vibration of a multi-degree-of-freedom system from 
that of a single-degree-of-freedom system is that for multi-degree-of-freedom systems 
natural vibration implies not only a certain natural frequency but also a certain natural 
displacement configuration assumed by the system masses during motion. Moreover, a 
multi-degree-of-freedom system possesses not only one natural frequency and associated 
natural configuration but a finite number of them. In fact, the system possesses as many 
natural frequencies and natural configurations, known as natural modes of vibrations, 
as the number of degrees of freedom of the system. Depending on the initial excitation, 
the system can be made to vibrate in any of these modes independently, which is due to 
an important property called orthogonality. 
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The mathematical formulation for an n-degree-of-freedom system consists of n 
simultaneous ordinary differential equations of motion. Hence, the motion of one mass 
depends on the motion of the other n - 1 masses. For a proper choice of coordinates, 
known as principal coordinates, or natural coordinates, the n differential equations 
become independent of one another. The natural coordinates represent abstract quantities 
rather than actual displacements of the individual masses. In fact, they represent linear 
combinations of the actual displacements and, conversely, the motion of the individual 
masses can be represented by a superposition of the natural coordinates. The interesting 
and useful feature of the natural coordinates is that the differential equation for each of the 
independent natural coordinates resembles the equation of motion of a single-degree- 
of-freedom system, thus suggesting a method for the determination of the response 
of multi-degree-of-freedom systems. Two questions remaining are how to obtain the 
equations for the natural coordinates and how to combine the natural coordinates to 
determine the actual motion of the system. 

We begin this chapter with a detailed discussion of the concept of system con- 
figuration and how it can be used to visualize the motion of multi-degree-of-freedom 
systems. Then, we use a two-degree-of-freedom system to introduce the concepts and 
techniques necessary for a study of the dynamic characteristics and for the derivation of 
the response of multi-degree-of-freedom systems by the approach outlined in the pre- 
ceding paragraph. Certain applications typical of two-degree-of-freedom systems are 
also presented. 

5.1 SYSTEM CONFIGURATION 

The behavior of multi-degree-of-freedom systems is appreciably more complex than the 
behavior of single-degree-of-freedom systems. To study this behavior, it is necessary to 
introduce new concepts. One question relates to the manner in which the information 
concerning the system response is best exhibited. In the case of a single-degree-of- 
freedom system, the response is commonly displayed in the form of a time plot x(t) 
versus t for transient excitations, where x(t) is the displacement of the mass, and in 
the form of frequency response plots IG(iw)l versus wlw, and d(w) versus wlw, for 
harmonic excitations, where I G(i w) 1 and d(w) are the magnitude and phase angle of the 
frequency response, respectively. The response of multi-degree-of-freedom systems of 
very low order, such as two-degree-of-freedom systems, can be presented in a similar 
manner, but the approach becomes impractical as the number of degrees of freedom 
increases. Indeed, for n-degree-of-freedom systems, it is convenient to express the 
response by means of an n-dimensional vector x(t) = [xl(t) x z ( t )  . . . xn(t)lT known 
as the conJiguration vector, where x, (r) is the displacement of mass m, (i = 1,2, . . . , n). 
Then, the motion of the system can be represented geometrically as a path traced by the 
tip of the vector x(t) in an n-dimensional space, as shown in Fig. 5.1, where the space 
is called the configuration space; in this representation the time t plays the role of a 
parameter. The problem with this approach is apparent immediately. Indeed, whereas 
Fig. 5.1 provides an interesting picture, the information conveyed is qualitative in nature 
and of little practical value. Hence, a different approach recommends itself. 
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FIGURE 5.1 
Geometric representation of the motion in the 
configuration space 

In the case of lumped-parameter models, such as the automobile model of Fig. 
1.32a, a logical way to display the motion is by plotting the displacement of each of the 
masses in the model. To introduce the idea, we consider a model whose motion is easier 
to visualize than that of Fig. 1.32a, namely, a set of masses on a string vibrating in a 
vertical plane. Figure 5.2 shows the masses m, and the associated displacements x ,  ( t )  
(i = 1,2, . . . , n ) .  Clearly, Fig. 5.2 represents a more practical way of displaying the 
system configuration vector x ( t )  = [x l  ( t )  x z ( t )  . . . x,  ( t ) l T  than Fig. 5.1. But, the figure 
illustrates in a clear fashion why it is so much more difficult to describe the motion 
of a multi-degree-of-freedom system than that of a single-degree-of-freedom system. 
Indeed, the displacements of the n  masses form a geometric pattern, a concept devoid of 
meaning for single-degree-of-freedom systems. This geometric pattern represents the 
configuration of the system at a particular time t ,  and it plays the same role as a point on 
the curve x ( t )  versus t  for a single-degree-of-freedom system. Of course, in principle 
it is possible to conceive of a time axis normal to the plane of vibration and to plot the 
functions x, ( t )  versus t  (i = 1,2, . . . , n ) ,  thus generating the three-dimensional surface 
shown in Fig. 5.3, with the pattern displayed in Fig. 5.2 representing just one cross 
section of this surface corresponding to a given time t .  This possibility was mentioned 
mainly to demonstrate the complexity of exhibiting the motion of a multi-degree-of- 
freedom system, rather than suggesting Fig. 5.3 as a practical way of displaying it. Still, 

m2 

FIGURE 5.2 
Displacement pattern of an n-degree-of-freedom system at time t 
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FIGURE 5.3 
Evolution of the displacement pattern with time 

the idea of the system configuration representing a displacement pattern is a useful one, 
as it forms the basis not only for displaying the motion but also for solving the system 
equations of motion. Reference is made here to modal analysis, whereby the motion of 
a multi-degree-of-freedom system can be expressed as a linear combination of certain 
displacement patterns referred to as modes of vibration, as stated earlier in this chapter. 
We discuss this subject in Sec. 5.3 and in Ch. 7. 

5.2 THE EQUATIONS OF MOTION OF 
TWO-DEGREE-OF-FREEDOM SYSTEMS 

Before we begin our study of techniques for solving vibration problems, we must have 
the differential equations of motion of the system under consideration; we derived such 
equations in Sec. 1.10. In this section, we obtain the equations of motion for several two- 
degree-of-freedom systems as a way of introducing the formalism for solving vibration 
problems. 

As indicated in Sec. 5.1, a system of masses on a string has the advantage that its 
motion is easy to visualize. In view of this, we begin by deriving the differential equations 
of motion for the two-degree-of-freedom system shown in Fig. 5.4a. The system consists 
of two masses m 1 and m2 suspended on a string of tension T and subjected to the external 
forces Fl ( t )  and F2 ( t ) ,  respectively. We measure the displacements xi ( t )  and x2 ( t )  of 
ml and m2, respectively, from equilibrium and assume that they are small, so that the 
string tension does not change during the motion. We propose to derive the equations 
of motion by means of Newton's second law, Eqs. (1.28), recognizing that in the case 
at hand there is only one component of motion for each of the two masses. To apply 
Newton's second law, it is necessary to draw one free-body diagram per mass; this is 
done in Fig. 5.4b. Hence, summing up forces in the vertical direction, we have 
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FIGURE 5.4 
a. Two masses on a string, b. Free-body diagrams 

But, under the assumption that the displacements are small, we can write 

xl(t> . 
sin Q1 ( t )  2 ---- , sin Q2 ( t )  G' x2(t> - xl ( t )  x2 ( t )  , sinQ3 ( t )  2 - 

L1 L2 L 3 
(5.2) 

so that Eqs. (5.1) reduce to 

Equations (5.3) contain the constant terms mlg and mzg. These terms contribute 
to the displacements xl ( t )  and x2 ( t ) ,  but not to the vibration. This statement may appear 
paradoxical, but it simply means that each of the displacements can be expressed as the 
sum of a constant term representing the static equilibrium position and a time-dependent 
term representing the vibration, as follows: 

where xel and xe2 are the constant equilibrium positions and 21 ( t )  and 22 ( t )  the vibration 
from equilibrium. Inserting Eqs. (5.4) into Eqs. (5.3) and separating the constant terms 



and the time-varying terms, we obtain the equilibrium equations 

which can be solved for x,l and x,2, and the equations for vibration about equilibrium 

Another two-degree-of-freedom system of interest consists of a slab supported 
on two springs, as shown in Fig. 5.5. It can be regarded as a simplified model of the 
automobile of Fig. 1.29a. In fact, a four-degree-of-freedom model of that automobile 
is shown in Fig. 1.32a, and the corresponding equations of motion were derived in Sec. 
1.10 in the form of Eqs. (1.130). Hence, the equations of motion for the system of Fig. 
5.5 can be obtained from Eqs. (1.130) by letting xb = x, x f  = x, = 0 ,  mb = nz, c,f = 
c,, = 0,  kSf = kl and k,, = k2. The resulting equations of motion are 

where overdots denote derivatives with respect to time. 
Next, we consider a system consisting of two masses supported by springs and 

dashpots, as shown in Fig. 5.6a. The corresponding free-body diagrams are displayed 
in Fig. 5.6b. Using Newton's second law for each of the two masses, we obtain the 
equations of motion 

Fl +k2(x2 -xl)+c2(X2-il)  -klxl -clXl = m l i l  

F2 - k2(x2 - x l )  - c2(X2 - i l )  - k3x2 - c3X2 = m2i2  
(5.8) 

/ 
Equilibrium position 

FIGURE 5.5 
Simplified model of an automob~le 



k262 - x1) 

b. 

c2(x2 - x1) 
FIGURE 5.6 
a. Damped two-degree-of-freedom system in horizontal vibration, b. Free-body 
diagrams 

which can be rearranged as follows: 

In solving vibration problems, matrix methods are indispensable, so that we wish 
to cast the equations of motion in matrix form. To this end, we consider first Eqs. (5.6), 
omit the overtilde from i 1  and 22, use the standard practice of denoting time derivatives 
by means of overdots and rewrite the equations in the compact matrix form 

where x = [xl x21T and F = [Fl F21T are two-dimensional displacement vector and 
force vector, respectively, in which the superscript T denotes a transposed quantity, and 

are 2 x 2 mass matrix and stiffness matrix, respectively. The matrix entries 

are known as mass coefJicients and 

T T  T T  T 
kll = -+-, k22 = -+-, k12=k21 =-- (5.13) 

L1 L2 L2 L3 Lz 
as stifiess coeficients. We observe that the mass matrix is diagonal, and hence symmet- 
ric by definition, and the stiffness matrix is symmetric. The matrix symmetry is reflected 



in the fact that the off-diagonal terms are equal, or 

m12 = m21, kiz = k21 

and can be expressed in matrix form as 

M = M ~ ,  K = K ~  

Equations (5.7) can be expressed in the same matrix form as that given by Eq. 
(5.10), except that now the displacement and force vectors are x = [x OIT and F = 
[F F C ] ~ ,  where we note that the second component is an angle and a moment, respec- 
tively, and the mass and stiffness matrices are 

kl + k2 -(kla - k2b) I (5.16) 
-(kla - kzb) kla2 + k2b2 

Similarly, Eqs. (5.9) have the matrix form 

in which 

are 2 x 2 damping matrix and stiffness matrix, respectively. The remaining quantities 
are as defined earlier. The matrix entries 

are called damping coefJicients. Clearly, the damping matrix is symmetric, or 

c = cT (5.20) 

The symmetry of the mass, damping and stiffness matrices is an inherent property 
of vibrating systems. On the other hand, the fact that the mass matrix is diagonal and the 
damping and stiffness matrices are not is a reflection of the choice of coordinates used 
to describe the motion, rather than a characteristic of the system. Indeed, a different 
choice of coordinates can result in a nondiagonal mass matrix and diagonal damping 
and stiffness matrices. The issues of matrix symmetry and of the choice of coordinates 
rendering matrices diagonal are very important in vibrations, and will receive a great 
deal of attention in this and in the next chapter. 

5.3 FREE VIBRATION OF UNDAMPED SYSTEMS. 
NATURAL MODES 

In the study of vibrations, there is considerable interest in conservative systems, i.e., in 
systems that neither dissipate energy nor gain energy. The implication is that conservative 
systems are subjected to neither damping forces nor to externally applied forces. Under 
these circumstances, the equations of motion of a two-degree-of-freedom system reduce 
to 



where x ( t )  = [xl  ( t )  x2(t)lT is the displacement vector and 

are the diagonal mass matrix and the symmetric stiffness matrix, respectively. As can 
be concluded from Sec. 5.2, the systems of Figs. 5.4a, 5.5 and 5.6a can be described 
by Eq. (5.21) in the absence of damping forces and external forces. Equation (5.21) 
represents a set of two homogeneous ordinary differential equations of second order and 
their solution is subject to four initial conditions, two initial displacements X I  (O), x2(0) 
and two initial velocities i1 (O), i2 (0) .  

Fundamental to the study of vibrations are certain special solutions in which the 
whole system executes the same motion in time. We refer to such motions as syn- 
chronous. The implication of synchronous motion in the case of the two-degree-of- 
freedom under consideration is that the coordinates xl ( t )  and x2 ( t )  increase and decrease 
in the same proportion with time, so that the ratio x2( t ) /x l  ( t )  remains constant for all 
times. Another interpretation is that in synchronous motion the two masses assume a 
certain displacement configuration, or displacement pattern, and the shape of this config- 
uration does not change throughout the motion; only the amplitude of the displacement 
configuration does. This type of motion can be expressed in the form 

where f ( t )  is the time-dependent amplitude and u = [ul u21T is a constant vector 
representing the displacement pattern, or displacement profile. Inserting Eq. (5.23) into 
Eq. (5.21), we can write simply 

Next, we premultiply Eq. (5.24) by uT and obtain the scalar equation 

f ( t ) u T M u  + f ( t )uT KU = 0 (5.25) 

in which we recognized that uT MU and uT KU are scalars. Then, introducing the notation 

Eq. (5.25) reduces to 

Moreover, inserting Eq. (5.27) into Eq. (5.24), dividing through by f ( t )  and rearranging, 
we obtain 

Ku = AMu (5.28) 

Hence, the time-dependent amplitude f ( t )  of the synchronous motion must satisfy Eq. 
(5.27) and the displacement configuration must satisfy Eq. (5.28). 

There are several questions yet to be addressed concerning the nature and signif- 
icance of synchronous motions. In the first place, there is the question as to the type 
of motions the system executes in time. The second question relates to the number and 



nature of the displacement patterns. Finally, we must address the question of the relation 
between the special synchronous solutions and the general solution to the free vibration 
problem. The answer to the first question lies in the solution of Eq. (5.27), which is 
a linear homogeneous differential equation. The form of this solution depends on A. 
According to Eq. (5.26), X is the ratio of two quadratic forms involving real quantities 
alone, so that X is real. It follows that the nature of the solution depends on the sign 
of A. To ascertain this sign, we observe that the quadratic form at the numerator in Eq. 
(5.26) is proportional to the potential energy, which in the case of the systems of Figs. 
5.4a, 5.5 and 5.6a is a positive quantity. Moreover the quadratic form at the denominator 
is proportional to the kinetic energy, which is always positive. We conclude that in the 
cases under consideration X is positive. In view of the fact that X is real and positive, it 
is convenient to introduce the notation 

so that Eq. (5.27) can be rewritten as 

and we note that w is a real number, which can be assumed to be positive. But, Eq. (5.30) 
resembles Eq. (2.2), where the latter represents the equation of a harmonic oscillator, 
studied extensively in Sec. 2.1. Hence, using results from Sec. 2.1, we conclude that the 
solution of Eq. (5.30) is harmonic and of the form 

f (t) = C cos(wt - 0) (5.31) 

where C is an arbitrary constant amplitude, w the frequency of the harmonic motion and 
4 a phase angle, all three quantities being the same for both displacements xl (t) and 
xz( t ) .  

The constants C and 4 differ in nature from the constant w. Indeed, whereas C and 
4 depend on external factors, and in particular on the initial excitations, w depends on 
internal factors, namely, the value of the system parameters. A question arising naturally 
is whether synchronous motion can take place in one frequency w or in several frequen- 
cies. This question is closely related to the second one raised above, namely, the question 
concerning the number of displacement configurations capable of synchronous motion. 
The answer to these questions lies in Eq. (5.28), which is known as the algebraic eigen- 
value problem, also known as the characteristic-valzle problem. The problem consists 
of determining the values of the parameter X = w2 for which the set of homogeneous 
algebraic equations, Eq. (5.28), admits nontrivial solutions. It should be pointed out here 
that, although the derivation of the eigenvalue problem in this section was motivated by 
two-degree-of-freedom systems, Eq. (5.28) applies to multi-degree-of-freedom systems 
as well. 

In general, the algebraic eigenvalue problem can only be solved numerically, re- 
quiring methods of matrix algebra. The sole exception is that in which the system 
possesses just two degrees of freedom, which is the case of interest in this section. In 
this case, matrices M and K are 2 x 2, and the eigenvalue problem admits closed-form 
solutions. Moreover, the solution can be obtained by using elementary algebra. We use 
this approach here and consider the matrix approach in Ch. 7. 



Letting X = w2 in Eq. (5.28) and using Eqs. (5.22), the eigenvalue problem can be 
expressed in the form 

Equations (5.32) represent two homogeneous algebraic equations in the unknowns ul 
and u2, with w2 playing the role of a parameter. From linear algebra, Eqs. (5.32) possess 
a nontrivial solution only if the determinant of the coefficients of ul and u2 is zero, or 

A(w2)  = det (5.33) 
k22 - w2m2 

where A(w2)  is known as the characteristic determinant, or the characteristic polyno- 
mial, a polynomial of second degree in w2. Indeed, an expansion of the determinant 
yields 

which represents a quadratic equation in w2 called the characteristic equation, or fre- 
quency equation. The equation has the roots 

which are known as eigenvalues, or characteristic values. The square roots wl and w2 
of the eigenvalues represent the natural frequencies of the system. Hence synchronous 
harmonic motion can take place in only two ways, one with the frequency wl and the other 
with the frequency wz. The natural frequencies wl and w2 play a role for two-degree-of- 
freedom systems similar to that played by the natural frequency w, for single-degree- 
of-freedom systems. Inserting wl and w2 into Eq. (5.31), in sequence, we conclude that 
the time-dependent functions associated with the synchronous motions have the form 

Having established that there are two synchronous harmonic motions, one with the 
frequency wl and the other with the frequency w2, we must answer the second half of the 
second question, which is concerned with the shape of the displacement configuration 
for each case. To this end, we let w2 = w:, u1 = u1, , u2 = u2, (i = 1 ,2 )  in Eqs. (5.32), 
so that 

and we observe that the first subscript in the two displacements uli and u2; identifies the 
mass and the second indicates whether the displacement configuration oscillates with 
the frequency wl or with the frequency w2. Equations (5.37) represent two sets, each 



consisting of two homogeneous algebraic equations, one for i = 1 and the other for i = 2. 
Because the equations are homogeneous, it is not possible to solve for both ul ,  and u2, 

uniquely, but only for the ratios 242, l u l l  (i = 1,2). To solve for these ratios, it is possible 
to use either the first or the second of Eqs. (5.37), as they both yield the same result. 
Indeed, inserting the values of w; and wi  obtained from Eq. (5.35) into Eqs. (5.37), in 
sequence, we can write 

The ratios u2l l u l l  and uz2/u 12 determine uniquely the shape of the displacement profile 
assumed by the system while it oscillates with the frequency wl and wz, respectively. 
If one element in each ratio is assigned a certain arbitrary value, then the value of the 
other element in the ratio is determined automatically. The resulting pairs of numbers, 
ull and uzl on the one hand and ulz and ~ 2 2  on the other hand, can be exhibited in the 
form of the vectors 

where ul and u2 are referred to as modal vectors, or eigenvectors, and less frequently as 
characteristic vectors. The natural frequency wl and modal vector ul  constitute what is 
broadly known as theJirst mode of vibration, and w2 and u2 constitute the secondinode of 
vibration. It is no coincidence that a two-degree-of-freedom system possesses two modes 
of vibration. Indeed, it is shown in Ch. 7 that the number of modes for multi-degree-of- 
freedom systems coincides with the number of degrees of freedom. The natural modes 
of vibrations, i.e., the natural frequencies and modal vectors, represent a characteristic 
property of the system, and they are unique for a given system except for the magnitude 
of the modal vectors, implying that the shape of the modal vectors is unique but the length 
is not. Indeed, because the problem is homogeneous, a modal vector multiplied by a 
constant represents the same modal vector. It is often convenient to render a modal vector 
unique by means of a process known as normalization. One common normalization 
scheme is to assign a given value to one of the components of the modal vector, typically 
to assign the value one to the component largest in magnitude, which amounts to dividing 
all components of the vector by the value largest in magnitude. Another very convenient 
and frequently used normalization scheme is to assign the value one to the magnitude 
of the vector, which implies division of all the vector components by the magnitude of 
the vector. Vectors of unit magnitude are called unit vectors. Following normalization, 
the natural modes are referred to as normal modes. Clearly, normalization is arbitrary 
and does not affect the mode shape, as all components of the normalized vector are 
changed in the same proportion. The main reason for normalization is convenience, 
such as in plotting when the vector components are too large or too small, or for certain 
developments calling for unit modal vectors. 
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The complete synchronous motions are obtained by introducing Eqs. (5.36) and 
u = ul and u = u2 in Eq. (5.23) and writing 

We refer to xl ( t )  and x2(t) as natural motions, because they represent harmonic oscilla- 
tions at the natural frequencies with the system configuration in the shape of the modal 
vectors, i.e., they represent vibration in the natural modes. Each of these natural motions 
can be excited independently of the other. In general, however, the free vibration of a 
conservative system is a superposition of the natural motions, or 

where the amplitudes C1 and C2 and the phase angles q51 and q52 are determined by the 
initial displacements xl(0) , x2 (0)  and the initial velocities i l ( 0 )  , i2 (0).  We discuss this 
subject in Sec. 5.4. 

Example 5.1. The two-degree-of-freedom system of Fig. 5.4a consists of two masses on 
a string vibrating in the vertical plane. Let ml = m, m2 = 2m, L1 = L2 = L,  L3 = 0.5L 
and determine the natural modes of vibration. 

The stiffness coefficients for the system under consideration are given by Eqs. (5.13). 
Hence, inserting the given data into Eqs. (5.13), we have 

Introducing the mass coefficients ml = m, m2 = 2m and the stiffness coefficients given by 
Eqs. (a) into Eq. (5.35), we obtain the roots of the characteristic equation 

so that the natural frequencies are simply 
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FIGURE 5.7 
Modal vectors for the two-degree-of-freedom system of Fig. 5.4a 

As pointed out earlier, only the shape of the modal vectors can be determined 
uniquely, but not the magnitude. The shape of each of the two modes is defined by the 
ratios I A ~ ~ / U ~ ~  and uzz/ulz, as given by Eqs. (5.38). Hence, using Eqs. (5.38), we obtain 

L 

Then, normalizing the modal vectors by letting arbitrarily u l l  = 1, ul2 = 1, which is 
convenient for plotting them, the natural modes can be written as 

The modal vectors are plotted in Fig. 5.7, in which the corresponding natural frequencies 
are also given. 

We observe from Fig. 5.7 that the components of the first modal vector have the same 
sign. On the other hand, the components of the second modal vector have opposite signs. 
T h ~ s  implies that when the system vibrates in the second mode a point on the string between 
rnl and m2 remains at rest. This point is known as a node, and is typical of one-dimensional 
systems of the type under cons~deration. 

Example 5.2. Consider the simplified model of an automobile shown in Fig. 5.5, let the 
parameters have the values m = 1,500 kg, Ic = 2,000 kg m2, kl = 36,000 kg/m, k2 = 
40,000 kg/m, a = 1.3 m and b = 1.7 m, calculate the natural modes of the system and 
write an expression for the response. 

To calculate the natural modes, we must solve the eigenvalue problem for the system, 
which is based on the free vibration equations, obtained by letting the force F be equal to 
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zero in Eqs. (5.7). Hence, inserting the given parameter values into Eqs. (5.7) with F = 0, 
we can write the free vibration equations in the matrix form 

But, free vibration is harmonic, so that by analogy with Eqs. (5.23) and (5.31) we can write 

where X and 0 are constant amplitudes, w is the frequency of the harmonic motion and 
4 a phase angle. Substituting Eqs. (b) in Eq. (a) and dividing through by cos(wt - 4), we 
obtain the eigenvalue problem 

Following the procedure described in this section, we first calculate the natural fre- 
quencies by solving the characteristic equation. Hence, according to Eq. (5.33), the char- 
acteristic equation for the problem at hand is 

76,000 - 1, 500w2 21,200 
a(w2) = det 

21,200 176,440 - 2, 000w2 1 
which has the solutions 

so that the natural frequencies are 

The natural modes can be obtained by replacing w2 by w: and w; in Eq. (c), in 
sequence, and solving for the pairs XI,  0 1  and X2, 0 2 ,  respectively. However, as pointed 
out earlier in this section, because Eq. (c) is homogeneous, it is not possible to solve for 
X,, 0, uniquely, but only for the ratios X, / 0 i  (i = 1,2), or O i / X ,  (i = 1,2). To this end, 
we substitute w = w: in the top row of Eq. (c) and write 

which yields 

Similarly, introducing w2 = wz in the top row of Eq. (c), we have 



from which we obtain 

Hence, letting arbitrarily X1 = 1, X2 = 1, the natural modes become 

I 1 

= [ a: ] = [ -0.257341 ] ' U2 = [ z: ] = [ 2.914417 ] (k) 

Note that the same results would have been obtained had we used the second row of Eq. 
(c) instead of the first. The modes are plotted in Fig. 5.8. Comparing Fig. 5.8 with Fig. 
5.7, we conclude that the modes of the slab on two springs are not as easy to visualize 
as the modes of the two masses on a string, which can be attributed to the fact that one 
component of the modal vectors represents a translational displacement and the second a11 
angular displacement. 

Inserting the computed natural frequencies, Eqs. (f), and the modal vectors, Eqs. (k), 
into Eq. (5.41), we can express the response in the general form 

where the amplitudes C1, C2 and the phase angles $1, 4 2  must be determined from the 
initial displacements x (O), O(0) and the initial velocities i(O), 0(0), as will be shown in 
Sec. 5.4. 

o 2 =  9.18 radls Node 

)) (32 - - - - - - - - - -  - - - - -  - - - - - - - - -  

1.3 m 4- 1.7 m 

FIGURE 5.8 
Natural modes for the automobile model of Fig. 5.5 



5.4 RESPONSE TO INITIAL EXCITATIONS 

Equation (5.41) gives the free response of conservative two-degree-of-freedom systems 
in the form of a linear combination of natural motions, defined as products of the modal 
vectors ul and u2 and the harmonic functions fl (t) and f2(t), respectively, where the 
latter have frequencies equal to the natural frequencies. The modal vectors, and in 
particular the mode shapes, and the natural frequencies represent a characteristic of the 
system, in the sense that they are unique for a given system, and they are a reflection of 
the system parameters, as can be concluded from Eqs. (5.35) and (5.38). The harmonic 
functions f l  ( t )  and fi(t) contain the constants C1, $1 and C2, 42, respectively, where 
C1 and C2 represent amplitudes and 41 and $2 represent phase angles. Unlike the 
natural frequencies and natural modes, which can be regarded as depending on internal 
factors, the constants C1, C2, $1 and 4 2  depend on external factors, namely, the initial 
excitations. 

To obtain the response to the initial excitations, it is necessary to determine the 
value of the constants C1, C2, 41 and 42. To this end, we introduce the notation 

Then, letting t = O in Eq. (5.41) and its time derivative, recalling Eqs. (5.39) and inserting 
the results into Eqs. (5.42), we obtain 

x20 = u21 C1 cos 41 + u22c2 cos 4 2  

vlo = w1ullC1 sin41 + ~ ~ ~ ~ ~ C ~ s i n 4 ~  

which can be regarded as two pairs of algebraic equations, the first pair consists of the 
first and second of Eqs. (5.43) and has C1 cos and C2 cos q52 as unknowns, and the 
second consists of the third and fourth of Eqs. (5.43) and has C1 sin41 and C2 sin42 as 
unknowns. Solving the two pairs of equations, we can write 

u22x10 - u12x20 
C1 cos (bl = 

u11x20 - u21x10 
, C2 cos O2 = 

1 u I IUI 
(5.44) 

u22u10 - u12u20 u11v20 -u21u10 
C1 sin = , Cz sin $2 = 

w1lUl w2lUl 

where I U ( is the determinant of the modal matrix U, which for a two-degree-of-freedom 
system is defined as 

Equations (5.44) can be solved for C1, C2, 41 and 4 2  explicitly. It turns out that this is 
not really necessary. Indeed, expanding cos(wit - 4i) (i = 1,2) in Eq. (5.41) and using 



Eqs. (5.44), we obtain the response to the initial excitations directly as follows: 

A MATLAB program for plotting the response of two-degree-of-freedom systems to 
initial excitations based on Eq. (5.46) is presented in Sec. 5.12. 

The approach of this section becomes impractical for systems with more than two 
degrees of freedom. A more general approach to the response to initial excitations, 
one based on modal analysis and capable of accommodating systems with an arbitrary 
number of degrees of freedom, is discussed in Sec. 7.10. 

Example 5.3. Obtain the response of the two-degree-of-freedom system of Example 5.1 
to the initial displacement xlo = 1.2 cm. The other initial conditions are zero. 

From Example 5.1, we obtain the natural frequencies 

and the modal matrix 

The determinant of the modal matrix is simply 

J U J  = ulluzz -u12~121 = -1.5 

Hence, inserting Eqs. (a)-(c) into Eq. (5.46), we can write the response in the form 

The responses x l  (t) versus t and x2(t) versus t for the system of this example can be plotted 
using the MATLAB program entitled 'tdotin.ml given in Sec. 5.12. 

5.5 COORDINATE TRANSFORMATIONS. COUPLING 

The equations of motion of a conservative two-degree-of-freedom system given by Eqs. 
(5.21) and (5.22) are characterized by the fact that the mass matrix is diagonal. This is 



typical of many dynamical systems when the coordinates used to describe the motion 
represent the displacements of the masses. On the other hand, the stiffness matrix is not 
diagonal. Were the stiffness matrix also diagonal, then the two equations of motion would 
have been independent, an ideal state of affairs, as in this case the two equations could 
be solved as if they were representing two separate single-degree-of-freedoin systems. 
Because the stiffness matrix is not diagonal, the two equations are simultaneous, i.e., 
they are coupled. 

To explore the concept of coupling a little further, we consider the two-degree-of- 
freedom system of Fig. 5.9. It is not difficult to show that the equations of motion in this 
case can be written in the form 

where x( t )  = [x l ( t )  x;,(t)lT and 

so that once again the mass matrix is diagonal and the stiffness matrix is not. Next, we 
wish to describe the motion of the system by means of a different set of coordinates, 
namely, the elongations of the springs kl and k2, denoted by zl( t )  and z2(t), respec- 
tively. Because they describe the motion of the same system, the two sets of coordinates 
xl ( t ) ,  x2( t)  and zl ( t ) ,  z;,(t) are related. Indeed, the displacement of ml is equal to the 
elongation of kl and the displacement of m;, is equal to the sum of elongations of kl and 
kz, or 

Equations (5.49) describe a coordinate transformation, which can be expressed in 
the matrix form 

x( t )  = T z ( t )  (5.50) 

where 

represents the transformation matrix. Next, we propose to derive the equations of motion 
in terms of the elongations zl ( t )  and z 2 ( t )  To this end, we introduce Eqs. (5.50) and 

FIGURE 5.9 
Undamped two-degree-of-freedom system 



(5.51) in Eq. (5.48). Then, to retain the symmetry of the formulation, we premultiply 
the result by T T ,  which yields 

M1z(t )  + K f z ( t )  = 0 (5.52) 

in which the new mass and stiffness matrices are given by 

Hence, when the motion is expressed in terms of the elongations of the springs the 
stiffness matrix is diagonal and the mass matrix is not. 

It will prove of interest to examine the matter of coupling in the context of the 
two-degree-of-freedom system consisting of the slab supported by two springs shown in 
Fig. 5.5. We recall that the equations of motion for this system were derived in Sec. 5.2 
in the form of Eqs. (5.7), the corresponding mass and stiffness matrices being given by 
Eqs. (5.16). Hence, with the coordinate x ( t )  representing the vertical translation of the 
mass center C and O(t) denoting the rotation of the slab, the mass matrix is diagonal and 
the stiffness matrix is not. Next, we define the motion in terms of the vertical translation 
xl ( t )  of point 0 on the slab and the rotation O(t), where 0 lies at distances a1 and bl 
from the springs kl and k2, respectively. Point 0 is not arbitrary but chosen so that a 
vertical force acting at 0 causes the slab to undergo pure translation, as depicted in Fig. 
5.10a. For this to happen, the moment about 0 must be zero, which implies that a1 and 
bl must satisfy the condition 

klx lal  = k2xlbl (5.54) 

To obtain the equations of motion in terms of xl ( t )  and O(t), we transform Eqs. 
(5.7) by means of the procedure just used. To this end, we refer to Fig. 5.  lob and observe 
that the relation between x ( t )  and xl ( t )  is 

x ( t )  = xl ( t )  + e%(t> (5.55) 

where e is the distance between C and 0. Then, adjoining the identity O(t) = O(t), we 
can write the transformation between the coordinates x ( t ) ,  O(t) and xl ( t ) ,  O(t) in the 
matrix form 

x ( t )  = T x l  ( t )  (5.56) 

in which the coordinate vectors are x = [x %lT,  so that xl = [xl  e lT ,  SO that the transfor- 
mation matrix is 

Hence, by analogy with Eqs. (5.52) and (5.53), if we use Eqs. (5.16) and (5.57), the free 
vibration equations can be written in the compact form 

Mixl ( t )  + Klx l  ( t )  = 0 (5.58) 
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FIGURE 5.10 
a. The automobile model of Fig. 5.5 in pure translation, b. The same model in 
translation and rotation 

where, recognizing that a - e = a1 , b + e = bl and using Eq. (5.54), 

7 klxl k2x1 7 ' Equilibrium 

0 
- -. -. -. -. - .  -. - 

in which Zo = Zc + me2 is the mass moment of inertia of the slab about point 0. It 
follows that in this case also the new stiffness matrix is diagonal and the new mass matrix 
is not. 

We refer to the case in which the mass matrix is diagonal and the stiffness matrix is 
not as elastically coupled. On the other hand, when the stiffness matrix is diagonal and 
the mass matrix is not the system is said to be inertially coupled. In this sense, the effect of 
using the coordinate transformation given by Eqs. (5.50) and (5.51), or that given by Eqs. 
(5.56) and (5.57), is to transform coupling from elastic to inertial. As far as solving the 
equations of motion, we are not better off with a system of equations defined by matrices 
M' and K',  or by matrices M I  and K1,  than with a system in terms of matrices M and 
K, as in all cases the system is coupled. However, this exercise helped us recognize one 

X I  
i 



fact, namely, coupling is not an inherent characteristic property of the system, but of the 
coordinates used to describe the motion of the system. For a coordinate transformation to 
justify the effort it must facilitate the solution of the equations of motion, which implies 
that it must remove both the dynamic and the elastic coupling from the system at the same 
time. In mathematical terms, this is the same as saying that the coordinate transformation 
must diagonalize the mass and stiffness matrices simultaneously. We state here, and 
demonstrate in Sec. 5.6, that such a coordinate transformation does indeed exist and that 
the transformation matrix is the modal matrix, Eq. (5.45). Moreover, the coordinates 
corresponding to the independent equations of motion are known as natural coordinates, 
or principal coordinates. Unlike any other coordinates, the natural coordinates are 
unique for a given system. In the special case of free vibration, the natural coordinates 
coincide with the harmonic functions fi ( t )  and f2( t )  given by Eqs. (5.36). 

5.6 ORTHOGONALITY OF MODES. NATURAL COORDINATES 

The importance of the modal vectors, first introduced in Sec. 5.3, goes well beyond 
the fact that they represent configuration vectors experienced by conservative systems 
vibrating freely in synchronous motion. Indeed, they are indispensable to the solution of 
the forced vibration problem for conservative systems. This statement extends to the free 
vibration solution for systems with more than two degrees of freedom. The modal vectors 
owe this pivotal position to a remarkable property known as orthogonality. There are 
many sets of orthogonal vectors, but the modal vectors are unique in that they are the only 
ones orthogonal with respect to both the mass matrix and the stiffness matrix. As aresult, 
a coordinate transformation based on the modal vectors is capable of diagonalizing the 
mass and stiffness matrices simultaneously, thus decoupling the differential equations of 
motion. This permits a solution of the equations of motion for multi-degree-of-freedom 
systems with the same ease as the solution of the differential equation of a single-degree- 
of-freedom system. 

From Eqs. (5.38) and (5.39), the modal vectors for the two-degree-of-freedom 
system defined by Eqs. (5.21) and (5.22) can be expressed as 

1 1 
u1 = u11 I (5.60) 

-(kll - w:ml)lklz -(kli - wimi) lk i2  

where w: and W ;  are given by Eq. (5.35). Next, we use the first of Eqs. (5.22) and form 
the matrix product 
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which is a scalar. But, from Eqs. (5.35), we can write 

Inserting Eqs. (5.62) into Eq. (5.61), we conclude that 

where the second equality is true because M is diagonal, and hence symmetric by defini- 
tion. Equation (5.63) states that the modal vectors ul and u2 are orthogonal with respect 
to the mass matrix A4, where M plays the role of a weighting matrix. We point out that 
orthogonality with respect to a weighting matrix is different from ordinary orthogonality, 
which involves no weighting matrix. Similarly, we use the second of Eqs. (5.22) and 
write 

Then, using Eqs. (5.62), it can be verified that 

so that the modal vectors ul and u2 are orthogonal with respect to the stzfiess matrix 
K as well. We observe that the second equality follows from the symmetry of K.  

Next, we insert Eq. (5.29) into Eq. (5.28) and write the solutions of the algebraic 
eigenvalue problem as follows: 

Then, we prernultiply the first of Eqs. (5.66) by u; and the second by u: and write the 
scalar relations 

It will prove convenient to introduce the notation 

which permits us to express the natural frequencies squared in the the form of the ratios 
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At this point, we are ready to demonstrate some of the statements made in the 
beginning of this section. To this end, it is convenient to rewrite Eq. (5.21) as 

where M and K are given by Eqs. (5.22), and express the solution as the linear combi- 
nation 

x( t )  = ql ( t )u l+ q2(t)u2 (5.71) 

where ql ( t )  and qz( t )  are two functions of time yet to be determined. Inserting Eq. 
(5.71) into Eq. (5.70), we have 

Next, we premultiply Eq. (5.72) by uT andu;, in sequence, consider Eqs. (5.63), (5.65), 
(5.68) and (5.69), divide through the results by mil  and mi2, respectively, and obtain 
the two independent equations 

iil ( t )  + w:ql ( t )  = 0 
2 ii2(t) + w2q2(t) = 0 

which are known as modal equations. Hence, a linear transformation in terms of the 
modal vectors, Eq. (5.71), in conjunction with the orthogonality of the modal vectors, 
enables us to transform a set of simultaneous equations of motion, Eq. (5.70), into a 
set of independent modal equations, Eqs. (5.73), each one resembling the equation of 
a harmonic oscillator, Eq. (2.2). In essence, the process is tantamount to simultaneous 
diagonalization of the mass and stiffness matrices, i.e., to both inertial and elastic decou- 
pling of the equations of motion. The variables ql ( t )  and q2(t)  defining the decoupled 
equations, Eqs. (5.73), are called natural coordinates, or principal coordinates. 

In view of the fact that Eqs. (5.73) resemble Eq. (2.2), their solution can be obtained 
by invoking the analogy with Eq. (2.10), representing the free response of a harmonic 
oscillator, and writing 

where C1,  C2 are amplitudes and $1, 4 2  are phase angles. Comparing Eqs. (5.74) 
with Eqs. (5.36), we conclude that the harmonic functions fl ( t )  and f2(t)  multiplying 
the configuration vectors in synchronous motions are precisely the natural coordinates 
q1 ( t )  and q2(t). Moreover, inserting Eqs. (5.73) into Eq. (5.71), we obtain the actual 
displacement vector in the form 

which coincides with the solution given by Eq. (5.41) obtained earlier. Equation (5.75) 
expresses the fact that the free response of conservative systems is a superposition of the 
natural modes multiplied by the natural coordinates. 

The same modal approach can be used to solve for the response of undamped 
systems to applied forces. In this more general case the coordinates ql ( t )  and qz( t )  are 
known as modal coordinates. This process is known as modal analysis and is discussed 
in Sec. 5.10. 



It was indicated in the end of Sec. 5.5 that a coordinate transformation capable of 
decoupling the equations of motion both inertially and elastically exists. This is the same 
as stating that the transformation can diagonalize the mass matrix M and the stiffness 
matrix K simultaneously. In view of the foregoing discussion, it is now clear that the 
transformation matrix postulated in Sec. 5.5 is T = U = [ul uz], where U is the modal 
matrix. The coordinate transformation using the modal matrix forms the basis for modal 
analysis. The real power of modal analysis becomes evident in the case of multi-degree- 
of-freedom systems. This is demonstrated in Ch. 7, in which modal analysis is presented 
in a more formal manner than here. 

Example 5.4. Obtain the response to initial excitations of the system of Examples 5.1 and 
5.3 by means of modal analysis. 

Using data from Example 5.1, the equations of motion can be written in the matrix 
form 

where the mass and stiffness matrices are given by 

respectively. Equation (a) is subject to the initial conditions 

L J 

Moreover, the natural frequencies and modal vectors are 

wl = m ~ '  U2 = F= 2m L 1 . 3 1 1 3 9 E  

and 

respectively. 
Introducing the linear transformation 

in Eq. (a) and premultiplying the result by uT and u:, in sequence, we obtain the modal 
equations 

which are subject to the initial modal displacements qi (0) (i = 1,2); the initial modal 
velocities are zero by virtue of the fact that x(0) = 0. 



To determine the initial modal displacements, we let t = 0 in Eq. (f), consider the 
first of Eqs. (c) and write 

Equation (h) represents two algebraic equations in the unknowns ql(0) and q2(0). Their 
solution is simply 

In the case of a two-degree-of-freedom system, which is the case at hand, it is relatively 
easy to obtain the initial modal conditions from the actual initial conditions. In the case 
of multi-degree-of-freedom systems, the initial modal conditions are obtained by a more 
formal approach, namely, one that uses the orthogonality of the modal vectors with respect 
to the mass matrix. This approach is presented in Ch. 7. 

Considering Eqs. (d) and (i), recalling that q1 (0) = q2(0) = 0 and using the analogy 
with Eq. (2.13), the solution of Eqs. (g) is 

ql (t) = ql(0) coswl t = 0 . 4 ~ 0 s  Ef 
The response to the specified initial excitation is obtained by inserting Eqs. Cj) into Eq. (f), 
which yields 

It can be easily verified that this is the same result as that obtained in Example 5.3. 

5.7 BEAT PHENOMENON 

When two identical single-degree-of-freedom systems are connected by means of a 
weak spring the resulting two-degree-of-freedom system is characterized by natural 
frequencies very close in value. The response of such a two-degree-of-freedom system 
to a certain initial excitation exhibits a phenomenon known as the beat phenomenon, 
whereby the displacement of one mass decreases from some maximum value to zero, 
while the displacement of the other mass increases from zero to the same maximum 
value, and then the roles are reversed, with the pattern repeating itself continuously. 

To illustrate the beat phenomenon, we consider a system consisting of two identical 
pendulums connected by a spring, as shown in Fig. 5.1 la. For the time being we make 
no assumption concerning the value of the spring constant. The corresponding free-body 
diagrams for the two masses are shown in Fig. 5.11b, in which the assumption of small 
angles O1 and O2 is implied. The moment equations of pendulums 1 and 2 about the 
points 0 and O', respectively, yield the differential equations of motion 
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FIGURE 5.11 
a. Two identical pendulums connected by a spring, b. Free-body diagrams 

which can be arranged in the matrix form 

indicating that the system is coupled elastically. As expected, when the spring stiffness 
k reduces to zero the coupling disappears and the system reduces to two independent 
simple pendulums with identical natural frequencies equal to m. 

Next, we recall that free vibration is harmonic and assume a solution of the equa- 
tions of motion in the form 

where and 0 2  are amplitudes, w is the frequency of harmonic oscillation and 4 is a 
phase angle. Inserting Eqs. (5.78) into Eq. (5.77) and dividing through by cos(wt - 4), 
we obtain the eigenvalue problem 

leading to the characteristic equation 

which is equivalent to 

mgL + ka2 - w 2 m ~ '  = f ka2 (5.8 1) 

Hence, the two natural frequencies are 



The natural modes are obtained by letting w2 = wf in Eq. (5.79) and writing 

m~~ 0 mgL + ka" 

w ' [  0 m ~ ~ ] [ z l ] ~ + [  -ka m g ~ + k a 2  

Inserting wi = g/L and W: = g/L + 2 ( k / r n ) ( ~ ~ / ~ ~ )  into Eqs. (5.83), in sequence, and 
solving for the ratios 021/ 0 1 1  and 022/012, we obtain 

so that in the first natural mode the two pendulums move as if they were a single pendulum 
with the spring k unstretched, which is consistent with the fact that the first natural 
frequency of the system is that of the simple pendulum, wl = m. On the other hand, 
in the second natural mode the two pendulums are 180" out of phase. The two modes 
are shown in Fig. 5.12. 

As pointed out in Sec. 5.6, the free vibration of a conservative two-degree-of- 
freedom system can be expressed as a superposition of the two natural modes multiplied 
by associated harmonic natural coordinates, or 

Choosing arbitrarily ell = = 1 and using Eqs. (5.84), Eq. (5.85) can be rewritten 
in the scalar form 

Ql(t) = C1 cos(w1t - 41) + Czcos(w2t - 42) 
(5 36)  

02(t) = c1 cos(wlt - 41) - C2 cos(w2t - 42) 

FIGURE 5.12 
Natural modes for the system of Fig. 5.1 l a  
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Then, considering the initial conditions 

01(0) = 00, 02(0) = 0, &(o) = &(o) = 0 (5 27) 

and using the trigonometric relations cos(a 5 0)  = cos a cos sin a sin p, in which 
ai = (w2 - wl)t/2, p = (w2 + wl)t/2, Eqs. (5.86) become 

W2-'JJ1 w2+wlt 
ol(t) = : ~ , C O S W ~ ~  + $ ~ ~ ~ ~ ~ ~ ~ t  = oOcos--- 

2 
t COS --- 

2 
(5.88) 

Wz-wl w 2 + w t  
Q2(t) = ;Bocoswlt - $Oocoswzt = Oosin--- 

2 
t sin --- 

2 
At this point, we consider the case in which the spring constant satisfies the in- 

equality k << m g ~ / a 2 ,  so that the coupling provided by the spring is very weak. Then, 
using Eqs. (5.82) and introducing the approximations 

Eqs. (5.88) can be rewritten in the form 

Hence, dl (t) and 02(t) can be regarded as being harmonic functions with frequency w,, 
and with amplitudes varying slowly according to Oo cos $ WB t and Qo sin WB t , respec- 
tively. The plots Ol (t) versus t and 02(t) versus t are shown in Figs. 5.13, with the slowly 
varying amplitudes indicated by the dashed-line envelopes. Geometrically, Fig. 5.13a 
(or Fig. 5.13b) implies that if two harmonic functions possessing equal amplitudes and 
nearly equal frequencies are added, then the resulting function is an amplitude-modulated 
harmonic function with a frequency equal to the average of the two frequencies. At first, 
when the two harmonic waves reinforce each other, the amplitude doubles, and later, 
as the two waves cancel each other, the amplitude reduces to zero. The phenomenon 
is known as the beat phenomenon, and the frequency of modulation w ~ ,  which in this 
particular case is equal to k a 2 / m m ,  is called the beatfrequency. From Fig. 5.13a, 
we conclude that the time between two peaks is T/2 = 2 n / w ~ ,  whereas the period of 
the amplitude-modulated envelope is T = 4n/wB. 

We observe from Figs. 5.13 that there is a 90" phase angle between Ol(t) and 
02(t). At t = 0, pendulum 1 begins to swing with the amplitude do while pendulum 2 is 
at rest. Soon thereafter, pendulum 2 is entrained, gaining amplitude while the amplitude 
of pendulum 1 decreases. At tl = n/wg, the amplitude of pendulum 1 becomes zero, 
whereas the amplitude of pendulum 2 reaches $0. At t2 = ~ T / W B ,  the amplitude of 
pendulum 1 reaches Bo once again and that of pendulum 2 reduces to zero. The motion 
repeats itself every time interval T/2 = 2n/wB. This being a conservative system, the 
total energy remains constant throughout the motion and equal to the initial total energy, 
or 

= mg L ( l -  cos 80) + ika20; (5.91) 

At t = 0, the energy of pendulum 1 is mgL(1- cos 00) and the energy of pendulum 2 
is zero, with the energy in the spring being equal to$ka20i. At t = tl, the energy of 



FIGURE 5.13 
Response of the pendulums of Fig. 5.1 l a  demonstrating the beat phenomenon 

pendulum 1 reduces to zero and the energy of pendulum 2 reaches mg L (1 - cos Qo), 
while the energy in the spring is the same as at t = 0. At t = t 2 ,  the situation reverts to 
that at t = 0. As the motion keeps repeating itself, there is a complete transfer of energy 
from one pendulum to another every time interval T / 4  = .ir/wB. 

Another example of a system exhibiting the beat phenomenon is the "Wilberforce 
spring," which consists of a mass of finite dimensions suspended by a helical spring such 
that the frequencies of extensional and torsional vibrations are very close in value. In 
this case, the kinetic energy changes from pure translational in the vertical direction to 
pure rotational about the vertical axis, as shown in Fig. 5.14. 

FIGURE 5.14 
Wilberforce spring 



Although in our particular case the beat phenomenon results from the weak cou- 
pling of two pendulums, the phenomenon is not exclusively associated with two-degree- 
of-freedom systems. Indeed, the beat phenomenon is purely the result of adding two 
harmonic functions of equal amplitudes and nearly equal frequencies. For example, the 
phenomenon can occur in twin-engine propeller aircraft if the speed of rotation of the 
two propellers differs slightly. In this case, the propeller noise grows and diminishes in 
intensity as the sound waves generated by the two propellers reinforce and cancel each 
other in turn. 

5.8 RESPONSE OF TWO-DEGREE-OF-FREEDOM SYSTEMS 
TO HARMONIC EXCITATIONS 

The equations of motion of a damped two-degree-of-freedom system can be written in 
the matrix form 

M x ( t )  + C i ( t )  + K x ( t )  = F(t)  (5.92) 

where in general the mass, damping and stiffness matrices are given by 

We are interested in the case in which the external excitation is harmonic. Using the 
analogy with Eq. (3.14), it is convenient to express the force vector in the exponential 
form 

F( t )  = Feiwt (5.94) 

whereF is a constant amplitude vector. Then, by analogy withEq. (3.16), the steady-state 
response can be expressed as 

x ( t )  = x( iw)eiwt  (5.95) 

in which X( iw)  is generally a complex vector depending on the driving frequency w 
and the system parameters. Inserting Eqs. (5.94) and (5.95) into Eq. (5.92) and dividing 
through by eWt we obtain 

where 

is a 2 x 2 impedance matrix with the entries 

The solution of Eq. (5.96) can be obtained by premultiplying both sides of the 
equation by the inverse Z-' ( iw)  of the impedance matrix, with the result 

X(iw)  = z - ' ( ~ w ) F  (5.99) 



where the inverse has the explicit form 

Introducing Eq. (5.100) in Eq. (5.99) and carrying out the matrix multiplication, we 
obtain 

where F1 and F2 are the components of the constant vector F, and we note that the 
functions X l  ( i w )  and X 2 ( i w )  are analogous to the frequency response functions first 
encountered in Sec. 3.1. 

In the case of undamped systems, such as that described by Eqs. (5.10) and (5.1 I ) ,  
the impedance functions are real, or 

Introducing Eqs. (5.102) into Eqs. (5.101), we conclude that the frequency response 
functions are also real, or 

For a given set of system parameters, Eqs. (5.103) can be used to plot X l ( w )  versus 
w and X 2 ( w )  versus w ,  thus obtaining the complete frequency response, Indeed, both 
the amplitude and phase angle are included in X l  ( w )  and X 2 ( w ) ,  where for undamped 
systems the phase angle is either 0 or 180". Consistent with this, the amplitude is positive 
and negative, respectively. 

Example 5.5. Consider the system of Example 5.1 and plot the frequency-response curves 
for the case in which F2 = 0.  

Using the parameter values of Example 5.1, Eqs. (5.103) become 

where we used the notation T I L  = k .  But the denominator of X 1  and X2 is recognized as 
the characteristic determinant, which can be written as 

2 2  2 2 2 a ( w 2 )  = 2m2w4 -7mkw2 + 5k2 = 2m (w - wl) (w - w2) (b) 
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FIGURE 5.15 
Frequency response curves for an undamped two-degree-of-freedom system 

where 

are the squares of the natural frequencies. Hence, Eqs. (a) can be written in the form 

The frequency response curves Xl (w) versus w/wl and X2(w) versus W / W ~  are 
plotted in Fig. 5.15. 

5.9 UNDAMPED VIBRATION ABSORBERS 

When rotating machinery operates at a frequency close to resonance, violent vibration 
is induced. Assuming that the system can be represented by a single-degree-of-freedom 
system subjected to harmonic excitation, the situation can be alleviated by changing 
either the mass or the spring constant. At times, however, this may not be possible. In 
such a case, a second mass and spring can be added to the system, where the added 
mass and spring are so designed as to produce a two-degree-of-freedom system whose 
frequency response is zero at the excitation frequency. We note from Fig. 5.15a that a 
point at which the frequency response is zero does indeed exist. The new two-degree-of- 
freedom system has two resonant frequencies, but these frequencies generally present 
no problem because they are reasonably far removed from the operating frequency. 

We consider the system of Fig. 5.16, where the original single-degree-of-freedom 
system, referred to as the main system, consists of the mass ml and the spring k l ,  and 
the added system, referred to as the absorber, consists of the mass m2 and the spring k2. 



I .......... ............................ c::::*:.:.., .................. 
FIGURE 5.16 
Vibration absorber 

The equations of motion of the combined system can be shown to be 

and we note that, because the system is undamped, the complex notation is not necessary. 
Letting the solution of Eqs. (5.104) be 

and following the steps outlined in Sec. 5.8, we obtain two algebraic equations in X1 
and X2 having the matrix form 

Hence, using Eqs. (5.103), the solution of Eq. (5.106) is 



It is customary to introduce the notation: 

wn = +'kl / m l  = the natural frequency of the main system alone 

w, = ,/- = the natural frequency of the absorber alone 

xst = F l / k l  = the static deflection of the main system 

p = mz/ml  = the ratio of the absorber mass to the main mass 

so that Eqs. (5.107) can be rewritten as 

From the first of Eqs. (5.108), we conclude that for w, = w the amplitude X 1  of the 
main mass reduces to zero. Hence, the absorber can indeed perform the task for which it 
was designed, namely, to eliminate the vibration of the main mass, provided the natural 
frequency of the absorber is the same as the operating frequency of the machinery. 
Moreover, for w, = w,  the second of Eqs. (5.108) reduces to 

so that, inserting Eq. (5.109) into the second of Eqs. (5.105), we obtain 

from which we conclude that the force in the absorber spring at any time is 

k2x2 ( t )  = - Fl sin wt (5.111) 

Hence, the absorber exerts on the main mass a force - F1 sin wt which balances exactly 
the applied force Fl sin wt. Because the same effect is obtained by any absorber provided 
its natural frequency is equal to the operating frequency, there is a wide choice of absorber 
parameters. The actual choice is generally dictated by space limitations, which restricts 
the amplitude X 2  of the absorber motion. 

Although a vibration absorber is designed for a given operating frequency w,  the 
absorber can perform satisfactorily for operating frequencies close in value to w.  In this 
case, the motion of ml is not zero, but its amplitude is very small. This statement can be 
verified by using the first of Eqs. (5.108) and plotting XI (w) /xs t  versus wlw,. Figure 
5.17 shows such a plot for p = 0.2 and w, = w,. The shaded area indicates the region in 
which the performance of the absorber can be regarded as satisfactory. As pointed out 
earlier, one disadvantage of the vibration absorber is that two new resonant frequencies 
are created, as can be seen from Fig. 5.17. To reduce the amplitude at the resonant 
frequencies, damping can be added, but this results in an increase in amplitude in the 
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W / W ,  

FIGURE 5.17 
Frequency response curve for the main mass 

neighborhood of the operating frequency w = w,. It should be recalled that, for any 
rotating machinery, the frequency increases from zero to a steady operating frequency, 
so that the system is likely to go through the first resonant frequency. As a matter of 
interest, the plot Xl/xSt versus wlw,  corresponding to the main system alone is also 
shown in Fig. 5.17. 

5.10 RESPONSE OF TWO-DEGREE-OF-FREEDOM SYSTEMS 
TO NONPERIODIC EXCITATIONS 

Until now our discussion of two-degree-of-freedom systems has been concentrated on 
the response to initial and to harmonic excitations. In both cases, it is possible to 
obtain the response by elementary means. Whereas the elementary approach is suitable 
for two-degree-of-freedom systems, it does not extend very well to multi-degree-of- 
freedom systems. In the case of free vibration, the approach was based on the solution 
of the characteristic equation, which is an easy task if the equation is quadratic, but 
solving characteristic equations is not advisable when the degree of the characteristic 
polynomial exceeds two. Then, in the case of harmonic excitations the approach required 
an analytical matrix inversion, which can be carried out with ease for 2 x 2 matrices, but 
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becomes increasingly difficult for higher-order matrices. Of course, the approach to the 
harmonic response can be extended to the response to periodic excitations through the 
use of Fourier series to represent the excitation and the response, as shown in Sec. 3.9. In 
the case of nonperiodic excitations, a different approach is necessary, namely, the modal 
approach. We introduced modal analysis in Sec. 5.6 in conjunction with the response 
to initial excitations. In this section, we apply modal analysis to obtain the response of 
two-degree-of-freedom systems to nonperiodic excitations. 

The equations of motion of an undamped two-degree-of-freedom system can be 
written in the matrix form 

where in general the mass and stiffness matrices are given by 

Following the approach of Sec. 5.6, and according to Eq. (5.71), the solution of Eq. 
(5.112) can be expressed as a linear combination of the modal vectors ul and u2, as 
follows: 

in which 71 ( t )  and q2(t )  represent modal coordinates. As shown in Sec. 5.6, the modal 
vectors are orthogonal, satisfying the orthogonality relations 

Moreover, recalling Eqs. (5.69), we can rewrite Eqs. (5.68) as 

where w l  and w2 are the natural frequencies. 
Equation (5.1 14) in conjunction with the orthogonality relations, Eqs. (5.1 15), can 

be used to reduce the set of two simultaneous equations, Eq. (5.1 12), to a set of two inde- 
pendent modal equations. Indeed, inserting Eq. (5.1 14) into Eq. (5.1 12), premultiplying 
the result by u: and u;, in sequence, and using Eqs. (5.1 15) and (5.1 16), we obtain the 
modal equations 

in which 

are known as modalforces, some abstract forces representing linear combinations of the 
actual forces Fl ( t )  and F2 ( t )  . The nature of the modal forces Nl ( t )  and N2 ( t )  depends 
on the nature of the modal coordinates. For example, if ql ( t ) ,  or ~ ( t ) ,  represents an 
angle, then Nl ( t ) ,  or N2(t) ,  represents a moment. 
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The modal equations, Eqs. (5.1 17), represent two independent equations for the 
modal coordinates q l ( t )  and q2(t )  and they resemble the equation of motion of an 
undamped single-degree-of-freedom system, Eq. (3.1) with c = 0. Using the analogy 
with the single-degree-of-freedom system, the solution of Eqs. (5.117) to applied forces 
alone can be obtained by means of the convolution integral, Eq. (4.40), in the form 

where gl ( t )  and g2(t) represent the impulse response corresponding to 71 ( t )  and qz(t) ,  
respectively. But, from Eq. (b) of Example 4.3, the impulse response can be written as 

in which w( t )  is the unit step function. Hence, inserting Eqs. (5.120) into Eqs. (5.1 19), 
the modal coordinates can be expressed in the general form 

771 ( t )  = - St Nl( t  - r)  s i n ~ ~ i - ~ ( r ) d ~  = - S' N1 ( t  - r )  sin w1 7.7 
m'llwl 0 m;lwl 0 

7720)  = -- 
I S t  N2(t  - T )  sin W ~ T W ( T ) ~ T  = - S' Nz(t  - T )  sinw27d7 

4 2 ~ 2  0 4 2 ~ 2  0 

The solution process begins by solving the eigenvalue problem, Eq. (5.28), and 
computing the natural frequencies wi and modal vectors u, (i = 1,2) .  Then, using the 
first two of Eqs. (5.116), it is possible to determine the constants mil and mk2. Next, 
for any given force vector F( t ) ,  Eqs. (5.1 18) yield the modal forces Nl ( t )  and N2(t) .  
The process continues by inserting Nl ( t )  and Nz( t )  into Eqs. (5.121) and evaluating the 
convolution integrals for the modal coordinates 771 ( t )  and q2(t) .  The formal solution is 
completed by inserting q l ( t )  and qz(t) ,  together with the modal vectors ul and uz,  into 
Eq. (5.114). 

It should be pointed out that, although the modal analysis solutioll presented in 
this section was developed with arbitrary forces in mind, the same modal analysis can 
be used to decouple the equations of motion in the case of harmonic forces as well. 
Indeed, assuming that the force vector is given by F( t )  = Fcos wt,  where F is a constant 
vector and w is the driving frequency, then the modal forces Nl ( t )  and N2(t)  given by 
Eqs. (5.1 18) are proportional to cos wt,  so that the modal equations, Eqs. (5.1 17), can be 
solved directly by the methods of Ch. 3. 

In the event the force vector F( t )  is such that analytical evaluation of the convo- 
lution integrals in Eqs. (5.121) is not possible, one must be content with a numerical 
solution in discrete time. To this end, there are several alternatives. One of them is to use 
the approach of Sec. 4.9 to replace the convolution integrals for 771 ( t )  and 772(t) by con- 
volution sums, where the latter can be evaluated with ease. This approach is discussed 
in Sec. 5.1 1. Another approach, which bypasses the eigenvalue problem altogether, is 
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to determine the response by means of the recursive relations using the discrete-time 
transition matrix, as discussed in Sec. 4.10. Note that, to use the latter approach, it 
is necessary to extend the formulation so as to accommodate multi-degree-of-freedom 
systems, which amounts to replacing the vectors y and b in Eqs. (4.104) and (4.106) by 
matrices and B, respectively. This extension is discussed in Ch. 7. 

Example 5.6. The two-degree-of-freedom system of Example 5.1 is acted upon by the 
rectangular pulse 

applied to mass m2. Determine the response by modal analysis. 
From Example 5.1, we obtain the mass and stiffness matrices 

as well as the natural frequencies 

and the modal vectors 

Hence, from the first two of Eqs. (5.1 16), we have 

Moreover, recognizing that F(t) = [O ~ ~ ( t ) ] ~  and using Eqs. (5.118), we can write the 
modal forces 

Then, inserting Eqs. (a), (c), (e) and (f) into Eqs. (5.121), we determine the modal coordinates 
as follows: 

- Fo -- {(I - coswl t )~ ( t )  - [1 - coswl (t - a)]m(t -a ) ]  
m'l14  
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-0.5 Fo -- - { ( I  - cos w2t)m(t) - [1 - cos w2(t - a)]m(t - a ) ]  
4 2 ~ 2 2  

- - - 3 L  7.5T ( 1  -cosgt)m(t)- [ 1  -cos;:.:(t -a]]-( t  -.)I 
Finally, introducing Eqs. (d)  and (g) in Eq. (5.1 14), we obtain the response by components 

x l ( t )  = v1(t)u11+772(t)u12 

= 3 T ( 1  - cosgt) ~ ( t )  - [ I -  cos&t - -.)I 
- 2.5 { ( l - c o s E t ) m ( t ) -  [ l - c o s ~ ( f - a ) ] m ( t - a ) ) )  

x2(t) = 771 (t)u21+ 772(t)u22 (h)  

= ~({(~-cos,6t)m(t)- 3 T [ l - c o s ~ ( t - a ) ] m t - a ) )  

+ 5 ( 1  -cosEt)m(t) - [ -cosE(t - a ) ] r z ( t - a ) ] )  

The response is plotted in Fig. 5.18, in which the values T / L  = 1 N /m ,  m = 1 kg, a = 2 s 
were used. 

FIGURE 5.18 
Response of the system of Fig. 5.4a to a rectangular pulse computed in continuous time 
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5.11 RESPONSE TO NONPERIODIC EXCITATIONS BY THE 
CONVOLUTION SUM 

As discussed in Sec. 4.9, when the nature of the force vector F( t )  precludes analytical 
evaluation of convolution integrals for the response, a reasonable alternative is to obtain 
the response numerically by means of convolution sums. In the case of two-degree-of- 
freedom systems, the discrete-time solution parallels the continuous-time modal solution 
presented in Sec. 5.10. 

By analogy with Eq. (5.114), the discrete-time response vector can be written in 
the form of the sequence 

where q l (n )  and q2(n) are the modal coordinates at the discrete times t = nT ( n  = 
1,2 ,  . . . ), in which T is the sampling period. Considering Eqs. (5.117) and (5.11 8), we 
conclude that the discrete-time modal coordinates can be expressed in the form of the 
convolution sums 

in which gl ( n )  and g2(n) are the discrete-time impulse responses associated with the 
modal equations, Eqs. (5.117). Hence, using Eqs. (5.120) and recalling Eq. (4.97), we 
can write 

T 

Inserting Eqs. (5.124) into Eqs. (5.123) and the result into Eq. (5.122), the discrete-time 
response vector for a two-degree-of-freedom conservative system is simply 

Example 5.7. Consider the two-degree-of-freedom system of Example 5.6 and determine 
the response to the same rectangular pulse, but in discrete time. Plot the response using 
the sampling period T = 0.01 s, compare the results with the continuous-time response 
obtained in Example 5.6 and discuss the accuracy of the discrete-time solution. 

From Example 5.6, we have F1 ( t )  = 0, so that F1 ( n )  = 0 ( n  = 0,1,2, . . . ). Moreover, 
the rectangular pulse given by Eq. (a) of Example 5.6 has the discrete-time form 

FO for n 5 no 
Fz(n) = 

0 for n > no 

where no = a /  T ,  in which a is the pulse duration. Then, considering the analogy with 
the procedure in Example 4.8 for treating pulses in discrete time, inserting Eqs. (c)-(e) of 



Example 5.6 into Eq. (5.125) and letting T / L  = 1 N/m, m = 1 kg, a = 2 s, we can write 
the response in the form 

s i n ~ . ~ l ( n  -k) [ i ] - E s i n o . o , g ( n  -k) [ 1) -0.5 
k=O 

for n 200 

x(n) = 

- - 
200 

sin0,01(n-k) [ ]  in^ -k, [ 1) -0.5 

for n > 200 

' T k ( [ q s i n ( n - k ) w l T  
k=O mllwl 

for n 5 no 

for n > no 

(b) 

which yields the response sequence 



FIGURE 5.19 
Response of the system of Fig. 5.4a to a rectangular pulse computed in discrete time 

cc> 

The response is plotted in Fig. 5.19. For comparison purposes, the continuous-time response 
obtained in Example 5.6 is also plotted. As can be seen, the agreement is excellent. 

5.12 RESPONSE TO lNIT1AL EXCITATIONS BY MATLAB 

The response of a two-degree-of-freedom system to initial excitations can be obtained 
in closed form, as can be seen from Eq. (5.46). Our interest lies in plotting the response, 



which consists of two plots, X I  (t) versus t and xz(t) versus t. They can be obtained 
conveniently by a MATLAB computer program of Eq. (5.46) in conjunction with the 
system of Example 5.3, as follows: 

% The program 'rspin2.mf plots the response of a two-degree-of-freedom system 
% to initial excitations 

clear 
clf 

M=[l O;O 21; % mass matrix 
K=[2 -1;-1 31; % stiffness matrix 
[u,W]=eig(K,M); % solution of the eigenvalue problem:u=matrix of eigenvectors, 
% W=matrix of eigenvalues 
u(:, l)=u(:,l)/max(u(:, 1)); % normalization of the 
u(: ,2)=u(: ,2)/max(u(: ,2)); % eigenvectors 
[w(l),Il]=min(max(W)); % relabeling of the eigenvalues so that the lowest is the 
[w(2),12]=max(max(W)); % first and the highest is the second 
w(l)=sqrt(w(l)); % lowest natural frequency 
w(2)=sqrt(w(2)); % highest natural frequency 
U(:,l)=u(:,Il); % relabeling of the eigenvectors so as to 
U(:,2)=u(:,I2); % correspond to the natural frequencies 
x0=[1.2; 01; % initial displacement 
vO=[O; 01; % initial velocity 
t=[O: 0.1: 501; % initial time, time increment, final time 

% displacement components from Eq. (5.46) 
xl=(((U(2,2)*xO(l)-U(1,2)*x0(2))*cos(w(l)*t)+(U(2,2)*~0(1)-U(1,2)*~0(2))*sin(w(1) 
*t)/w(l))*u(l,l)+((u(1,1)*xo(2)-U(2,1)*x0(l))*cos(w(2)*t)+(u(l,l)*vo(2)-u(2,l) 
*vO(l))*sin(w(2)*t)/w(2))*U(l,2))/det(U); 

plot(t, xl ,  t, x2) 
title('Response to Initial Excitationsf) 
ylabel('x-1 (t), x_2(t)') 
xlabel (/t(s)') 

Note that the program plots both xl (t) versus t and x2(t) versus t on the same diagram. 
We observe that the expressions for xl (t) and x:!(t) are relatively long, well exceeding 
one line. In this regard, it is perhaps worth mentioning that a lengthy expression must 
not be broken and is to be typed as one continuous line, no matter how long it is, and 
let the computer break it into individual lines. Indeed, if a lengthy expression is broken 
into individual lines, then the computer is likely to interpret these lines as separate 
expressions, and give erroneous results. 



5.13 FREQUENCY RESPONSE PLOTS FOR 
TWO-DEGREE-OF-FREEDOM SYSTEMS BY MATLAB 

The frequency response functions for a two-degree-of-freedom system are given by Eqs. 
(5.103). Using the parameter values given in Example 5.5, they reduce to Eqs. (d) of 
the same example. Using Eqs. (d) in conjunction with the ratio F l / k  = 1, the plots 
X1 (w) versus w/wl and Xz(w) versus w/wl can be obtained by the following MATLAB 
program: 

% The program 'frqrsp2.mf produces frequency response plots for a two-degree-of- 
% freedom system 

clear 
clf 

a=2/5; % square of the ratio of the-lowest natural frequency wl 
% to the highest natural frequency w2 
r=[O: 0.0015: 31; % ratio of the driving frequency w 
% to the lowest natural frequency w 1 

X1=(3-2*r.^ 2)./(5*(1-r.^ 2).*(1-a*r.^ 2)); % frequency response of mass ml  
X2= 1 ./(5 *(I-r.^ 2).*(1 -a*r.^ 2)); % frequency response of mass m2 

axes('positiont, [O. 1 0.15 0.35 0.451) % positions of the corner points of X1 diagram 
% as fractions of the workspace perimeter dimensions 
plot(r, XI) 

title('Frequency Response') 
ylabel('X-1 (\omega)') 
xlabel('\omega/\ omega-1') 

axis([O 3 -3 31) 
grid 

axes('positiont,[0.55 0.15 0.35 0.451) % positions of the corner points of X2 diagram 
% as fractions of the workspace perimeter dimensions 
plot(r, X2) 

title('Frequency Response') 
ylabel('X-2(\ omega)') 
xlabel('\omega/\ omega-] ') 

axis([O 3 -3 31) 
grid 

Note that the vertical lines corresponding to resonance at the frequency ratios w/wl = 1 
and w/wl = in the plots are to be ignored. 

5.14 RESPONSE TO A RECTANGULAR PULSE BY THE 
CONVOLUTION SUM USING MATLAB 

In Sec. 5.1 1, we derived the discrete-time response of a two-degree-of-freedom system 
to arbitrary excitations by means of the convolution sum. Then, in Example 5.7, we 



applied the general formulation, Eq. (5.125), to an excitation in the form of a rectangular 
pulse. A MATLAB computer program solving the problem of Example 5.7 reads as 
follows: 

% The program 'convsum2.mf plots the response of a two-degree-of-freedom 
% system to a rectangular pulse by the convolution sum 

clear 

M=[l 0;O 21; % mass matrix 
K=[2 - 1;- 1 31; % stiffness matrix 
[u,W]=eig(K,M); % solution of the eigenvalue problem: u=matrix of eigenvectors 
% W=matrix of eigenvalues 
u(: , l)=u(:, l)/max(u(: , 1 )); % normalization of 
~(:,2)=~(:,2)/max(u(:,2)); % the eigenvectors 
[w(l), Il]=min(max(W)); % relabeling of the eigenvalues so that the lowest 
[w(2), 12]=max(max(W)); % is the first and the highest is the second 
w(l)=sqrt(w(l)); % lowest natural frequency 
w(2)=sqrt(w(2)); % highest natural frequency 
U(:, l)=u(:, 11); % relabeling of the eigenvectors so as to 
U(:,2)=u(:, 12); % correspond to the natural frequencies 
ml=U(:,l)'*M*U(:,l); % mass quantities for the two 
m2=U(:,2)'*M*U(:,2); % modes, top of Eqs. (5.1 16) 
T=0.01; % sampling period 
N=600; % number of sampling times 
% force on the first mass is equal to zero 

for n=l:N, 
suml=0; sum2=0; 
if nt=2/T+1; F2(n)=1; else; F2(n)=0; % force on the second mass, equal to the 
% rectangular pulse 

end 

for k= 1 :n, 
suml=suml+(U(2,1)*F2(k)*sin((n-k)*w(1)*T)/(ml*w(l)))*U(l,1)+(U(2,2) 

*F2(k)*sin((n-k)*~(2)*T)/(rn2*~(2)))*U(1,2); 
sum2=sum2+(U(2,1)*F2(k)*sin((n-k)*w(1)*T)/(ml*w(l)))*U(2,1)+(U(2,2) 

*F2(k)*sin((n-k) * w(2)*T)/(m2*w(2)))*U(2,2); 

end 

xl(n)=T*suml; % displacement of the left mass 
x2(n)=T*sum2; % displacement of the right mass 

end 

plot(n, xl,  '.', n, x2, '.') 
title('Response by the Convolution Sumr) 



ylabel('x-1 (n), x_2(n)') 
xlabel('nl) 
grid 

The program can be used to plot xl (n) versus n and x2 (n) versus n. Note that, because 
the points are very close together, the plots will appear as being continuous rather than 
discrete. 

5.15 SUMMARY 

The motion of a single-degree-of-freedom system is described by a single ordinary 
differential equation. When an undamped linear system is set in motion by some initial 
excitations, the system vibrates at a given frequency, where the frequency depends on the 
system parameters alone, and is independent of the initial excitations. For this reason, 
the frequency is known as the natural frequency. By contrast, the motion of multi- 
degree-of-freedom systems is described by as many ordinary differential equations as 
the number of degrees of freedom. These equations are simultaneous, or coupled, and it 
is not possible in general to solve one equation independently of the other. Undamped 
multi-degree-of-freedom linear system differ from single-degree-of-freedom systems in 
two major respects, namely, they possess as many natural frequencies as the number of 
degrees of freedom of the system and to each natural frequency corresponds a certain 
natural mode, namely, a displacement configuration unique to that mode. The natural 
modes possess the important property of orthogonality, which permits the reduction of 
the set of simultaneous equations to a set of independent equations, where the latter can 
be treated as if they were single-degree-of-freedom systems. 

This chapter is concerned almost exclusively with two-degree-of-freedom systems. 
It plays the role of an introduction to multi-degree-of-freedom systems in which various 
topics such as the eigenvalue problem, modes of vibration, coordinate transformations 
and coupling, orthogonality of modes and system decoupling, are discussed with only 
a modest amount of mathematics. General multi-degree-of-freedom are presented in 
Ch. 7. 

Consistent with the idea of shifting the computational burden to the computer, 
three MATLAB programs are included, the first concerned with the response to initial 
excitations, the second with the frequency response and the third with the response to 
nonperiodic excitations by the convolution sum. 



PROBLEMS 

5.1. Two disks of mass polar moments of inertia I l  and Z2 are mounted on a circular massless 
shaft consisting of two segments of torsional stiffness G J1 and G J2, as shown in Fig. 5.20. 
Derive the differential equations for the angular displacements of the disks. 

FIGURE 5.20 
Two-degree-of-freedom torsional system 

5.2. A rigid bar of mass per unit length rn carries a point mass M at its right end. The bar is 
supported by two springs, as shown in Fig. 5.21. Derive the differential equations for the 
translation and rotation of the mass center. Assume small motions. 
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FIGURE 5.21 
Mass supported by spnngs through a ngld bar 



5.3. Derive the differential equations of motion for the double pendulum shown in Fig. 5.22. The 
angles O1 and 82 can be arbitrarily large. 

FIGURE 5.22 
Double pendulum 

5.4. Derive the differential equations of motion for the system shown in Fig. 5.23. Let the angle 
8 be small. 

a m  

FIGURE 5.23 
Pendulum supported by a moving mass 



5.5. The system of Fig. 5.24 represents an airfoil section being tested in a wind tunnel. Let the 
airfoil have total mass nz and mass moment of inertia Ic about the mass center C, and derive 
the differential equations of motion. 

I- 4 
FIGURE 5.24 
Airfoil section supported by springs 

5.6. A uniform thin rod is suspended by a string, as shown in Fig. 5.25. Derive the differential 
equations of motion of the system for arbitrarily large angles. 

FIGURE 5.25 
Rigid rod suspended by 
a string 



5.7. A rigid bar of mass per unit length p(v) = po(l+ v / L )  is supported by two springs, as shown 
in Fig. 5.26. Assume small motions and derive the differential equations of motion. 

FIGURE 5.26 
Nonuniform rigid bar supported by springs 

5.8. Figure 5.27 depicts a two-story building. Assume that the horizontal members are rigid 
and that the columns are massless beams clamped at both ends and derive the differential 
equations for the horizontal translation of the masses. 

FIGURE 5.27 
Two-story building 



5.9. A rigid uniform bar is supported by two translational springs and one torsional spring (Fig. 
5.28). Derive the differential equations of motion. 

FIGURE 5.28 
Rigid rod supported by springs 

5.10. Figure 5.29 shows a system of gears mounted on shafts. The radii of gears A and B are related 
by RA/RB = n. Derive the differential equations for the torsional motion of the system. 

I 
zc 

FIGURE 5.29 
System of gears mounted on shafts 

5.11. Use Eq. (5.35) and prove that the two ratios for u2l/ull  and the two ratios for u22/u21, Eqs. 
(5.38), are identical. 



5.12. Consider the system of Problem 5.1, let Il = I2 = I .  G Jl = G J2 = G J ,  L 1  = L2 = L ,  and 
calculate the natural frequencies and natural modes. Plot the modes. 

5.13. Consider the system of Problem 5.2, let kl  = k ,  k2 = 2k,  M = m L ,  and calculate the natural 
frequencies and natural modes. Plot the modes. 

5.14. Consider the double pendulum of Problem 5.3 and linearize the equations of motion by 
assuming that Ql ( t )  and 02(t )  are small. Then let ml  = m2 = m ,  L1 = L2 = L, and calculate 
the natural frequencies and natural modes. Plot the modes. 

5.15. Linearize the equations of motion for the system of Problem 5.6 and calculate the natural 
frequencies and natural modes for L 1 = L2 = L .  

5.16. Obtain the natural frequencies and modes of vibration for the building of Problem 5.8 and 
plotthemodes. Letml =n22 = m ,  HI  = H z  = H and I1 = I2 = I .  

5.17. Obtain the natural frequencies and modes of vibration for the system of gears of Problem 
5.10. Let n = 2 ,  IA = 51, IB = 21, IC = I and kl = k2 = k .  

5.18. Obtain the response of the system of Problem 5.12 to the initial excitation Q1 (0 )  = 0 ,  Q2(0) = 
1.5, &(o)  = 1.8.J-, 02(0) = O .  

5.19. Determine the natural frequencies and modes of vibration of the system of Example 5.1 for 
the parameters ml  = m2 = m ,  L 1  = L2 = L3 = L.  Then, obtain the response to the initial 
excitation x l (0 )  = 1, x2(0) = - 1, i1 (0)  = i 2 ( 0 )  = 0. Explain your results. 

5.20. Consider the system of Problem 5.2 and find a set of coordinates for which the system is 
elastically uncoupled. Then, let kl = k ,  k2 = 2k,  M = m L ,  calculate the natural frequencies 
and natural modes and plot the modes. Compare the results with those obtained in Problem 
5.13 and draw conclusions. 

5.21. Consider Example 5.2 and use Eqs. (e) in conjunction with the second row of Eq. (c) to derive 
the natural modes. 

5.22. Verify that the natural modes in Example 5.2 are orthogonal with respect to both the mass 
matrix and the stiffness matrix. 

5.23. Consider the system of Problem 5.19, let the excitation have the form F l ( t )  = Fl coswt, 
Fz(t )  = 0 and derive the response by assuming the solution in the form of trigonometric 
functions. 

5.24. The system of Problem 5.12 is acted upon by the torques, M l ( t )  = 0 ,  M2( t )  = M2eZwt. 
Obtain expressions for the frequency responses 0 1  (w)  and 0 2 ( w )  and plot 0 1  ( w )  versus w 
and &(w) versus w .  

5.25. The foundation of the building of Problem 5.16 undergoes the hor~zontal motion y ( t )  = 
Yo sin wt. Derive expressions for the displacements of m 1 and m2. 

5.26. A piece of machinery weighing 2.1 x lo4 N is observed to deflect 3 cm when at rest. A har- 
monic force of magnitude 440 N induces resonance. Design a vibration absorber undergoing 
a maximum deflection of 2.5 mm. What is the value of the mass ratio p? 

5.27. Solve Problem 5.23 by means of Eqs. (5.1 17), compare results and draw conclusions. 
5.28. Derive the response of the systemof Problem 5.12 to the torques MI ( t )  = 0 ,  M2(t)  = M z ~ - " ~ .  
5.29. Derive the response of the system of Problem 5.13 to a force in the form of the sawtooth 

pulse shown in Fig. 4.20. 
5.30. Solve Problem 5.29 by defining the motion in terms of the vertical displacements yl ( t )  and 

y2(t) of the points of attachment of springs kl  and k2, respectively, compare results and draw 
conclusions. 

5.31. Derive the response of the building of Problem 5.25 for the case in which the horizontal 
motion of the support resembles the triangular pulse shown in Fig. 4.32. 

5.32. Solve Problem 5.28 in discrete time and plot the response. 



5.33. Solve Problem 5.30 in discrete time and plot the response. 
5.34. Solve Problem 5.31 in discrete time and plot the response. 
5.35. Write a MATLAB program and plot the response of the system of Problem 5.18. 
5.36. Write a MATLAB program and plot the response of the system of Problem 5.19. 
5.37. Write a MATLAB program and plot the frequency responses from the system of Problem 

5.24. 
5.38. Write a MATLAB program and plot the frequency responses for the system of Problem 5.25. 
5.39. Solve Problem 5.32 by MATLAB. 
5.40. Solve Problem 5.33 by MATLAB. 
5.41. Solve Problem 5.34 by MATLAB. 



CHAPTER 

ELEMENTS OF ANALYTICAL DYNAMICS 

Newton's laws were formulated for a single particle and can be extended to systems of 
particles and rigid bodies, as well as to systems of rigid bodies. The equations of motion 
are expressed in terms of physical coordinates and forces, both quantities conveniently 
represented by vectors. For this reason, Newtonian mechanics is often referred to as 
vectorial mechanics. The main drawback of Newtonian mechanics is that it requires one 
free-body diagram for each of the masses in the system, thus necessitating the inclusion 
of reaction forces and interacting forces, the latter resulting from kinematical constraints 
ensuring that the individual bodies act together as a system. These reaction and constraint 
forces play the role of unknowns, which makes it necessary to work with a surplus of 
equations of motion, one additional equation for every unknown force. 

A different approach to mechanics, referred to as analytical mechanics, or analyt- 
ical dynamics, considers the system as a whole, rather than the individual components 
separately, a process that excludes the reaction and constraint forces automatically. This 
approach, due to Lagrange, permits the formulation of problems of dynamics in terms 
of two scalar functions, the kinetic energy and the potential energy, and an infinitesimal 
expression, the virtual work performed by the nonconservative forces. Analytical me- 
chanics represents a broader and more abstract approach, as the equations of motion are 
formulated in terms of generalized coordinates and generalized forces, which are not 
necessarily physical coordinates and forces, although in certain cases they can be chosen 
as such. In this manner, the mathematical formulation is rendered independent of any 
special system of coordinates. The development of analytical mechanics required the 
introduction of the concept of virtual displacements, which in turn led to the development 
of the calculus of variations. For this reason, analytical mechanics is often referred to 
as the variational approach to mechanics. 
262 



We begin this chapter with a discussion of such concepts as constraints, degrees 
of freedom and generalized coordinates, thus paving the way from Newtonian mechan- 
ics to analytical mechanics. Then, we introduce the concept of virtual displacements, 
followed by the virtual work principle and d' Alembert's principle, thus providing the 
groundwork for the real object of this chapter, namely, the extended Hamilton's principle 
and Lagrange's equations, both extremely efficient methods for deriving equations of 
motion. 

6.1 DEGREES OF FREEDOM AND GENERALIZED COORDINATES 

To derive the equations of motion for a system of masses by the Newtonian approach, it 
is necessary to isolate the masses and draw one free-body diagram for each of the masses. 
We recall that a free-body diagram is a drawing of a given mass with all the forces acting 
upon it. These include applied forces, reaction forces and internal forces, where the latter 
become external to the mass when, in the process of isolating the mass, it is necessary to 
cut through the line of action of the internal force. This process tends to result in more 
equations and unknowns than necessary, which is the case when forces presenting no 
particular interest act as unknowns. An illustration of a force internal to the system being 
treated as external to the mass, and one of no interest in general, is the tensile force T 
in the string of Example 1.6. Another source of possible difficulties in using Newton's 
equations is that the motion is described in terms of physical coordinates, which may 
not always be independent. As an example, we consider a dumbbell consisting of two 
masses ml and i n 2  connected by a massless rigid bar of length L, as shown in Fig. 6.1. 
Assuming that the dumbbell moves in the x ,  y-plane, we can define the motion by the 
position vectors 

rl = x l i + y l j ,  1-2 =xz i+  yzj (6.1) 

which involve four coordinates, xl , yl , x2 and y2. Clearly, they are not independent, 
as the length of the bar cannot change. Indeed, the four coordinates are related by the 

FIGURE 6.1 
A dumbbell in planar motion 



equation 

(x2 - x d 2  + (y2 - y112 = L2 (6.2) 

which represents a constraint equation. Because Eq. (6.2) can be solved for one of the 
coordinates in terms of the remaining three, it follows that only three coordinates are 
independent. Hence, if the problem is formulated in terms of the coordinates x i ,  yl ,  x2 
and y2, then it is necessary to supplement the corresponding equations of motion by the 
constraint equation, Eq. (6.2). 

In most vibration problems, a better choice of coordinates obviates the difficulties 
involved in working with surplus coordinates and constraint equations. As an illustration, 
in the case of the dumbbell of Fig. 6.1, it is much simpler to work with the position 
r c  = rc(xc ,  yc) of the mass center C (Sec. 1.4) and the angle 0 between the rigid 
bar and the x-axis. Indeed, the motion can be described directly in terms of the three 
independent coordinates x c ,  yc and 0, and no constraint equation is needed. From Fig. 
6.1, we observe that the two sets of coordinates are related by 

where, from Eq. (1.37), 

The problem can be generalized to a system of N mass particles with positions 
defined by the radius vectors ri (x ,  , y, , z , )  in a three-dimensional space. If the particles 
are subject to a number c of constraints, then only 

coordinates are independent, where n is known as the number of degrees of freedom 
of the system. It is customary to denote the independent coordinates by q l ,  q2, . . . , qn 
and refer to them as generalized coordinates. The relation between the dependent and 
independent coordinates can be expressed in the form of the coordinate transformation 

The generalized coordinates ql , q2, . . . , qn are not unique for a given system, as there 
can be several such sets, although only one or two sets may represent a suitable choice. 
In vibrations, this choice is obvious for the most part, and the coordinate transformation 
(6.6) is primarily of academic interest. For example, in the case of the dumbbell of 
Fig. 6.1, any three of the four coordinates xl , yl,  x2, y2 can serve as a set of generalized 



coordinates, but none of them would be a suitable choice. Clearly, the choice ql = 
xc, q2 = ye, q3 = is by far the most convenient one, and indeed the only suitable 
one, as the equations of motion in terms of these coordinates have the simplest form (see 
Secs. 1.4 and 1.5). 

With the introduction of the concept of generalized coordinates, we begin the 
transition from Newtonian mechanics to Lagrangian mechanics. 

6.2 THE PRINCIPLE OF VIRTUAL WORK 

The principle of virtual work, due to Johann Bernoulli, is basically a statement of the 
static equilibrium of a mechanical system. It represents the first variational principle 
of mechanics. Our interest in the principle is not as a method for determining equilib- 
rium positions but as a tool for effecting the transition from Newtonian mechanics to 
Lagrangian mechanics. To derive the principle, it is necessary to introduce several new 
concepts, such as virtual displacements and constraint forces. 

We consider a system of N particles in a three-dimensional space and define 
the virtual displacements Sxl , Syl , Szl, Sxz, . . . , SzN as injnitesimal changes in the 
coordinates X I ,  yl , zl , x2, . . . , Z N .  The virtual displacements must be consistent with 
the system constraints, but are otherwise arbitrary. As an example, if a particle in a 
real situation is confined to a surface, then the virtual displacement must be parallel to 
the surface, as the particle cannot penetrate the surface, nor can it leave the surface. 
The virtual displacements represent small variations in the coordinates resulting from 
imagining the system in a slightly displaced position. Implied in this process is the 
assumption that the virtual displacements take place instantaneously, i.e., they do not 
necessitate any time to materialize, St = 0. The symbol S was introduced by Lagrange 
to emphasize the virtual character of the instantaneous variations, as opposed to the 
symbol d designating actual differentials of position coordinates talung place in the time 
interval dt ,  during which time interval forces can change. The virtual displacements, 
being infinitesimal, obey the rules of differential calculus. 

We assume that every one of the N particles in the system is acted upon by the 
resultant force 

where F, is an applied force and f, is a constraint force. Examples of applied forces are 
gravitational forces, aerodynamic lift and drag, magnetic forces, etc. On the other hand, 
an example of a constraint force is the force that keeps a particle confined to a given 
surface, as mentioned earlier in this section. For a system in equilibrium every particle 
must be at rest, so that the resultant force on each particle must vanish. 

from which it follows that 
- 
S W ,  =R, .6 r i=0 ,  i = 1 , 2  ,..., N (6.9) 

is also true. The scalar product in Eq. (6.9) represents the virtual work performed by the 
resultant force vector Ri over the virtual displacement vector Sri of particle i .  Summing 



up over i ,  it follows that the virtual work for the entire system must vanish, or 
N 

m = x ~ , . 6 r ~  = 0  (6.10) 
i = l  

so that, inserting Eq. (6.8) into Eq. (6. lo), we obtain 

Next, we limit ourselves to systems for which the virtual work performed by the 
constraint forces is zero. An example of this is a particle confined to a smooth surface, 
as shown in Fig. 6.2a. In this case, the constraint force is normal to the surface and the 
virtual displacement is parallel to the surface, so that the virtual work is zero, because 
the scalar product of two vectors normal to one another is zero. On the other hand, if 
the particle is confined to a rough surface, in addition to the normal component of force, 
there is a tangential component of force due to friction, as shown in Fig. 6.2b. Hence, 
the virtual work performed by the constraint force is not zero. Ruling out friction forces, 
as well as any other forces for which the virtual work is not zero, we can write 

i=l 

Inserting Eq. (6.12) into Eq. (6.1 I), we conclude that 
N 

m= CF, .6r, = O  (6.13) 
1 = 1  

or the work pegormed by the applied forces through injinitesimal virtual displacements 
compatible with the system constraints is zero. This is the statement of the principle of 
virtual work. 

When the virtual displacements are all independent, the principle of virtual work 
can be used to determine the conQtions of static equilibrium of a system. Indeed, when 
all Sr, (i = 1,2, . . . , N) are independent, we can invoke the arbitrariness of the virtual 
displacements and conclude that Eq. (6.13) can be satisfied for all possible values of Sr, 
only if 

Equations (6.14) represent the equilibrium conditions. 

b. 

Ro 
surface surface 

FIGURE 6.2 
a. Particle on a smooth surface, b. Particle on a rough surface 



The situation is entirely different when the coordinates r ,  (i = 1,2,  . . . , N )  are not 
independent, but related by constraint equations. As indicated in Sec. 6.1, in this case it 
is more convenient to switch to a set of generalized coordinates ql , qz, . . . , q,, which are 
independent by definition. To this end, we rewrite the coordinate transformation given 
by Eqs. (6.6) in the more compact vector form 

r, =rI (q l ,q2 , . . .  , qn) ,  i = 1,2 ,... , N  (6.15) 

Then, using rules of differential calculus, we obtain the virtual displacements 

where 6q1, Sqz, . . . , Gq, are virtual generalized displacements. Unlike Sr, (i = 1,2, . . . , 
N ) ,  however, Sqk ( k  = 1,2,  . . . , n )  are all independent. Inserting Eqs. (6.16) into Eq. 
(6.13) and changing the summation order, we can write 

in which 

are known as generalized forces. The situation is different now, because all 6qk (k = 
1,2,  . . . , n )  are independent, and hence entirely arbitrary, so that they can be assigned 
values a: will. Letting first Sql = 1, Sq2 = Sqs = . . . = Sq, = 0, we conclude that 
Eq. (6.17) can be satisfied only if Q1 = 0. Repeating the same argument, but with 
k = 2 ,3 ,  . . . , n ,  in sequence, instead of k = 1, we obtain the equilibrium conditions 

6.3 THE PRINCIPLE OF D'ALEMBERT 

The principle of virtual work is concerned with the static equilibrium of systems. By 
itself, it cannot be used to formulate problems in vibrations, which are basically problems 
of dynamics. However, the virtual work principle can be extended to dynamics, in which 
form it is known as d'Alembert's principle. 

Consistent with Eq. (6.7), we assume that a typical mass particle m,  in a system of 
particles (i = 1,2,  . . . , N )  is acted upon by the applied force Fi and the constraint force 
f, and, if any internal forces are negligibly small, we can rewrite Newton's second law 
for particle mi, Eq. (1.2%), in the form 

where -m, fi can be regarded as an inertia force, which is simply the negative of the time 
rate of change of the momentum vector, p, =. m,+, . Equation (6.20) is often referred to 
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as d7Alembert's principle, and it permits us to regard problems of dynamics as if they 
were problems of statics. However, our interest in Eq. (6.20) is not for the purpose 
of deriving equations of motion but for extending the principle of virtual work to the 
dynamical case. Indeed, using Eq. (6.20) and following the same approach as in Sec. 
6.2, we can write the virtual work for particle mi as 

Then, confining ourselves to constraint forces f ,  for which the virtual work is zero and 
summing up over the system of particles, we obtain 

N 

C(F, -m , f l ) . 6 r ,  = O  (6.22) 
1=1 

Equation (6.22) embodies both the virtual work principle of statics and d'Alembert's 
principle, and is referred to as the generalizedprinciple of d'Alembert. It is also referred 
to at times as the Lagrange version of d'Alembertls principle. The sum of the applied 
force F, and the inertia force -m,r,, i.e., F, - m,r,, is sometimes called the effective 
force acting on particle m, . Hence, we can state the generalized principle of d7Alembert 
as follows: The virtual work performed by the effective forces through in.nitesima1 
virtual displacements compatible with the system constraints is zero. 

D' Alembert's principle, Eq. (6.22), can be used to derive all the equations of motion 
of the system, provided the position vectors r, (i = 1,2,  . . . , N )  are all independent. 
Otherwise, it is necessary to carry out a coordinate transformation from the dependent 
coordinates r, (i = 1,2 ,  . . . , N )  to the independent generalized coordinates q k  (k = 
1,2, . . . , n )  as given by Eqs. (6.15). Whereas this would provide d'Alembert's principle 
with a clear advantage over the Newtonian approach in deriving equations of motion, 
the process becomes increasingly inefficient as the number of degrees of freedom of 
the system increases, so that an approach using generalized coordinates directly, i.e., 
without the need for coordinate transformations, demands itself. In this regard, it should 
be stated that we never really intended to use d'Alembert7s principle to derive equations 
of motion, but only as a means for deriving another variational principle, namely, the 
extended Hamilton's principle. The latter principle can be used to derive all the system 
equations of motion from three scalar quantities, the kinetic energy, the potential energy 
and the virtual work of the nonconservative forces. It can also be used to derive the 
celebrated Lagrange's equations. 

6.4 THE EXTENDED HAMILTON'S PRINCIPLE 

The extended Hamilton's principle is arguably the most powerful variational principle 
of mechanics. Its derivation from the generalized d' Alembert's principle, Eq. (6.22), is 
a relatively easy task. The extended Hamilton's principle is as useful as it is powerful. 
Indeed, it yields results where other approaches encounter difficulties, particularly in 
problems associated with distributed-parameter systems. 



We begin with the case in which the position vectors ri (i  = 1,2 ,  . . . , N )  are all 
independent. With reference to Eq. (6.22), we first recognize that 

is simply the virtual work of all the applied forces, including both conservative and 
nonconservative forces. On the other hand, to reduce the second term in Eq. (6.22) to a 
form suitable for our purposes, we consider the following: 

where T, is the kinetic energy of particle m,. Rearranging Eq. (6.24) and integrating 
with respect to time over the interval tl 5 t 5 t2, we can write 

But, the virtual displacements are arbitrary. Hence, it is convenient to choose them so 
as to satisfy Sr, = 0 at t = tl and t = t2, in which case Eq. (6.25) reduces to 

Summing up over i and integrating with respect to t over the interval tl 5 t 5 t2 the 
second term in Eq. (6.22) integrated over t becomes 

in which T is the system kinetic energy. Finally, integrating Eq. (6.22) with respect to 
time over the interval tl ( t 5 t2 and using Eqs. (6.23) and (6.27), we obtain 

which represents the mathematical statement of the extended Hamilton's principle. 
Equation (6.28) can be used to derive all the equations of motion. Although-the equation 
may appear intimidating, we hasten to point out that no integrations are actually neces- 
sary. The only operations involved are some generic integrations by parts, invocations 
of the arbitrariness of the virtual displacements and due consideration to the auxiliary 
conditions on the virtual displacements listed with Eq. (6.28). 

It is often convenient to divide the virtual work into two parts, one due to conser- 
vative forces and another one due to nonconservative forces. Hence, by analogy with 



Eqs. (1.19) and (1.20), we can write 
- - -  
SW = SWc+6Wnc = -6V+SWnc (6.29) 

where V is the potential energy. Inserting Eq. (6.29) into Eq (6.28), we can rewrite the 
extended Hamilton's principle in the form 

so that all the equations of motion can be obtained from three scalar quantities, the kinetic 
energy, the potential energy and the virtual work due to nonconservative forces. 

Next, we consider the case in which the position vectors r,  ( i  = 1,2 ,  . . . , N) are 
not independent, but related through some constraint equations of the type encountered 
in Sec. 6.1. In this regard, we observe that the extended Hamilton's principle involves 
the kinetic energy T, potential energy V and virtual work of the nonconservative forces - 
SW,,, all three quantities being independent of the coordinates used. It follows that, 
although derived for a system of particles with the motion described in terms of the 
rectangular coordinates ri (i = 1 ,2 ,  . . . , N ) ,  the extended Hamilton's principle retains 
its form for all sets of coordinates. In fact, the form is the same for all types of dynamical 
systems. In view of this, it is convenient to express T, V and m,, directly in terms 
of the independent generalized coordinates qk (k  = 1,2 ,  . . . , n) .  Moreover, recognizing 
from Eqs. (6.17) that Sr, = 0 ( i  = l , 2 ,  . . . , N )  implies that Sqk = 0 (k = 1,2 ,  . . . , n) ,  we 
can replace the auxiliary conditions in Eq. (6.30) and rewrite the extended Hamilton's 
principle in the form 

~ l t 2 ( S T - 6 V + ~ n c ) d t  = 0, 6qk = 0,  k = 1.2, ... , n ;  r = t l ,  t2  (6.31) 

The extended Hamilton's principle, Eq. (6.3 I ) ,  being in terms of generalized coor- 
dinates, can be used to derive all the system equations of motion, regardless of whether 
the system is subjected to constraints or not. The only qualification is that the con- 
straint forces perform no work. The process of deriving the system equations of mo- 
tion by means of Eq. (6.31) hinges on the fact that the virtual generalized coordinates 
6qk (k  = 1 ,2 ,  . . . , n) are independent, and hence entirely arbitrary. We demonstrate this 
process in Example 6.1 at the end of this section. Indeed, perhaps more than for any 
other method, an example is absolutely essential to understanding the process. 

For conservative systems SW,, = 0, so that Eq. (6.31) reduces to 

where 

is known as the Lagrangian. Equation (6.32) is referred to as Hamilton's principle. 

Example 6.1. Use the extended Hamilton's principle to derive the equations of motion for 
the two-degree-of-freedom system consisting of a rigid bar suspended on a string, as shown 



in Fig. 1.1Oa. Note that the equations of motion for the bar were derived in Example 1.6 
by means of the Newtonian approach and the kinetic energy was denved In Example 1.7. 
Although not stated explicitly, the angles Q1 and Q2 used in both examples do represent 
general~zed coordinates, so that we propose to use ql = 01, 92 = Q2 in the present example. 

From Example 1.7, we obtain the kinetic energy 

The potential energy is due to the weight mg, which is constant; it is the only conservative 
force acting on the system. Referring to Fig. 1. 1Oa and choosing Q1 = Q2 = O as the reference 
position, Eq. (1 .18) yields 

rcrcf = b (-rngj) drc = -mgj 'rc 

Note that the potential energy could have been obtained with greater ease by writing 

where 

is the height of the mass center C above its reference position. 
Referring to Fig. l.lOa, using Eq. (6.23) and recognizing that F is the only noncon- 

servative force, the associated virtual work can be written as 

in which 

Ql = @ l = F L l c o s Q 1 ,  Q 2 = e 2 = F L 2 c o s Q 2  (f 

represent the generalized nonconservative forces. 
The extended Hamilton's principle, Eq. (6.31), calls for the variations ST and SV, 

rather than for T and V themselves. To obtain them, we recognize that the variation process 
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is analogous to the differentiation process. Hence, the variation in the kinetic energy is 

. m L 1 L 2 .  
ST = ~ ~ L : Q ~ s B ~  + - [e2 c o s ( 8 ~  - 0~)681 + 81 cos(o2 - 01)682 

2 

and the variation in the potential energy is simply 

Inserting Eqs. (e)-(g) into Eq. (6.31) and collecting terms, we have 

At this point, we observe, that Eq. (i) involves both the virtual displacements 601 and 
682 and the virtual velocities 681 and 682, and only the virtual displacements are arbitrary. 
Hence, before we can derive the equations of motlon, we must transform the terms in 681 
and 6B2 into terms in 68, and 602, respectively. To this end, we carry out the following 
integrations by parts: 
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where we recalled the auxiliary conditions SQ1 = SO2 = 0 at t = t i ,  t2 .  Introducing Eqs. (j) 
in Eq. (i) and collecting terms, we can write 

Finally, the integrand is in a form permitting the extraction of the equations of motion. To 
this end, we invoke the arbitrariness of SO1 and SO2, and assign different values to S Q 1 ,  
while we set SO2 = 0. Because the resulting equation must hold for all values of SO1, we 
conclude that this is possible only if the coefficient of SO1 is zero. A similar argument, but 
with the roles of SO1 and SO2 reversed, causes us to conclude that the coefficient of SO2 must 
be zero as well. Hence, setting the coefficients of St91 and SO2 equal to zero, we obtain the 
equations of motion 

We observe from Eqs. (1) that there are two equations of motion in the unknowns Q1 
and 6'2, as there should be for a two-degree-of-freedom system, and the equations are free of 
the string tension T. By contrast, Eqs. (k) of Example 1.6 are three in number and there are 
three unknowns, 01,  Q2 and T .  Hence, the extended Hamilton's principle not only yields the 
correct number of equations of motion, but the equations themselves are not encumbered 
by quantities that may present no interest, such as internal forces and reaction forces. Of 
course, by eliminating the string tension T, Eqs. (k) of Example 1.6 can be reduced to 
Eqs. (1) of this example, but this requires extra work. Clearly, the advantages of analytical 
mechanics over Newtonian mechanics for more complex problems are compelling. One 
exception is the case in which the system includes friction forces of the type shown in Fig. 
6.2b, as such systems do not fall within the confines of analytical dynamics (Sec. 6.2). 
Another case in which Newtonian mechanics has the edge is that in which reaction forces 
and forces internal to the system, such as the string tension T, are of interest. These cases 
are not very frequent, so that analytical mechanics is to be preferred for the vast majority 
of systems. In this regard, it should be mentioned that the method of choice for obtaining 
equations of motion is actually Lagrange's equations, which can be derived by means of 
the extended Hamilton's principle, as shown in Sec. 6.5. 

6.5 LAGRANGE'S EQUATIONS 

The extended Hamilton's principle permits the derivation of all the equations of motion 
of a system from three scalar expressions, the kinetic energy, the potential energy and 
the virtual work due to nonconservative forces. The principle is extremely versatile, 
as it enables one to obtain results where other methods experience difficulties, or even 
fail. On the other hand, for many problems the extended Hamilton's principle is not 
the most efficient method for deriving equations of motion, as it involves certain routine 
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operations that must be carried out every time the principle is applied, such as the inte- 
grations by parts. In this section, we use the extended Hamilton's principle to generate 
a more expeditious method for deriving equations of motion, one that obviates the need 
for the routine operations in question. Reference is made here to the celebrated La- 
grange's equations. Although it is possible to derive Lagrange's equations directly from 
d'Alembert's principle, i.e., without the use of the extended Hamilton's principle, the 
approach used here is arguably the simplest and most elegant way of deriving Lagrange's 
equations. 

The kinetic energy of a generic dynamical system can be expressed in terms of 
generalized displacements and velocities in the functional form 

T r T ( q l , q 2 ? . . .  ,qn3q1342>... >qn) (6.34) 

so that the variation in the kinetic energy is simply 

Similarly, the potential energy has the functional form 

v =  v(q1,qz ,... ,q,) (6.36) 

so that the variation in the potential energy is 

Moreover, from Eq. (6.17), the virtual work of the nonconservative forces has the ex- 
pression 

where Q k  (k  = 1,2,  . . . , n )  are the generalized nonconservative forces. 
Next, we insert Eqs. (6.35), (6.37) and (6.38) into the extended Hamilton's prin- 

ciple, Eq. (6.31), and write 

Then, following the approach of Example 6.1, we carry out the following integration by 
parts: 
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in which we considered the auxiliary conditions Sqk = 0 (k = 1,2,  . . . , n )  at t = t l  and 
t = t z ,  as indicated in Eq. (6.39). Introducing Eqs. (6.40) in Eq. (6.39), we have 

At this point, we use the standard argument concerning the arbitrariness of the virtual 
generalized displacements Sqk (k  = 1,2,  . . . , n). By analogy with the procedure used in 
Example 6.1, we assign arbitrary values to 6ql while setting 6qk = 0 (k  = 2,3,  . . . , n ) .  
Under these circumstances, Eq. (6.41) can be satisfied only if the coefficient of Sql is 
zero. Using the same argument but with Sq2, 6q3,  . . . , Sqn playing the role of S q l ,  in 
sequence, we conclude that the coefficient of every virtual generalized displacement 
Sqk (k = 1,2,  . . . , n )  in Eq. (6.41) must be zero, which yields Lagrange's equations 

Equations (6.42) represent the most general form of Lagrange's equations; any other 
form is a mere special case. 

The extended Hamilton's principle, Eq. (6.31), and Lagrange's equations, Eqs. 
(6.42), represent entirely equivalent formulations and, for the same generalized coor- 
dinates, they yield identical equations of motion. Because they obviate certain oper- 
ations and arguments used in their own derivation, Lagrange's equations, Eqs. (6.42), 
are more expeditious than the extended Hamilton's principle for producing equations of 
motion for discrete systems, and they represent the method of choice. However, the ex- 
tended Hamilton's principle is more versatile and can be used for a variety of nonroutine 
problems lying beyond the scope of Lagrange's equations, such as problems involving 
distributed-parameter systems (Ch. 8). 

Example 6.2. Derive Lagrange's equations of motion for the system of Example 6.1. 
As in Example 6.1, we use the angles O1 and 02 (see Fig. 1.10a) as generalized 

coordinates, ql = 01, q2 = 62, so that Lagrange's equations, Eqs. (6.42), take the form 

where Ok (k = 1,2) are the generalized nonconservative forces. From Example 6.1, we 
obtain the kinetic energy 

the potential energy 

and the virtual work of the nonconservative forces 



The derivatives with respect to the angular velocities are as follows: 

so that 

Moreover, the derivatives with respect to the angular displacements are 

In addition, the generalized nonconservative forces are recognized as the coefficients of SO1 
and 602 in the virtual work, Eq. (d), or 

Inserting Eqs. (Q-(h) into Eqs. (a), we obtain the desired Lagrange's equations 

We observe that Eqs. (i) just derived are identical to Eqs. (1) of Example 6.1, obtained 
by the extended Hamilton's principle, as was to be expected. Clearly, Lagrange's equations 
reduce the derivation of the equations of motion to a routine series of differentiations. Still, 
one word of caution is in order. This example makes the task of deriving equations of 
motion appear simpler than it really is, because we merely availed ourselves to the kinetic 
energy, potential energy and virtual work derived earlier. In this regard, it must be pointed 
out that the major task in producing equations of motion by Lagrange's equations is the 
very derivation of the kinetic energy, potential energy and virtual work, and the same is true 
about equations of motion obtained by the extended Hamilton's principle. 

6.6 SUMMARY 

Newtonian mechanics formulates the equations of motion in terms of physical coordi- 
nates and forces, which are in general vector quantities. It requires one free-body diagram 
for each mass and it includes reaction forces and constraint forces in the equations of 
motion. These forces play the role of unknowns, which makes it necessary to work with 
more equations of motion than the number of degrees of freedom of the system. As 
a result, as the number of degrees of freedom increases, Newtonian mechanics rapidly 
loses its appeal as a way of deriving equations of motion. 



Analytical mechanics, or Lagrangian mechanics, does not have the disadvantages 
cited above, and must be regarded as the method of choice for deriving equations of mo- 
tion for multi-degree-of-freedom systems, as well as for distributed-parameter systems. 
It permits the derivation of all the equations of motion from three scalar quantities, 
namely, the kinetic energy, potential energy and virtual work of the nonconservative 
forces. It does not require free-body diagrams, and in fact it considers the system as a 
whole, rather than the individual components. As a result, reaction forces and constraint 
forces do not appear in the formulation, and the number of equations of motion coincides 
with the number of degrees of freedom. The process of deriving the equations of motion 
is rendered almost routine by the use of Lagrange's equations. 

The transition from Newton's laws to Lagrange's equations can be carried out using 
a transformation from physical coordinates to more abstract generalized coordinates, and 
it involves simple rules of differential calculus. A more satisfying approach, and the one 
followed in this text, is to derive first the extended Hamilton principle and then to use 
the principle to derive Lagrange's equations. The advantage of this approach becomes 
obvious when we consider the fact that, whereas Lagrange's equations are more efficient, 
the extended Hamilton principle is more versatile. In fact, it can produce results in cases 
in which Lagrange's equations cannot, most notably in the case of distributed-parameter 
systems. 

PROBLEMS 

6.1. The system of Fig. 6.3 consists of a uniform rigid link of total mass rn and length L and two 
linear springs of stiffnesses kl and k2.  When the springs are unstretched the link is horizontal. 
Use the principle of virtual work to calculate the angle 0 corresponding to the equilibrium 
position. 

FIGURE 6.3 
Rigid link supported by springs 



6.2. Two masses, m 1 = 0.5 m and m2 = m, are suspended on a massless string of constant tension 
T (Fig. 6.4). Assume small displacements y l  and yz and use the principle of virtual work to 
calculate the equilibrium position of the masses sagging under their own weight. 

FIGURE 6.4 
Two masses on a string 

6.3, Use the principle of virtual work to determine the equilibrium equation for the system con- 
sisting of a mass on a rotating hoop, as described in Problem 1.2. 

6.4. Derive the equation of motion for a simple pendulum by means of d'Alembert's principle. 
6.5. Derive the equation of motion for the system of Problem 1.1 by means of d'Alembert's 

principle. 
6.6. Derive the equation of motion for the system of Problem 1.2 by means of d'Alembert's 

principle. 
6.7. Derive the equation of motion for the system of Problem 6.1 by means of d'Alembert's 

principle. 
6.8. Derive the equation of motion for the system of Problem 1.2 by means of Hamilton's principle. 
6.9. Derive the equation of motion for the system of Problem 6.1 by means of Hamilton's principle. 

6.10. Derive the equations of motion for the system of Problem 6.2 by means of Hamilton's 
principle. 

6.11. The upper end of a pendulum is attached to a linear spring of stiffness k, where the spring is 
constrained so as to move in the vertical direction (Fig. 6.5). Derive the equations of motion 
for the vertical displacement u and the angular displacement 0 by means of Hamilton's 
principle. Assume that u is measured from the equilibrium position and that 8 is arbitrarily 
large. 

FIGURE 6.5 
Pendulum attached to a spring 



6.12. Derive the Lagrange equation of motion for the system of Problem 1.2. 
6.13. Derive the three Newton equations of motion and the single Lagrange equation for the system 

of Problem 6.1 and show how Newton's equations can be reduced to Lagrange's equation. 
6.14. Derive the equations of motion for the system of Problem 6.2 by means of Lagrange's 

equations. 
6.15. Derive Newton's and Lagrange's equation of motion for the system of Problem 6.1 1, discuss 

differences and show how Newton's equations can be reduced to Lagrange's equations. 



CHAPTER 

MULTI-DEGREE-OF-FREEDOM SYSTEMS 

In Ch. 1, and again in Chs. 5 and 6, we defined a nzulti-degree-of-feedom system as a 
system whose motion is described by more than one coordinate. In particular, to describe 
the motion of an n-degree-of-freedom system it is necessary to use n coordinates, where 
coordinates are time-dependent variables, such as the displacements of the masses. Two- 
degree-of-freedom systems represent special cases of multi-degree-of-freedom systems. 
The entire Ch. 5 was devoted to two-degree-of-freedom systems, which can be justified 
on pedagogical grounds. In the first place, the vibration of two-degree-of-freedom sys- 
tems can be treated by elementary means, based primarily on physical considerations. 
Moreover, a number of systems of interest in vibrations can be modeled as two-degree- 
of-freedom systems. Perhaps the most persuasive argument for a separate chapter on 
two-degree-of-freedom systems is that it provides us with the opportunity to introduce 
the important concepts involved in multi-degree-of-freedom systems without being en- 
cumbered by abstract formulations. 

For n 3 3, the situation changes markedly from the case in which n = 2, as the 
physical world must be augmented by a more abstract mathematical world. Whereas 
many of the fundamental concepts are the same, the mathematical methodology is more 
demanding. As demonstrated in Ch. 5, to solve the differential equations of motion, it 
is necessary to solve first the algebraic eigenvalue problem. To this end, we recall that 
in Ch. 5 we solved the eigenvalue problem for a two-degree-of-freedom system by an 
elementary approach consisting of three steps, namely, derivation of the characteristic 
equation, solution of the characteristic equation for the natural frequencies and solution 
of corresponding algebraic equations for the natural modes. We note that the character- 
istic equation for two-degree-of-freedom systems is quadratic, which can be solved in 
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closed form. As n exceeds two, however, the solution of the eigenvalue problem using 
the characteristic equation becomes impractical. Fortunately, the rapid increase in the ca- 
pability of digital computers has led to the development of extremely efficient numerical 
algorithms for the solution of the eigenvalue problem, particularly for problems defined 
by real symmetric matrices, such as those arising in vibrations. These algorithms are 
based on certain developments from linear algebra and matrix theory. But, whereas the 
mathematical tools tend to be more advanced, the fundamental concepts involved in the 
derivation of the system response, such as coupling, orthogonality of modal vectors and 
modal analysis for decoupling the equations of motion, remain essentially the same as in 
Ch. 5. The basic facts are that multi-degree-of-freedom systems require a more mature 
treatment than two-degree-of-freedom systems and matrix algebra is ideally suited for 
such a treatment. 

This chapter blends physical with mathematical considerations to present a rigor- 
ous approach to the vibration of multi-degree-of-freedom systems. It includes a gener- 
alization and extension of the various fundamental concepts introduced in Ch. 5 and it 
provides the necessary tools for efficient solutions of free and forced response problems. 
In studying the vibration of linear systems, certain developments from matrix theory 
and linear algebra permit a deeper understanding not only of the intrinsic properties of 
vibrating systems but also of the modern computational algorithms for the efficient solu- 
tions mentioned above. In most practical problems, analytical solutions are not possible 
or feasible, so that computer-generated numerical solutions are a way of life. In this re- 
gard, state-space methods in conjunction with discrete-time techniques, first introduced 
in Ch. 4 for single-degree-of-freedom systems, are extended to multi-degree-of-freedom 
systems. Several MATLAB programs dealing with eigenvalue problems and with the 
response to initial excitations and external forces are included. 

As is to be expected, there is a certain amount of duplication between this chapter 
and Ch. 5. The two chapters are really intended for different readerships, however, with 
Ch. 5 to be included in a beginning course on vibrations, and perhaps excluded from 
a somewhat more advanced one based on this chapter. Of course, in the latter case, 
an occasional reference to material from Ch. 5 can only enhance understanding. In 
particular, the examples from Ch. 5 can serve this purpose well. 

7.1 EQUATIONS OF MOTION FOR LINEAR SYSTEMS 

We are interested in the motion of an n-degree-of-freedom system in the neighborhood 
of an equilibrium position, where the motion is described by the generalized coordinates 
q1 ( t ) ,  qz( t ) ,  . . . , q, ( t ) .  In general the equilibrium position can be obtained by extending 
definition (1.15 1) to multivariable systems. Without loss of generality, we assume that the 
equilibrium position is given by the trivial solution ql = q 2  = . . . = q, = 0. Moreover, we 
assume that the displacements from the equilibrium position are sufficiently small that 
the force-displacement and force-velocity relations are linear, so that the generalized 
coordinates and their time derivatives appear in the differential equations of motion 
at most to the first power. This represents, in essence, the so-called small motions 
assumption (Sec. 1.13), leading to a system of linear equations. 



In this section, we derive the differential equations of motion by means of Newton's 
second law. To this end, we consider the linear system consisting of n masses mi (i = 
1,2, . . . , n) connected by springs and dampers, as shown in Fig. 7.la, and draw the free- 
body diagram associated with the typical mass m, (Fig. 7.lb). Because the motion takes 
place in one dimension, the total number of degrees of freedom of the system coincides 
with the number of masses. Applying Newton's second law to mass m, (i = 1,2, . . . , n) 
we can write the differential equation of motion 

where Qi (t) represents the generalized force. Equation (7.1) can be rearranged in the 
form 

- kz+lqt+l(t) $. (k, + kz+l)qz(t) - kzqz-l(t) = Q z  (t) (7.2) 

Equation (7.2) can be extended to the full system. To this end, we introduce the 
notation 

where mij, cij and kij are mass, damping and stifiess coeflcients, respectively, and Si j  

is the Kronecker delta, defined as being equal to unity for i = j and equal to zero for 

FIGURE 7.1 
a. Damped n-degree-of-freedom system, b. Free-body diagram for a typical mass 



i # j. Then, the equations of motion for the full system can be expressed as follows: 

which constitutes a set of n simultaneous second-order ordinary differential equations 
for the displacements q, ( t )  (i = 1,2,  . . . , n). We note that Eqs. (7.4) are quite general, 
in the sense that they can accommodate other end conditions as well. For example, 
if the right end is free instead of being fixed, then we can simply set c,+l = k,+l = 
0 in Eqs. (7.3). Although at this particular point the notation (7.3) appears as an 
unnecessary complication, its advantage lies in the fact that the use of a double index for 
the coefficients enables us to write Eqs. (7.4) in matrix notation. We shall have ample 
opportunity to work with the coefficients mlJ ,  clJ and klJ and to study their interesting 
and useful properties. In particular, it will be shown that the mass, damping and stiffness 
coefficients are symmetric, or 

and that these coefficients control the system behavior, especially in the case of free 
vibration. Note that we encountered these coefficients for the first time in Sec. 5.2 in 
conjunction with two-degree-of-freedom systems. 

In spite of the fact that Eqs. (7.4) possess constant coefficients, a general analytical 
solution of the equations is difficult to obtain because of the coupling introduced by the 
damping coefficients clJ . Under special circumstances, however, a solution of Eqs. (7.4) 
can be obtained with the same ease as one for undamped systems. For future reference, it 
is convenient to write Eqs. (7.4) in matrix form. To this end, we arrange the coefficients 
m L J ,  clJ and k,, in the following square matrices: 

where, as in Sec. 5.2, M is the mass matrix, C the damping matrix and K the sti@ess 
matrix. Then, the symmetry of the coefficients translates into the symmetry of the 
associated matrices, or 

in which the superscript T denotes the transpose of the matrix in question. Moreover, 
the displacements qi ( t )  and the forces Qi ( t )  can be regarded as the components of n- 
dimensional vectors q( t )  and Q( t ) ,  respectively. Hence, using simple rules of matrix 
multiplication, Eqs. (7.4) can be written in the compact matrix form 

In this particular case, the mass matrix is diagonal because the coordinates used represent 
actual displacements of the masses. For a different set of coordinates M is not necessarily 
diagonal. 

In Sec. 7.4, we use the Lagrangian approach to derive the equations of motion for 
a generic linear system, which permits us to develop the vibration theory in a general 
way, without reference to any particular system, such as that shown in Fig. 7.la. 



Example 7.1. Consider the three-degree-of-freedom system of Fig. 7.2a and derive the 
system differential equations of motion by Newton's second law. The springs exhibit linear 
behavior and the dampers are viscous. 

As shown in Fig. 7.2a, the coordinates ql (t), q2 (t) and 93 (t) represent the horizontal 
translations of masses ml , m2 and m3, respectively, and Ql ( t ) ,  Q2( t )  and Q3 (t) are the 
associated externally applied forces. To derive the equations of motion by Newton's second 
law, we draw three free-body diagrams, associated with masses m l ,  m2 and m3. They are 
all shown in Fig. 7.2b, where the forces in the springs and dampers between masses ml 

and m2 are the same in magnitude but opposite in direction, and the same can be said about 
the forces between masses m2 and mg. Application of Newton's second law to masses 
m, (i = 1,2,3)  yields the equations of motion 

which can be rearranged in the form 

It is not difficult to see that Eqs. (b) can be expressed in the matrix form (7.8), where the 

b. 
FIGURE 7.2 
a Damped three-degree-of-freedom system, b. Free-body diagrams 



coefficient matrices are given by 

which are clearly symmetric. Moreover, M is diagonal. 

7.2 FLEXIBILITY AND STIFFNESS INF1,UENCE COEFFICIENTS 

From Sec. 7.1, we conclude that the characteristics of a system are determined by its 
inertial, damping and stiffness properties. For linear systems, these properties enter 
explicitly in the differential equations through the mass coefficients m,,, damping coef- 
ficients cZJ and stiffness coefficients k,, ( i ,  j = 1, 2 ,  . . . , n ) ,  respectively. Of the three, 
the elastic properties are those causing a dynamic system to vibrate, as they are the ones 
inducing restoring forces. 

The stiffness coefficients can be obtained by other means, not necessarily involving 
the equations of motion. In fact, the stiffness coefficients are more properly known as 
stifiess influence coeflcients, and can be derived by using a definition to be introduced 
shortly. There is one more type of influence coefficients, namely, Jlexibility influence 
coeflcients. They are intimately related to the stiffiness influence coefficients, which is 
to be expected, because both types of coefficients can be used to describe the manner in 
which the system deforms under forces. 

In Secs. 1.7 and 1.8, we examined springs exhibiting linear behavior. In particular, 
we introduced the spring constant concept for a single spring and the equivalent spring 
constant for a given combination of springs. In this section we introduce the concept of 
influence coefficients by expanding on the approaclh of Secs. 1.7 and 1.8. 

We consider the linear discrete system shown in Fig. 7.3, which consists of n point 
masses m, occupying the positions x = x, ( i  = 1, 2, . . . , n )  when in equilibrium. In 
general, there are forces F, ( i  = 1, 2,  . . . , n )  acting upon each point mass m, , causing 
the masses to undergo displacements u,,  respectively. In the following, we propose to 
establish relations between the forces acting upon the system and the resulting displace- 
ments in terms of both flexibility and stiffness influence coefficients. To this end, we 
first assume that the system is acted upon by a single force I;J at x = x, and consider the 
displacement of any arbitrary point x = x, ( i  = 1 ,  2 ,  . . . , n )  due to the force F, . With 
this in mind, we deJine theflexibility injuence coeficient all as the displacement ofpoint 
x = x, due to a unit force, F, = 1, applied at x = x,. Because the system is linear, dis- 
placements increase proportionally with forces, so that the displacement corresponding 
to a force of arbitrary magnitude F, is a,, F,. Moreover, for a linear system, we can 



FIGURE 7.3 
Linear discrete system 

invoke the principle of superposition and obtain the displacement ui at x = xi resulting 
from all forces Fj  ( j  = 1 ,  2 ,  . . . , n )  by simply summing up the individual contributions, 
with the result 

,=I 

Note that in this particular case the coefficients a,, have units m/N. In cases involving 
torques and angular displacements, they have units racltm .N. 

By analogy, we can define the stiffness injluence coeficient k,, as the force required 
at x = x, to produce a unit displacement, u,  = 1, at point x = xJ, and such that the 
displacements at allpoints for which x # xl are zero. To obtain zero displacements at all 
points defined by x # x, , the forces must simply hold these points fixed. Hence, the force 
at x = x, producing a displacement of arbitrary magnitude uJ at x = xJ is kll u J  . In reality 
the points for which x # x, are not fixed, so that, invoking once again the superposition 
principle, the force at x = x, producing displacements uJ at x = x, (j = 1, 2, . . . , n )  is 
simply 

It should be pointed out here that the stiffness coefficients as defined above, represent 
a special type of coefficients given in a more general form in Ch. 9. The coefficients 
ki, defined here have units Nlm. Stiffness coefficients relating angular displacements to 
torques have units m . Nlrad. 

At this juncture, it seems appropriate to point out that, although our interest in 
the flexibility and stiffness influence coefficients can be traced to vibration problems, 
the influence coefficients are really static rather than dynamic concepts. Indeed. the 
flexibility and stiffness influence coefficient merely relate forces to displacements alone, 
and the definition of the coefficients do not involve masses at all. The inclusion of 
masses in Fig. 7.3 was only for presenting the influence coefficients in the context of 
vibrating systems, and the discussion would have remained the same had we regarded 
points x = x, (i  = 1, 2 ,  . . . , n )  as massless. 

We note that for a single-degree-of-freedom system with only one spring the stiff- 
ness influence coefficient is merely the spring constant, whereas the flexibility influence 



coefficient is its reciprocal. An analogous conclusion can be reached in a more general 
context for multi-degree-of-freedom systems. In this regard, matrix operations turn out 
to be most useful. Hence, we arrange the flexibility and stiffness influence coefficients 
in the square matrices 

where A  is known as the flexibility matrix and K as the stifiess matrix. Then, using 
simple rules of matrix multiplication, Eqs. (7.9) and (7.10) can be written in the compact 
matrix forms 

and 

respectively, in which u  and F  are n-dimensional displacement and force vectors with 
components u,  (i = 1, 2, . . . , n) and F, ( j  = 1, 2, . . . , n). Equation (7.12) represents 
a linear transformation, with matrix A playing the role of an operator that operates on 
F to produce the vector u. In view of this Eq. (7.13) can be regarded as the inverse 
transformation leading from u  to F. Because Eqs. (7.12) and (7.13) relate the same 
vectors u  and F, matrices A and K must clearly be related. Indeed, introducing Eq. 
(7.13) in Eq. (7.12), we obtain 

u=AF=AKu (7.14) 

with the obvious conclusion that 

where I = [Sij] is the identity, or unit, matrix of order n, with all its elements equal to 
the Kronecker delta Si j  (i, j = 1, 2, . . . , n). Equation (7.15) implies that 

or the flexibility rand stzfiess matrices are the inverse of each other. 
It should be pointed out that, although the definition of the stiffness coefficients 

k,, may seem intimidating, the stiffness coefficients are often easier to evaluate than 
the flexibility coefficients aLJ, as can be concluded from Example 7.2 at the end of this 
section. Moreover, quite frequently many of the stiffness coefficients have zero values. 
Nevertheless, the calculation of the stiffness coefficients by the definition given above is 
not very efficient. Indeed, it is frequently possible to calculate the stiffness coefficients 
in a much simpler manner, namely, by means of the potential energy, as demonstrated 
in Sec. 7.3. 

There is one important case in which the first of Eqs. (7.16) cannot be used to 
calculate the flexibility coefficients, namely, when the stiffness matrix K is singular, in 
which case the flexibility matrix does not exist. Physically, this implies that the system 
admits rigid-body motions, in which the system undergoes no elastic deformations. This 
can happen when the supports do not fully restrain the system from moving. Clearly, in 



the absence of adequate supports, the definition of the flexibility coefficients cannot be 
applied, so that the coefficients are not defined. We discuss this case in Sec. 7.8. 

It must be emphasized at this point that the developments in this section were 
merely to gain some insight into the free vibration characteristics of conservative sys- 
tems, and are in no way to be construed as a way of solving eigenvalue problems. In 
fact, the opposite is true, as the approach based on the characteristic determinant is not 
recommended when the number of degrees of freedom is three and higher. Indeed, by 
now there is a large variety of numerical algorithms capable of solving eigenvalue prob- 
lems for systems with degrees of freedom reaching into the thousands. We consider the 
question of solving algebraic eigenvalue problems in Sec. 7.18, which also includes a 
MATLAB computer program. 

Example 7.2. Consider the three-degree-of-freedom system shown in Fig. 7.4a and use 
the definitions to calculate the flexibility and stiffness matrices. 

To calculate the flexibility influence coefficients aij , we apply unit forces F j  = 1 ( j  = 
1, 2, 3), in sequence, as shown in Figs. 7.4b, c and d, respectively. In each case, the same 
unit force is acting at all points to the left of the point of application x = x; of the unit force. 
On the other hand, the force is zero to the right of x = x j  . It follows that the elongation of 
every spring is equal to the reciprocal of the spring constant to the left of xj and to zero to 
the right of x;. Hence, displacements are equal to the sum of the elongations of the springs 
to the left of x;, and including xj, and to u j  to the right of xj, so that, from Figs. 7.4b, c 
and d, we conclude that 

and 
I 1 1  1 1  1 

al3=u1 =-, U23=U2=-+- a33=U3=-+-+- 
kl kl k z '  kl k2 k3 

(c) 

respectively. The coefficients given by Eqs. (a)-(c) can be exhibited in the matrix form 

and we note that the flexibility matrix A is symmetric. This is no coincidence, as we shall 
learn in Sec. 7.3. 

The stiffness influence coefficients k,] are obtained from Figs. 7.4e, f and g, in 
which the coefficients are simply the shown forces, where forces opposite in direction to 
the unit displacements must be assigned negative signs. From Fig. 7.4e, we conclude that, 
corresponding to ul = 1, u2 = ug = 0, there are the reaction forces Fo = -kl and F2 = -k2 

and because for equilibrium we must have 



FIGURE 7.4 
a. Three-degree-of-freedom system, b. Force pattem: Fl = 1, Fz = F3 = 0, C. Force pattern: 
F2 = 1, FI = F3 = 0, d Force pattern: Fq = 1, F1 = F2 = 0, e. Displacement pattern: 
u l  = 1, uz = u j  = 0, f. Displacement pattern: u z  = 1, ul = ug = 0, g. Displacement pattern: 



it follows that 

where F3 = 0, because no force is needed to keep the third mass in place. Similarly, from 
Figs. 7.4f and g we obtain 

and 

respectively. The coefficients k,],  Eqs. (f), (g) and (h) lead to the stiffness matrix 

K = [  k 2  k2+k3  k ;  

O -k3 k3 l k 2  -k2 O 1 
where K is also symmetric, as expected. 

We note from Eq. (i) that the elements k13 and k3i are zero. For chainlike systems 
such as that of Fig. 7.3, many more stiffness coefficients are equal to zero. In fact, it is 
easy to verify by inspection that the only coefficients which are not zero are those on the 
main diagonal and those immediately above and below the main diagonal. A matrix whose 
nonzero elements are clustered around the main diagonal is referred to as banded. 

Using matrix algebra, it is not difficult to verify that A and K, as given by Eqs. (d) 
and (i), are the inverse of one another. The verification is left to the reader as an exercise. 

7.3 PROPERTIES OF THE STIFFNESS AND MASS COEFFICIENTS 

For a single linear spring acted upon by a given force, the force in the spring corresponding 
to a displacement C is proportional to 5 and has the fornl FC = -kc, where k is the spring 
constant. If the spring is initially unstretched, then, using Eq. (1.74), the potential energy 
corresponding to a displacement having the final value u is given by 

where F is the final value of the applied force. Equation (7.17) is quadratic in u ,  with 
the spring constant k playing the role of a coefficient. It is reasonable to expect that for 
multi-degree-of-freedom linear systems the potential energy due to elastic effects alone 
can also be written in a quadratic form similar to Eq. (7.17). This is indeed the case, and 
the coefficients turn out to be the stiffness coefficients introduced in Sec. 7.2. 

With reference to Fig. 7.3, if a point x = xi undergoes the displacement ui when 
acted upon by the force Fi, and if there are n forces Fi (1 = 1,2,  . . . , n) ,  by analogy with 
Eq. (7.17), the elastic potential energy for the entire system is simply 

Note that the elastic potential energy is often referred to as strain energy. But the force 
Fi is related to the displacements u j  ( j  = 1, 2, . . . , n) according to Eq. (7.10). Inserting 

kamal
Rectangle

kamal
Rectangle



Eq. (7.10) into Eq. (7.18), we obtain 

where kil (i, j = 1, 2,  . . . , n) are the stiffness influence coefficients. On the other hand, 
Eq. (7.9) relates the displacement u, to the forces F; ( j  = 1, 2, . . . , n ) ,  so that inserting 
Eq. (7.9) into Eq. (7.18), we have 

where a,, (i, j = 1 ,  2, . . . n )  are the flexibility influence coefficients. 
The flexibility coefficients a,, and the stiffness coefficients k,, have a very impor- 

tant property, namely, they are symmetric. This statement is true for the flexibility and 
stiffness coefficients for any linear multi-degree-of-freedom mechanical system. The 
proof is based on the principle of superposition. Considering Fig. 7.3, we assume that 
only the force F, is acting on the system and denote by ui = a,, F, the displacement 
produced at x = x, and by u', = aJ, F, that produced at x = xJ , where primes indicate 
that the displacements are produced by F, alone. It follows that the potential energy due 
to the force F, is 

Next, we apply a force F, at x = xl ,  resulting in additional displacements ur = a,] FJ and 
uN = aJ, F, at x = x, andx = xJ , respectively, where double primes denote displacements 

J 
due to F, alone. Because the force F, does not change during the application of F, , the 
total potential energy has the expression 

Now, we apply the same forces F, and F, but in reverse order. Applying first a force 
FJ at x = x, and denoting by u:/ = a, F, the displacement produced at x = xJ and by 
U ;  = a,, FJ that produced at x = x, , the potential energy due to FJ alone is 

Then, we apply a force F, at x = x, and denote the resulting displacement at n = x, by 
ui = a,, F, and that at x = x, by u: = a,, F,. This time we recognize that it is F, that 
does not change during the application of 6 ,  so that the potential energy is 

But the potential energy must be the same regardless of the order in which the forces 
F, and F, are applied. Hence, Eqs. (7.23) and (7.24) must have the same value, which 
yields 



with the obvious conclusion that the flexibility influence coeficients are symmetric, 

Equation (7.26) is the statement of Maxwell's reciprocity theorem and can be proved for 
more general linear systems than that of Fig. 7.3. Considering Eqs. (7.16), it is easy to 
verify that the stifiess influence coeficients are also symmetric, 

In matrix notation, the symmetry of the stiffness and flexibility influence coeffi- 
cients is equivalent to the statement that theflexibility matrix and the stifiess matrix are 

' symmetric, or 

The potential energy can be written in the form of a triple matrix product. Indeed, 
in matrix notation, Eq. (7.19) has the form 

whereas Eq. (7.20) can be written as 

v = ;F=AF 

where u and F are the n-dimensional displacement and force vectors, respectively. 
Another matrix of special interest in vibrations is the mass matrix, which is as- 

sociated with the kinetic energy. Considering a multi-degree-of-freedom system and 
denoting by u, the velocity of mass m, ( i  = 1, 2, . . . , n), the kinetic energy is simply 

which can be written in the form of the triple matrix product 

T = ; , j T ~ , j  (7.32) 

in which M is the mass matrix, or inertia matrix. In this particular case the matrix M  is 
diagonal. In general, M need not be diagonal (see Sec. 7.5), although it is symmetric. 
We assume that this is the case with M in Eq. (7.32). It is worth pointing out here that 
the matrices K and M in Eqs. (7.29) and (7.32), respectively, are precisely the stiffness 
and mass matrices appearing in the differential equations of motion for a discrete linear 
system, as derived in Sec. 7.1. 

Equations (7.29) and (7.32) are merely quadratic forms in matrix notation, the 
first representing the potential energy and the second the kinetic energy. It will prove 
of interest to study some properties of quadratic forms from which we can infer certain 
motion characteristics of multi-degree-of-freedom systems. Quadratic forms represent a 
special type of functions, so that we first present certain definitions concerning functions 
in general and then apply these definitions to quadratic functions of particular interest in 
vibrations, namely, the potential energy and the kinetic energy. 

A function of several variables is said to be positive (negative) definite if it is never 
negative (positive) and is equal to zero if and only if all the variables are zero. A function 
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of several variables is said to be positive (negative) semidejnite if it is never negative 
(positive) and can be zero even when some or all the variables are not zero. A function 
of several variables is said to be sign-variable if it can take either positive or negative 
values. For the most part, the sign properties of quadratic functions encountered in 
vibrations can be ascertained on physical grounds. 

For quadratic forms, the sign properties are governed by the corresponding constant 
coefficients. In the particular case of the kinetic energy T and the potential energy V,  
these coefficients are m,, and k,, , respectively. In view of the definitions concerning the 
sign properties of functions given in the preceding paragraph, we can define a matrix 
whose elements are the coefficients of a positive (negative) definite quadratic form as a 
positive (negative) dejnite matrix. Likewise, a matrix whose elements are the coefficients 
of a positive (negative) semidefinite quadratic form is said to be a positive (negative) 
semidejinite matrix. Sometimes a positive (negative) semidefinite function is referred to 
as merely positive (negative). 

The kinetic energy is always positive definite, so that the mass matrix M is always 
positive definite. The question remains as to the sign properties of the potential energy 
and the associated stiffness matrix K.  Two cases of particular interest in the area of 
vibrations are that in which K is positive definite and that in which K is only positive 
semidefinite. When both M and K are positive definite, the system is said to be positive 
dejinite, and all the eigenvalues are positive. This case is discussed in Sec. 7.6. When M 
is positive definite and K is only positive semidefinite, the system ispositive semidefiite, 
and all the eigenvalues are nonnegative, i.e., some of them are zero and all the remaining 
ones are positive. This is due to the fact that semidefinite systems are capable of moving 
as if they were rigid, i.e., in pure translation, pure rotation, or both. Such motions have 
zero frequency. This is equivalent to saying that the elastic potential energy in rigid-body 
motions is zero, so that there is no vibration. This case was first mentioned in Sec. 7.2 
and will be discussed in detail in Sec. 7.8. 

Example 7.3. Derive the stiffness matrix for the system of Example 7.2 by means of the 
potential energy. 

Considering Fig. 7.4a and recognizing that the elongations of the springs k l ,  k2 and 
k3 are u l ,  u2 - ul  and u3 - uz ,  respectively, the potential energy is simply 

which can be rewritten in the matrix form 

where 

are the displacement vector and stiffness matrix, respectively. Clearly, the stiffness matrix 
is the same as that obtained in Example 7.2. It is also clear that the derivation of the stiffness 



matrix via the potential energy is appreciably simpler than by using the definition. This is 
often the case, and not merely in this particular example. 

7.4 LAGRANGE'S EQUATIONS LINEARIZED ABOUT 
EQUILIBRIUM 

In Sec. 7.1, we derived the equations of motion for a specific linear system by means 
of Newton's second law. In this section, we wish to derive the equations of motion for 
a generic system, not necessarily linear, without reference to any particular model. To 
this end, we must abandon Newtonian mechanics in favor of a more versatile approach, 
namely, Lagrangian mechanics, and in particular Lagrange's equations first introduced 
in Sec. 6.5. Hence, using Eqs. (6.42), we write Lagrange's equations for an n-degree- 
of-freedom system 

where T is the kinetic energy, V is the potential energy, qk are generalized coordinates 
and Qk are generalized nonconservative forces ( k  = 1,2, . . . , n) .  The kinetic energy and 
potential energy have the general functional form 

T=T(q l , q2 , . . .  ,qn, ql>q2>...34n) (7.34) 

and 

respectively, and the generalized nonconservative forces can be obtained from the virtual 
work expression 

n 

Eric = QkSqk (7.36) 
k= 1 

in which Sqk are generalized virtual displacements. 
In attempting to apply Eqs. (7.33) to systems with viscous damping, such as the 

system of Fig. 7.la, we run immediately into difficulties, as Eqs. (7.33) do not account 
for viscous damping forces explicitly; such forces are accounted for implicitly through 
the generalized nonconservative forces Qk (k  = 1,2, . . . , n). However, it is shown in 
Ref. 13 that viscous damping forces can be accounted for explicitly in the context of 
Lagrange's equations by expressing them in the form 

where 7 is a function of the generalized velocities known as Rayleigh's dissipation 
jimction. Hence, assuming that the generalized forces Qk include all nonconservative 
forces with the exception of the viscous forces, Lagrange's equations can be rewritten 
as 

We return to Rayleigh's dissipation function shortly. 



As can be concluded from Example 6.2, Lagrange's equations are in general non- 
linear. But, as indicated in Secs. 1.13 and 5.2, in vibrations there is considerable interest 
in small motions about equilibrium points, where equilibrium points are defined as con- 
stant solutions of the equations of motion. In view of this, we express the displacements 
in the form 

where the constants q ,k  are the generalized displacements when the system is in equi- 
librium and i jk ( t )  are small perturbations from equilibrium (k = 1,2, . . . , n).  It follows 
immediately from Eqs. (7.39) that the generalized velocities satisfy 

so that they are also small quantities. Equations (7.39) and (7.40) embody the so- 
called small motions assumptions according to which the motion is confined to a small 
neighborhood of a given equilibrium point. 

Our interest lies in identifying the equilibrium points and in deriving the equations 
for small motions about equilibrium in the context of Lagrange's equations. To this end, 
we recognize that the equilibrium points represent constant displacements satisfying La- 
grange's equations, Eqs. (7.38), and that the small motions equations are linear equations 
obtained by linearizing Lagrange's equations. Both the equilibrium equations and the 
linearized equations can be produced by inserting Eqs. (7.39) and (7.40) into Lagrange's 
equations and ignoring terms in q k ,  qk and qk of degree two and higher. From the terms 
retained, the constant terms in q ,k  can be separated into the equilibrium equations, and 
the first-order terms in qk ( t )  and their derivatives into the linearized equations of motion. 
Observing that Lagrange's equations contain first derivatives of the kinetic energy and 
potential energy with respect to qk and q k ,  we conclude that the task can be simplified 
by retaining only the first- and second-order terms in ijk and Gk in the kinetic energy 
and potential energy. To this end, we expand the kinetic energy and potential energy 
in truncated Taylor series. Recognizing that the kinetic energy is already quadratic in 
velocities, we have 

where 

in which q = [qt q 2  . . . q,]T and q, = [ q e l  qe2 . . . qe,lT. The notation in Eqs. (7.41) 
and (7.42) states that the second derivatives are to be evaluated at an equilibrium point, 
so that the symmetric coefficients m,) are constant; they represent the mass coeficients. 



Similarly, the series for the potential energy is 

in which 

are constant, symmetric stifiess coeficients. Moreover from Sec. 1.7, we observe that 
viscous damping forces are linear functions of velocities, so that Rayleigh's dissipa- 
tion function contains only second-order terms in the velocities. Indeed, Rayleigh's 
dissipation function has the form (Ref. 13) 

where ciJ = c j ,  are constant, symmetric damping coeficients. Inserting Eqs. (7.41), 
(7.43) and (7.45) into Lagrange's equations, Eqs. (7.38), and considering Eqs. (7.39) 
and (7.40), we obtain 

Then, separating the constant term from the linear terms, we obtain the equilibrium 
equations 

The balance of the terms represent the linearized equations about equilibrium 

in which we replaced the index k by i and omitted the overtilde from q j ,  qJ and qJ 
with the understanding that these quantities are small perturbations from equilibrium. 
Equations (7.48) can be written in the matrix form 

where M is the mass matrix and K is the stzfiess matrix, both associated with a given 
equilibrium point, C is the damping matrix and Q is the vector of generalized noncon- 
servative forces. 
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Equations (7.48), or Eq. (7.49), were obtained by means of Lagrange's equations, 
which involve certain differentiations with respect to the generalized coordinates, gen- 
eralized velocities and time. However, these differentiations are not really necessary, 
because Eq. (7.49) is fully defined as soon as the mass matrix M ,  damping matrix C, 
stiffness matrix K and the vector Q of generalized nonconservative forces have been de- 
termined. To this end, it is only necessary to express the kinetic energy about equilibrium, 
Eq. (7.41), in the matrix quadratic form 

Similarly, Rayleigh's dissipation function can be written as 

and, ignoring the constant term V(q,) as immaterial and considering the equilibrium 
equations, Eqs. (7.47), the potential energy about equilibrium has the matrix quadratic 
form 

As with all quadratic forms, the coefficient matrices M, C and K are symmetric. More- 
over, the vector Q of the generalized nonconservative forces, excluding viscous damping 
forces, is defined by the virtual work 

SW,, = Q~ 6q (7.53) 

Equation (7.49) is identical in appearance to Eq. (7.8), except that the scope of 
Eq. (7.49) is much broader than the scope of Eq. (7.8). In fact, Eq. (7.8) is a special 
case of Eq. (7.49). The validity of Eqs. (7.48), or Eq. (7.49), is predicated upon the 
motions remaining small. If the nature of the coefficients, and in particular the nature of 
the stiffness coefficients, and that of the nonconservative forces are such that the small 
motions assumption is violated, the linearized equations cease to be valid and the original 
Lagrange equations, Eqs. (7.38), must be used. 

7.5 LINEAR TRANSFORMATIONS. COUPLING 

As demonstrated in Sec. 5.5, coupling depends on the coordinates used to describe the 
motion and is not a basic characteristic of the system. In this section, we discuss the 
ideas of coordinate transformations and coupling in broader terms than in Sec. 5.5. 

The differential equations of motion for an undamped n-degree-of-freedom system 
can be written in the matrix form by letting C = 0 in Eq. (7.49), with the result 

For the purpose of this discussion, we assume that matrices M and K are arbitrary, 
except that they are symmetric and constant. It is clear from Eq. (7.54) that if M is not 
diagonal, then the equations of motion are coupled through inertial forces. On the other 
hand if K is not diagonal, the equations are coupled through the elastically restoring 
forces. Equation (7.54) represents a set of n simultaneous linear second-order ordinary 
differential equations with constant coefficients. The solution of such a set of equations 
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is not a simple task, and we wish to examine efficient means of carrying it out. To this 
end, we express the equations of motion in a different set of generalized coordinates 
qJ ( t )  ( j  = 1, 2 , .  . . , n )  such that any displacement q, ( t )  ( i  = 1 ,  2 , .  . . , n )  is a linear 
combination of the coordinates Q, ( t ) .  Hence, we consider the linear transformation 

q(t> = U71(t) (7.55) 

in which U is a constant nonsingular square matrix, referred to as a transformation 
matrix. The matrix U can be regarded as an operator transforming the vector 7 into the 
vector q. Because U is constant, we also have 

q(t)  = U+(t),  q ( t )  = Uij( t )  (7.56) 

so that the same transformation matrix U connects the velocity vectors + and q and the 
acceleration vectors i j  and q. Inserting Eq. (7.55) and the second of Eqs. (7.56) into Eq. 
(7.54), we can write 

MU;i(t) i- K U q i t )  = Qit)  (7.57) 

Then, premultiplying both sides of Eq. (7.57) by u T ,  we obtain 

M';i(t) i- K f q ( t )  = N(t )  (7.58) 

where the matrices 

M' = u T ~ l J  = MfT,  K' = u T K u  = K f T  (7.59) 

are symmetric because M and K are symmetric. Moreover 

is an n-dimensional vector whose elements are the generalized forces Ni associated 
with the generalized coordinates q,. Note that A? are linear combinations of Q ,  ( j  = 
1, 2, . . . , G ) .  

The derivation of the matrices M' and K' can be carried out in a more natural 
manner by considering the kinetic and potential energy. Indeed, recalling Eq. (7.55) and 
the first of Eqs. (7.56) and recognizing that 

q T ( t )  = vT (t)uT, qT ( t )  = ?jT ( t ) u T  (7.61) 

the kinetic and potential energy, Eqs. (7.50) and (7.521, can be expressed in the form 

T = $ + T ( t ) ~ ' ~ l i ( ,  V = irlT ( t ) ~ ' q ( t )  (7.62) 

where M' and K' are the mass and stiffness matrices corresponding to the coordinates 
vr ( t )  ( j  = 1, 2, . . . , n )  and are given by Eqs. (7.59). 

At this point we return to the concept of coupling. If matrix M' is diagonal, then 
system (7.58) is said to be inertially uncoupled. On the other hand, if K' is diagonal, 
then the system is said to be elastically uncoupled. The object of the transformation 
(7.55) is to produce diagonal matrices M' and K' simultaneously, because then the 
system consists of independent equations of motion. Hence, if such a transformation 
matrix U can be found, then Eq. (7.58) represents a set of n independent equations of 
the type 

M i J ; i J ( t ) t ~ i j r l i ( t ) =  N,(t) j = 1,2 ,... , n  (7.63) 



where M;J and KiJ are the diagonal elements of M' and K', respectively. Equa- 
tions (7.63) have precisely the same structure as that of an undamped single-degree-of- 
freedom system [see Eq. (3.1) with c = 01, and can be readily solved by the methods 
of Chs. 2-4. We state here, and prove later, that a linear transformation matrix U diag- 
onalizing M and K simultaneously does indeed exist. This particular matrix U is the 
nzodal matrix, because it consists of the modal vectors, or natural modes of the system; 
the coordinates qJ ( t )  ( j  = 1 ,  2, . . . , n )  are called natural, or modal coordinates, and the 
independent equations are commonly referred to as modal equations. The procedure 
for solving the system of simultaneous differential equations of motion by transforming 
them into a set of independent equations using the modal matrix as a transformation 
matrix is generally referred to as modal analysis. 

It is perhaps appropriate to pause at this point and reflect on the coordinate transfor- 
mation (7.59, leading from equations of motion in terms of the generalized coordinates 
qt ( t )  ( i  = 1, 2 , .  . . , a )  to equations of motion in terms of the generalized coordinates 
ql ( t )  ( j  = 1 ,  2 , .  . . , n).  The new mass and stiffness matrices M' and K' are related 
to the original mass and stiffness matrices M and K by means of Eqs. (7.59). If U is 
the modal matrix, so that matrices M' and K' are diagonal, the matrix U is said to be 
orthogonal with respect to both M and K. Moreover in this case Eqs. (7.59) represent 
an orthogonal transformation (Appendix C),  which does not change the nature of the 
system. Orthogonal transformations diagonalizing a real symmetric matrix are quite 
common in linear algebra. What is unique about the linear transformation (7.55) with 
the modal matrix U as the transformation matrix is that it diagonalizes both the mass 
matrix M and the stiffness matrix K simultaneously, which are precisely the two matri- 
ces that must be diagonalized to obtain an efficient solution of the equations of motion 
describing the vibration of linear conservative systems. 

It remains to find a way of determining the modal matrix U for a given system. 
This can be accomplished by solving the algebraic eigenvalue problem associated with 
matrices M and K ,  a subject discussed in Sec. 7.6. It should be pointed out that we 
already used a linear transformation of the type (7.55) to uncouple equations of motion. 
Indeed, the vectors ul and u2 multiplying the natural coordinates q ( t )  and q2(t) in 
Sec. 5.10 were modal vectors, and hence the columns of the modal matrix U .  But, as 
pointed out in Sec. 5.3, the modal vectors satisfy homogeneous algebraic equations, so 
that their magnitude cannot be determined uniquely; only the ratios of the components 
of the modal vectors can. It is often convenient to choose the magnitude of the modal 
vectors so as to reduce the matrix M' to the identity matrix, which automatically reduces 
the matrix K' to the diagonal matrix of the natural frequencies squared. This process is 
known as normalization and, under these circumstances, the modal matrix U is said to 
be orthonormal with respect to M and K .  In addition, the natural or modal coordinates 
qJ ( t )  ( j  = 1, 2, . . . , n)  become normal coordinates. 

Example 7.4. The mass and stiffness matrices for the two-degree-of-freedom system of 
Example 5.1 are given by 



and the corresponding modal matrix is 

which was normalized by setting the top component of ul and u2 equal to 1. (The fact 
that U is symmetric is a mere coincidence without any significance. Generally, U is not 
symmetric.) Show that the modal matrix diagonalizes the mass and stiffness matrices 
simultaneously. Then, normalize the modal matrix so as to satisfy U ~ M U  = I, where I 
is the identity matrix, and show that the associated diagonal matrix uT K u has the natural 
frequencies squared as the diagonal entries. 

Inserting Eqs. (a) and (b) into Eqs. (7.59), we obtain 

and 

so that the modal matrix does indeed diagonalize the mass and stiffness matrices simulta- 
neously. 

The normalization of the modal matrix so as to satisfy UTA4U = I can be camed 
out one eigenvector at a time. To this end, we write the first normalized modal vector in the 
form 

where the scaling factor a1 must be such that 

so that a1 = I/& and the first normalized modal vector is 

Similarly, the second normalized modal vector can be verified to be 

Hence, the normalized modal matrix is 

and we note that U is no longer symmetric, as is to be expected. Clearly, in this case, 



so that the new mass matrix is indeed the unit matrix. Moreover, the new stiffness matrix is 

which, from Eq. (b) of Example 5.1, is recognized as the diagonal matrix of natural fre- 
quencies squared, or 

7.6 UNDAMPED FREE VIBRATION. THE EIGENVALUE PROBLEM 

In Sec. 7.5, we pointed out that, in the absence of damping, the equations of motion can 
be decoupled by using a transformation of coordinates, with the modal matrix acting as 
the transformation matrix. To determine the modal matrix, we must solve an algebraic 
eigenvalue problem, a problem associated with free vibration, i.e., vibration in which the 
external forces are zero. In this section, we show how the free vibration problem leads 
directly to the eigenvalue problem, the solution of the latter yielding the natural modes 
of vibration. Then, we show that the natural motions, defined as motions in which the 
system vibrates in any one of the natural modes, can be identified as special cases of free 
vibration. Finally, we show that in the general case of free vibration, the motion can be 
regarded as a linear combination of the natural motions. 

In the absence of external forces, Q = 0, Eq. (7.49) reduces to 

which represents a set of n simultaneous homogeneous differential equations of the type 

We are interested in a special type of solution of Eqs. (7.65), namely, that in which all 
the coordinates qJ ( t )  ( j  = 1 ,  2, . . . , n) execute synchronous motion. Physically, this 
implies a motion in which all the coordinates have the same time dependence, and the 
general configuration of the motion does not change, except for the amplitude, so that 
the ratio between any two coordinates q, ( t )  and qj ( t )  , i # j , remains constant during 
the motion. Mathematically, this type of motion can be represented by 

where u j  ( j  = 1 ,  2, . . . , n) are constant amplitudes and f ( t )  is a function of time, the 
same function for all the coordinates qj  ( t ) .  The interest lies in the case in which the 
coordinates q ,  ( t )  represent stable oscillation, which implies that f ( t )  must be bounded. 



Inserting Eqs. (7.66) into Eq. (7.65) and recognizing that the function f ( t )  does 
not depend on the index j, we obtain 

Equations (7.67) can be rewritten in the form 

with the implication that the time dependence and the positional dependence are sep- 
arable, so that the process is akin to the separation of variables for partial differential 
equations. Using the standard argument, we observe that the left side of Eqs. (7.68) does 
not depend on the index i ,  whereas the right side does not depend on time, so that two 
ratios must be equal to a constant, and in particular to the same constant. Assuming that 
f ( t )  is a real function, the constant must be a real number. Denoting the constant by A, 
Eqs. (7.68) yield 

f ( t )  + X f ( t )  = 0 (7.69) 

and 

We consider a solution of Eq. (7.69) in the exponential form 

f ( t )  = AeSt (7.71) 

Introducing solution (7.71) in Eq. (7.69) and dividing through by Aest, we conclude that 
s must satisfy the equation 

which has the two roots 

If X is a negative number (we have already concluded that it must be real), then sl and 
s2 are real numbers, equal in magnitude but opposite in sign. In this case, Eq. (7.69) has 
two solutions, one decreasing and the other increasing exponentially with time. These 
solutions, however, are inconsistent with stable bounded motion, so that the possibility 
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that X is negative must be discarded and the one that X is positive must be retained. 
Letting X = w2, where w is real, Eq. (7.73) yields 

so that the solution of Eq. (7.69) becomes 

f ( t )  = AI eiwt + ~ ~ e - ~ ~ ~  (7.75) 

where A1 and A2 are generally complex numbers constant in value. Recognizing that 
eiWt and e-"t represent complex vectors of unit magnitude (Sec. 1.11), we conclude 
that solution (7.75) is harmonic with the frequency w, and is the only acceptable solution 
of Eq. (7.69). This implies that, if synchronous motion is possible, the time dependence 
is harmonic. But, because f ( t )  is a real function, A2 must be the complex conjugate of 
Al . Then, as in Sec. 4.1, solution (7.75) can be expressed in the form 

f ( t )  = Ccos(wt - 4)  (7.76) 

where C is an arbitrary constant, w the frequency of the harmonic motion and 4 its phase 
angle, all three quantities being the same for every coordinate qJ ( t )  ( j  = 1 ,  2 ,  . . . , n ) .  

To complete the solution of Eqs. (7.65), we must determine the amplitudes u, ( j  = 
1 ,  2 ,  . . . , n) .  To this end, we turn to Eqs. (7.70), which constitute a set of n homogeneous 
algebraic equations in the unknowns u l ,  with X = w2 playing the role of a parameter. 
The problem of determining the values of w2 for which nontrivial solutions u j  ( j  = 
1, 2,  . . . , n )  of Eqs. (7.70) exist is known as the characteristic-value, or eigenvalue 
problem. In particular, it is known as the algebraic eigenvalue problem. 

It is convenient to write Eqs. (7.70) in the matrix form 

Equation (7.77) represents the eigenvalue problem associated with matrices M and K 
and it possesses nontrivial solutions if and only if the determinant of the coefficients 
vanishes. This can be expressed in the form 

where a ( w 2 )  is called the characteristic determinant, or the characteristic polynomial, 
with Eq. (7.78) itself being known as the characteristic equation, or frequency equation. 
The characteristic polynomial is of degree n in w2, and possesses in general n distinct 
roots, referred to as characteristic values, or eigenvalues. The n roots are denoted by 
w:, wz, . . . , w: and the square roots of these quantities are the system natural frequencies 
w, (r = 1, 2, . . . , n) .  The natural frequencies can be arranged in increasing order of 
magnitude, namely, wl < w2 < . . . < w,. The lowest frequency wl is referred to as 
the fundamental frequency, and for many practical problems it is the most important 
one. In general, all frequencies w, are distinct and the equality sign never holds, except 
in degenerate cases. Such cases are very rare and cannot occur in one-dimensional 
structures; they can occur in two-dimensional symmetric structures. It follows that there 
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are n frequencies wr (r  = 1 ,  2 , .  . . , n )  in which harmonic motion of the type (7.76) is 
possible. 

Associated with every one of the frequencies wr there is a certain nontrivial vector 
U ,  whose components u,, are real numbers, where ur is a solution of the eigenvalue 
problem, and hence it satisfies 

The vectors ur (r = 1 ,  2 ,  . . . , n )  are known as characteristic vectors, or eigenvectors. 
The eigenvectors are also referred to as modal vectors and represent physically the so- 
called natzdral modes. These vectors are unique only in the sense that the ratio between 
any two components u,, and u,, is constant. Because Eq. (7.77) is homogeneous, if 
ur is a solution of the equation, then arur is also a solution, where cur is an arbitrary 
constant. It follow that the shape of the natural modes is unique but the amplitude is not. 

If the magnitude of the eigenvector ur is assigned a certain value, then the eigen- 
vector is rendered unique. The process of adjusting the magnitude of the natural modes 
to render them unique is called normalization, and the resulting eigenvectors are referred 
to as normal modes. A very convenient normalization scheme consists of setting 

which has the advantage that 

This can be easily shown by premultiplying both sides of Eq. (7.79) by u:. Note that if 
this normalization scheme is adopted, and if the elements m,, of the mass matrix M have 
units kg, then the components of u: have units kg-'/'. This, in turn, establishes the units 
of the constant C in Eq. (7.76), as can be concluded from Eqs. (7.66). Another frequently 
used normalization scheme consists of setting the value of the largest component of the 
modal vector ur equal to 1 ,  which may be convenient for plotting the modes. Clearly, 
the normalization process is devoid of physical signijcance and should be regarded as 
a mere convenience. 

In view of Eqs. (7.66) and (7.76), we conclude that Eq. (7.64) has the solutions 

where 

in which Cr and 4, are constants of integration representing amplitudes and phase angles, 
respectively. Hence, the free vibration problem admits special independent solutions in 
which the system vibrates in any one of the natural modes. These solutions are referred 
to as natural motions. Then, invoking the superposition principle, we can write the 
general solution of Eq. (7.64) as a linear combination of the natural motions, or 
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where U = [ul u2 . . . u,] is the modal matrix and f ( t )  = [ fl ( t )  f2(t) . . . f, ( t ) lT is a 
vector with components given by Eqs. (7.83). The constants C, and 4, entering into f ( t )  
depend on the initial conditions q(0)  and q(O), as well as on the normalization scheme 
used for u, (r = 1,2, . . . , n). In Sec. 7.10, we obtain solution (7.84), together with the 
evaluation of the constants of integration, by a more formal approach, namely, by modal 
analysis. 

The motion characteristics described above are typical of positive definite systems, 
i.e., systems for which the mass and stiffness matrices are real, symmetric and positive 
definite. In the case in which the stiffness matrix is only positive semidefinite, there 
is at least one eigenvector, say us, such that Ku, = 0. In this case, the system is not 
fully restrained, and us represents a rigid-body mode with the corresponding natural 
frequency equal to zero, w, = 0,  as can be concluded from Eq. (7.79). Of course, in this 
case the function f, is not harmonic as in Eq. (7.83). 

It must be emphasized at this point that the developments in this section were 
merely to gain some insight into the free vibration characteristics of conservative systems, 
and are not be be construed as a way of solving eigenvalue problems. In fact, the opposite 
is true, as the approach based on the characteristic determinant is not recommended when 
the number of degrees of freedom is three and higher. Indeed, by now there is a large 
variety of efficient numerical algorithms capable of solving eigenvalue problems for 
systems with many degrees of freedom, some reaching into the thousands. We consider 
the question of solving algebraic eigenvalue problems in Sec. 7.18, which also includes 
a MATLAB computer program. 

Example 7.5. Consider the three-degree-of-freedom system of Example 7.1 and solve the 
associated eigenvalue problem for the parameters ml = m2 = m, m3 = 2m, cl = c2 = 
c3 = 0, kl  = k2 = k ,  k3 = 2k. Then, derive the solution to the free vibration problem for 
the ~nitial excitations q(0) = qo[l 2 31T, q(0) = 0. 

Inserting the given parameters into Eqs. (c) and (e) of Example 7.1, we can write the 
mass matrix 

and stiffness matrix 

respectively; the damping matrix C is zero. Then, introducing Eqs. (a) and (b) in Eq. (7.78) 
and expanding the characteristic determinant, we obtain the frequency equation 



Using the Newton-Raphson method, we obtain the three roots 

k k k 
w: =0.1392-, w; = 1.7459-, w; =4.1149- 

rn rn rn 

so that the natural frequencies are 

To determine the modal vectors, we insert w: (r = 1,2,3) into Eq. (7.79), in sequence, 
and solve the corresponding algebraic equations. For r = 1, Eq. (7.79) can be written in 
the scalar form 

where we took into consideration that M is diagonal and K is symmetric. Equations (f) 
are homogeneous, so that no unique solution is possible. Indeed, a solution with all its 
components multiplied by the same constant is also a solution. The implication is that one 
of the three components can be assigned an arbitrary value, which renders the remaining two 
components unique. This also implies that now we have three equations and two unknowns, 
so that one of the equations is redundant, i.e., one is a linear combination of the other two. 
It follows that we need solve only two equations in two unknowns. Choosing arbitrarily 
u3 = 1, using the indicated values from Eqs. (a), (b) and (d) and retaining the first two of 
Eqs. (f), we have 

Equations (g) have the solution 

which can be combined with u3 = 1 to yield the first modal vector 

It should be pointed out that assigning an arbitrary value to any other component of the modal 
vector, or solving any other pair of equations for the other two components, would have 
yielded essentially the same modal vector. The only difference would have been that the 
magnitude of all three components of the modal vector would have changed proportionally. 

Following the same procedure, the other two modal vectors can be shown to be 

and we note that all modal vectors have been normalized so that the component largest in 
magnitude is equal to 1. The modes are plotted in Fig. 7.5. We observe that in the first 



FIGURE 7.5 
Natural modes 

mode all displacement components have the same sign, in the second mode there is one sign 
change and in the third mode there are two sign changes. This is typical of modal vectors 
for chainlike systems of the type considered here. 

According to Eq. (7.84), in conjunction with Eqs. (7.83), the solution of the free 
vibration problem has the general form 

3 3 

q(t) = C u r f r ( t )  = E c r u ?  ~ ~ s ( w r t - + r )  
r=l r=l 

0.4626 
= CI [ a:;;; ] cos(o.373 1 g 1 -  1 

I ~ 
1 .oooo 

I 

I I 
+ c2 [ -;:a;;; ] cos ( . 3 3 g t  - +z) 

I 

-0.4728 

-b 3 [ -::::): ] COS ( 2 . 0 2 8 5 g t  - 4 3 )  (k) 



where C, and 4, ( r  = 1,2,3)  are amplitudes and phase angles, constants of integration 
depending on the initial displacement vector q(0) and initial velocity vector q(0). 

To determine the constants C, and $, (r  = 1, 2, 3), we let t = 0 in Eq. (k) and equate 
the result to q(0) = qo[l  2 31T, so that 

0.4626 1 .0000 
q(0) = CI [ 0.8608 ] cos$l + G [ 0.2541 ] c0s41 

1 .0000 -0.3407 

Moreover, differentiating Eq. (k) with respect to time, letting t = 0 and equating the result 
to q(0) = 0, we have 

Equation (m) represents three homogeneous algebraic equations in the unknowns C1 sin $1, 
C2 sin $2 and C3 sin $3. For a nontrivial solution to exist, the determinant of the coefficients 
must be equal to zero. But, the columns of the determinant represent the modal vectors, 
which are orthogonal, and hence independent by definition. It follows that the determinant 
cannot be zero, so that Eq. (m) can only be satisfied trivially, or 

Because the case C1 = C2 = C3 = 0 must be ruled out, we conclude that 

$1 = $2 = 43 = 0  (0) 

so that all three phase angles are zero. Inserting Eqs. (0) into Eq. (l), we obtain three 
nonhomogeneous algebraic equations in the three unknowns C1, C2 and C3, as follows: 

0.4626Cl -k C2 - 0.4728C3 = qo 

Using Gaussian elimination with back substitution, we obtain the solution 

so that, introducing Eqs. (q) in Eq. (k), the solution of the free vibration problem takes the 
explicit form 



It should be pointed out that the computations were carried out with six decimal figures 
accuracy, but the results were rounded to four decimal figures to save space. 

We observe that the contribution of the first mode to the response is significantly 
larger than the contribution of the other two modes. This can be easily explained by the 
fact that the initial displacement configuration resembles the first modal vector much more 
than the other two modal vectors. 

It is perhaps appropriate at this juncture to return to the question of the arbitrariness 
of the modal vectors. Normalization of a vector amounts to assigning a given value to 
the magnitude of the vector. This in no way affects the response, because the constant 
representing the associated amplitude must be adjusted so that the response match the 
initial conditions. As an illustration, if ul is normalized again by multiplying the old vector 
by the constant a, then the new value of C1 would be the old value divided by a. 

7.7 ORTHOGONALITY OF MODAL VECTORS 

The natural modes possess a very important and useful property known as orthogonality. 
This is not an ordinary orthogonality, but an orthogonality with respect to the mass 
matrix M, as well as with respect tp the stiffness matrix K.  We introduced the concept 
of orthogonality briefly in Sec. 5.6 in the context of two-degree-of-freedom systems 
and then in Sec. 7.5. In this section, we provide a formal proof of the orthogonality of 
modal vectors for multi-degree-of-freedom systems, and in Sec. 7.10 we show how this 
orthogonality can be used to obtain the response of vibrating conservative systems. 

We consider two distinct solutions of the eigenvalue problem, w:, u, and w:, us. 
These solutions satisfy 

Premultiplying both sides of the first of Eqs. (7.85) by u: and of the second by u:, we 
have 

Next, we transpose the second of Eqs. (7.86), recall from Sec. 7.4 that matrices M and 
K are symmetric and subtract the result from the first of Eqs. (7.86) to obtain 

2 2 T  (w, - w,)u, Mu, = 0 (7.87) 

Because in general the natural frequencies are distinct, w, # w,, Eq. (7.87) is satisfied 
provided 

which represents the orthogonality relation for the modal vectors u, and us. We note 
that the orthogonality is with respect to the mass matrix M, which plays the role of a 
weighting matrix. Inserting Eq. (7.88) into the first of Eqs. (7.86), it is easy to see that 
the modal vectors are also orthogonal with respect to the stiffness matrix K ,  



We stress again that the orthogonality relations, Eqs. (7.88) and (7.89), are valid only if 
M and K  are symmetric. 

The above orthogonality proof is predicated upon the natural frequencies being 
distinct. Actually, the orthogonality holds under broader conditions. Indeed, if the 
eigenvalue problem in terms of two real symmetric matrices, Eq. (7.79), can be reduced 
to an eigenvalue problem in terms of a single real symmetric matrix, then all the sys- 
tem eigenvectors are orthogonal, regardless of whether the system possesses repeated 
eigenvalues or not (Appendix C). Such a reduction is possible when one of the two real 
symmetric matrices is also positive definite, which is always the case in view of the fact 
that the mass matrix is positive definite by definition. 

If the modes are normalized, then they are called outhonoumal, and if the normal- 
ization scheme is according to Eq. (7.80), the modes satisfy the relations 

where Sr, is the Kronecker delta (see definition in Sec. 7.1). 
The eigenvalue problem and the orthonormality relations can be cast in a single 

matrix form, instead of an individual matrix-vector form for each of the modal vectors. 
To this end, we recall the definition U = [ul u2 . . . u,] of the modal matrix introduced 
in Sec. 7.6 in conjunction with the linear transformation (7.84) and observe that all the 
solutions of the eigenvalue problem, Eqs. (7.79), can be combined into the compact 
matrix equation 

K U  = M U Q  (7.91) 

where Q  = diag [wf w; . . . u:] is a diagonal matrix of the natural frequencies squared. 
Moreover, the orthonormality relations, Eqs. (7.80) and (7.81), can be combined into 

in which I is the identity matrix. 
The orthogonality property plays a crucial role in the vibration of multi-degree- 

of-freedom systems, as it forms the foundation for modal analysis whereby the response 
of a system can be represented as a linear combination of the natural modes. 

7.8 SYSTEMS ADMITTING RIGID-BODY MOTIONS 

The undamped free vibration of a multi-degree-of-freedom linear system, in which the 
system is capable of harmonic oscillation in any one or all of the modes of vibration, 
is typical of positive definite systems, i.e., systems defined by real symmetric positive 
definite mass and stiffness matrices. The behavior is somewhat different when the 
stiffness matrix is only positive semidefinite. 

As indicated in Sec. 7.4, when the mass matrix M is positive definite and the 
stiffness matrix K  is only positive semidefinite, the system is positive semidejinite. 
Physically this implies that the system is supported in such a manner that rigid-body 
motion is possible. When the potential energy is due to elastic effects alone, if the 
body undergoes pure rigid-body motion, i.e., without any elastic deformations, then the 



FIGURE 7.6 
Three disks on a shaft in torsion unrestrained at both ends 

potential energy is zero without all the coordinates being identically equal to zero. Such 
a semidefinite system is shown in Fig. 7.6, where the system consists of three disks of 
mass polar moments of inertia Il , I2 and I3 connected by two segments of a massless 
shaft of lengths L 1  and L2 and torsional stiffnesses G J1 and G J2, respectively. The 
system is supported at both ends by means of frictionless bearings in such a way that the 
entire system can rotate freely as a whole. Of course, torsional deformations can also be 
present, so that in general the motion of the system is a combination of rigid and elastic 
motions. Denoting by 0, ( t )  (i = 1,2,3)  the angular displacements and velocities of the 
three disks, the kinetic energy is simply 

where the mass matrix is diagonal, 

0 0 
(7.94) 

0 0 13 

On the other hand, the potential energy has the expression 

where the stiffness matrix has the form 

kl -k1 
IC= [ k  + k 2  (7.96) 

0 -k2 k2 

in which we have used the notation k, = G J, IL, (i = 1,2).  Using the same steps as in 
Sec. 7.6, we assume synchronous motion of the form 



where O, (i = 1,2,3) are constants and f (t) is harmonic, and obtain the eigenvalue 
problem 

It is not difficult to see that, by adding all the rows (or all the columns) of the 
stiffness matrix, Eq. (7.96), the determinant of K is equal to zero, so that K is singular. 
Moreover, the potential energy is nonnegative, so that the stiffness matrix, and hence 
the system, is only positive semidefinite. It follows that the system admits a rigid-body 
mode in which the shaft experiences no elastic deformation. The implication is that all 
three disks undergo the same rotation, so that the rigid-body mode must have the form 

in which is some arbitrary constant and 1 is a vector with all its components equal 
to unity. Inserting Eq. (7.99) into Eq. (7.98) and observing that 

independently of the values of kl and k2, we conclude that the eigenvalue problem does 
indeed admit as a nontrivial solution the rigid-body Oo = 1 mode with the zero natural 
frequency, wo = 0. Note that the rigid-body mode Oo is possible because both ends of the 
shaft are free. It is the only rigid-body mode possible for the system under consideration. 

Because the rigid-body mode, defined by the constant eigenvector Oo and zero 
natural frequency wo, is a solution of the eigenvalue problem (7.98), it follows that any 
other eigenvector, which can be identified as an elastic mode, must be orthogonal to it, 
namely, it must satisfy the condition 

where Oi (i = 1,2,3) are the components of O. Because Oo is nonzero by definition, 
Eq. (7.10 1) implies that 

But, in view of Eqs. (7.97), Eq. (7.102) can also be written in the form 

which implies physically that the system angular momentum associated with the elastic 
motion is equal to zero, where the momentum is about the axis of the shaft. Hence, the 
orthogonality ofthe rigid-body mode to the elastic modes is equivalent to the preservation 
of zero angular momentum in pure elastic motion. 

The general motion of an unrestrained system consists of a combination of elastic 
motions and rigid-body motions. Clearly, this type of motion is possible only for unre- 
strained systems, such as that shown in Fig. 7.6, because if one of the ends were to be 
clamped, then the reactive torque at that end would prevent rigid-body rotations from 



taking place. From Eq. (7.102), we conclude that, in the absence of external torques, 
the elastic motion must be such that the weighted average rotation of the system is zero, 
where the weighting factor for each rotation is the moment of inertia I, (i = 1,2,3). The 
equivalent statement for an unrestrained discrete system in translational motion is that, 
for no external forces, the system mass center is at rest at all times. 

As pointed out earlier, det K is equal to zero, so that K is a singular matrix, with 
the implication that the inverse matrix K - I  does not exist. Recalling that K-' = A 
is the flexibility matrix, this fact can be easily explained physically by recognizing 
that for an unrestrained system, which is only positive semidefinite, flexibility influence 
coefficients cannot be defined. If the interest lies in solving a positive definite eigenvalue 
problem, then one can remove the singularity of K by transforming the eigenvalue 
problem associated with the unrestrained system into one for the elastic modes alone, as 
shown in the following. 

Although there are three disks involved in the system of Fig. 7.6, as far as the 
elastic motion alone is concerned, this is not truly a three-degree-of-freedom system. 
Equation (7.103) can be regarded as a constraint equation and can be used to eliminate 
one coordinate from the problem formulation. Indeed, if we write 

it becomes immediately obvious that the coordinate $3 is not really needed to describe 
the elastic motion, because it is automatically determined as soon as Q1 and O2 are known. 
There is nothing unique about $3, as we could have eliminated either 81 or 02 from the 
problem formulation without affecting the final results. It is convenient to regard the 
original three-dimensional vector with components 81, Q2 and $3 as a constrained vector 
0 = [Q1 82 Q31T and the two-dimensional vector with components 01 and Q2 as an 
arbitrary vector 8' = [01 021T. Then, considering the identities Q1 = 01, 82 - 02 and 
using Eq. (7.104), we can write the relation between the two vectors in the form 

where 

plays the role of a constraint matrix. An expression similar to (7.104) exists for the 
angular velocities 8, (i = 1,2,3), so that we can write 

The linear transformations (7.105) and (7.107) can be used to reduce the kinetic 
and potential energy to expressions in terms of Q1 and Q2 and their time derivatives alone. 
Indeed, inserting Eq. (7.107) into Eq. (7.93) and recognizing that the vectors in (7.93) 
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are constrained, we obtain the kinetic energy 

. T  - . 'T  T = M e  = 46 cT&fcb' = ;efTMfb' (7.108) 

where 

Moreover, introducing Eq. (7.105) in Eq. (7.93, the potential energy becomes 

in which 

We observe that both M' and K f  are 2 x 2 symmetric matrices. But, unlike M and K ,  
the transformed matrices M' and K' are both positive definite. 

The eigenvalue problem associated with the transformed system is 

which possesses all the characteristics associated with a positive definite system. Its 
solution consists of the natural modes 0'1, 0; and the associated natural frequencies 
wl, w2, respectively. The modes 0; and 0; give only the rotations of disks 1 and 2. 
The rotations of disk 3 in these elastic modes are obtained by considering Eq. (7.105) 
and writing 

where the components of the modal vectors 01 and Oz are such that Eq. (7.104) is 
satisfied automatically. 

We stress again that Eqs. (7.1 13) represent the elastic modes only. In addition, 
for this semidefinite system, we have the rigid-body mode Oo = o O 1  with the natural 
frequency wo = 0. 

Example 7.6. Consider the unrestrained system of Fig. 7.6, let kl = k2 = k and I1 = 12 = 
I3 = I and obtain the natural modes of the system by solving a positive definite eigenvalue 
problem. 

The natural modes are obtained by solving the eigenvalue problem (7.112), where the 
transformed mass and stiffness matrices M' and K' are given by Eqs. (7.109) and (7.1 1 I), 
respectively. Using the data given above, the two transformed matrices have the explicit 
form 



and 

It is clear that the transformed matrix K' is positive definite. 
The eigenvalue problem for the system is obtained by inserting Eqs. (a) and (b) into 

Eq. (7.1 12). The solution of the eigenvalue problem is 

Using Eq. (7.106), we can write the constraint matrix 

so that, from Eqs. (7.113), the constrained modal vectors corresponding to the elastic modes 
are 

In addition, we have the rigid-body mode 

It can be verified that the three modes are orthogonal with respect to both the mass matrix 
M and the stiffness matrix K.  The modes are plotted in Fig. 7.7. 

From Fig. 7.7, we observe that in the first elastic mode the first and third disks 
have displacements equal in magnitude but opposite in sense, while the center disk is at 
rest at all times, as it coincides with a node. This mode is what is generally called an 
antisymmetric mode. On the other hand, in the second elastic mode, the first and third 
disks have displacements equal in magnitude and in the same sense, while the center disk 
moves in opposite sense. This is a synzinetric mode. In fact, the rigid-body mode is also 
a symmetric mode. Symmetric and antisymmetric modes are a common occurrence in 
systems with symmetrical parameter distributions, such as the system of Fig. 7.6. 



FIGURE 7.7 
Natural modes for the unrestrained system of Fig. 7.6 

7.9 DECOMPOSITION OF THE RESPONSE IN TERMS OF MODAL 
VECTORS 

The orthogonality of the modal vectors is of vital importance in the vibration of multi- 
degree-of-freedom conservative systems, as it permits expressing the response as a su- 
perposition of the modal vectors multiplied by some time-dependent functions known 
as modal coordinates. To introduce the idea, we express a three-dimensional vector r in 
terms of the rectangular components x ,  y,  z as follows: 

where i ,  j and k are unit vectors with directions coinciding with the directions of axes 
x, y and z,  respectively (Fig. 7.8). The components x, y and z of vector r can be 
obtained from Eq. (7.1 14) by means of the dot products 

The above resolution of r in terms of rectangular components is based on the fact that 
axes x , y and z are orthogonal. In fact, the unit vectors are orthonormal, as they satisfy 



FIGURE 7.8 
Resolution of a three-dimensional vector in terms of rectangular 
components 

The same operations can be expressed in a notation more consistent with our 
objective. To this end, we denote the three-dimensional vector by x and introduce 
column matrices equivalent to the unit vectors i ,  j, k, namely, 

so that the counterpart of Eq. (7.1 14) is 

where x, are components along orthogonal axes coinciding with the unit vectors e, (i = 
1,2,3) .  The unit vectors e, ( i  = 1,2,3)  are orthonormal, as they satisfy 

and we observe that Eqs. (7.1 19) are the counterpart of Eqs. (7.1 16), and they represent 
a much more compact form than Eqs. (7.116). Using Eqs. (7.11 8) and (7.119), we can 
express the components of x in the form 

Figure 7.9 shows the decomposition of x, and it represents the counterpart of Fig. 7.8. 
The advantage of the new notation is in that it permits easy extension to the n- 

dimensional case. Hence, following the same line of thought as above, an n-dimensional 



FIGURE 7.9 
Decomposition of a three-dimensional vector in terms of 
standard orthonormal unit vectors 

vector x can be decomposed as follows: 

where 

constitute a set of n orthonormal vectors known as standard unit vectors. 
The above developments are geometric in nature, so that the question arises as 

to how they relate to vibrations. Of course, the decomposition of a three-dimensional 
vector in terms of rectangular components is widely used in mechanics, but it is mainly 
as a means of treating the three components of a displacement vector, or force vector, 
simultaneously. In the vibration of n-degree-of-freedom systems the displacement vector 
u  has n components, but there would be no practical value in resolving u into components 
along the unit vectors el, e2, . . . , en. However, the decomposition of u  into components 
along a different set of orthogonal vectors has considerable value. In this regard, we recall 
that the modal vectors u, (r = 1, 2, . . . , n) are orthogonal, and they can be normalized 
so as to constitute a set of n orthonormal vectors. Hence, we can conceive of an n- 
dimensional vector space with axes defined by the unit modal vectors u ~ ,  u ~ ,  . . . , u, and 
resolve the displacement vector u  into components along these axes as follows: 



FIGURE 7.10 
Decomposition of an n-dimensional displacement 
vector in terms of orthonormal modal vectors 

where c, (r = 1,2,  . . . , n )  are the components in question. The decomposition is shown 
in Fig. 7.10. But, the modal vectors are not orthonormal in an ordinary sense, but or- 
thonormal with respect to the mass matrix M ,  as well as with respect to the stiffness 
matrix K ,  as they satisfy Eqs. (7.90). In view of this, we can determine the coeffi- 
cients c, (r = 1,2,  . . . , n )  by premultiplying Eq. (7.123) through by U F M  and using the 
orthonormality conditions, the first half of Eqs. (7.90), to obtain 

Similarly, premultiplying Eq. (7.123) through by U F K  and using the companion or- 
thonormality conditions, the second half of Eqs. (7.90), we can write 

Equations (7.123)-(7.125) provide the framework for modal analysis whereby a set of 
simultaneous ordinary differential equations describing the response of vibrating multi- 
degree-of-freedom conservative systems can be transformed into a set of independent 
equations. We refer to Eqs. (7.123)-(7.125) as the expansion theorem. 

The expansion theorem, Eqs. (7.123)-(7.125), can be cast in the matrix form 

where U is the modal matrix and c is an n-dimensional vector of coefficients defined by 

in which S2 is the diagonal matrix of natural frequencies squared. 
The natural frequencies and natural modes represent unique characteristics of the 

system, in the sense that they are fully determined by the mass matrix M and stiffness 
matrix K .  They always appear together in pairs w,, u, (r = 1, 2, . . . , n )  and every one 
of these pairs can be excited independently of any other pair. For example, if the system 
is excited by a harmonic force with frequency w,, then the system will vibrate with the 



same frequency w, and with the displacement configuration resembling the natural mode 
u,, and not any other mode us, s # r. Of course, in this case the system experiences 
resonance, in which case the motion tends to increase without bounds until the small 
motions assumption is violated and the solution ceases to be valid. On the other hand, 
if the system is imparted an initial excitation resembling the natural mode u,, then the 
ensuing motion will represent harmonic oscillation with the natural frequency w, and 
with the displacement configuration continuing to resemble u,. In general, however, for 
arbitrary excitations, the motion represents a linear combination of the natural modes 
with time-dependent amplitudes depending on the excitation. The determination of 
these amplitudes, commonly referred to as modal coordinates, is carried out by means 
of modal analysis, an approach used widely in vibrations. 

7.10 RESPONSE TO INITIAL EXCITATIONS BY MODAL ANALYSIS 

In Sec. 7.6, we have shown that the free vibration of multi-degree-of-freedom conser- 
vative systems can be expressed as a superposition of natural motions consisting of the 
natural modes u, multiplied by harmonic functions f, ( t )  with frequencies equal to the 
natural frequencies w, and with amplitudes C, and phase angles 4, (r = 1 ,  2 , .  . . , n). 
Whereas w, and u, depend on internal factors, namely, the system inertia and stiffness 
properties, C, and 4, depend on the initial excitations, which represent external factors. 
To determine w, and u, (r = 1,2, . . . , n) ,  it is necessary to solve an algebraic eigen- 
value problem defined by the mass matrix M and the stiffness matrix K. On the other 
hand, to determine the constants C, and 4,, it is necessary to force the general free 
vibration solution q( t )  to match the initial displacement and initial velocity vectors q(0) 
and q(0), respectively, as shown in Sec. 5.4 for two-degree-of-freedom systems. For 
multi-degree-of-freedom systems, a more efficient approach is required; modal analysis 
represents just such an approach. 

As shown in Sec. 7.6, the free vibration of multi-degree-of-freedom systems is 
described by a set of simultaneous, homogeneous ordinary differential equations, which 
can be written in the matrix form 

where the displacement vector q( t )  is subject to the initial conditions q(0) and q(0), in 
which all vectors are of dimension n. At a given time t = tl ,  the solution of Eq. (7.128) 
is q(t1). But, by the expansion theorem, Eq. (7.123), the solution q( t l )  can be regarded 
as a superposition of the normal modes u, (r = 1 ,  2. . . . , n). Denoting the coefficients 
c, for the particular configuration by q, ( t l )  (r = 1 ,  2, . . . , n), we can write 

Then, according to Eqs. (7.124) and (7.125), the coefficients in Eq. (7.129) are defined 

by 



But tl is arbitrary, so that its value can be changed at will. Because, Eqs. (7.129) and 
(7.130) must hold for all values of time, we can replace tl by t  and write in general 

and 

Equations (7.13 1) and (7.132) constitute the expansion theorem, written in a form directly 
applicable to the vibration of conservative systems. By analogy with Eqs. (7.126) and 
(7.127), they can be written in the compact matrix form 

where 

Next, we insert Eq. (7.133) into Eq. (7.128), premultiply through by uT, use Eqs. 
(7.134) and obtain 

Equation (7.135) represents a set of n independent modal equations of the form 

where rl, ( t )  are known as modal coordinates; they are subject to the initial conditions 
qr(O), +r(O) ( r =  1, 2 , . . .  ,n).  

Equations (7.136) resemble entirely the equation of a harmonic oscillator, Eq. 
(3.2). Hence, by analogy with Eqs. (3.10) and (3.13), we can write the solution of Eqs. 
(7.136) as 

in which, from the first of Eqs. (7.132) with t = 0, we obtain the initial modal coordinates 
and velocities 

If follows that the modal coordinates are 

T 1 qr(t) = nr Mq(O)cosw,t + -UTM~(O) sinwrt, r = 1,2, . . . , n (7.139) 
wr 

Finally introducing Eqs. (7.139) in Eq. (7.131), we obtain the response of multi-degree- 
of-freedom conservative systems to initial excitations in the general form 



At this point, we wish to demonstrate a statement made in the end of Sec. 7.9 that 
each of the natural modes can be excited independently of the other. To this end, we 
assume that the initial displacement vector resembles one of the modal vectors, say us, 
and that the initial velocity vector is zero. Hence, inserting q(0) = au,, q(0) = 0 into 
Eq. (7.140) and using the first of the orthonormality relations (7.90), we can write 

so that the response is indeed vibration in mode s alone. 

Example 7.7. Obtain the solution of the free vibration problem for the three-degree-of- 
freedom system of Example 7.5 by means of modal analysis. 

The free vibration response derived by means of modal analysis is given by Eq. 
(7.140), in which it is assumed that the modes have been normalized so as to satisfy Eqs. 
(7.92). The modal vectors, normalized so that the largest component is equal to 1, were 
computed in Example 7.5, so that they are in need of renormalization. Using the procedure 
of Example 7.4, the modal vectors normalized as required can be verified to be 

Hence, inserting Eqs. (a), as well as the pertinent data from Example 7.5, into Eq. (7.140), 
we obtain the desired response 

+ [ -::z 0.0896 ] c o s 2 . 0 2 8 5 ~ t }  

which is identical to that obtained in Example 7.5. 



7.11 EIGENVALUE PROBLEM IN TERMS OF A SINGLE 
SYMMETRIC MATRIX 

In Sec. 7.6, we have shown that the algebraic eigenvalue problem associated with a 
conservative n-degree-of-freedom system has the form 

K u  = W'MU (7.142) 

where u is an n-dimensional displacement vector and K and M are symmetric n x n 
stiffness and mass matrices, respectively. Moreover, M is positive definite and K can 
be positive definite or positive semidefinite. For the sake of this discussion, we consider 
the case in which M is not diagonal. 

There are many computational algorithms for solving the algebraic eigenvalue 
problem, but most of them are in terms of a single matrix. Eigenvalue problems in terms 
of a single matrix are said to be in standard form. Of course, it is always possible to 
multiply Eq. (7.142) through by M - l ,  or by K - ~  if K is nonsingular, which implies 
that K is positive definite, and obtain an eigenvalue problem in terms of a single matrix. 
However, by far the most efficient algorithms are for eigenvalue problems in which the 
single matrix is real and symmetric. 

Transformations of an eigenvalue problem from one in terms of two symmetric 
matrices, Eq. (7.142), to one in terms of a single symmetric matrix are possible provided 
one of the two matrices is positive definite, which is always true in the case at hand. 
Indeed, the mass matrix M is real symmetric and positive definite by definition. Hence, 
from linear algebra, the matrix M can be decomposed as follows: 

where L is a nonsingular lower triangular matrix. Equation (7.143) represents a Cholesky 
decomposition and the problem amounts to determining the matrix L for a given matrix 
M. Details of the algorithm for carrying out the Cholesky decomposition can be found 
in Ref. 13. Inserting Eq. (7.143) into Eq. (7.142), we have 

Next, we premultiply Eq. (7.144) through by L - I  and introduce the linear transformation 

T L u = v  (7.145) 
l' 

from which it follows that 

u = (LT ) - l v  = (L- l lTv  (7.146) 

Then, inserting Eqs. (7.145) and (7.146) into Eq. (7.142), we can write the desired 
eigenvalue problem in the standard form 

in which the coefficient matrix has the expression 

A = L - ~ K ( L - ' ) ~  = 

so that A is clearly symmetric. 



In some computational algorithms, it is desirable that the eigenvalues be inversely 
proportional to the natural frequencies squared, rather than directly proportional. This 
is possible only if the system does not admit rigid body modes. Using the Cholesky de- 
composition, Eq. (7.143), premultiplying both sides of Eq. (7.142) by K-' and dividing 
the result by w2, we can write 

Then, using Eq. (7.146) and premultiplying both sides of Eq. (7.149) by L T ,  we obtain 
the eigenvalue problem 

Av = Xv, X = l / w  2 (7.150) 

where this time the coefficient matrix has the form 

A = L ~ K - ~ L  = A~ 

Equations (7.150) and (7.151) explain why, for this second version to be valid, the system 
cannot admit rigid-body modes. Indeed, in the presence of rigid-body modes the stiffness 
matrix is singular and the frequencies associated with the rigid-body modes are zero, so 
that A and X do not exist. We note that the eigenvalue X and the coefficient matrix A 
defined by Eqs. (7.150) and (7.151) are the reciprocal of those defined by Eqs. (7.147) 
and (7.148). 

The solution of the eigenvalue problem given by Eqs. (7.147) and (7.148), or 
Eqs. (7.150) and (7.151), consists of the eigenvalues A, and the eigenvectors v, (r = 
1, 2, . . . , n) .  The eigenvectors are mutually orthogonal, as well as orthogonal with 
respect to the matrix A. Proof of orthogonality can be carried out by the approach used 
in Sec. 7.7. The eigenvectors can be conveniently normalized so as to satisfy 

After the eigenvalues A, and eigenvectors v, of A have been computed, they can 
be used to determine the natural frequencies w, and modal vectors u, (r = 1, 2, . . . , n ) ,  
where the latter satisfy the original eigenvalue problem, Eq. (7.142). The natural fre- 
quencies are equal to either 6 or 1 1 6 ,  depending on whether the standard eigen- 
value problem is defined by Eqs. (7.147) and (7.148), or by Eqs. (7.150) and (7.15 I) ,  
respectively, and from Eq. (7.146) the modal vectors are given by 

Inserting Eqs. (7.153) into Eqs. (7.152) and considering Eq. (7.142) with u and X replaced 
by u, and A,, respectively, we obtain 

T T 2 us Mu,  = S,,, us Ku, = wrSrS,  7,s = 1,2, ... , n  (7.154) 

so that the modal vectors u, (r = 1,2,  . . . , n )  obtained by solving the eigenvalue problem 
defined by Eqs. (7.147) and (7.148), or that defined by Eqs. (7.150) and (7.151), satisfy 
the orthonormality conditions (7.90), as is to be expected. 

The question arises as to whether one of the two versions of the eigenvalue problem, 
Eqs. (7.147) and (7.148), or Eqs. (7.150) and (7.15 I) ,  is to be preferred over the other. 



Clearly, in the case of semidefinite systems the only version possible is that given by 
Eqs. (7.147) and (7.148), as the version given by Eqs. (7.150) and (7.151) cannot tolerate 
singularities of the stiffness matrix. In view of this, the question can be asked as to why 
the second version is necessary at all. The answer is that, for some computational 
algorithms, the version given by Eqs. (7.150) and (7.15 1) is more desirable than that 
given by Eqs. (7.147) and (7.148). Indeed, some computational algorithms iterate to 
eigenvalues in descending order of magnitude, and accuracy is lost with each computed 
eigenvalue. If only a partial solution of the eigenvalue problem is of interest, then the 
algorithm computes the eigenvalues largest in magnitude. In vibrations, however, the 
interest lies in the lowest modes of vibration, i.e., those corresponding to the lowest 
natural frequencies, rather than the highest. These two seemingly contradictory factors 
are reconciled when the eigenvalues are inversely proportional to the natural frequencies, 
which points to the version given by Eqs. (7.150) and (7.151) as the desirable one. 

The most frequently encountered case is that in which the mass matrix M is 
diagonal, in which case the triangular matrix L reduces to a diagonal matrix of the form 

In this case, Eq. (7.148) can be written more explicitly as 

where kiJ (i, j = 1,2, . . . , n) are the stiffness coefficients. Moreover, Eq. (7.151) can be 
expressed as 

where aij ( i ,  j = 1,2, . . . , n) are the flexibility coefficients. In both cases, from Eq. 
(7.146), the modal vectors are related to the eigenvectors of A by 

7.12 GEOMETRIC INTERPRETATION OF THE EIGENVALUE 
PROBLEM 

In Sec. 7.1 1, we have shown that the eigenvalue problem for conservative vibrating 
systems can be defined in terms of a single real symmetric matrix A. This eigenvalue 
problem lends itself to a geometric interpretation that is not only interesting but also has 
practical implications. 

From Sec. 7.3, we conclude that to any real symmetric matrix corresponds a given 
quadratic form. Hence, corresponding to the n x n matrix A describing an n-degree-of- 
freedom system, we can write the generic quadratic form 

To introduce the geometric interpretation mentioned above, we consider first the case 
n = 2. Then, assuming that the matrix A is not only real and symmetric but also positive 



definite, the expression 

represents an ellipse, as shown in Fig. 7.11. From analytic geometry, the gradient V f 
has the mathematical expression 

and it represents geometrically a vector normal to the ellipse at the tip of the vector x,  
as depicted in Fig. 7.11. In general, the direction of V f differs from the direction of x .  
Notable exceptions are the positions in which the vector x is aligned with the principal 
axes of the ellipse, in which positions V f is aligned with x, so that V f and x are 
proportional to one another. Denoting the proportionality constant by 2X, we conclude 
that when the vector x  coincides with a principal axis, the gradient can be written in the 
form 

Comparing Eqs. (7.161) and (7.162), we obtain 

which represents the statement of the eigenvalue problem, Eq. (7.147) or Eq. (7.150). It 
follows that the solution of the eigerzvalue problem for a real symmetric positive definite 
matrix A can be interpreted geometrically as the determination of the principal axes of 
the ellipse f = x T A x  = 1, and vice versa. Although we reached this conclusion on the 
basis of the two-dimensional case, n = 2, the same conclusion is valid for n 3 (see 
Ref. 13, Sec. 5.1). 

Next, we solve the eigenvalue problem by finding the principle axes of the ellipse. 
To this end, we denote the principal axes by yl and y2 and the angle from xl to yl by 8, 
so that finding the principal axes amounts to finding the angle 0 for which the equation 

FIGURE 7.11 
Geometric interpretation of the eigenvalue problem for 
a real symmetric matrix 
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FIGURE 7.12 
Coordinate transformation for finding the 
principal axes of the ellipse 

of the ellipse reduces to its canonical form. From Fig. 7.12, this requires the coordinate 
transformation 

xl = yl cosd - y2 sin0 

x2 = y1 sinO+yzcosd 

which can be expressed in the matrix form 

x =  R y  (7.165) 

where 

cosd -sin8 
R = [  sine c o s ~  I 

represents a rotation matrix. Inserting Eq. (7.165) into Eq. (7.160) and recognizing that 
reduction off to canonical form implies elimination of cross products in the expression 
for f in terms of yl and y2, we write 

f = X ~ A X  = y T ~ T ~ ~ y  = Y T ~ Y  = I (7.167) 

in which 

D  = R ~ A R  = diag[dl d21 

Equation (7.168) represents an orthogonal transformation and the rotation matrix R is 
an orthogonal matrix. In fact, it is an orthonormal matrix, as it satisfies 

T R R = R R ~ = I  (7.169) 

where I  is the identity matrix. Equation (7.169) is in general true for transformation 
matrices representing rotations of orthogonal sets of axes. 

At this point, we return to the eigenvalue problem, Eq. (7.147) or Eq. (7.150), let 
n = 2 and write the two solutions in the compact matrix form 



where V = [vl vz] is the orthogonal matrix of eigenvectors and A = diag[Xl Xz] is 
the diagonal matrix of eigenvalues. Assuming that the eigenvectors vl and v2 have been 
normalized so as to satisfy Eqs. (7.152) and premultiplying Eq. (7.170) by vT, we obtain 

Contrasting Eqs. (7.168) and (7.171), we reach the unmistakable conclusion that 

or, the diagonal matrix of coeficients of the canonical form is the matrix of eigenvalues 
and the rotation matrix is the matrix of eigenvectors. Moreover, no normalization is 
necessary, as the matrix of eigenvectors is already orthonormal. 

There remains the question of the actual determination of A and V. To this end, 
we use Eqs. (7.166), (7.168) and the first of Eqs. (7.172) and write 

cos8 -sin8 
sin0 cos8 sin8 cos0 ] (7.173) 

which yields the three scalar equations 

0 = - (a1 - az2) sin 0 cos 8 + a12(cos2 0 - sin2 8) 

Recalling the trigonometric relations sin 20 = 2 sin 0 cos 19 and cos 28 = cos2 0 - sin2 0, 
the third of Eqs. (7.174) permits us to determine the angle 8 defining the direction of 
the principal axes by writing 

2~12 tan28 = ---- 
all -a22 

Our interest does not lie in the angle 8 itself but in the values of sin8 and cost). To 
determine these values directly, it is convenient to introduce the notation 

so that, introducing Eqs. (7.176) in Eq. (7.175), it is not difficult to verify that, for given 
values of b and c, the values of cos 0 and sin 8 can be computed, in sequence, by means 
of the formulas 

Then, inserting the values of sin0 and cos 8 thus computed into the first two of Eqs. 
(7.174), we determine the eigenvalues X1 and X2. Finally, inserting the same values of 
sin8 and cos 8 into Eq. (7.166) and considering the second of Eqs. (7.172), we obtain 



the orthonormal eigenvectors 

cos 0 - sin f3 
' I = [  sine ] $ ~ 2 = [  cosd ] 

which completes the formal solution of the eigenvalue problem. 
The process just described represents diagonalization of the matrix A through an 

orthogonal transformation in the form of a planar rotation annihilating the off-diagonal 
entry a12 in a single step. For n > 3, the same diagonalization process requires annihi- 
lation of all the n(n - 1)/2 off-diagonal entries aLJ ,  ( i ,  j = 1,2, . . . , n; i # j ) ,  which 
cannot be done in a single step. Indeed, the process requires a series of planar rotations, 
each time in a different plane. Moreover, the number of steps in the series cannot be 
specified in advance. The implication is that this is a numerical process yielding a di- 
agonal matrix iteratively. The off-diagonal terms are never reduced exactly to zero, but 
only approximately so, although they can be made as close to zero as desired. In fact, 
it is necessary to specify in advance a threshold value approximating zero, terminating 
the iteration process when all the off-diagonal entries fall below this value. This is the 
essence of the Jacobi method (see Ref. 13). 

Example 7.8. Solve the eigenvalue problem for the two-degree-of-freedom system of 
Example 7.4 by finding the principal axes of the corresponding ellipse. 

From Example 7.4, we obtain the mass and stiffness matrices 

Hence, including the parameters m and T / L  in X and using Eqs. (6.142), we can write the 
eigenvalue problem in the form given by Eq. (7.163), in which 

and 

The ellipse can be plotted by inserting the entries of A, Eq. (b), into Eq. (7.160); the plot is 
shown in Fig. 7.13. 

Using Eqs. (7.177) in conjunction with the values 

we obtain 

sin8 = 
b - -1/2/2 = -0.577350 

2(b2 + c2)'I2 cos 6' - 
2 ( ~ + ~ ) 1 ' 2  ~0.816497 



FIGURE 7.13 
Plot of the ellipse using the entries of the 
coefficient matrix A 

Hence, using the first two of Eqs. (7.174), we obtain the eigenvalues 

X I  = al l  cos2 0 + 2a~2s in0cos0+a~2 sin2 6 

and we note that X I  corresponds to the second natural frequency and vice versa. Moreover, 
using Eqs. (7.178), we can write the eigenvectors 

0.816497 1, v2 = [ -sin6 ] = [ 0.577350 ] 
-0.577350 cos 0 0.816497 (g) 

so that vl and v2 are really the second and first eigenvectors respectively. It is typical of the 
Jacobi method that the eigenvalues and eigenvectors may not appear in ascending order. 

As a matter of interest, we compute the natural frequencies and modal vectors. 
Introducing A1 and X2 from Eq. (f) in Eq. (c), we obtain simply 

Moreover, inserting Eqs. (g) in conjunction with the first of Eqs. (a) into Eq. (7.158) and 
recalling that v2 and vl are really the first and second eigenvector, respectively, we obtain 
the modal vectors 



and we observe that ul andu2 are orthonormal with respect to the mass matrix M, u? MU, = 
S,, ( r , s  = 1,2). 

7.13 RAYLEIGH'S QUOTIENT AND ITS PROPERTIES 

Rayleigh's quotient represents a unique concept in vibrations whose importance over a 
broad spectrum of problems is unparalleled. Indeed, it can be used to obtain a quick 
estimate of the lowest natural frequency and it serves as a key component in an algorithm 
for computing eigensolutions for discrete systems. Moreover, it plays a central role in 
a theory concerned with the derivation of approximate eigensolutions for distributed- 
parameter systems. Equally important is the fact that the concept can be used to gain 
physical insights into the behavior of vibrating systems. 

In Sec. 7.6, we have shown that the eigenvalue problem for a conservative system 
can be written in the form 

where M and K are real symmetric mass and stiffness matrices, respectively. The mass 
matrix is positive definite by definition and for the most part the stiffness matrix is 
also positive definite, although for certain systems it is only positive semidefinite. For 
an n-degree-of-freedom system, Eq. (7.179) has n solutions A,, u, (r = 1,2, . . . , n) 
satisfying 

2 Ku, = ArMur, A, = w,, r = 1,2, ... , n  (7.180) 

Premultiplying both sides of Eq. (7.180) by u: and dividing through by UTMU,, which 
represents a scalar, we can express the eigenvalues in the form of the ratios 

and we observe that the numerator is proportional to the potential energy and the de- 
nominator is a measure of the kinetic energy, both in the rth mode. 

Equation (7.181) permits us to calculate the natural frequencies w, provided the 
modal vectors u, are known (r = 1,2, . . . , n). This is of purely academic interest, 
however, as the modal vectors are not known, and in fact our objective is to develop 
techniques for computing them. To this end, if we repeat the foregoing process, but with 
X = w2 and u replacing A, = w: and u,, respectively, we obtain 

where R (u) is a scalar whose value depends on the vector u for given matrices K and 
M. The scalar R(u) is known as Rayleigh's quotient and it possesses very interesting 
and useful properties. To explain this statement, we regard u as an arbitrary vector and 
propose to examine the behavior of Rayleigh's quotient as the vector u changes. To this 
end, we recall from Sec. 7.8 that any n-dimensional vector u can be expressed as a linear 



combination of the system eigenvectors u, (r = 1,2, . . . , n) .  Hence, using Eqs. (7.123) 
and (7.126), we can write 

where U = [u, uz . . . un] is the modal matrix and c = [el cz . . . cnlT is a vector of 
coefficients. We assume that the modal vectors have been normalized so as to satisfy 
the orthonormality conditions 

in which I is the identity matrix and A = diag(X1 X2 . . . A,) is the diagonal matrix of 
eigenvalues. Inserting Eq. (7.183) into Rayleigh's quotient, Eq. (7.182), and using Eqs. 
(7.184), we obtain 

Next, we let u wander over the entire n-dimensional space and identify ci as the projection 
of u on the axis corresponding to the modal vector ui, as shown in Fig. 7.14. As 
long as the trial vector u remains reasonably far from the modal vectors ui, nothing 
significant happens to Rayleigh's quotient. Matters spring to life when u enters a small 
neighborhood of a given modal vector, say u, (Fig. 7.14), as in this case all projections 
of u on axes ui become small, except for the projection on u,. Hence, we can write 

FIGURE 7.14 
Trial vector u in the neighborhood of the modal vector 
UI 
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where the ratios E, = C ,  /c, represent small numbers. Introducing Eqs. (7.186) in (7.185), 
dividing top and bottom by c; and ignoring higher-order terms in E?, we obtain 

1=1 

2 #r 
R =  n . (A, + 2 X,E?) (1 - 2 6:) 

1=1 1=1 

1 #, 2 #r 

Equations (7.186) state that the vector u differs from the modal vector u, by a small 
quantity of first order in E. On the other hand, Eq. (7.187) states that R differs from the 
eigenvalue A, by a small quantity of second order in E. The implication is that Rayleigh 's 
quotient has a stationary value at an eigenvector u,, where the stationary value is the 
associated eigenvalue A, ( r  = 1,2,  . . . , n) .  

Of special interest in vibrations is the fundamental frequency. If the eigenvalues 
are arranged in ascending order, XI ( X2 . . . ( A,, then the fundamental mode ul 

corresponds to the lowest natural frequency w l  = A. Letting r = 1 in Eq. (7.187), we 
obtain 

But, because Xi > XI  ( i  = 2,3, . . . , n ) ,  we conclude that 

where the equality sign holds only if all t, are identically zero ( i  = 2,3, . . . , n) .  It follows 
that Rayleigh's quotient has a minimum value at the fundamental modal vectol; where 
the minimum value is thefindamental eigenvalue. Another way of stating the same thing 
is that Rayleigh's quotient is an upper bound for the lowest eigenvalue. 

The result embodied by inequality (7.189) is quite remarkable, and has far-reaching 
implications in vibrations. It states that, regardless of the value of the trial vector u, 
Rayleigh's quotient is always larger than the lowest eigenvalue. Moreover, if it is possible 
to guess a trial vector u differing from the lowest modal vector ul by a small quantity 
of first order in E, then Rayleigh's quotient yields an estimate differing from the lowest 
eigenvalue X I  by a small quantity of second order in t, where E is a small number. This 
suggests a quick way of estimating the fundamental natural frequency, which is for the 
most part the most important one. Fortunately, the shape of the lowest modal vector is 
the easiest to guess. Indeed, quite often extremely accurate estimates can be obtained 
by using as a trial vector the static displacement vector resulting from the system being 
loaded with forces proportional to the system masses. 
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Inequality (7.189) can also be interpreted as stating that 

where the notation implies that the minimum value of Rayleigh's quotient is obtained 
by allowing u to vary over the entire configuration space. The statement that XI is the 
minimum value of Rayleigh 's quotient is often referred to as Rayleigh 's principle. The 
principle plays a crucial role in the derivation of approximate solutions to the eigenvalue 
problem for distributed-parameter systems. 

Using similar arguments, it is not difficult to show that Rayleigh's quotient has a 
maximum value equal to A, at u = u,, but this statement is not nearly as useful as that 
concerning the minimum value. Although at times it is important to know the range of 
the natural frequencies, it is not easy to come up with a good guess for u,. 

In the foregoing discussion, we assumed that matrices M and K were given and 
examined the behavior of Rayleigh's quotient, Eq. (7.182), as u was allowed to vary over 
the configuration space. Equation (7.182) can also be used to examine how the natural 
frequencies change as the mass and stiffness properties of a system change for a given 
u. Indeed, from Eq. (7.182), we see that when the entries of the stiffness matrix increase 
in value the natural frequencies increase, and vice versa. On the other hand, when the 
entries of the mass matrix increase the natural frequencies decrease, and vice versa. 

Example 7.9. Consider the three-degree-of-freedom system of Examples 7.1 and 7.5 and 
obtain an estimate of the lowest natural frequency by means of Rayleigh's quotient. 

From Example 7.5, we have the mass and stiffness matrices 

Following the suggestion made earlier in this section, we choose as a trial vector for 
Rayleigh's quotient the vector of static displacements obtained by loading the system with 
forces proportional to the masses. To this end, we first write 

in which we chose c = l l m  as the proportionality constant. Then, recalling that the dis- 
placement vector u is related to the force vector by means of the flexibility matrix A, we 
use Eqs. (7.12) and the first of Eqs. (7.16) and obtain the trial vector 

Hence, inserting Eq. (c) into Eq. (7.1 82), we calculate the value of Rayleigh's quotient as 
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follows: 

so that the estimate of the lowest natural frequency is 

As a matter of interest, we calculate the percentage error incurred in using Rayleigh's 
quotient. To this end, we recall from the first of Eqs. (e) in Example 7.5 that the first natural 
frequency is 

so that the percentage error is 

Hence, the estimated first natural frequency differs from the actual one by less than one 
quarter of one percent, which is a remarkable result. This example demonstrates that 
Rayleigh's quotient is capable of yielding very accurate estimates of the lowest natural 
frequency. Of course, the example also demonstrates that the practice of using the static 
displacement vector as a trial vector is a sound one, as the static displacement vector tends 
to resemble closely the lowest mode of vibration. A comparison of vectors is not as simple 
as a comparison of scalars. To carry out such a comparison, we first normalize both vectors 
so that they have unit magnitude and then calculate the norm of the difference. Hence, using 
Eq. (c) of this example and Eq. (i) of Example 7.5. we can write the normalized vectors 

so that we define the error in the trial vector as follows: 

As far as trial vectors are concerned, this must be regarded as a small error, so that the 
chosen trial vector represents a very good guess for the lowest modal vector. Comparing 
Eqs. (g) and (i), we conclude that the error in the estimated first natural frequency is one 
order of magnitude smaller than the error in the trial vector, which is consistent with the 
stationarity property of Rayleigh's quotient. 



7.14 RESPONSE TO HARMONIC EXTERNAL EXCITATIONS 

We have shown in Sec. 7.1 that the equations of motion of a viscously damped n-degree- 
of-freedom system can be written in the compact matrix form 

where M, C and K are n x n symmetric mass, damping and stiffness matrices, re- 
spectively, q(t) is the n-dimensional displacement vector and Q(t) is the n-dimensional 
external excitation vector. 

In this section, we consider the case in which the excitation vector Q(t) is harmonic. 
Following the pattern established in Sec. 6.8, we assume that the excitation can be 
expressed in the form 

where Qo is a real vector of constant amplitudes and a is the excitation frequency. Then, 
the solution of Eq. (7.191), in conjunction with Eq. (7.192), can be written as 

in which qo is a complex vector. Inserting Eqs. (7.192) and (7.193) into Eq. (7.191), we 
have 

Dividing through by e"< Eq. (7.194) can be rewritten as 

where 

is the impedance matrix, encountered for the first time in Sec. 5.8 in conjunction with 
two-degree-of-freedom systems. Equation (7.195) represents a set of nonhomogeneous 
algebraic equations, whose solution is simply 

For convenience, we introduce the notation 

Z-' (ia) = G(ia) (7.198) 

where G(ia)  is a matrix of frequency response functions; they are related to the transfer 
functions that would result from a Laplace transformation of Eq. (7.191). Combining 
Eqs. (7.193), (7.197) and (7.198), we obtain 

Of course, as in Sec. 3.1, if the excitation is Qo cosat, we retain the real part of q(t), 
and if the excitation is Qo sin a t ,  we retain the imaginary part. 
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The approach just described is feasible only for systems with a small number 
of degrees of freedom, such as the two-degree-of-freedom system considered in Sec. 
5.8. As the number of degrees of freedom increases, it becomes necessary to adopt 
an approach based on the idea of decoupling the equations of motion. This approach 
is the modal analysis introduced in Ch. 5 and used in Sec. 7.10 to obtain the response 
of undamped systems to initial excitations. Of course, the modal analysis of Sec. 7.10 
works only for undamped systems, C = 0, and systems in which the damping matrix 
is a linear combination of the mass and stiffness matrices, where the latter is known as 
proportional damping. In the case of arbitrary damping, the decoupling can be carried 
out by means of a complex modal analysis, as shown in Sec. 7.16 

7.15 RESPONSE TO EXTERNAL EXCITATIONS BY MODAL 
ANALYSIS 

Equation (7.191) represents a set of n simultaneous ordinary differential equations. No 
analytical solution of the equations in coupled form is generally possible, so that the 
only alternative is to decouple them. This requires a coordinate transformation in which 
the transformation matrix is the modal matrix, as shown in Secs. 5.6, 5.10 and 7.10. 
The approach using the orthogonality properties of the modal matrix to render a set of 
simultaneous equations independent is known as modal analysis. The essence of modal 
analysis is to determine the response of an n-degree-of-freedom system by decomposing 
it in some fashion into n single-degree-of-freedom systems, determining the response of 
the single-degree-of-freedom systems and then combining the individual responses into 
the response of the original system. 

There are two cases in which this classical approach is possible. The first is the case 
in which the system is undamped and the second is the case of proportional damping, in 
which the damping matrix is a linear combination of the mass matrix and the stiffness 
matrix. 

7.15.1 Undamped systems 

In this case, the damping matrix is zero, C = 0, so that Eq. (7.191) reduces to 

We assume that the mass matrix M is positive definite and that the stiffness matrix is 
either positive definite or only positive semidefinite. 

As a preliminary to the use of modal analysis, we must solve the eigenvalue 
problem, which is given by 

Equation (7.201) has the solutions w;, u, (r = 1,2, . . . , n), where w, are the natural 
frequencies and u, are the natural modes, or modal vectors. If the modal vectors are 
normalized in some sense, then they are referred to as normal modes. It was shown in 
Sec. 7.7 that the modal vectors are orthogonal with respect to both the mass matrix and the 



stiffness matrix. The eigenvalues and eigenvectors can be arranged in the n x n matrices 
i2 = diag[wf wz . . . w:], U = [ul u.1 . . . unlT,  where U is the modal matrix. Moreover, 
it is convenient to normalize the modal matrix so as to satisfy the orthonorrnality relations 

U ~ M U  = I ,  U ~ K U  = C.2 (7.202) 

Next, we use the analogy with the approach of Sec. 7.10 and express the solution 
of Eq. (7.200) as a linear combination of the modal vectors as follows: 

in which qr(t )  represent modal coordinates and ~ ( t )  = [ql ( t )  v2( t )  . . . %(t)lT is the 
corresponding vector. Inserting Eq. (7.203) into Eq. (7.200), premultiplying the result 
by uT and considering Eqs. (7.202), we obtain 

where 

N( t )  = u T ~ ( t )  (7.205) 

is a vector of modal forces. Equation (7.204) represents a set of independent modal 
equations. For positive definite K, they have the scalar form 

in which 

Nr( t )  = U ; Q ( ~ ) ,  r = 1,2, ... , n  

are the individual modal forces. Equations (7.206) resemble the equation of an undamped 
single-degree-of-freedom system entirely. 

We consider first the case in which the external excitation is harmonic. Because 
for undamped systems there is no first derivative q ( t )  in the equations of motion, we can 
dispense with the complex notation and let the excitation have the real form 

Q( t )  = Qo cos a t  (7.208) 

where Qo is a vector of force amplitudes and a is the excitation frequency. Inserting Eq. 
(7.208) into Eq. (7.2071, we can write the modal forces 

Then, using the analogy with the response of undamped single-degree-of-freedom sys- 
tems to harmonic excitations, Eqs. (3.46) and (3.47), we conclude that the solution of 
the modal equations, Eqs. (7.206), in conjunction with the harmonic generalized forces 
given by Eqs. (7.209), is simply 

uTQo 
V T ( ~ )  = cosat, r = 1,2, ... , n  

w,2 - a2 
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Note that, this being a steady-state response, it is not advisable to add to it the effect 
of the initial excitations, which represents a transient response. Finally, inserting Eqs. 
(7.210) into Eq. (7.203), we obtain the steady-state harmonic response 

ur cos at (7.21 1 )  
r=l 

Equation (7.21 1) permits us to conclude that a resonance condition exists if the excitation 
frequency a is equal to one of the natural frequencies w, (r = 1,2, . . . , n). Moreover, if 
the excitation amplitudes vector Qo is proportional to the product of the mass matrix M 
and one of the modal vectors, say Qo == Muk, then the response is proportional to the 
kth mode. 

Next, we turn our attention to the case in which the external excitations are arbitrary. 
By the superposition principle (Sec. 1.12), the response to initial excitations and the 
response to external excitations can be determined separately and then combined linearly 
to obtain the total response. In Sec. 7.10, we determined the response of multi-degree- 
of-freedom systems to initial excitations by modal analysis, so that in this section it is 
only necessary to concentrate on the response to external excitations. The solution of 
equations of the type (7.206) was presented in Ch. 4 in conjunction with the response of 
single-degree-of-freedom systems to arbitrary excitations. Hence, letting m = 1, C = 0 ,  
wd = w,., x = q and F = N, in Eq. (4.76) and ignoring the contributions from the initial 
displacement and initial velocity, we cam write the particular solution of Eqs. (7.206) in 
the form of the convolution integral 

Then, inserting Eqs. (7.212) into Eq. ('7.203) and recalling Eqs. (7.207), we can write 
the response of an undamped n-degree-of-freedom system to external forces as follows: 

In the case in which the stiffness matrix K is only positive semidefinite, the system 
is positive semidefinite and it admits rigid-body modes with zero frequency (Sec. 7.8). 
In this case, assuming that there are i rigid-body modes, Eqs. (7.206) with wr = 0 reduce 
to 

; ir( t )=Nr(t) ,  Y = 1,2 ,... , i  

Equations (7.214) have the solution 



Hence, in the case in which the system is unrestrained the response to arbitrary excitations 
is 

7.15.2 Systems with proportional damping 

The linear transformation expressed by Eq. (7.203) uses the modal matrix corresponding 
to an undamped system. As indicated by Eqs. (7.202), the modal matrix U is able to 
diagonalize the mass matrix M and stiffness matrix K simultaneously. In general, the 
modal matrix is not able to diagonalize the damping matrix C. There is a special case, 
however, in which the modal matrix does diagonalize the damping matrix, namely, when 
the damping matrix can be expressed as a linear combination of the mass and stiffness 
matrices of the form 

where a: and /? are given constant scalars. Indeed, premultiplying Eq. (7.217) by L J T ,  
postmultiplying U and considering Eqs. (7.202), we obtain the diagonal matrix 

This special case is known as proportional damping. 
Next, we introduce Eq. (7.203) in Eq. (7.191), premultiply the result by uT, 

consider Eqs. (7.202) and (7.218) and obtain 

where N(t )  is given by Eq. (7.205). Then, recalling that Q = diag(wf wi . . . w:) and 
introducing the notation 

in which cr (r = 1,2, . . . , n )  are modal viscous damping factors, Eq. (7.219) can be 
rewritten in the form of the independent modal equations 

where N, ( t )  are modal forces having the form given by Eqs. (7.207). 
Equations (7.221) resemble entirely the equation of motion of a viscously damped 

single-degree-of-freedom system, so that we produce their solution by adapting results 
obtained in Secs. 3.1 and 4.7. We begin with the case in which the system is subjected to 



harmonic excitations. Because Eqs. (7.221) contain the first derivative 6, it is convenient 
to work with the complex notation. Hence, assuming that the actual system is subjected 
to the harmonic excitation 

where Qo is a vector of constant force amplitudes and a is the excitation frequency, and 
using Eq. (7.207), we obtain the modal forces 

Then, using the analogy with Eqs. (3.15), (3.20) and (3.21), the steady-state solution of 
Eqs. (7.221), in conjunction with Eqs. (7.223), is simply 

Of course, if the excitation is Q( t )  = Qo cos at, we retain only the real part of 7, (t), 
and if the excitations is Q( t )  = Qo sinat, we retain the imaginary part. Inserting Eqs. 
(7.224) into Eq. (7.203), we obtain the actual steady-state harmonic response 

The notation can be simplified by introducing the modal frequency responses 

so that the response can be rewritten as 

where 

is the magnitude of the modal frequency response G,  ( i a )  and 

4,. = tan-' 
2<,alw,. 

r = 1,2, ... , n  
1 - ( a / ~ , ) ~  ' 

is the phase angle. 
To determine the solution of Eqs. (7.221) for the case in which the modal forces 

N, ( t )  arise from arbitrary excitations, we once again invoke the analogy with viscously 
damped single-degree-of-freedom systems. To this end, we make appropriate notation 
adjustments in Eq. (4.76) and ignore the response to the initial displacement and velocity. 
Following these adjustments, the general solution of Eqs. (7.221) can be verified to be 

( t )  ~ ~ ( t - ~ ) e - ~ " ~ ' s i n ~ ~ ~ ~ d ~ , r = 1 , 2 ,  . . . ,  n S' (7.230) 
W d r  0 



where 

are frequencies of damped oscillation. The response of a proportionally damped system 
to external excitations is obtained by inserting Eqs. (7.230) into Eq. (7.203). The response 
to initial excitations can be obtained separately by the approach of Sec. 7.10 and added 
to the response to external excitations. 

If the system admits rigid-body motions, then the corresponding modal coordinates 
satisfy equations of the type (7.214), whose particular solution is given by Eqs. (7.215). 

Example 7.10. Use modal analysis to derive the response of the undamped three-degree- 
of-freedom system of Examples 7.1 and 7.5 to the excitation 

where ~ ( t )  is the unit step function. 
The equations of motion for the system are given in matrix form by Eq. (7.200), in 

which, from Example 7.5, the mass and stiffness matrices are 

1 0 0  2 -1 

(b) 
0 0 2  0 -2 

Moreover, the response is given by Eq. (7.203), where the modal matrix can be shown to 
be 

and note that the modal matrix has been normalized so as to satisfy U ~ M U  = I, where I 
is the identity matrix. 

Equation (7.203) calls for the modal coordinates %(t) (r = 1,2,3), given by Eqs. 
(7.21 2) in the form of convolution integrals in terms of the modal forces specified by Eqs. 
(7.207). Hence, inserting Eqs. (a) and (b) into Eqs. (7.207), we obtain the modal forces 

Before we evaluate the convolution integrals in Eqs. (7.212), we list the natural frequencies 
as follows: 



RESPONSE TO EXTERNAL EXCITATIONS BY MODAL ANALYSIS 343 

Then, inserting Eqs. (d) and (e) into Eqs. (7.212) and evaluating the integrals, we can write 

77272(t) = 0 ' 2 ~ w ~ Q 0  1' CZ(~ - T) sin w z r d i  = 0.299166Q0 (1 - cosWZt) 
4% 

(f) 
- - 

k 

r/3(t) = 0 . 2 ~ w ~ Q ~  &' ~ ( t  - r )  sin ~ 3 r d ~  = 0.268493 Q" (1 - COs W3t) 
f i w , "  

Finally, introducing Eqs. (c) and (f) in Eq. (7.203), we obtain the response 

-0.878183 

(g) 
0.268493 

From Eq. (g), we observe that the amplitude of the second mode is only about 4% 
of the amplitude of the first mode and that of the third mode is less than 1.6% of the first, 
which can be attributed to the fact that higher modes are more difficult to excite than lower 
ones. This is particularly true here, because there is only one force present and this force 
is acting on the third mass, which, for the system at hand, tends to excite the lowest mode 
the most. This can be explained by observing that the first mode has no sign changes, the 
second mode has one sign change and the third mode has two sign changes, so that the 
motion of some masses in the second and third mode oppose the force. 

Example 7.11. Solve Example 7.10 under the assumption that the system possesses pro- 
portional damping with the proportionality constants 

a = 0.2Jklm, p = 0.01Jmlk (a) 

As in the undamped case, the response of proportionally damped systems is given by 
Eq. (7.203), with the modal matrix in the form of Eq. (c) of Example 7.10. Moreover, the 
modal coordinates q, (t) (r = 1,2,3)  are given by the convolution integrals in Eqs. (7.230). 
Before we can evaluate the modal coordinates, we must calculate the modal damping factors 
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Cr and the frequencies of damped oscillation wd, (r = 1,2,3). Inserting Eqs. (a) of this 
example and Eqs. (e) of Example 7.10 into Eqs. (7.220), we can write 

so that 

The modal forces N, ( t )  (r = 1,2,3)  remain the same as in Example 7.10. Hence, intro- 
ducing Eqs. (b) and (c), as well as Eqs. (d) of Example 7.10, in Eqs. (7.230) and setting the 
initial modal displacements and velocities to zero, we obtain the modal coordinates 

- - 0171353Qoyhi [ ( 
k 

1 - e-0.108729t cos 1.3 16844 -t 
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- - 0.065249Qofi [ ( 
1 - e-0.120575t cos 2.021356 -t 

k 

Finally, inserting Eq. (c) of Example 7.10 and Eqs. (d) into Eq. (7.203), we obtain the 
response of the proportionally damped system 

+0.171353 1 - e-0.108729t cos 1.316844 - 1  [ ( t  

7.16 SYSTEMS WITH ARBITRARY VISCOUS DAMPING 

The equations of motion of an 1%-degree-of-freedom system with viscous damping are 
given in matrix form by Eq. (7.191). A solution of Eq. (7.191) by reducing the set of 
n simultaneous equations to a set of n independent equations can be obtained in the 
special case in which damping is of the proportional type, i.e., the damping matrix is 
equal to a linear combination of the mass matrix and the stiffness matrix. We discussed 
this case in Sec. 7.15. There are other cases in which Eq. (7.191) can be reduced to a set 
of independent equations, but these cases are seldom realized in practice. 

In the general case of viscous damping, the modal matrix does not diagonalize 
the damping matrix, so that no analytical solution of the equations of motion in the 
configuration space is possible. However, an analytical solution is possible in the state 



space. To this end, we introduce an obvious identity, use Eq. (7.191) and write 

Next, we define the state vector as the 2n-dimensional vector x(t) = [qT( t )  qT (t)lT 
and rewrite Eqs. (7.232) in the customary state form 

where 

are 2n x 2n and 2n x n coefficient matrices. Equation (7.233) represents the state equa- 
tions in matrix form. 

The solution of Eq. (7.233) can be carried out by means of a modal analysis in 
the state space. To this end, we consider the free vibration problem, obtained by letting 
Q(t) = 0 in Eq. (7.233), with the result 

Because Eq. (7.235) represents a homogeneous set of ordinary differential equations 
with constant coefficients, its solution has the exponential form 

where X is a constant scalar and x a constant vector. Inserting Eq. (7.236) into Eq. (7.235) 
and dividing through by ext, we obtain the algebraic eigenvalue problem 

which is said to be in standard form. But, unlike the eigenvalue problems encountered 
earlier in this chapter, the matrix A is nonsymmetric, # A, albeit real. Hence, 
the desirable properties of the eigenvalues and eigenvectors associated with symmetric 
matrices no longer exist. In particular, the eigenvalues and eigenvectors are no longer 
guaranteed to be real and the eigenvectors are no longer orthogonal. The solution of 
Eq. (7.237) consists of the eigenvalues A, and the eigenvectors x, (i = 1,2, . . . ,2n). 
The eigenvalues can be real or they can be complex. But, because A is real, if A, is a 
complex eigellvalue, then the complex conjugate is also an eigenvalue. Moreover, 
the eigenvector x, belonging to A, is also complex, and the eigenvector $ belonging to 
- 

A, is the complex conjugate of x,. 
Next, we consider the eigenvalue problem associated with the transposed matrix 
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But, because the determinant of A is equal to the determinant of AT (see Appendix C), 
the characteristic equation corresponding to Eq. (7.237) is the same as the characteristic 
equation associated with Eq. (7.238), or 

det[A - X I ]  = det[iIT - XI] = 0 (7.239) 

It follows that the eigenvalues of AT are the same as the eigenvalues of A. On the other 
hand, the eigenvectors of AT are not the same as the eigenvectors of A. We denote 
the eigenvalues and eigenvectors of by X I  and y, ( j  = 1,2, . . . ,2n),  respectively. 
Equation (7.238) can be transposed, with the results 

But, because of their position relative to A, the eigenvectors X I ,  x2, . . . , x2, are called 
right eigenvectors and yl , yz, . . . , y2, are known as left eigenvectors of A. The eigen- 
value problem for AT is caIled the adjoint eigenvalue problem. Consistent with this, 
the eigenvectors yl ,  y2, . . . , yz, are known as adjoint eigenvectors of the eigenvectors 
Xl,X2, . . .  3x2,. 

The right eigenvectors xl , x2, . . . , x2, are not mutually orthogonal, and neither 
are the left eigenvectors yl , yl,  . . . , y2,, SO that the question can be raised as to their 
usefulness. The two sets of eigenvectors, however, satisfy a certain type of orthogonality 
conditions, which makes them more useful than it may appear. To substantiate this 
statement, we recognize that the two sets of eigenvectors solve the eigenvalue problems 

and 

so that, premultiplying Eqs. (7.241) by y? and postmultiplying Eqs. (7.242) by x,, we 
obtain 

and 

Y F A X ~  = AJYTXI (7.244) 

respectively. Next, we subtract Eq. (7.244) from Eq. (7.243) and write 

(At - X , ) Y T X ,  = 0 (7.245) 

But, if X i  # X j ,  Eq. (7.245) can be satisfied only if 

Equation (7.246) states that the right eigenvectors of A are orthogonal to the left 
eigenvectors of A corresponding to distinct eigenvalues. It should be stressed here 



348 MULTLDEGREE-OF-FREEDOM SYSTEMS 

FIGURE 7.15 
Geometric interpretation of biorthogonality 

that this is not mutual orthogonality as for real symmetric matrices. Indeed, the type 
of orthogonality described by Eq. (7.246) is known as biorthogonality, and the right 
eigenvectors xi ( i  = 1,2, . . . ,2n) are said to be biorthogonal to the left eigenvec- 
tors yj  ( j  = 1,2, . . . ,2n),  and vice versa. Biorthogonality is illustrated for the two- 
dimensional case in Fig. 7.15. Moreover, inserting Eq. (7.246) in either Eq. (7.243) or 
Eq. (7.244), we conclude that 

so that the right eigenvectors x, are biorthogonal with respect to the matrix A  to the left 
eigenvectors yJ as well. When i = j ,  the products yTx, and y T ~ ~ ,  are not zero. It is 
convenient to normalize the two sets of vectors by insisting that 

in which case, from Eq. (7.243) or Eq. (7.2441, 

Equations (7.246) and (7.248) on the one hand and Eqs. (7.247) and (7.249) on the other 
hand can be combined by writing the biorthonormality relations 

and 

respectively, where S,, is the Kronecker delta. Because the eigenvalues A, and the right 
and left eigenvectors x, and y, respectively, are in general complex, the normalization 
process indicated by Eqs. (7.250) and (7.25 1) is not nearly as simple as for real symmetric 
matrices. 

The biorthogonality property possessed by the right eigenvectors x, ( i  = 1,2, . . . ,2n) 
and left eigenvectors yJ ( j  = 1,2, . . . ,2n)  of the nonsymmetric matrix A  forms the ba- 
sis for a modal analysis for the response of systems with arbitrary viscous damping in 
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a manner reminiscent of the modal analysis for undamped systems. To substantiate this 
statement, we consider a more general expansion theorem in the state space. To this 
end, we assume that an arbitrary 2n-dimensional state vector v .  generally complex can 
be expressed as the linear combination 

2n 

v = ~ 1 x 1  + a 2 ~ 2 + . . . + a 2 ~ x 2 ~  = C a L x ,  (7.252) 
1=1 

Then, premultiplying Eq. (7.252) by y; and using Eqs. (7.250), we can write 

Moreover, premultiplying Eq. (7.252) by y T ~  and considering Eqs. (7.253), we have 

T A,a, =y,  Av,  i = 1 , 2  ,..., 2n (7.254) 

We refer to Eqs. (7.252)-(7.254) as a state space expansion theovem. It is clear that, be- 
fore the state space expansion theorem can be used, it is necessary to solve the eigenvalue 
problem for real nonsymmetric matrices twice, once for A and once for AT. 

For future reference, we recast the preceding developments in compact matrix 
form. To this end, we introduce the matrix of eigenvalues A = diag[Xl A2 . . . A2n], of 
right eigenvectors X = [xl x2 . . . xzn] and of left eigenvectors Y = [yl y2 . . . Y ~ ~ ] .  Then, 
Eqs. (7.241) can be rewritten as 

AX = XA (7.255) 

and Eqs. (7.242) as 

A ~ Y  = Y A  (7.256) 

Similarly, the biorthonormality relations, Eqs. (7.250) and (7.251), take the form 

Y T x  = I (7.257) 

and 

respectively. Postmultiplying Eq. (7.257) by X-', we have 

yT  = X-l (7.259) 

so that, premultiplying Eq. (7.259) by X, we conclude that 

X Y ~  = I  (7.260) 

Then, premultiplying Eq. (7.258) by X and postmultiplying by X-l = y T ,  we obtain 

A = X A Y ~  (7.261) 

which represents a decomposition of A in terms of a product of the matrix of right 
eigenvector, the matrix of eigenvalues and the matrix of left eigenvectors transposed. 
Finally, the state space expansion theorem, Eqs. (7.252)-(7.254) have the matrix form 

v = X a  (7.262) 



where the coefficient vector is given by 

a =  y T v  (7.263) 

as well as by 

h a  = y T A v  (7.264) 

The expansion theorem forms the basis for a state space modal analysis. To this 
end, we assume a solution of the state equations, Eq. (7.233), as a linear combination of 
the right eigenvectors multiplied by modal coordinates as follows: 

2n 

x ( t )  =  XI + E2(f)xi + . + h n  (t)xin = C t r  ( f ) ~ r  = X<(t) (7.265) 
r=l  

Inserting Eq. (7.265) into Eq. (7.233), premultiplying through by yT and recognizing 
that X is a constant matrix, we have simply 

y T x i ( t )  = Y ~ A X S ( ~ )  + yT  B Q ( ~ )  (7.266) 

Then, using the orthonormality relations, Eqs. (7.257) and (7.258), we obtain 

where 

Equation (7.267) is recognized as a set of independent modal equations of the form 

in which 

are modal excitations. 
As in Sec. 7.15, we consider first the response to harmonic excitations. To this 

end, we assume that the excitation is given by 

where, as in Eq. (7.222), Qo is a vector of force amplitudes and a is the excitation 
frequency. Introducing Eq. (7.271) in Eqs. (7.270), we obtain the modal forces 

T nr ( t )  = yr B Q ~ ~ ~ ~ ~ ,  r  = 1,2, . . . ,2n (7.272) 

Then, we can write the solution of Eqs. (7.269) in the form 

tr ( t )  = Sir (ia)eLQt , r  = 1,2, . . . ,2n (7.273) 

Inserting Eqs. (7.273) into Eqs. (7.269), we obtain 

( i a  - A,) E, (ia)eiat - - y T ~ ~ o e i a t ,  r =  1,2 ,... ,2n (7.274) 

from which we conclude that 

. ) - Y:BQO 
fir l a  - --- , r = 1 , 2  ,..., 2n 

i a -  A, 



It follows that the modal coordinates are simply 

Finally, inserting Eqs. (7.276) into Eq. (7.265), we obtain the state vector 

Of course, as in Sec. 7.15, if the excitation is Q(t) = Qocosat, we retain Rex(t) as the 
response, and if the excitation is Q(t) = Qo sincut, we retain Imx(t). We recall that the 
upper half of x(t) represents displacements and the lower half consists of velocities. 

Next, we consider the response to arbitrary excitations. To this end, we begin 
with the solution of Eqs. (7.269), which can be obtained conveniently by the Laplace 
transformation method (Appendix B). Indeed, Laplace transforming both sides of Eqs. 
(7.269), we have 

s E r ( ~ ) - < r ( 0 ) = X r S r ( s ) + N r ( ~ ) ,  r = 1 , 2 ,  ... ,2n (7.278) 

where S, (s) = LI, (t) and Nr (s) = Ln, ( t )  are the Laplace transforms of E, (t) and 
n, (t), respectively, and tr (0) is the initial modal coordinate. The latter can be obtained 
by letting t = 0 in Eq. (7.265), premultiplying by yT and using the orthonormality 
relations, Eqs. (7.250); the result is 

&(O) = $x(o), r = 1,2, ... ,2n (7.279) 

where x(0) is the initial state vector. From Eqs. (7.278), we can write the transformed 
modal coordinates 

Then, from Appendix B, the inverse Laplace transform is 

[, (t) = C-l ST (s) = eXrt<, (0) + exr(t-T)nr (r)dr ,  r = 1,2, . . . ,2n (7.281) 1' 
Equations (7.281) can be combined into 

[ ( t )  = eAt[(0) + e A ( t - T ) n ( ~ ) d ~  d' 
The actual solution is obtained by inserting Eq. (7.282) into Eq. (7.265), with the result 

Then, recognizing that Eqs. (7.270) and (7.279) can be written in the compact form 

n(t) = yT B Q ( ~ )  (7.284) 

and 



respectively, we obtain the state response 

We refer to the process of solving the simultaneous state equations of motion, Eq. (7.233), 
by first solving twin state algebraic eigenvalue problems, then using the state space 
expansion theorem to decouple the state equations, solving the resulting independent 
modal equations and finally combining the modal solutions into Eq. (7.286) as the state 
space modal analysis. 

Equation (7.286) can be expressed in a different form. To this end, we observe 
that eAt can be expanded in the infinite series 

so that, premultiplying Eq. (7.287) by X and postmultiplying by yT and considering 
Eqs. (7.257), (7.260) and (7.261), we can write 

Hence, introducing Eq. (7.288) in Eq. (7.286), we obtain the state vector in the compact 
form 

where 

is known as the state transition matrix; it represents a series obtained from Eq. (7.287) 
by replacing t by t - 7. 

Although we obtained solution (7.289) beginning with a modal solution, the same 
solution can be obtained by a more direct approach (Ref. 13), without help from modal 
analysis. This implies that, to obtain solution (7.289), it is not really necessary to solve 
eigenvalue problems. 

Whereas both the modal solution, Eq. (7.286), and the transition matrix solution, 
Eq. (7.289), represent analytical solutions, they must in fact be evaluated numerically. 
Indeed, Eq. (7.286) requires the evaluation of eAt ,  as well as a convolution integral 
involving eA(t-') and Q(T), in addition to the solution of two algebraic eigenvalue 
problems for nonsymmetric matrices. Similarly, although Eq. (7.289) does not require 
the solution of eigenvalue problems, it does require the computation of the transition 
matrix eAt and a convolution integral involving eA@-') and Q(7). 

The transition matrix represents an infinite matrix series, and for practical reasons 
its computation necessitates truncation. The number of terms to be retained in the 
truncated series is dictated first of all by the accuracy desired. Then, for the chosen 
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accuracy, the number of terms depends on the eigenvalue of largest magnitude, in addition 
to the time t. To substantiate this statement, we observe fromEq. (7.288) that the behavior 
of eAt is the same as the behavior of eA< where the latter has the form 

But, the eigenvalues are in general complex, so that a typical eigenvalue can be expressed 
as 

where /A,( is the magnitude and 4,. the phase angle of A,. Hence, the rth diagonal 
element of eAt is given by the series 

Next, we consider the complex plane of Fig. 7.16 and observe that A, = IA, A: = 
IX, 12e21$r, A: = IX, )3e3c$r, . . . representcomplexvectorsof magnitude IA,I, I X , ~ ~ ,  JA, 1 3 ,  
. . . and phase angle $,, 2 4 ,  34,, . . . relative to the real axis, respectively. Indeed, 

e214r, e3'4r, . . . are all complex unit vectors, i.e., they all have magnitude equal to 
1 and they differ in direction only. Because the term s + 1 in series (7.293) is divided by 
the factorial s!, the series is guaranteed to converge, as s! will increase eventually faster 
than (I A, It)S, where the number of terms in series (7.293) required to achieve the desired 
accuracy depends on the value of (A, It. It follows that, for a given time t ,  the number of 
terms required depends on the magnitude I Az, I of the highest eigenvalue Azn. 

The transition matrix possesses a very interesting property, one that has significant 
computational ramifications as well. This property is known as the group property, and 

FIGURE 7.16 
Geometric Interpretation of the vectors, A, , A;, A:. . . 
in the complex plane 
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can be stated as 

The validity of Eq. (7.294) can be verified by considering Eq. (7.290). The implication 
of Eq. (7.294) is that, if the time interval is divided into two subintervals t2 - t1 and 
t3 - t2, then the transition matrix corresponding to t3 - tl is equal to the product of the 
transition matrices corresponding to t3 - t2 and t2 - tl . Generally, t2 bisects the interval 
tg - t l ,  SO that t2 = (tl + t3)/2.  Then, the computation of @(t3,  t l )  by computing first 
the matrix @(t3, (tl + t3)/2) = @ ((tl + t3)/2, t l )  = @(t3/2,  t1/2) and then squaring it 
can be shown to be more economical than by computing @(t3, t l )  directly. Of course, 
significant computational advantage accrues by dividing the time interval b - tl into 
a relatively large number k of very small subintervals At = (t3 - t l ) / k ,  where At is 
sufficiently small that eAAt can be computed with only three or four terms. 

Example 7.12. Determine the response of the two-degree-of-freedom system shown in 
Fig. 7.17 to the excitation 

by means of the approach based on the transition matrix, Eq. (7.289), wherec*(t) is the unit 
step function. The initial conditions are zero and the system parameters have the values 

The equations of motion have the form given by Eq. (7.191), in which 

are the configuration vector and force vector, respectively, and 

FIGURE 7.17 
Damped two-degree-of-freedom system 
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FIGURE 7.18 
Response of mz for the system of Fig. 7.17 

are the mass, damping and stiffness matrices. The equations can be rewritten in the state 
form given by Eq. (7.233), in which the state vector is simply 

Moreover, using Eqs. (7.216), the coefficient matrices are 

The response was computed using Eq. (7.289) with x(0) = 0. Note that in this 
particular case the integral in Eq. (7.289) can be evaluated analytically. Figure 7.18 shows 
the plot q2(t) versus t .  

7.17 DISCRETE-TIME SYSTEMS 

In Sec. 7.16, we studied the response of multi-degree-of-freedom systems with arbitrary 
viscous damping by means of state space techniques. In particular, we obtained the 
response in two different ways. In the first approach, we did it by means of a state space 
modal analysis amounting to solving two adjoint eigenvalue problems in the state space 
for the right and left eigenvectors and using the two sets of eigenvector in conjunction 
with a state space expansion theorem to decouple the state equations. The solution of 
the resulting first-order equations were solved with ease by the Laplace transformation 
method. The second approach is based on the state transition matrix and does not require 
the solution of eigenvalue problems. 



Although the solutions obtained in Sec. 7.16 represent analytical solutions, they 
involve the evaluation of convolution integrals, which almost always requires numerical 
integration. In view of this, it is often computationally advantageous to carry out the 
solutions in discrete time. To this end, we evaluate solution (7.281) at the discrete time 
t = t k  = k T ,  where k is an integer and T is the sampling period (Sec. 4.9), and write 

At the next sampling time, the solution is 

Then, assuming that the sampling period is sufficiently small that n , ( ~ )  can be regarded 
as being constant and equal to n r ( k T )  over the interval kT < T < kT + T ,  we can 
approximate Er (kT + T )  as follows: 

Next, we evaluate the integral on the right side of Eq. (7.297) by using the change of 
variables 

so that 

Hence, inserting Eq. (7.299) into Eq. (7.297), and omitting the sampling period T from 
the argument to simplify the notation, we obtain the recursive relation 

Equation (7.300) gives the 2n modal coordinates [,. (r = l , 2 ,  . . . ,2n)  in discrete 
time. Recalling the notation < = [El  E2 . . . E2,1T and A = diag[Xl X2 . . . XZn] from Sec. 
7.16, we can rewrite the equation in the vector form 
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Then, premultiplying Eq. (7.301) by the matrix X of right eigenvectors and using Eqs. 
(7.265), (7.268) and (7.279), we obtain 

where Y is the matrix of left eigenvectors, B is a matrix of coefficients defined by the 
second of Eqs. (7.234) and Q(k) is the force vector evaluated at t = k T .  Finally, recalling 
Eqs. (7.258)-(7.261) and (7.288), we can rewrite the discrete-time response of viscously 
damped multi-degree-of-freedom systems in the recursive form 

in which 

is the discrete-time transition matrix and 

where A is the coefficient matrix given by the first of Eqs. (7.234). 
From the preceding discussion, we conclude that, as in continuous time, there are 

two options for computing the response of multi-degree-of-freedom systems in discrete 
time, namely, through the modal approach given by Eq. (7.302), or by the discrete-time 
transition matrix approach given by Eq. (7.303). Use of Eq. (7.302) requires the solution 
of two adjoint eigenvalue problems in the state space for X, Y and A, as well as the 
computation of eAT. On the other hand, use of Eq. (7.303) requires the computation of 
the discrete-time transition matrix @ = eAT. In both cases, there is the task of choosing 
the sampling period T. As pointed out in Sec. 7.16, for a given desired accuracy, this 
choice affects the number of terms necessary to compute either eAT or eAT, as the case 
may be, and it depends on the magnitude /Xz, I of the highest eigenvalue. We observe that 
the additional task of solving eigenvalue problems in the modal approach is balanced by 
the significantly smaller effort required to compute eAT than to compute eAT. Indeed, 
whereas eAT represents 2n scalar series, eAT represents a 2n x 2n matrix series. Of 
course, the number of terms necessary for convergence is the same for eAT as for eAT, 
because this number is controlled by I X2,  I in both cases. 

Example 7.13. Solve the two adjoint eigenvalue problems for the viscously damped two- 
degree-of-freedom system of Example 7.12 and determine the sampling period T permitting 
the computation of eAT, or eAT, with six decimal places accuracy using only five terms in 
the series. Then, obtain the discrete-time response of the system and plot q2(k) versus k for 
k = 0,1, . . . , 8 /  T. Compare the discrete-time response with the continuous-time response 
obtained in Example 7.12 and draw conclusions. 

From Example 7.12, the continuous-time coefficient matrices are as follows: 



The solution of the two adjoint eigenvalue problems associated with the matrix A consists 
of the eigenvalues 

matrix of right eigenvectors 

and matrix of left eigenvectors 

For T = 0.066 s, we obtain an error in eAT equal to 0.942999 x lop6, so that we 
choose T = 0.066 s as the sampling period. Introducing this value of T in Eqs. (7.304) and 
(7.305), we obtain the discrete-time coefficient matrices 

and 

respectively. Finally, corresponding to the time interval of 8 s used in Example 7.12, we 
conclude that 81 T 2 121, so that k = 0,1,  . . . ,121. The discrete-time response is obtained 
by using Eq. (7.303) in conjunction with the values @ and given by Eqs. (e) and (f), 
respectively, as well as the discretized version of the continuous-time excitation vector 
given by the second of Eqs. (c) of Example 7.12. The discrete-time response is plotted in 
Fig. 7.18 and is indistinguishable from the exact continuous-time response. 
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7.18 SOLUTION OF THE EIGENVALUE PROBLEM. MATLAB 
PROGRAMS 

For systems with three or more degrees of freedom, the algebraic eigenvalue problem is 
essentially a numerical problem. It has been the subject of intense interest on the part 
of linear algebraists over the last five decades. Before the development of high-speed 
digital computers, the emphasis has been on efficient numerical algorithms in an effort 
to save computer time. These efforts have been very successful, resulting in a large 
variety of algorithms. In this section, we first survey some of the most widely known 
algorithms. Then, we present two MATLAB programs, one for conservative systems 
and the other for nonconservative systems. 

In Sec. 7.6, we introduced the eigenvalue problem for conservative systems and 
solved it by finding the roots of the characteristic polynomial. For a two-degree-of- 
freedom system, this amounts to solving a quadratic equation, a very simple task. For 
three-degrees-of-freedom and higher, finding the roots of a characteristic polynomial of 
an order equal to the number of degrees of freedom cannot compete in computational 
efficiency with other numerical techniques for solving the eigenvalue problem. Hence, 
we limit our survey to other techniques. 

Virtually all algorithms for solving the algebraic eigenvalue problem are iterative 
in nature. We consider first conservative systems and assume that the eigenvalue prob- 
lem has been reduced to one in terms of a single real symmetric matrix A, perhaps by 
the Cholesky decomposition (Sec. 7.1 1). One of the oldest methods is matrix iteration 
by the power method. The process iterates to the modes in descending order of mag- 
nitude of the eigenvalues and accuracy is lost with each computed mode. The method 
has some academic value, but is not recommended as a computational tool, except when 
the interest lies in a small number of modes. The Jacobi method reduces the matrix A 
to diagonal form through successive rotations of the type discussed in Sec. 7.12, each 
time annihilating an off-diagonal entry and its symmetric counterpart. At convergence, 
A reduces to the diagonal matrix of the eigenvalues and the product of rotation matri- 
ces reduces to the orthonormal matrix of eigenvectors. Perhaps the most widely used 
method for the computation of the eigenvalues of a matrix is the QR method. Before 
the QR method becomes competitive, it is necessary to tridiagonalize the matrix, which 
can be done by either Givens' or by Householder's method, and to introduce shifts in 
the eigenvalues. Then, the eigenvectors corresponding to the computed eigenvalues can 
be computed by inverse iteration, which involves solving sets of algebraic equation by 
means of Gaussian elimination and back substitution. 

In the case of nonconservative systems, the matrix A is nonsymmetric and the 
eigensolutions are generally complex. One algorithm capable of solving eigenvalue 
problems for nonsymmetric matrices is the power method, modified to handle complex 
eigensolutions and to compute both right and left eigenvectors. Its main advantage is 
that it is able to produce partial solutions. Far more widely used is the QR method, again 
modified to accommodate complex eigenvalues. Note that, before use of the QR method 
is considered, it is virtually necessary to reduce the nonsymmetric matrix A to Hessen- 
berg form, one in which all the entries below the first subdiagonal are zero. Then, the 
eigenvectors can be computed by inverse iteration suitably modified to produce right and 
left complex eigenvectors. Details of all these algorithms, as well as of other algorithms, 
can be found in Ref. 13. 



At this point, with the speed of digital computers increasing at a dizzying pace, 
efficiency of an algorithm takes a back seat to ease of programming. In this regard, 
MATLAB is the likely choice, as it provides subroutines that can be readily incorporated 
into programs. The MATLAB program 'evpc.ml for solving the eigenvalue problem for 
conservative systems, characterized by real symmetric matrices A, reads as follows: 

% The program 'evpc.mf solves the eigenvalue problem for conservative systems 

clear 
cl f 

M=[l 0 0;O 1 0;O 0 21; % mass matrix 
K=[2 -1 0; -1 3 -2;O -2 21; % stiffness matrix 
N=3; % dimension of the eigenvalue problem 
R=chol (M); % Cholesky decomposition using MATLAB function; R is upper 
% triangular 
L=Rf ; % lower triangular matrix as specified by Eq. (7.143) 
A=inv(L) *K*inv(Lt) % coefficient matrix according to Eq. (7.148) 
[x,W]=eig(A) % solution of the eigenvalue problem using MATLAB function 
v=inv(Lf)*x % transformation to modal matrix according to Eq. (7.153) 

for i=l:N, 
wl(i)=sqrt(W(i, i)); % setting the natural frequencies in an N-dimensional vector 

end 
[w, I]=sort(w 1) % arranging the natural frequencies in ascending order 

for j=l:N, 
U(:, j)=v(:, IQ)) % arranging the modal vectors in ascending order 

end 

Note that the program has been written to handle fully populated, albeit real symmetric 
and positive definite, mass matrices M. In the numerical example at hand, M is diagonal, 
so that the matrix L in the Cholesky decomposition is simply equal to ~ ' 1 ~ .  The MAT- 
LAB subroutine [x, W] = eig(A) yields unit eigenvectors x, and eigenvalues W, equal to 
w; (i = 1,2, . . . , N), but the eigenvalues are not in ascending order of magnitude. The 
program transforms the eigenvectors x, into the modal vectors u,, which are orthonor- 
ma1 with respect to M, and computes the natural frequencies and sets them in a vector 
format. Then, the natural frequencies are arranged in ascending order of magnitude and 
the modal vectors are made to conform to that order. The program is set to solve the 
eigenvalue problem for the system of Example 7.5. Note that the eigenvectors obtained 
in Example 7.5 are yet to be rendered orthonormal with respect to the mass matrix M, 
which is done in Example 7.7. 

For nonconservative systems, such as systems with arbitrary viscous damping, 
it is necessary to formulate the eigenvalue problem in the state space. Of course, the 
dimension of the eigenvalue problem is twice that for conservative systems and the 
matrix A is nonsymmetric. This presents no problem, as the same MATLAB subroutine 
works also for nonsymmetric matrices A, but now it is necessary to solve the eigenvalue 
problem for AT as well. Moreover, the eigensolutions are generally complex. The 
corresponding MATLAB program, entitled 'evpnc.mf, is as follows: 



% The program 'evpnc.mf solves the eigenvalue problem for nonconservative systems 

clear 
clf 

M=[l 0;O 21; % mass matrix 
C=[1.6 -0.8;-0.8 0.81; % damping matrix 
K=[5 -4;-4 41; % stiffness matrix 
N=4 % dimension of the eigenvalue problem 
A=[zeros(size(M)) eye(size(M));-inv(M)*K -inv(M)*C] % system matrix, first 
% of Eqs. (7.234) 
[U, D]=eig(A) % solution of the eigenvalue problem using MATLAB function 
[V, D]=eig(Af) % solution of the transposed eigenvalue problem 
for k=l :N, 

d(k)=(D(k, k)) % setting the eigenvalues in an N-dimensional vector 
end 
[d, I]=sort(d) % arranging the eigenvalues in ascending order of magnitude 
for j=l:N, 

X(:,j)=U(:, 10)) % arranging the right eigenvectors in ascending order 
Y(:j)=V(:, ICj)) % arranging the left eigenvectors in ascending order 

end 

B=Yf*X % normalization matrix 
X=X*inv(B) % matrix of normalized right eigenvectors 
Yf*X % check of satisfaction of Eq. (7.257) 
Yf*A*X % check of satisfaction of Eq. (7.258) 

We observe that in general there is some arbitrariness in the normalization process. In 
the present program, only the matrix X of right eigenvectors is being adjusted, and the 
matrix Y of left eigenvectors remains the same. Note that, following normalization, a 
verification of the orthonormality relations, Eqs. (7.257) and (7.258), is provided. The 
program is set to solve the eigenvalue problem for the system of Example 7.13. The 
eigenvalues to be obtained by this program are the same as those obtained in Example 
7.13. However, from a comparison of corresponding eigenvectors, it would be difficult 
to conclude that they are the same. Before we can conclude that the eigenvectors are 
the same, it is necessary to express the complex vector components in exponential form. 
Then, two complex eigenvectors are the same if the magnitudes of the corresponding 
vector components are proportional and the phase angles differ by the same amount (see, 
for example, Ref. 13, Sec. 6.16). 

7.19 RESPONSE TO INITIAL EXCITATIONS BY MODAL ANALYSIS 
USING MATLAB 

The MATLAB program 'rspin3.mf first solves the eigenvalue problem for a conservative 
system and then uses the modal information to compute and plot the response to initial 
excitations. The program reads as follows: 
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% the program in file 'rspin3.m' plots the response of a conservative system 
% to initial excitations computed by means of modal analysis 

clear 
clf 

M=[l 0 0;O 1 0;O 0 21; % mass matrix 
K=[2 -1 0;-1 3 -2;O -2 21; % stiffness matrix 
N=3; % dimension of the system 
R=chol(M); % Cholesky decomposition using MATLAB function; R is upper 
% triangular 
L=Rf; % lower triangular matrix as specified by Eq. (7.143) 
A=inv(L) *K*inv(Lf); % coefficient matrix according to Eq. (7.148) 
[x,W]=eig(A); % solution of the eigenvalue problem using MATLAB function 
v=inv(L')*x; % transformation to modal matrix according to Eq. (7.153) 

for i=l:N, 
w l(i)=sqrt(W(i, i)); % setting the natural frequencies in an N-dimensional vector 

end 
[w, I]=sort(wl); % arranging the natural frequencies in ascending order 

for j=l:N, 
U(:, j)=v(:, 16)); % arranging the modal vectors in ascending order 

end 

q0=[1;2;3]; qdot0=[0;0;0]; % initial displacement and velocity vectors 
t=[0:0.1:25]; % initial time, time increment, final time 

q=zeros (N,size(t,2)); 
for k= l :N, 

q=q+((U(:, k)'*M*qO*U(:, k))*cos(w(k)*t) 
+(U(:, k)'*M*qdotO*U(:, k))*sin(w(k)*t)/w(k)); 

% response vector according to Eq. (7.140) 
end 
plot (t,q) 

title ('Response to Initial Excitations') 
ylabel ('q_l(t),q_2(t),q_3(t)') 
xlabel ('t(s)') 

Note that, because of the way in which MATLAB treats the time t ,  namely, as a vector 
of discrete values, the statement for q(t) had to be changed by having the modal vector 
u, trade places with cosw,t and sinw,t. In this manner, q(t) plays the role of a matrix 
of dimensions N x (dimension oft),  where in this particular case dimension of t  = 250. 
The implication is that the response is processed in discrete time, although it exhibits all 
the characteristics of a continuous-time response. This program solves the same problem 
as that in Example 7.5. 

Finally, we observe that the equation for q is typed here in two lines, because it 
does not fit in a single line. In a MATLAB EditorIDebugger it does fit in one line, and 
should be typed so (see also related comment in Sec. 5.12). 



7.20 RESPONSE BY THE DISCRETE-TIME TRANSITION MATRIX 
USING MATLAB 

For systems with arbitrary viscous damping, the response must be obtained in the state 
space, which implies the use of the transition matrix. Of course, if the response is to be 
evaluated on a computer, then the state equations must be transformed to discrete time. 
The MATLAB program 'dtrsp3.m' plots the response of an arbitrarily damped system in 
discrete time, and reads as follows: 

% The program 'dtrsp3.m' plots the response of a damped system by the discrete-time 
% transition matrix 

clear 
clf 

M=[l 0;O 21; % mass matrix 
C=[1.6 -0.8;-0.8 0.81; % damping matrix 
K=[5 -4;-4 41; % stiffness matrix 
A=[zeros(size(M))) eye(size (M)); -inv(M) *K -inv(M)*C]; % system matrix, first of 
% Eqs. (7.234) 
B=[zeros (size(M)); inv(M)]; % coefficient matrix, second of Eqs. (7.234) 
TO=4; % rise time for the forcing function 
T=0.02; % sampling period 
N=2000; % number of samplings 
NO=TO/T; % number of samplings during rise time 

Phi=eye (size (A))+T*A+T2*A^2/2+T3*A^3/6+T4*AA4/24; % discrete-time 
% transition matrix, Eq. (7.304) 
Gamma=inv(A)*(Phi-eye(size(A)))*B; % discrete-time coefficient matrix, Eq. (7.305) 
x(:, l)=zeros((2*size(M)), 1); 

for k= 1 :N, 
if k<NO+l; Q2(k)=(k-l)/NO; else; Q2(k)=1; % force on mass m2 discretized in time 
end 

Q(:,k)=[O;Q2(k)l; % force vector 
x(:,k+l)=Phi*x(:,k)+Gamma*Q(:,k); % discrete-time state equations 

end 

k=[O:l:N]; 
plot (k,x(l,:),'.',k,x(2,:),'.') 
title ('System Response') 
ylabel ('q-1 (k),q_2(k)') 
xlabel ('k') 

The program solves the problem of Example 7.13. Note that it plots both displacements 
41 (t) and 42(t), whereas in Example 7.13 only q2(t) is plotted. 

7.21 SUMMARY 

The treatment of general multi-degree-of-freedom systems requires more advanced tech- 
niques than the treatment of two-degree-of-freedom systems studied in Ch. 5. In this 



regard, a blend of methods from vibrations and from linear system theory proves very 
effective. Concepts such as flexibility and stiffness influence coefficients play a useful 
role in the treatment of linear systems. In particular, the symmetry of these coefficients 
renders the determination of the response of conservative systems considerably simpler. 
Although quite often the derivation of the equations of motion can be carried out by 
means of Newton's second law, the method of choice is Lagrange's equations. 

The vibration of linear systems is described by sets of second-order ordinary dif- 
ferential equations defined by mass, damping and stiffness coefficients. In matrix form, 
they are defined by mass, damping and stiffness matrices, respectively. In general, the 
equations are simultaneous, so that it is not possible to solve one equation independently 
of the other. lmthe case of conservative systems, the basic approach to the solution is 
to carry out a transformation rendering the equations independent, which amounts to 
simultaneous diagonalization of the mass and stiffness matrices. To demonstrate the 
approach, it is necessary to consider first the free vibration problem and then examine 
the circumstances under which the system admits synchronous motions, in which the 
masses form a certain pattern whose shape remains the same during motion and whose 
amplitude varies harmonically with time. To determine these configurations and the 
associated frequencies, commonly known as modal vectors and natural frequencies, it 
is necessary to solve the eigenvalue problem. The eigenvalue problem is a classical nu- 
merical problem in linear algebra and can be solved by a variety of efficient computation 
algorithms. The modal vectors possess the orthogonality property, an important property 
that permits the simultaneous diagonalization of the mass and stiffness matrices. When 
the system is not completely restrained, it can undergo rigid-body motions with zero fre- 
quencies. The response of a multi-degree-of-freedom system to initial excitations and 
external forces can be expressed as a linear combination of the modal vectors multiplied 
by time-dependent modal coordinates. Then, the orthogonality of the modal vectors can 
be used to reduce the equations of motion to a set of independent second-order differ- 
ential equations for the modal coordinates, which can be solved by the methods of Chs. 
2-4. This approach is generally known as modal analysis. 

For many numerical algorithms, it is necessary to transform the eigenvalue problem 
in terms of two symmetric matrices M and K into one in terms of a single symmetric 
matrix A. The latter form can be used to show that the eigenvalue problem for a symmetric 
matrix can be interpreted geometrically as the problem of finding the principal axes of 
an ellipsoid through an orthogonal transformation representing a rotation of axes. This 
is the essence of a computational algorithm known as the Jacobi method. One of the 
most important concepts in vibrations is Rayleigh's quotient, defined as the ratio of 
two quadratic forms, the numerator being a measure of the potential energy and the 
denominator a measure of the kinetic energy. Rayleigh's quotient has a stationary value 
in the neighborhood of an intermediate modal vector and a minimum value equal to the 
lowest nat~~ral  frequency squared at the lowest modal vector. This property can be used 
to obtain a quick estimate of the lowest natural frequency by inserting into Rayleigh's 
quotient a trial vector resembling the lowest mode, such as the static displacement vector 
under forces proportional to the masses. 

Systems with proportional viscous damping can be treated by the same methods 
as those used for conservative systems. In the case of arbitrary viscous damping, it 
is necessary to transform the n  second-order differential equations into 2n first-order 



differential equations, which amounts to casting the problem in state form. The system 
matrix A in this case is a 2n x 2n nonsymmetric matrix. A modal analysis in the state 
space is possible and it involves two solutions of the eigenvalue problem, one for A and 
the other for A ~ .  Whereas the eigenvalues are the same, the eigenvectors of A differ from 
the eigenvectors of A ~ .  The two sets of eigenvectors are biorthogonal, which forms the 
basis for the state space modal analysis. The response of systems with arbitrary viscous 
damping can also be obtained, perhaps more directly, by a method based on the transition 
matrix. 

Except for some simple cases, virtually all multi-degree-of-freedom problems 
require computer solutions. In this regard, MATLAB has few peers. In this chapter, 
four MATLAB programs are presented, the first two for the eigenvalue problem, one 
for conservative and the other for nonconservative systems, the third for the response to 
initial excitations and the fourth for the response to external excitations by the discrete- 
time transition matrix. 

PROBLEMS 

7.1. The system shown in Fig. 7.19 consists of three lumped masses m, connected by an inexten- 
sible string and undergoing the vertical displacements yi ( t )  while acted upon by the forces 
F, ( t )  (i = 1,2,3), respectively. Assume that the displacements are small, so that the sine and 
the tangent of an angle can be approximated by the angle itself, and that the string tension T 
is constant and derive the equations of motion by means of Newton's second law. 

FIGURE 7.19 
Three lumped masses on a string 

7.2. Derive the equations of motion for the three-degree-of-freedom system shown in Fig. 7.20 
by means of Newton's second law. 

FIGURE 7.20 
Three-degree-of-freedom system 



7.3. The n-degree-of-freedom system shown in Fig. 7.21 represents a model of an n-story building 
and it consists of rigid slabs supported by columns in the form of beams clamped at both 
ends. Derive the equations of motion by means of Newton's second law. 

FIGURE 7.21 
n-story building 

7.4. Derive Newton's equations of motion for the system shown in Fig. 7.22. The angle 0 can be 
arbitrarily large. 

FIGURE 7.22 
Pendulum supported by a moving mass 



7.5. Derive Newton's equations of motion for the triple pendulum shown in Fig. 7.23. The angles 
0, (i = l ,2 ,3 )  can be arbitrarily large. 

FIGURE 7.23 
Triple pendulum 

7.6. The four-degree-of-freedom system shown in Fig. 7.24 represents a simplified model of 
an automobile. Assume that mass m0 undergoes small angular displacements and derive 
Newton's equations of motion in terms of the displacements xi ( t )  ( i  = 1,2,3,4).  

FIGURE 7.24 
Simplified model of an automobile 



7.7. The seven-degree-of-freedom system shown in Fig. 1.29b represents a model of an automo- 
bile. Assume that masses m,, (i = 1,2,3,4)  are symmetrically placed relative to axes y and 
z and that the angular displacements of mass mb about axes y and z are small and derive 
Newton's equations of motion. 

7.8. Derive the flexibility and stiffness influence coefficients for the system of Problem 7.1, arrange 
them in a flexibility matrix and a stiffness matrix, respectively, and show that the two matrices 
are the inverse of one another. 

7.9. Solve Problem 7.8 for the system of Problem 7.2 
7.10. Solve Problem 7.8 for the system of Problem 7.3 with n = 3. 
7.11. Derive the stiffness matrix for the system of Problem 7.1 by means of the potential energy 

expression. 
7.12. Derive the stiffness matrix for the system of Problem 7.2 by means of the potential energy 

expression. 
7.13. Derive the stiffness matrix for the system of Problem 7.3 by means of the potential energy 

expression. 
7.14. The system shown in Fig. 7.25 consists of three lumped masses m, connected by massless 

beams of flexural rigidity EI, ( i  = 1,2,3). The system is clamped at the left end and the 
slope of the deflection curve is continuous everywhere. Derive the flexibility matrix. 

EI,  ml E12 m2 El3 m3 
A ,-. 

1 1  t I 

FIGURE 7.25 
System consisting of three masses connected by beam 
segments and clamped at the left end 

7.15. Derive Lagrange's equations of motion for the system of Problem 7.4. Then, determine 
the equilibrium positions and derive the linearized equations of motion about each of these 
positions. 

7.16. Derive Lagrange's equations of motion for the system of Problem 7.1 for arbitrarily large 
displacements y, ( t )  (i = 1,2,3) .  Then, determine the equilibrium configuration due to the 
weight of the masses and derive the linearized equations of motion about the equilibrium. 

7.17. Derive the equations of motion for the system shown in Fig. 7.26 and arrange them in matrix 
form. Then, use the linear transformation z l ( t )  = x l ( t ) ,  z2( t )  = x2(t)  - x l ( t ) ,  z j ( t )  = 
x3 ( t )  - x2(t) to express the equations in terms of the coordinates z ,  ( t )  ( i  = 1,2,3)  as well 
as to symmetrize the new mass and stiffness matrices. Explain the connection between the 
coordinates used and the corresponding type of coupling in each of the two cases. 

FIGURE 7.26 
Three-degree-of-freedom system 



7.18. The four-degree-of-freedom system shown in Fig. 1.32a and described by Eqs. (1.130) is 
the same as that of Problem 7.6, the only differences lying in notation and in the use of 
coordinates defining the motion of the rigid beam. Express Eqs. (1.130) and the equations 
derived in Problem 7.6 in matrix form, examine the mass, damping and stiffness matrices for 
each case and draw conclusions concerning the nature of coupling. Explain how one set of 
mass, damping and stiffness matrices can be obtained from the other. 

7.19. Assume that all forces in Problem 7.1 are equal to zero, F, ( t )  = 0, and derive and solve the 
eigenvalue problem for the case in which m, = m (i = 1,2,3) ,  L, = L (i = 1,2,3,4). Plot 
the three modes and explain the nature of the mode shapes. 

7.20. Solve Problem 7.19 for the case in which ml = m2 = rn, rn3 = 2rn, L, = L (i = 1,2,3,4) .  
Compare the natural frequencies and mode shapes with those obtained in Problem 7.19 and 
explain the differences. 

7.21. Solve the eigenvalue problem for the system of Problem 7.2 for the case in which ml = m2 = 
rn, m3 = 2m, kl = k2 = k3 = k,  k4 = k5 = k6 = 2k and plot the natural modes. 

7.22. Solve the eigenvalue problem for the system of Problem 7.3 for the case in which n = 3 and the 
~ystemhasthepararnetersm~ =rn2=m3 =rn,EIl =EI2=EI3 = E I ,  H1 = Hz= H3 = H .  
Plot the natural modes. 

7.23. Consider the triple pendulum of Problem 7.5, linearize the equations of motion by assuming 
small angles 0, (i = 1,2,3) ,  solve the associated eigenvalue problem for the case in which 
rnl = rnz = m3 = m, L1 = L2 = L3 = L and plot the natural modes. 

7.24. Use the approach of Sec. 7.6 to determine the response of the system of Problem 7.19 to 
initial conditions for the two cases: 1) y(0) = [0 1 OIT, y(0) = 0 and 2) y(0) = [-1 0 l lT ,  
y(0) = 0. Draw conclusions as to the mode parhcipation in the response in each of the two 
cases. 

7.25. Determine the response of the system of Problem 7.19 to the initial conditions x(0) = 0, 
x(0) = [0 1 OIT by the approach of Sec. 7.6 and draw conclusions as to the mode participation 
in the response. 

7.26. Determine the response of the system of Problem7.22 to the initial conditions y (0) = [0 0 1lT, 
y(0) = 0 by the approach of Sec. 7.6. 

7.27. Venfy that the natural modes computed in Problem 7.19 are orthogonal. Then, normalize the 
modes so as the satisfy Eqs. (7.92). 

7.28. Verify that the natural modes computed in Problem 7.20 are orthogonal. Then, normalize the 
modes so as the satisfy Eqs. (7.92). 

7.29. Verify that the natural modes computed in Problem 7.21 are orthogonal. Then, normalize the 
modes so as the satisfy Eqs. (7.92). 

7.30. Verify that the natural modes computed in Problem 7.22 are orthogonal. Then, normalize the 
modes so as the satisfy Eqs. (7.92). 

7.31. The system shown in Fig. 7.27 consists of four masses connected by three springs. Show 
how the system can be reduced to a three-degree-of-freedom system for elastic displacements 
alone. 

FIGURE 7.27 
System consisting of four masses connected to springs and unrestrained at both ends 



7.32. The system shown in Fig. 7.28 consists of three lumped masses mi connected by massless 
beams of flexural rigidity E Ii and length Li (i = 1,2,3). The system is hinged at the left end 
0 and the slope of the deflection curve is continuous everywhere. In this case, the system is 
positive semidefinite and there exists a rigid-body mode in the form of pure rotation about 
point 0. Let mi = m,  E Ii = E I ,  Li = L (i = 1,2,3)  and derive the eigenvalue problem 
for the elastic displacements alone. Hint: Assume that the displacements of the masses 
consist of a rigid part and an elastic part, where the first is due to pure rotation about 0 and 
the second is due to flexure and is measured relative to the line of rotation. For the kinetic 
energy use absolute velocities, consisting of the sum of the rigid and elastic parts, and for the 
potential energy use only the elastic part of the displacements. Then, use the conservation of 
the angular momentum about 0 to eliminate the rigid-body rotation from the kinetic energy. 

FIGURE 7.28 
System consisting of three masses connected by beam 
segments and free to rotate at the left end 

7.33. The system shown in Fig. 7.29 consists of four lumped masses m, (i = 1,2,3,4)  connected 
by massless beams of flexural rigidity EI, and length L, (i = 1,2,3). The system is free 
at both ends and the slope of the deflection curve is continuous everywhere. In this case, 
the system is positive semidefinite and there exist two rigid-body modes in the form of 
pure transverse translation and pure rotation about the mass center C of the system. Let 
m, = m (i = 1,2,3,4) and E I, = E l ,  L, = L (i = 1,2,3) and derive the eigenvalue problem 
for the elastic displacements alone. Hints: Use the same approach as in Problem 7.32, except 
that now one must enforce the conservation of linear momentum in the transverse direction 
and the conservation of the angular momentum about the mass center C. 

FIGURE 7.29 
System consisting of four masses connected by beam 
segments and unrestrained at both ends 

7.34. Solve the eigenvalue problem for the reduced system of Problem 7.31. Then, obtain and plot 
the modes of the original system. 

7.35. Solve the eigenvalue problem for the reduced system of Problem 7.32. Then, obtain and plot 
the modes of the original system. 

7.36. Solve the eigenvalue problem for the reduced system of Problem 7.33. Then, obtain and plot 
the modes of the original system. 



7.37. Solve Problem 7.24 by modal analysis. 
7.38. Solve Problem 7.25 by modal analysis. 
7.39. Solve Problem 7.26 by modal analysis. 
7.40. Use Rayleigh's quotient to obtain estimates of the two lowest natural frequencies of the 

system of Problem 7.20. Use results from Problem 7.20 to calculate the error incurred and 
draw conclusions concerning the suitability of the approach to estimate the second lowest 
natural frequency compared to the lowest. 

7.41. Solve Problem 7.40 for the system of Problem 7.21. 
7.42. Solve Problem 7.40 for the system of Problem 7.22. 
7.43. Solve Problem 7.40 for the system of Problem 7.23. 
7.44. Use the approach of Sec. 7.14 to determine the response of the system of Problems 7.1 and 

7.20 to the harmonic excitation Fz(t) = Fo cos0.65t, Fl (t) = F3 (b) = 0. 
7.45. The system of Problem 7.44 is acted upon by the harmonic excitation Fl(t) = F2(t) = 

0, F3(t) = Focos0.65t. Determine the response, compare results with those obtained in 
Problem 7.44 and draw conclusions. 

7.46. Solve Problem 7.44 for the case in which the excitat~on frequency is 1.2 radls instead of 0.65 
radls. Compare results with those obtained in Problem 7.44 and draw conclusions. 

7.47. The foundation of a three-story building obtained by letting n = 3 in Fig. 7.21 experiences 
the horizontal harmonic displacement U ( t )  = uosin4.5t. Let m, = m, E l ,  = E l ,  H, = H 
(i = 1,2,3) and determine the response by the approach of Sec. 7.15. Discuss the mode 
participation in the response. 

7.48. Solve Problem 7.44 by modal analysis, compare results with those obtained in Problem 7.44 
and draw conclusions. Note that the required eigenvalue problem was solved in Problem 
7.20 and the natural modes were normalized in Problem 7.28. 

7.49. Determine the response of the triple pendulum of Problem 7.23 to a horizontal force in the 
form of an impulse of magnitude Fo applied at t = 0 to mass m3. 

7.50. The system shown in Fig. 7.30 has the following parameters: ml = m, m2 = m3 = 2m, 
kl = k2 = k, k3 = kq = 2k.  Determine the response to a force in the form of a rectangular 
pulse acting on m2, Fl(t) = 0, Fz(t) = Fo[w(t) -w(t - lo)], F3(t) = 0, where Fo is the 
pulse amplitude and w(t) the unit step function. 

FIGURE 7.30 
Undamped three-degree-of-freedom system acted upon by external forces 

7.51. Determine the response of the system of Problem 7.20 to the excitation Fl (t) = F3 (t) = 
(Fo/lO)[r(t) - t ( t  - lo)], F2(t) = 1.25(Fo/10)[r(t) - r(t - lo)], where Fo is a constant 
and r(t) is the unit ramp function. Discuss the mode participation in the response. 



7.52. Determine the response of the triple pendulum of Problem 7.49 to the same force as in 
Problem 7.49 under the assumption that the system is immersed in a fluid generating resisting 
forces proportional to the velocities of the masses, where the proportionality constants are 
cl = c2 = c3 = c = 0.1 m. 

7.53. The system of Problem 7.20 is immersed in a fluid generating resisting forces proportional to 
the velocities of the masses, where the proportionality constants are c, = 0 .  l m ,  (i = 1,2,3) .  
Determine the response to the forces Fl(t )  = 0 ,  F2(t) = Fo[m(t) - ~ ( t  - 5)] ,  F3(t) = 0, 
where Fo is a constant andtc(t) is the unit step function. 

7.54. The system of Fig. 7.31 has the following parameters: rnl = rn, rn2 = rn3 = 2rn, cl = c2 = 
0 . 1 m ,  c3 = c4 = 0.2&, kl = k2 = k ,  k3 = k4 = 2k. Determine the response to the 
forces Fl ( t )  = F3(t) = (Fo/5)[r ( t )  - r ( t  - 5 ) ] ,  F2(t) = 1 .25(Fo/5)[r(t) - r  ( t  - 5)] ,  where 
Fo is a constant and r  ( t )  is the unit ramp function. 

7.55. The system of Fig. 7.31 has the following parameters: rnl = m ,  rn2 = m3 = 2m, cl = c4 = 
0.1&&, c2 = cg = 0 . 2 m ,  kl = k2 = k ,  k3 = k4 = 2k. Set up the state equations, solve 
the corresponding right and left eigenvalue problems and derive the modal equations, Eqs. 
(7.269). 

FIGURE 7.31 
Damped three-degree-of-freedom system acted upon by external forces 

7.56. Solve Problem 7.55 for the case in which the parameters are as follows: ml = m ,  rn2 = m3 = 
2m, cl = c2 = c3 = c4 = 0.1&, kl = k2 = k ,  k3 = k4 = 2k. 

7.57. Determine the response of the system of Problem 7.55 to the harmonic excitation Fl(t )  = 
~ ~ ~ i l . 2 t ,  F2(t) = 1 . 2 ~ ~ e ~ ~ . ~ ~ ,  F3(t) = ~ ~ e ~ ~ . ~ ~ .  

7.58. Detennine the response of the system of Problem 7.56 to the hannonic excitation Fl ( t )  = 
F2 ( t )  = 0, F3 ( t )  = ~~e~ 

7.59. Determine the response of the system of Problem 7.55 to the step excitation Fl ( t )  = 0 ,  
F2(t) = FOm(t), F?(t) = 0 by means of the modal analysis in the state space. 

7.60. Determine the response of the system of Problem 7.55 to the array of rectangular pulses 
Fl ( t )  = F2(t) = FO[m(t) -m(t - l o ) ] ,  F3 ( t )  = 1.25FO[tc(t) -m(t  - l o ) ]  by means of the 
modal analysis in the state space. 

7.61. Determine the response of the system of Problem 7.55 to the excitation Fl( t )  = F2(t) = 
F3 ( t )  = (Fo/7)[r( t )  - r ( t  - 7 ) ] ,  where r ( t )  is the unit ramp function. 

7.62. Determine the response of the system of Problem 7.55 to the triangular pulse FI ( t )  = F2(t) = 
0 ,  F3 ( t )  = (Fo/7)[r ( t )  - 2r ( t  - 7 )  + r  (t - 14)], where r  ( t )  is the unit ramp function. 

7.63. Solve Problem 7.59 for the system of Problem 7.56. 
7.64. Solve Problem 7.60 for the system of Problem 7.56. 
7.65. Solve Problem 7.61 for the system of Problem 7.56. 
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7.66. Solve Problem 7.62 for the system of Problem 7.56. 
7.67. Solve Problem 7.60 using the method based on the state transition matrix. 
7.68. Solve Problem 7.62 using the method based on the state transition matrix. 
7.69. Solve Problem 7.64 using the method based on the state transition matrix. 
7.70. Solve Problem 7.66 using the method based on the state transition matrix. 
7.71. Solve Problem 7.67 in discrete time. 
7.72. Solve Problem 7.68 in discrete time. 
7.73. Solve Problem 7.69 in dscrete time. 
7.74. Solve Problem 7.70 in discrete time. 
7.75. Solve Problem 7.19 by MATLAB. 
7.76. Solve Problem 7.20 by MATLAB. 
7.77. Solve Problem 7.21 by MATLAB. 
7.78. Solve Problem 7.22 by MATLAB. 
7.79. Solve Problem 7.23 by MATLAB. 
7.80. Solve Problem 7.37 by MATLAB. 
7.81. Solve Problem 7.38 by MATLAB. 
7.82. Solve Problem 7.39 by MATLAB. 
7.83. Solve Problem 7.50 by MATLAB. 
7.84. Solve Problem 7.51 by MATLAB. 
7.85. Write a MATLAB program to solve Problem 7.67. 
7.86. Write a MATLAB program to solve Problem 7.68. 
7.87. Write a MATLAB program to solve Problem 7.69. 
7.88. Write a MATLAB program to solve Problem 7.70. 



CHAPTER 

DISTRIBUTED-PARAMETER SYSTEMS: 
EXACT SOLUTIONS 

As pointed out in Sec. 1.9, models of vibrating systems can be divided into two broad 
classes, lumped and continuous, depending on the nature of the parameters. In the case 
of lumped systems, the components are discrete, with the mass assumed to be rigid 
and concentrated at individual points and with the stiffness in the form of massless 
springs connecting the rigid masses, where the masses and springs represent the system 
parameters. We refer to such models as discrete systems, or lumped-parameter systems. 
The motion of discrete systems is governed by ordinary differential equations, and there 
is one equation for each mass, where the number of masses generally defines the number 
of degrees of freedom of the system. The displacements of the masses are identified 
by subscripts and they depend on time alone, with the nominal position of the masses 
not appearing explicitly, but only implicitly through the subscript. The equations for 
small motions from equilibrium are conveniently displayed in matrix form and solved 
by techniques from linear system theory. The first seven chapters have been concerned 
exclusively with lumped-parameter models. 

In Sec. 1.8, we have seen that rods undergoing axial deformation, shafts in torsion 
and beams in bending can be regarded as equivalent springs, provided their mass is 
negligible. The nominal position of a point on these elastic members was identified by 
the spatial variable x. The situation is entirely different when the mass of the elastic 
members is not negligible, as the members can no longer be regarded as equivalent 
springs, and must be treated as continuous systems, or distributed-parameter systems. 
Indeed, the mass and stiffness parameters are in general functions of the spatial variable 
x, and referred to as distributions, with the mass being given in the form of mass per 
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unit length and representing a mass density. Moreover, the displacement depends now 
on two independent variables, x and t .  As a result, the motion of distributed-parameter 
systems is governed by partial differential equations to be satisfied over the domain of 
the system, and is subject to boundary conditions at the end points of the domain. Such 
problems are known as boundary-value problems. 

Although discrete systems and distributed systems may appear as entirely different 
in nature, the difference is more in form than substance. In the first place, it must be 
pointed out that the same physical system can be modeled as discrete or as distributed, 
depending on objectives. This suggests a much closer connection between discrete 
and distributed systems than one may be inclined to assume, which is indeed the case. 
Hence, it should come as no surprise that both types of systems possess natural modes, 
eigenvectors for discrete systems and eigenfunctions for distributed systems, and natural 
frequencies. The only difference is that a discrete system possesses a finite number of 
modes and a distributed system possesses an infinity of modes. As a result, a distributed 
system can be regarded as having an infinite number of degrees of freedom. Moreover, 
most importantly, as the modes of discrete systems, the modes of distributed systems 
possess the orthogonality property, so that the system response can be obtained by means 

, of a modal analysis akin to that for discrete systems. Also of great significance is the fact 
that the concept of Rayleigh's quotient plays an even more important role in distributed 
systems than in discrete systems. 

Unfortunately, for the most part, boundary-value problems do not admit exact 
solutions. This is particularly true when the system parameters, which appear in the 
form of coefficients in the partial differential equation and boundary conditions, depend 
explicitly on the spatial variable x. If exact solutions are possible, then almost invariably 
they can be obtained for systems with uniform mass and stiffness distributions. This 
chapter is devoted entirely to distributed-parameter systems admitting exact solutions. 
Although such systems are not very abundant, the theory presented here is essential to 
any serious study of vibrations. Indeed, the same theory applies to the cases in which 
only approximate solutions are possible. Moreover, exact solutions are quite useful in 
constructing approximate solutions. We discuss approximate solutions in Chs. 9 and 10. 

In this chapter, a number of distributed systems are discussed, such as strings in 
transverse vibration, rods in axial vibration, shafts in torsion and beams in bending. 
Strings, rods and shafts are governed by second-order differential equations in x and 
they are analogous to one another. On the other hand, beams are governed by fourth- 
order differential equations. When the system parameters are uniformly distributed, 
second-order differential equations in the spatial variable x reduce to the so-called "wave 
equation." A discussion of the wave equation enables us to demonstrate the connection 
between traveling and standing waves. 

8.1 RELATION BETWEEN DISCRETE AND DISTRIBUTED 
SYSTEMS. TRANSVERSE VIBRATION OF STRINGS 

We pointed out in the introduction to this chapter that there is a very intimate relation 
between discrete and continuous systems. Indeed, they can often be regarded as two 
distinct mathematical models of the same physical systems. To illustrate this idea, we 



derive the differential equation for the transverse vibration of a string first by regarding 
it as a discrete system and letting it approach a distributed model in the limit. Then, we 
formulate the problem by regarding the system as distributed from the beginning. 

We consider a system of discrete masses rn, (i = 1,2, . . . , n) on a massless string, 
where the masses in, are subjected to the external forces F, ,  as shown in Fig. 8.1a. 
To derive the differential equation of motion for a typical mass m,, we concentrate on 
the three adjacent masses m,-1, rn, and m,+l of Fig. 8.1b. The tensions in the string 
segments connecting rn, to mm,-1 and m,+l are denoted by T,-l and T,, and the horizon- 
tal projections of these segments by Ax,-l and Ax,, respectively. The displacements 
y, ( t )  (i = 1,2, . . . , n) of the masses m, are assumed to be small, so that the projections 
Ax, remain essentially unchanged during motion. Moreover, the angles between the 
string segments and a horizontal reference line are sufficiently small that both the sine 
and tangent of the angles are approximately equal to the angles themselves. Hence, 
using Newton's second law, the equation of motion of mass rn, in the vertical direction 
has the form 

Ti Yi+l  - Yi  Y i  - Yi-I 
- 

d2yi +Fi =mi- 
Axi Ax ip l  dt" 

Equation (8.1) is applicable to masses mi (i = 2,3, . . . , n - 1). The equation can also be 
extended to masses i = 1 and i = n, but certain provisions must be made to reflect the 
manner in which the system is supported, as we shall see shortly. Hence, rearranging 
Eq. (8.1), we obtain the set of simultaneous ordinary differential equations 

-d 
FIGURE 8.1 
a. n masses on a string, b. Free-body diagram for mass m, 
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in the variables yi (i  = 1,2, . . . , n) ,  and we observe that the equations for i = 1 and i = n 
contain the displacements yo and yn+l, respectively. If the string is fixed at both ends, 
as is the case with the system shown in Fig. %la, then we must set 

in Eqs. (8.2). 
Next, we introduce the notation 

so that Eqs. (8.2) become 

But, the first two terms on the left side of Eqs. (8.5) represent the incremental difference 
in the vertical component of force in the string between the left side and right side of mi. 
In view of this, Eqs. (8.5) can be rewritten in the form 

Moreover, dividing both sides of Eqs. (8.6) by Axi, we obtain 

At this time, we let the number n of masses in, increase indefinitely, while the masses 
themselves and the distance between them decrease correspondingly, and replace the 
indexed position x, by the independent spatial variable x. In the limit, as Ax, + 0, Eqs. 
(8.7) reduce to 

which must be satisfied over the domain 0 < x < L, where 

Fi ( t )  mi f ( x , t )  = lim - , p(x) = lim - 
Ax,+o Axi Ax,-to Axi 

are the transverse force and mass at point x, respectively, both per unit length of string. We 
note that, by virtue of the fact that the indexed position x, is replaced by the independent 
spatial variable x, there are now two independent variables. Hence, total derivatives 
with respect to the time t become partial derivatives with respect to t ,  whereas ratios of 
increments are replaced directly by partial derivatives with respect to x.  Equation (8.8) 
represents the partial differential equation of motion of the string. Similarly, conditions 
(8.3) must be replaced by 

which are generally known as the boundary conditions of the problem. Equations (8.8) 
and (8.10) constitute the boundary-value problem for the string. In fact, the transverse 



displacement y ( x ,  t )  is also subject to the initial conditions 

where yo ( x )  is the initial displacement and vo ( x )  the initial velocity at every point x of the 
string, so that Eqs. (8.8), (8.10) and (8.11) represent a boundary-value and initial-value 
problem simultaneously. It is customary to classify a boundary-value problem according 
to the highest degree derivative with respect to the spatial variable x appearing in the 
differential equation, Eq. (8.8). Hence, in the case at hand the boundary-value-problem 
is of second order. We note that for second-order boundary-value problems there is one 
boundary condition at each end. 

The problem can be formulated more directly by considering the string as a dis- 
tributed system from the onset, as shown in Fig. 8.2a, where f ( x ,  t ) ,  p(x) and T ( x )  are, 
respectively, the distributed force, mass density and string tension at point x .  Figure 8.2b 
represents the free-body diagram corresponding to an element of string of length dx .  
Again writing Newton's second law for the force component in the vertical direction, 
we obtain 

Canceling appropriate terms and ignoring second-order terms in d x ,  Eq. (8.12) reduces 

FIGURE 8.2 
a. The string as a distributed-parameter system, b. Free-body diagram for an 
element of string 
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aT(x) a ~ ( x , t ) ~ ~ +  T(x) a2y (x, t) dx + f (x, t)dx = p(x)dx 
a 2  (8.13) 

ax ax ax2 at2 
and, dividing through by dx and combining the first two terms, we can rewrite Eq. (8.13) 
in the more compact form 

which is identical to Eq. (8.8) in every respect. Moreover, from Fig. 8.2a, we recognize 
that the displacement of the string at the two ends must be zero, y(0, t) = y(L, t) = 0, 
thus duplicating boundary conditions (8.10). This completes the mathematical analogy 
between the discrete and continuous models for a string in transverse vibration. 

The unmistakable conclusion is that Figs. 8.la and 8.2a, although different in 
appearance, represent two intimately related mathematical models. In this section, we 
made the transition from the discrete system, Fig. 8.la, to the distributed one, Fig. 8.2a, 
through a limiting process equivalent to spreading the masses over the entire string. In 
many practical applications, particularly if the string is nonuniform, it is more common 
to follow the opposite path and lump the distributed mass into discrete masses. This can 
be done by using the second of Eqs. (8.9) and writing m, = p(x,)Ax,. Regardless of 
whether the mathematical model is discrete or distributed, it is clear that they must share 
similar vibrational characteristics. 

The boundary-value problem described by the differential equation (8.Q or (8.14), 
and the boundary conditions (8.10) is a relatively simple one, because the boundary 
conditions are very simple. A somewhat more involved case is that in which the right 
end of the string is able to slide inside a vertical guide while restrained by a spring of 
stiffness k, as shown in Fig. 8.3a. In this case, the differential equation remains as given 
by Eq. (8.14) and so does the boundary condition 

at the left end, so that the only difference is in the boundary condition at x = L. To 
derive this boundary condition, we consider the free-body diagram shown in Fig. 8.3b, 

a. b. 
I 

FIGURE 8.3 
a. String fixed at x = 0 and restrained by a spnng at x = L, b. Free-body diagram for the right end 



Table 8.1 Analogous Quantities 

E = modulus of elasticity G = shear modulus 
A ( x )  = cross-sectional J ( x )  = polar moment of inertia 

Displacement 
Inertia per 
unit ~ ~ ~ ~ t h  
Stiffness 

sum up forces in the vertical direction and obtain the boundary condition 

String 
Transverse: y ( x ,  t )  

Mass: P ( X )  

Tension: T ( x )  

Load per 
unit ~~~~~h 

We observe that boundary condition (8.16) is significantly more involved than 
boundary condition (8.15). In particular, boundary condition (8.15) contains no deriva- 
tives and can be written down solely on geometric considerations. On the other hand, 
boundary condition (8.16) contains a spatial derivative of the first degree and it reflects 
the vertical force balance. For this reason, boundary condition (8.15) is said to be geo- 
metric, whereas boundary condition (8.16) is said to be natural. They are also known 
as essential and dynamic boundary conditions, respectively. 

There are two other distributed-parameter systems described by second-order 
boundary-value problems, namely, thin rods in axial vibration and circular shafts in 
torsional vibration. In fact, the vibration of thin rods and circular shafts is governed by 
boundary-value problerns entirely analogous to that for a string. To obtain the boundary- 
value problem for a thin rod and a circular shaft, it is only necessary to replace the analo- 
gous quantities indicated in Table 8.1. Some of these quantities were encountered in Sec. 
1.8 in connection with equivalent spring constants for distributed elastic components. 

8.2 DERIVATION OF THE STRING VIBRATION PROBLEM BY THE 
EXTENDED HAMILTON PRINCIPLE 

Rod 
Axial: u ( x ,  t )  

Mass: m ( x )  

Axial: E A ( x )  

Force: f ( x ,  t )  

The derivation of boundary-value problems in the context of Newtonian mechanics can 
be trying at times, because it requires a free-body diagram for a differential element of 
mass and the use of sign conventions for forces andlor moments, which are not always 
easy to remember. This is particularly true for higher-order boundary-value problems, 
such as those associated with beams in bending. No such questions of sign arise when 
the extended Hamilton principle is used. To substantiate this statement, we propose to 
derive the boundary-value problem for the string of Fig. 8.3a. To this end, we consider 
Eq. (6.3 1) and write the extended Hamilton principle in the form 

Shaft 
Angular: 0 ( x ,  t )  
Mass Polar 
Moment of Inertia: I ( x )  
Torsional: G J ( x )  

area ---- 
Force: f ( x ,  t )  

of cross-sectional area 

Torque: m  ( x ,  t )  



where 

is the kinetic energy and 

is the virtual work of the nonconservative distributed force; the potential energy requires 
some elaboration. In the first place, we observe that the potential energy arises from 
two sources, the first from the tendency of the tension T ( x )  to restore the string to 
the equilibrium position and the second from the end spring. Hence, denoting by ds 
the length of a differential element dx in displaced position, referring to Fig. 8.4 and 
recognizing that, to restore equilibrium, the tensile force T must work through the 
difference in length ds - dx, we can write 

Then, assuming that the slope 8y la .x  is a small quantity, we use Fig. 8.4 and write 

in which we retained two terms only in the binomial expansion. Inserting Eq. (8.21) into 
Eq. (8.20), we obtain 

Next, we write the variation in the lunetic energy 

in which we assumed that the variation and differentiation processes are interchangeable, 

I<--- dx -4 
FIGURE 8.4 
Differential element dx in displaced 
position 
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and carry out the following integration by parts with respect to time 

where we considered the fact that 6 y  = 0 at t = tl and t  = tz. Similarly, we write the 
variation in the potential energy 

(8.25) 

integrate by parts and obtain 

Inserting Eqs. (8.19), (8.24) and (8.26) into Eq. (8.17)  and collecting terms, we have 

At this point, we invoke the arbitrariness of the virtual displacement 6 y .  We first set 
S y  = 0 at x = 0 and x = L and assign values of S y  ( x ,  t )  at will over the interval O < x < L. 
Under these circumstances, Eq. (8.27) can be satisfied only if the coefficient of S y  ( x ,  t )  
is zero over the same interval. Hence, we set 

Then, with the integral in Eq. (8.27) disposed of, we once again invoke the arbitrariness 
of the virtual displacement and state that S y  is chosen such that 

and 



Equation (8.29) can be satisfied in two ways, namely, by setting either T aylax or Sy 
equal to zero at x = 0. The first is recognized as the vertical force at x = 0, which cannot 
be zero for all times at a fixed end. On the other hand, the displacement is zero at a fixed 
end, so that Eq. (8.29) is satisfied by setting 

Similarly, Eq. (8.30) is satisfied if either T(ay /ax)  + k or Sy is zero at x = L. But, 
the displacement cannot be zero for all times at x = L. Hence, Eq. (8.30) can only be 
satisfied by setting 

This completes the derivation of the boundary-value problem, which consists of the 
differential equation, Eq. (8.28), and one boundary condition at each end, Eqs. (8.31) 
and (8.32). The results are identical to those obtained in Sec. 8.1. 

We conclude that the extended Hamilton principle yields the correct boundary- 
value problem in almost a routine fashion. Moreover, because the kinetic energy is a 
positive definite quadratic form and in this particular case the potential energy is also a 
positive definite quadratic form, there is no room for sign errors, provided the various 
steps involved are carried out correctly. 

8.3 BENDING VIBRATION OF BEAMS 

As pointed out in Sec. 8.1, the transverse vibration of strings, axial vibration of thin rods 
and torsional vibration of circular shaft are all governed by entirely analogous boundary- 
value problems. Indeed, they all consist of a second-order partial differential equation 
and one boundary condition at each end. The only difference lies in the nature of the 
displacement, excitation and parameters, as indicated in Table 8.1. 

Beams in bending represent more complex systems than strings, rods and shafts, 
so that it comes as no surprise that boundary-value problems for beams are also more 
involved. As shown shortly, they consist of a fourth-order partial differential equation and 
two boundary conditions at each end. Moreover, there is a larger variety of boundary 
conditions, and they can involve spatial derivatives up to third order. Here too, the 
boundary conditions can be divided between geometric and natural. 

We consider the beam in bending vibration shown in Fig. 8.5a, where y(x ,  t )  
denotes the transverse displacement, f ( x  , t )  the transverse force per unit length, rn ( x )  
the mass per unit length and EZ(x)  the flexural rigidity, in which E is the modulus of 
elasticity and I ( x )  the cross-sectional area moment of inertia about an axis normal to 
x and y and passing through the center of the cross section. We propose to derive the 
boundary-value problem in two ways, first using the Newtonian approach and then using 
the extended Hamilton's principle. We begin with the Newtonian approach and, to this 
end, we consider the free-body diagram corresponding to a beam dfferential element, 
as shown in Fig. 8.5b, in which M (x, t )  is the bending moment and Q(x ,  t )  the shearing 
force. According to sign conventions, the bending moment and shearing force shown 
on both sides of the differential element are regarded as positive. We use the elementary 
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FlGURE 8.5 
a. Beam in bending vibration, b. Free-body diagram for a beam element 

beam theory, commonly known as the Euler-Bernoulli beam theory, which involves the 
assumptions that the rotation of the differential element is negligible compared to the 
translation and that the angular distortion due to shear is small in relation to the bending 
deformation. This theory is valid if the ratio between the length of the beam and its depth 
is relatively large, say more than 10, and if the beam does not become too "wrinkled 
because of flexure. The Euler-Bernoulli beam theory stipulates that the rotatory inertia 
and shear deformation effects can be ignored.' 

From Fig. 8.5b, the force equation of motion in the vertical direction has the form 

Moreover, under the assumption that the product of the mass moment of inertia of the 
element and the angular acceleration is negligibly small, the moment equation of motion 
about an axis normal to x and y and passing through the center of the cross-sectional 

 or a more refined theory including these effects, see L. Meirovitch, Principles and Techniques of Vibrations, 
Sec. 7.1 1,  Prentice Hall, Englewood Cliffs, NJ, 1997. 



area is 

Ignoring second-order terms in dx and canceling appropriate terms, the moment equa- 
tion, Eq. (8.34), reduces to 

Moreover, canceling appropriate terms, dividing through by dx and using Eq. (8.35), the 
force equation, Eq. (8.33), becomes 

Equation (8.36) relates the bending moment M(x, t) and the transverse force den- 
sity f (x, t) to the bending displacement y (x, t). To obtain an equation in terms of y (x, t) 
and f (x, t )  alone, we recall from mechanics of materials (Ref. 1) that the bending mo- 
ment is related to the bending displacement by 

so that, using Eq. (8.35), the shearing force is related to the bending displacement by 

Inserting Eq. (8,.37) into Eq. (8.36), we obtain the partial differential equation for bending 
vibration of a beam in the form 

which is of order four, as anticipated. 
To complete the derivation of the boundary-value problem, we must specify two 

boundary conditions at each end of the beam. The most common ends are clamped, 
pinned and free, shown in Figs. 8.6~1, 8.6b and 8.6c, respectively. The corresponding 
boundary conditions are as follows: 

I. Clamped end. At a clamped end, or fixed end, the deflection and slope of the deflection 
curve are zero, so that the boundary conditions are 

ay (x, t) 
y(x,t) =0 ,  - = 0  (8.40) ax 

and we observe that both boundary conditions are geometric. 
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a. b. 
FIGURE 8.6 
a. Beam clamped end, b. Beam pinned end, c. Beam free end 

2. Pinned end. In this case, the displacement and the bending moment are zero. Hence, 
using Eq. (8.37), we have 

so that the first boundary condition is geometric and the second is natural. 

3. Free end. At a free end, both the bending moment and shearing force are zero. Hence, ' 
using Eqs. (8.37) and (8.38), we obtain 

so that both boundary conditions are natural. 
In the three cases just discussed, it is possible to specify the boundary conditions by 

inspection. A case requiring elaboration is that in which the end is supported by a spring, 
as shown in Fig. 8.7a. To derive the corresponding boundary condition, we assume that 
the end x = 0 undergoes the positive (upward) displacement y (0, t ) ,  in which case there 
is a downward force of magnitude ky (0, t ) .  Hence, from Fig. 8.7b, and using the sign 
convention implied by the left side of the differential element in Fig. 8.5b, we can write 

= ky(x, t ) ,  x = 0 

Note that the same sign convention implied by the right side of Fig. 8.5b, for a support 

1 b ( O ~ 1  

a. b. 
FIGURE 8.7 
a Beam end supported by a spnng, b Free-body diagram 
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FIGURE 8.8 
Beam pinned at x = 0 and spring supported at x = L 

spring at x = L, would give the boundary condition 

= -ky(x,  t ) ,  x = L (8.44) 

Although the derivation of boundary conditions (8.43) and (8.44) is quite straightforward, 
provided the sign conventions are adhered to, the results are not intuitively obvious. Of 
course, the other boundary condition for the end shown in Fig. 8.7a requires that the 
bending moment be zero. 

Next, we derive the boundary-value problem by means of the extended Hamilton 
principle, which remains in the form of Eq. (8.17). To this end, we consider a pinned- 
spring supported beam, as depicted in Fig. 8.8. The kinetic energy remains in the form 
given by Eq. (8.18), except that the mass density now is m ( x )  instead of p(x). Moreover, 
from mechanics of materials, the potential energy is 

The virtual work of the nonconservative distributed force f ( x ,  t )  has the same form as 
that for the string, Eq. (8.19). 

In view of our statement concerning the kinetic energy in the preceding paragraph, 
if we use the analogy with Eq. (8.24), we can write 

Moreover, using Eq. (8.45) and carrying two integrations by parts, we obtain the variation 



in the potential energy 

Finally, using Eq. (8.19), the virtual work of the nonconservative distributed force is 

At this point, we have all the ingredients required for the extended Hamilton 
principle. Indeed, inserting Eqs. (8.46)-(8.48) into Eq. (8.17) and collecting terms, we 
obtain 

Then, invoking the arbitrariness of the virtual displacement 6 y  and using similar argu- 
ments to those used in Sec. 8.2, we conclude that Eq. (8.49) is satisfied if the differential 
equation 

is satisfied over the entire domain and the conditions 

and 

are satisfied at the boundaries. Equations (8.51) on the one hand and Eqs. (8.52) on 
the other hand can be satisfied in two ways, but only one way is the correct one. Be- 
cause the slope and the shearing force are not zero at apinned end, we conclude fromEqs. 



(8.51) that the boundary conditions at the left end are 

which state that the displacement and bending moment are zero at a pinned end. Similarly, 
because the displacement and the slope are not zero at a spring-supported end, boundary 
conditions at the right end must be 

which are consistent with the facts that the bending moment is zero and the shearing 
force is balanced at a spring-supported end. The boundary-value problem for a beam 
pinned at x = 0 and spring-supported at x = L consists of the differential equation (8.50) 
and the boundary conditions (8.53) and (8.54). Hence the extended Hamilton principle 
yields once again the correct boundary-value problem, including boundary conditions 
that are correct both in form and number. 

8.4 FREE VIBRATION. THE DIFFERENTIAL EIGENVALUE 
PROBLEM 

We stressed repeatedly throughout this text, and in particular early in this chapter, that 
discrete and distributed systems differ more in form than in substance. Hence, in seeking 
solutions to vibration problems for distributed-parameter systems, we follow the same 
pattern as for discrete systems. Consistent with this, we consider first the free vibration 
problem, which leads naturally to the eigenvalue problem. For distributed-parameter 
systems, however, these are differential eigenvalue problems, each one depending on the 
system stiffness properties, as opposed to an algebraic eigenvalue problem of the same 
matrix form for all discrete systems. 

We consider the vibrating string of Fig. 8.2a. In the case of free vibration, namely, 
when the distributed force f (x, t )  is zero, the boundary-value problem reduces to the 
differential equation 

and the boundary conditions 

As for discrete systems, we explore the circumstances under which the motion of the 
string is synchronous, namely, one in which every point of the string executes the same 
motion in time, passing through equilibrium at the same time and reaching the maximum 
excursion at the same time. The implication is that during synchronous motion the string 
exhibits a certain unique profile, or general shape, and the profile does not change with 
time, only the amplitude of the profile does. In mathematical terminology, such a solution 
y(x, t )  of the boundary-value problem, Eqs. (8.55) and (8.56), is said to be separable in 



the spatial variable x and time t ,  and can be expressed in the form 

where Y ( x )  represents the string profile, or shape, or configuration, a function of x alone, 
and F ( t )  indicates how the amplitude of the profile varies with time t .  

Next, we introduce Eq. (8.57) into Eq. (8.55), divide through by p ( x ) Y ( x ) F ( t )  
and obtain 

where, because Y depends only on x and F only on t ,  partial derivatives have been 
replaced by total derivatives. Observing that the left side of Eq. (8.58) depends on x 
alone and the right side on t alone, we conclude that the solution y ( x ,  t )  of the boundary- 
value problem is indeed separable. Then, because both x and t are independent variables, 
we use the standard argument in the method of separation of variables (Sec. 7.6) and 
state that both sides of Eq. (8.58) must be equal to the same constant. In view of the 
fact that all quantities appearing in Eq. (8.58) are real, the constant must be real. Hence, 
denoting the constant by A, Eq. (8.58) can be rewritten as 

To explore the nature of the constant A, we consider the right side of Eq. (8.59) and write 

The solution of Eq. (8.60) has the exponential form 

so that, inserting Eq. (8.61) into Eq. (8.60) and dividing through by AeSt, we obtain the 
characteristic equation 

which has the solutions 

If X is positive, then the roots are real, one positive and one negative, so that F ( t )  is 
the sum of two exponential terms, one diverging and the other converging. Because 
diverging solutions are inconsistent with small string oscillations, the case in which X 
is positive must be ruled out. Hence, we assume that X is negative and introduce the 
notation X = -w2, so that Eq. (8.63) becomes 

In this case, Eq. (8.61) yields 



Equation (8.65) represents harmonic oscillation, which is consistent with the assumption 
that the string undergoes small motions. Then, following the same steps as in Sec. 3.1, 
solution (8.65) can be expressed in the more familiar form 

where C is an amplitude, q5 a phase angle and w the frequency of oscillation. It follows 
that the string admits synchronous motion in the form of harmonic oscillation. 

There are two questions remaining, the first concerns the value of the frequency 
w and the second the displacement configuration Y ( x )  assumed by the string during the 
harmonic oscillation. Both questions can be answered by equating the left side of Eq. 
(8.59) to X = -w2 and solving the differential equation 

where the solution must satisfy the boundary conditions, Eqs. (8.56). Inserting Eq. (8.57) 
into Eqs. (8.56) and dividing by F ( t ) ,  the boundary conditions reduce to 

The problem of determining the constant w2 such that Eq. (8.67) admits nontrivial solu- 
tions Y ( x )  satisfying boundary conditions (8.68) is known as the differential eigenvalue 
pmblem. 

Next, we turn our attention to the free vibration of beams in bending. In the absence 
of external excitations, f ( x ,  t )  = 0,  the partial differential equation for the transverse 
displacement y(x ,  t )  of a beam in bending, Eq. (8.39) reduces to 

The solution y ( x ,  t )  of Eq. (8.69) must satisfy two boundary conditions at each end. 
Some typical boundary conditions are given by Eqs. (8.40)-(8.44). For the sake of this 
discussion, we consider a beam supported by a spring at x = 0 and pinned at x = L (Fig. 
8.9), so that the boundary conditions are 

a2y ( x ,  t )  
E z ( x )  an-2 = ky(x ,  t ) ,  x = 0 (8.70) 

and 

The solution of Eq. (8.69) has the same form as that given by Eq. (8.57), in 
which F ( t )  is a harmonic function, Eq. (8.66). Inserting Eqs. (8.57) and (8.66) into 
Eqs. (8.69)-(8.71) and dividing through by F( t ) ,  we obtain the differential eigenvalue 
problem consisting of the differential equation 



FIGURE 8.9 
Beam spring supported at x = 0 and pinned at x = L 

and the boundary conditions 

and 

d2y (x) 
Y(x) = 0, EI(x)------ = O ,  x = L  

dx2 
We observe that the sign of the stiffness differential expression on the left side of Eq. 
(8.72) is positive, which is consistent with a discussion of this subject in Sec. 8.3. 

There isr a basic difference between eigenvalue problems for discrete and dis- 
tributed systems, aside from the fact that one is algebraic and the other is differential. 
If we confine our discussion to conservative systems, then we conclude that there is 
one generic algebraic eigenvalue problem describing all systems, namely, Eq. (7.77), in 
which M is the mass matrix and K is the stiffness matrix, a fact alluded to in the begin- 
ning of this section. The situation is quite different with distributed-parameter systems. 
Indeed, whereas the term describing the mass properties of the system is essentially the 
same for all distributed systems, the term describing the stiffness properties represents 
a differential expression varying from system to system, depending on the order of the 
system. As an illustration, the expression on the right side of Eq. (8.67) is typical of 
second-order systems, such as strings in transverse vibration, rods in axial vibration and 
shafts in torsion. Of course, the nature of the displacement and of the mass and stiffness 
parameters differs from case to case, as can be concluded from Table 8.1 On the other 
hand, beams in bending represent fourth-order systems, and their stiffness is defined by 
a fourth-order differential expression. 

We observe that the right side of the differential equation defining the eigenvalue 
problem, Eq. (8.67), was assigned a positive sign, which results in a negative sign for the 
left side. This assignment is dictated by the physics of the problem, and in particular by 
the fact that the mass density p(x) on the right side is apositive quantity by definition. On 
the other hand, the sign on the left side depends on the order of the stiffness differential 
expression under consideration; it is negative for second-order expressions and positive 
for fourth-order ones. This statement can be easily explained by recalling that, in deriving 
the string boundary-value problem by means of the extended Hamilton's principle (Sec. 
8.2), the term due to the string tension in the variation in the potential energy was 
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integrated by parts once, resulting in one sign change, as can be seen from Eq. (8.26). 
On the other hand, the analogous term for beams in bending (Sec. 8.3) was integrated 
twice, resulting in no sign change, as can be verified from Eq. (8.47). 

The difference between the eigenvalue problems for discrete systems and distribut- 
ed-parameter systems on the one hand and, among the eigenvalue problems for various 
distributed systems on the other hand is more in form than in substance. The implication 
is that, whereas the approach to the solution of the eigenvalue problem may differ from 
discrete to distributed systems, the solutions and their properties exhibit a large degree of 
similarity, and the same can be said about the solutions for various distributed systems. 
In view of this, we can use the example of the string vibration, Eqs. (8.67) and (8.68), 
to discuss the nature of the solution of the eigenvalue problem for distributed systems in 
general. Because Eq. (8.67) is of second order, its solution Y ( x )  will contain two con- 
stants of integration, in addition to the parameter w2, for a total of three unknowns. To 
evaluate the three unknowns, we must invoke the boundary conditions, Eqs. (8.68). But, 
because there are only two boundary conditions, it is not possible to evaluate all three 
unknowns uniquely. This should come as no surprise, as Eq. (8.67) is homogeneous, so 
that only the general shape of Y ( x )  can be determined uniquely, but not the amplitude. 
Hence, the two boundary conditions can be used to derive a characteristic equation for 
w2 and to determine one of the constants of integration in terms of the other. The charac- 
teristic equation, generally a transcendental equation, has a denumerably infinite number 
of roots W: (r = 1,2,  . . .) known as eigenvalues, where the term "denumerable" refers 
to the fact that the subscript r is identified with a given eigenvalue whose value differs in 
general from that of any other eigenvalue. Corresponding to each of these roots there is 
one function Y, ( x )  (r = 1,2, . . . ), where Y, ( x )  are known as eigenfunctions. Physically, 
the square roots w, of the eigenvalues w: are recognized as the natural frequencies of 
the system and the eigenfunctions Y, (x) as the natui-a1 modes. Whereas the natural fre- 
quencies w, can be determined uniquely, the natural modes cannot. Indeed, because the 
problem is homogeneous, only the general shape of Yr ( x )  can be determined uniquely, 
as A, Y, ( x )  represents the same natural mode, where A, is a constant. If the constant A, 
is determined uniquely through a certain normalization process, thereby determining the 
amplitude of the mode uniquely, then the natural modes are referred to as normal modes. 
The distinction between natural modes and normal modes is primarily of academic in- 
terest, and quite often modes are referred to as "normal" regardless whether a formal 
normalization process has been used or not. The natural frequencies wr and natural 
modes Y,(x) (r = 1,2, .  . .) represent a characteristic of the system, as they depend on 
the mass density p(x) ,  the tension T ( x )  and the boundary conditions. Indeed, a change 
in any of these factors brings about a change in the natural frequencies and modes. We 
will come back to this idea later in this section. Clearly, a discrete system possesses only 
a finite number of natural frequencies and modes, whereas a distributed-parameter sys- 
tem possesses an infinite number. But, as shown in Sect. 8.1, a distributed-mass string 
can be obtained from a lumped-mass system through a limiting process whereby the 
lumped masses are spread over the entire length of the string and the indexed position x, 
is replaced by the continuous independent variable x .  In the process, the finite number 
of natural frequencies and modal vectors are replaced by an infinite number, so that the 
eigenfunctions Y, ( x )  can be regarded as eigenvectors of infinite dimension. 
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Finally, we return to our original exploration of the circumstances under which the 
motion of a distributed-parameter system in free vibration is synchronous. The results 
of this exploration can be summarized by stating that there is a denumerably infinite 
number of ways in which a distributed system can execute synchronous motion. We 
refer to them as natural motions and, in view of Eqs. (8.57) and (8.66), we can express 
them in the form 

in which Yr ( x )  are the natural modes and w, the natural frequencies, both obtained by 
solving the system differential eigenvalue problem. Moreover, C, and 4, are amplitudes 
and phase angles, respectively, constants depending on the initial displacement profile 
yo(x) and initial velocity profile vo(x) .  Clearly, Yr ( x )  and w, represent internal factors, 
as they reflect the system parameters and the nature of the differential equations and 
boundary conditions, whereas Cr and 4, represent external factors. It will be shown in 
Sec. 8.5, that the natural modes are orthogonal, and hence by definition independent. 
The implication is that every one of the natural modes can be excited independently 
of the other. In general, however, the motion of a distributed-parameter system can be 
expressed as a linear combination of the natural motions of the form 

Hence, the free vibration problem reduces to extracting the constants C, and 4, (r = 
1,2, . . . ) from the initial displacement profile yo ( x )  and initial velocity profile vo(x).  
We discuss this subject in Sec. 8.6. 

Example 8.1. Solve the eigenvalue problem for a uniform stnng fixed at x = 0 and x = L 
(Fig. 8.2a) and plot the first three eigenfunctions. The tension T in the string is constant. 

Inserting p(x) = p = constant, T(x) = T = constant into Eq. (8.67), we conclude 
that the transverse displacement Y (x) must satisfi the differential equation 

where the solution Y of Eq. (a) is subject to boundary conditions (8.68), 01 

Equation (a) is harmonic in x and its solution is 

Y(x) = Asinpx+Bcospx 

where A and B are constants of integration. Inserting the first of boundary conditions (b) 
into Eq. (c), we conclude that B = 0, so that the solution reduces to 

Y (x) = A sin px  (d) 

On the other hand, introducing the second of boundary conditions (b) in Eq. (d), we obtain 
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There are two ways in which Eq. (e) can be satisfied, namely, A = 0 and sinPL = 0. But 
A = 0 must be ruled out, because this would yield the trivial solution Y(x) = 0. It follows 
that we must have 

sinPL = 0 (f) 

which is recognized as the characteristic equation. Its solution consists of the infinite set of 
characteristic values 

to which corresponds the infinite set of eigenfunctions, or natural modes 

where A, are undetermined amplitudes, with the implication that only the mode shapes 
can be determined uniquely. The first three natural modes, normalized so that A, = 1 (r = 
1,2,3), are plotted in Fig. 8.10. We note that the first mode has no nodes, the second has one 
node and the third has two nodes. In general the rth mode has r - 1 nodes (r = 1,2, . . . ). 

From the second of Eqs. (a) we conclude that the system natural frequencies are 

The frequency w l  is called the fundamental frequency and the higher frequencies w, (r = 
2,3, . . . ) are referred to as overtones. The overtones are integer multiples of the fundamental 
frequency, for which reason the fundamental frequency is called thefundamental harmonic 
and the overtones are known as higher harmonics. 

FIGURE 8.10 
Natural modes of a fixed-fixed string 
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Vibrating systems possessing harmonic overtones are distinguished by the fact that, 
under certain excitations, they produce pleasant sounds. Such systems are not commonly 
encountered in nature but can be manufactured, particularly for use in musical instruments. 
It is a well-known fact that the string is the major component in a large number of musical 
instruments, such as the violin, the piano, the guitar and many other related instruments. 
For example, the violin has four strings, each possessing a different fundamental frequency. 
From Eq. (i), we observe that these frequencies depend on the tension T, the mass density 
p and the length L. The violinist tuning a violin merely ensures that the strings have the 
proper tension. This is done by comparing the pitch of a given note to that produced by a 
different instrument known to be tuned correctly. One must not infer from this, however, 
that the violin has only four fundamental frequencies and their higher harmonics. Indeed, 
whereas p and T are constant for each string, the violinist can change the pitch by adjusting 
the length of the strings. Hence, when fingers are run on the fingerboard, the artist merely 
adjusts the length L of the strings. Thus, there is a large variety of frequencies at the 
violinist's disposal. Generally the sounds consist of a combination of harmonics, with the 
lower harmonics being the predominant ones. However, a talented performer excites the 
proper array of higher harmonics to produce a pleasing sound. 

Example 8.2. Assume that the string of Fig. 8.3a has uniform mass distribution, p(x) = 
p = constant, and constant tension, T (x) = T = constant, solve the eigenvalue problem for 
the parameter ratio kL /  T = 0.5 and plot the first three modes'. What can be said about the 
nature of the boundary x = L as the mode number increases. 

As in Example 8.1, the differential equation is 

but this time, from Eqs. (8.31) and (8.32), the boundary conditions are 

From Example 8.1, the solution of Eq. (a) is 

Moreover, using the first of boundary conditions (b), B = 0, so that 

Then, inserting Eq. (d) into the second of boundary conditions (b) and rearranging, we 
obtain the characteristic equation, or frequency equation, 

T 

It represents a transcendental equation to be solved numerically for the eigenvalues P, L (r = 
1 ,2 ,  . . .). Inserting these eigenvalues into Eq., (d), we obtain the eigenfunctions 

A graphical solution of the characteristic equation, Eq. (e), is shown in Fig. 8.11. The 
first three eigenvalues are PI L = 1.8366, p2L = 4.8158, p3 L = 7.9171. The first three 
eigenfunctions, normalized so that A, = 1 (r = 1,2,3), are plotted in Fig. 8.12, and we 
observe that, as for the fixed-fixed string, the rth mode has r - 1 nodes (r = 1,2,. . .). 
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1 tan P, -2 PL 

FIGURE 8.11 
Graphical solution of the characteristic equation for a string fixed at x = 0 and 
spring supported at x = L 

From Fig. 8.12, we conclude that, as P,L increases, the end x = L behaves more 
and more like a free end. This observation is corroborated by Fig. 8.11, which shows that, 
as the mode number increases, P, L approaches (2r - 1)7~/2, namely, the eigenvalues of a 
fixed-free uniform string. 

FIGURE 8.12 
Natural modes for a string fixed at x = 0 and spring supported at x = L 



Example 8.3. Solve the eigenvalue problem for a pinned-pinned uniform beam, E l  (x) = 
E I  = constant, m(x) = m = constant, and plot the first three modes. 

Inserting E l  (x) = E l ,  m(x) = m into Eq. (8.72), we obtain the differential equation 

d 4 y  (x) 
-- 

4 w2m 
p 4 y ( x ) = 0 ,  o < x < L ;  p =-- 

dx4 E  I  
Moreover, considering Eqs. (8.74), the boundary conditions are 

The solution of Eq. (a) can be verified to be 

Y(x) = Asin,6x+Bcospx+Csinh/3x+Dcosh/3x (c) 

where A, B,  C and D are constants to be evaluated by ineans of the boundary conditions. 
Of course, we can only determine three of the constants in terms of the fourth, because the 
problem is homogeneous. The fourth boundary condition is used to derive a characteristic 
equation for p. Two of the boundary conditions involve the second derivative of Y, which 
is simply 

d 2 y  (x) -- - ~ ~ [ - ~ s i n p x -  ~cos/3x+Csinh,6x+ ~ c o s h f l x ]  
dx2 

(4 

The boundary conditions at x = 0 yield 

Y ( O ) = B + D = O  

and 

from which we conclude that 

B = D = O  

In addition, the boundary conditions at x = L can be used to write 

Y(L) =AsinPL+CsinhDL = O  

and 
d 2 y  (x) -- - ~ ~ ( - - ~ s i n ~ ~ + ~ s i n h @ ~ ) = ~  

dx2 
Ruling out trivial solutions, we conclude that the only possibility is 

C = O  (i) 

and 

where Eq. (k) is recognized as the characteristic equation, or frequency equation. Its solution 
consists of the infinite set of eigenvalues 

Inserting Eqs. (g), (i) and (1) into Eq. (c), we obtain the infinite set of associated eigenfunc- 
tions 

The first three normal modes, normalized so that A, = 1 ( r  = 1,2,3), are plotted in 
Fig. 8.13. 
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FIGURE 8.13 
Natural modes for a pinned-pinned beam 

Example 8.4. Solve the eigenvalue problem for a uniform cantilever beam clamped at 
x = 0 and plot the first three modes. 

The differential equation is the same as in Example 8.3, namely, 

but the boundary conditions are different. From Eqs. (8.40) and (8.42), the boundary 
conditions are 

dY(x) Y (x) = 0, - = o ,  x = o  
dx 

and 

As in Example 8.3, the general solution of Eq. (a) is 

Y(x) = Asinpx+ Bcos/3x+Csinh/3x+ Dcoshpx (dl 

but this time the constants are different, as should be expected. The first of boundary 
conditions (b) yields 

Y ( O ) = B + D = O  (e) 

so that 

D = - B  

For the second of boundary conditions (b), we write 



which yields 

so that 

C = -A 

Hence, the solution reduces to 

Y (x) = A(sin px - sinhpx) + B(cospx - coshpx) 

Before we enforce boundary conditions (c), we write 

d2y(x) -- 
dx2 - -p2[A(sinpx + sinhpx) + B(cospx + coshpx)] (k) 

and 

d3 Y (x) 
-- - -p3 [A (cos px  + cosh px) - B (sin px  - sinh px)] 

dx3 (1) 

Using Eq. (k), the first of boundary conditions (c) yields 

Inserting Eq. (m) into Eq. (1) and using the second of boundary conditions (c), we obtain 
the characteristic equation 

FIGURE 8.14 
Natural modes for a cantilever beam 



Equation (n) is transcendental, and must be solved numerically. Then, introducing Eq. 
(m) in Eq. Cj), in conjunction with the eigenvalues p rL  just obtained, we can write the 
eigenfunctions in the form 

sin pr L + sinh p, L 
sinp,x - sinhprx - (cosp,x - cosh,Orx) , 

cos,OrL+coshprL 1 
The first three eigenvalues are PI L = 1.8751, P2L = 4.6941, P3L = 7.8548. The first 
three natural modes have been plotted in Fig. 8.14, where the modes were normalized 
numerically by adjusting the amplitudes so as to satisfy Yr(L) = 1 (r = 1,2,3) .  Inserting 
the eigenvalues given above into the right expression in Eq. (a), we obtain the first three 
natural frequencies 

and we observe that the higher frequencies are no longer integer multiples of the fundamental 
frequency, as they are in the case of the pinned-pinned beam. 

Example 8.5. Assume that the spring supported-pinned beam of Fig. 8.9 is uniform, 
EI (x)  = E I ,  m(x) = m, and solve the eigenvalue problem for the case in which k = 
2 . 5 ~ 1 1 ~ ~ .  Plot the first three modes and draw conclusions. 

As in Examples 8.3 and 8.4, the differential equation is 

d4 Y (x) 
-- 

u2m 
p 4 y ( x ) = 0 ,  O < x < L ;  p4=-  

dx4 E I  

and, from Eqs. (8.73) and (8.74), the boundary conditions at the spring-supportedendreduce 
to 

d2y(x) - d3 Y (x) k 
-0,  -- - - -Y(x), x = O  

dx2 dx3 EZ 

Moreover, the boundary conditions at the pinned end are 

d2  Y (x) 
Y(x) = o ,  - = o ,  x = L  

dx2 

Again, as in Examples 8.3 and 8.4, the general solution of Eq. (a) is 

where the solution must satisfy boundary conditions (b) and (c). The case at hand differs 
from the pinned-pinned and the clamped-free cases in that the second of boundary conditions 
(b) involves the parameter ratio k l E I ,  which is likely to complicate the determination of 
the constants. This complication can be avoided by using the first of Eqs. (b) and Eqs. (c) to 
solve for B, C and D in terms of A. Then, the second of Eqs. (b) can be used to derive the 
characteristic equation. Before we proceed with the evaluation of the constants, we write 



so that the first of boundary conditions (b) yields 

which gives simply 

Hence, Eq. (d) reduces to 

which can be used to write 

d 2 y  (x) 
dx2 = p 2 [ - A S ~ ~ P X  - B(cosPx - coshPx) + Csinh/lx] 6 )  

so that boundary conditions (c) yield 

Y (L) = AsinPL + B(cosPL +coshPL) + CsinhPL = 0 

and 

Solving Eqs. (j) and (k) for B and C in terms of A, we obtain 

sinPL 
B=-- 

sin PL cosh PL 
A, C =  A 

COSPL cos PL sinh PL 

Inserting Eqs. (1) into Eq. (h), we can write 

Y(x) = A [cos PL sinh PL sin a x  
cosPL sinhPL 

- sin PL sinh PL (cos px  + cosh px)  + sin ,!?L cosh PL sinh px] (m) 

Before enforcing the second of boundary conditions (b), we write 

d3y(x) -- - 
AP3 

[- cos PL sinh /3L cos px 
dx3 cosPLsinhPL 

- sin PL sinhPL(sinpx + sinhpx) + sinPL coshPL coshpx] (n) 

Hence, inserting Eqs. (m) and (n) into the second of Eqs. (b), we have 

- AP3 k ( 2Asin,BLsinhpL 
(-cos/3LsinhPL+sinPLcoshPL)=- - 

cos ,B L sinh P L E I  cosPLsinhPL 

which, for the given parameter ratio, reduces to 

Equation (p) represents the characteristic equation, or frequency equation, and can be solved 
numerically for the eigenvalues P, L (r = 1,2, . . . ). Then, omitting the inconsequential term 
at the denominator in Eq. (m), the eigenfunctions can be written as 

Y, (x) = A, [cos p,. L sinhp, L sinp,x - sinp, L sinhp, L(cosP,x + cosh/3,x) 



FIGURE 8.15 
Natural modes for a spring supported-pinned beam 

It should be pointed out that the effect of the spring k at x = 0 enters into the eigen- 
functions implicitly through the eigenvalues P,L. The first three eigenvalues are PI L = 
2.6241, PzL = 4.3412, P3 L = 7.1421. The first three modes, normalized so that Y, (0) = 
1 (r = 1,2,3), are plotted in Fig. 8.15. We conclude that, as the mode number increases, 
the spring-supported end at x = 0 behaves more and more like a pinned end. 

8.5 ORTHOGONALITY OF MODES. EXPANSION THEOREM 

The similarity between discrete and distributed vibrating systems becomes striking when 
we consider the fact that the eigenfunctions Y, ( x )  (r = 1,2, . . . ) possess the orthogonality 
property in a manner analogous to the eigenvectors u, (i  = 1,2,  . . . , n) .  Moreover, an 
analogous expansion theorem exists for distributed systems as for discrete systems, and 
this expansion theorem forms the basis for a modal analysis permitting a most efficient 
derivation of the system response to both initial excitations and applied forces. 

To derive the orthogonality relations for a string, we consider two distinct solutions 
of the eigenvalue problem, wf , Y, ( x )  and w:, Y, ( x ) ;  from Eq. (8.67), they satisfy the 
differential equations 

and 
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respectively, as well as the boundary conditions, Eqs. (8.68). Next, we multiply Eq. 
(8.77) through by Y ,  ( x ) ,  integrate over the length of the string and write 

But, an integration by parts of the left side of Eq. (8.79), with due consideration of the 
boundary conditions, Eqs. (8.68), yields 

Hence, inserting Eq. (8.80) into Eq. (8.79), we can write 

It is not difficult to see that, multiplying Eq. (8.78) through by Y ,  ( x ) ,  integrating over 
the length of the string and following the same steps as with Eq. (8.77), we obtain 

d Y , ( x ) d Y s ( x )  L 

d x  = CJ? p(x)  Y,  ( n )  Y, ( x ) d x  (8.82) 

But, the integrals in Eqs. (8.81) and (8.82) are unaffected by the order of the subscripts r 
and s ,  so that the integrals on the left side on the one hand and the integrals on the right 
side on the other hand have the same value. It follows that, subtracting Eq. (8.82) from 
Eq. (8.81), we have 

In view of the fact that the eigenvalues are distinct, we conclude that Eq. (8.83) can be 
satisfied only if 

Equations (8.84) represent the orthogonality conditions for the eigenfunctions of a fixed- 
fixed string in transverse vibration. Then, inserting Eqs. (8.84) into Eq. (8.79), we 
conclude that 

constitute companion orthogonality conditions. Moreover, inserting Eqs. (8.84) into Eq. 
(8.81), or Eq. (8.82), we obtain an alternative set of companion orthogonality conditions 
in the form 
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When s = r ,  the integral in Eqs. (8.82), and hence in Eqs. (8.85) and (8.86), is 
not zero. In fact, the integral is a positive real number. It is convenient to normalize the 
natural modes by setting the value of the integral in Eqs. (8.84) equal to unity for s = r ,  
or 

Then, from Eq. (8.79) with s = r ,  it follows immediately that 

and, in the alternative form, that 

Under these circumstances, we refer to the natural modes as normal modes. Equations 
(8.84) and (8.87) can be combined into the orthonormality relations 

where S,, is the Kronecker delta. Similarly, Eqs. (8.85) and (8.88) can be combined into 
the companion orthonormality relations 

and Eqs. (8.86) and (8.89) yield the alternative form of orthonormality relations 

Equations (8.91) will prove useful in the derivation of the system response and Eqs. 
(8.92) will be used in a variational approach to the eigenvalue problem, where the latter 
is convenient for obtaining approximate solutions. 

The orthogonality of the natural modes is indispensable to the solution of bound- 
ary-value problems. In this regard, we recall that in Sec. 3.9 we expanded periodic 
functions in terms of trigonometric functions with frequencies equal to integer multiples 
of the fundamental frequency. This was done through the use of Fourier series, discussed 
in some detail in Appendix A. Figure A. 1 shows such a periodic function expressed as an 
infinite series of the orthogonal harmonic functions sin rt (r = 1,2,  . . . ) . Concentrating 
on a single period, say 0 < t < 2n, instead of the entire time domain, we conclude that a 
function of arbitrary shape can be expanded in an infinite series of orthogonal harmonic 
functions. The expansion theorem represents a generalization of this idea. It can be 
stated as follows: Anyfunction Y ( x )  representing a possible displacement of the string, 
which implies that Y ( x )  satisjies the boundary conditions of the problem and is such that 
(d /dx)[T(x )dY  ( x ) / d x ]  is a continuousfunction, can be expanded in the absolutely and 
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uniformly convergent series of the eigenfunctions 

where the constant coefficients c, are defined by 

and 

We note that Eqs. (8.94) and (8.95) follow directly from the orthonormality relations, 
Eqs. (8.90) and (8.91), respectively. It should be pointed out that the expansion theorem 
holds for any type of boundary conditions, and is not restricted to fixed-fixed strings, 
although the boundary conditions are essential to the determination of the eigenvalues 
and eigenfunctions of a specific system. 

The derivation of the response by modal analysis is based on the expansion theorem, 
which means that, before the response can be obtained, it is necessary to solve the 
differential eigenvalue problem for the system. Clearly, the same expansion theorem is 
valid for thin rods in axial vibration and circular shafts in torsion. 

As for strings in transverse vibration, the solution of the eigenvalue problem for 
beams in bending, Eqs. (8.72)-(8.74), consists of the denumerably infinite set of eigen- 
values W; and eigenfunctions, or natural modes Y,(x), where w, are recognized as the 
natural frequencies (r = 1,2,  . . . ). The natural modes possess the orthogonality property, 
which can be used to formulate an expansion theorem. However, because beams repre- 
sent fourth-order systems, both the orthogonality relations and the expansion theorem 
differ to some extent from those for second-order systems, such as strings in transverse 
vibration, rods in axial vibration and shafts in torsion. To demonstrate the orthogonal- 
ity relations for beams, we consider two distinct solutions of the eigenvalue problem, 
w;, Y, ( x )  and w:, Ys ( x ) ,  and write 

and 

Next, we multiply Eq. (8.96) by Y, ( x ) ,  integrate over the length of the beam and write 

Integrating the left side of Eq. (8.98) by parts twice and considering boundary conditions 
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(8.73) and (8.74), we obtain 

L d2Ys ( x )  d 2 y ,  (x) 
= kYs(0)Yr(O)+ & El(x)---- d x  

d x 2  d x 2  

Inserting Eq. (8.99) into Eq. (8.98), we have simply 

Similarly, multiplying Eq. (8.97) by Y, ( x ) ,  integrating over the length of the beam and 
following the same steps as with Eq. (8.96), it is easy to show that 

Then, observing that the order of the subscripts r and s is immaterial and subtracting 
Eq. (8.101) from Eq. (8.  l o o ) ,  we obtain 

so that, for two distinct solutions of the eigenvalue problem, we must have 

Equations (8.103) represent the orthogonality relations for a beam in bending and, except 
for m ( x )  replacing p ( x ) ,  they are essentially the same as those for a string in transverse 
vibration, Eqs. (8.84). Moreover, inserting Eqs. (8.103) into Eq. (8.98), we obtain the 
companion orthogonality relations 

which are different from the companion orthogonality relations for a string, Eqs. (8.85). 
The main differences are in sign and in the order of the differential expression. Moreover, 
inserting Eqs. (8.103) into Eq. (8.100), or Eq. (8.101), we obtain the alternative form of 
the companion orthogonality relations 
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We observe that not only does the integral contain second derivatives, as opposed to 
first derivatives for the string, but also the relations involve the explicit effect of the 
spring at x = 0. Again, for response problems, we are interested in the companion 
orthogonality relations, Eqs. (8.104). On the other hand, the alternative form of the 
companion orthogonality relations, Eqs. (8.105), is more useful in approximate solutions 
of the eigenvalue problem. 

Using the scheme given by Eq. (8.87) with p(x)  replaced by m(x ) ,  we can nor- 
L 

malize the natural modes so as to satisfy So m ( x ) ~ : ( x ) d x  = 1 (r = 1,2, . . . ), in which 
case the modes are referred to as normal modes; they satisfy the orthonormality relations 

I m(x)Y,(x)Y,(x)dx = S,,, r,s = 1,2, ... 

Moreover, using Eq. (8.98), we see that they also satisfy the companion orthonormality 
relations 

and, using Eq. (8. loo), they can be shown to satisfy the alternative companion orthonor- 
mality relations 

The above orthonormality relations, Eqs. (8.106) and (8.107), permit us to state the 
following expansion theorem: Any function Y ( x )  representing a possible displacement 
of the beam, which implies that Y ( x )  satisjies the boundary conditions of the problenz 
and is such that (d2/dx2)[~~(x)d2~(x)/dx2] is continuous, can be expanded in the 
absolutely and uniformly convergent series ofthe eigenfunctions 

where the constant coeficients c, are dejined by 

and 

The expansion theorem forms the basis for modal analysis, which permits the derivation 
of the response of beams to both initial excitations and applied forces. 

8.6 SYSTEMS WITH LUMPED MASSES AT THE BOUNDARIES 

A situation different from any encountered until now arises when one boundary, or both, 
contains a lumped mass. Indeed, in such a case, the corresponding boundary condition 
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a. 
FIGURE 8.16 
a. Rod fixed at x = 0 and with a lumped mass at x = L, b. Free-body diagram for the 
lumped mass at x = L 

in the differential eigenvalue problem involves the eigenvalue explicitly. To substantiate 
this statement, we consider the axial vibration of a thin rod fixed at x = 0 and with a 
lumped mass attached at x = L, as shown in Fig. 8.16a. Using the analogy with the 
string in transverse vibration in conjunction with Eq. (8.14) and Table 8.1, the partial 
differential equation of motion for a thin rod in axial vibration has the form 

where EA(x) is the axial stiffness, in which E is the modulus of elasticity and A(x) 
is the cross-sectional area of the rod, u (x, t) is the axial displacement, f (x, t) the axial 
force per unit length and m(x) the mass per unit length. Moreover, the rod is fixed at 
x = 0, so that the boundary condition at the left end is 

To derive the boundary condition at the right end, we consider the free-body diagram 
shown in Fig. 8.16b in which we assume a tensile force between the end of the rod and 
the lumped mass M. Concentrating first on the end of the rod, we observe from Eq. 
(2.21) that the tensile force F (L, t) is related to the deformation by 

Equation (8.1 14) reflects the standard convention specifying that a tensile force F pro- 
duces a positive stress Eaulax, as well as the assumption that this stress is distributed 
uniformly over the rod cross-sectional area A. Then, applying Newton's second law to 
mass M, we can write 

Hence, combining Eqs. (8.114) and (8.115), we obtain the boundary condition at the 
right end in the form 



Before examining how boundary condition (8.116) affects the orthogonality of the 
natural modes and the expansion theorem, it will prove beneficial to derive the boundary- 
value problem, Eqs. (8.112), (8.113) and (8.116), by means of the extended Hamilton's 
principle (Sec. 8.2). To this end, we rewrite Eq. (8.17) as 

where this time the kinetic energy has the expression 

On the other hand, using the substitutions indicated in Table 8.1, as well as the analogy 
with Eq. (8.22), the potential energy becomes 

Moreover, from Eq. (8.19), the virtual work of the nonconservative distributed force has 
the analogous form 

Then, following the same steps as in Eqs. (8.23) and (8.24), we obtain 

a 2 ~ ( ~ ,  t )  
Su(x,  t )dx  + M- 

at2 
hu(L ,  t ) ]  dt (8.121) 

Similarly, by analogy with Eqs. (8.25) and (8.26), we can write 
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Hence, inserting Eqs. (8.120)-(8.122) into Eq. (8.117), we have 

Finally, invoking the arbitrariness of the virtual displacement Su(x, t) and using the 
usual arguments (Sec. 8.2), we obtain the boundary-value problem for the rod under 
consideration in the form of the partial differential equation 

and the boundary conditions 

and 

It is easy to see that the results are the same as those given earlier in this section. We once 
again observe that the extended Hamilton's principle yields the correct boundary-value 
problem in a routine fashion. In particular, whereas the derivation of boundary condition 
(8.1 16) through the use of Newton's second law requires some physical reasoning, and 
may cause one to ponder about the signs involved, the derivation of the same boundary 
condition, Eq. (8.126), by means of the extended Hamilton's principle leaves no doubts 
about the sign correctness. In fact, the extended Hamilton's principle is so reliable in 
this regard that it is a good practice to use it to verify the boundary conditions in complex 
cases. 

Next, we consider the case of a cantilever beam in bending with a lumped mass at 
the free end, as shown in Fig. 8 . 1 7 ~  The partial differential equation and the boundary 
conditions at x = 0 remain as in Eqs. (8.39) and (8.40) derived earlier, namely, 

and 

On the other hand, one of the boundary conditions at x = L was never encountered 
before, and we propose to derive it now. To this end, we turn our attention to Fig. 8.17b. 
From the left side of Fig. 8.17b and Eqs. (8.37) and (8.38), we can write the relations 
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a. b. 
FIGURE 8.17 
a. Cantilever beam with a lumped mass at the end, b. Free-body diagram for the lumped 
mass at the end 

between the bending moment and shearing force on the one hand and the displacement 
on the other hand as follows: 

and 

Then, assuming that the dimensions of the lumped mass are sufficiently small that the 
mass moment of inertia about an axis normal to x and y is negligible, the right side of 
Fig. 8.17b can be used to write 

M ( L ,  t )  = 0 

In addition, the force equation in the vertical direction is 

Combining Eqs. (8.129) and (8.131) on the one hand and Eqs. (8.130) and (8.132) on 
the other hand, we obtain the boundary conditions at the right end 

and 

respectively. 
We note that, in deriving boundary condition (8.134), the sign convention for 

the bending moment and shearing force, established in Sec. 8.3, had to be observed 
scrupulously. Otherwise, a sign error can occur. No such question arises when the 
extended Hamilton's principle is used. To demonstrate this, we use the analogy with 
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Eqs. (8.18) and (8.45) and write the kinetic energy and potential energy expressions for 
the beam of Fig. 8.17a as follows: 

and 

respectively. The virtual work has the same expression as that for a string, Eq. (8.19). 
The extended Hamilton's principle has the same form as that for a string, Eq. 

(8.17). Hence, following the same steps as in Sec. 8.3 and omitting details, we can write 

and 

Inserting Eqs. (8.19), (8.137) and (8.138) into Eq. (8.17) and rearranging, we have 

Finally, invoking the arbitrariness of the virtual displacement S y  and recognizing that 
the displacement and slope are zero at x = 0 and cannot be zero for all times at x = L, 
we conclude that the displacement y must satisfy the partial differential equation 

and the boundary conditions 

a ~ ( x ,  t )  y ( x , t )  =0,  --- = 0 ,  x = O  (8.141) 
ax 
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and 

which are identical to the results obtained earlier. The interesting part about boundary 
conditions (8.142) is that they were obtained in a natural fashion, and without any refer- 
ence to the concepts of bending moment and shearing force, although the corresponding 
terms could be identified as such after completion of the derivation. 

8.7 EIGENVALUE PROBLEM AND EXPANSION THEOREM 
FOR PROBLEMS WITH LUMPED MASSES AT THE BOUNDARIES 

The boundary-value problem for the free axial vibration of a thin rod fixed at x = 0 and 
with a lumped mass at x = L (Fig. 8.16a) can be obtained by letting f (x, t) = 0 in the 
partial differential equation of motion, Eq. (8.112), and leaving the boundary conditions, 
Eqs. (8.113) and (8.116), unchanged. Hence, the boundary-value problem in question 
is defined by the equation of motion 

where the solution u(x, t) must satisfy the boundary conditions 

and 

As demonstrated in Sec. 8.4, free vibration is harmonic and, by analogy with Eqs. 
(8.57) and (8.66), can be expressed in the form 

u(x, t) = CU(x)cos(wt - 4) (8.146) 

where C is an amplitude, U (x) a displacement profile, w the frequency of the harmonic 
oscillation and 4 aphase angle. Inserting Eq. (8.146) into Eqs. (8.143)-(8.145) and divid- 
ing through everywhere by C cos(wt - 4), we obtain the eigenvalue problem consisting 
of the differential equation 

and the boundary conditions 

and 

d u b )  
EA(x)- = w 2 ~ u ( x ) ,  x = L (8.149) 

dx 
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Examining Eq. (8.149), we conclude that the case in which there is a lumped mass at 
a boundary differs from all cases encountered before in that the boundary condition in 
question depends on the eigenvalue w2. 

Next, we propose to investigate the orthogonality of modes for the case under 
consideration. To this end, we consider two distinct solutions of the eigenvalue problem, 
U,. (x) and Us (x); they satisfy the equations 

and 

Multiplying Eq. (8.150) by Us (x) and integrating over the length of the rod, we have 

An integration by parts of the left side of Eq. (8.152), with due consideration of the 
boundary conditions, Eqs. (8.148) and (8.149), yields 

Inserting Eq. (8.153) into Eq. (8.152) and rearranging, we obtain 

In a similar fashion, multiplying Eq. (8.151) by Ur (x), integrating over the length of the 
rod and following the same steps, we can write 

Subtracting Eq. (8.155) from Eq. (8.154) and observing that the left side of both equations 
is identical, we have 



We conclude that, for distinct eigenvalues, Eq. (8.156) can be satisfied only if 

Equations (8.157) represent the orthogonality relations for a rod in axial vibration with a 
lumped mass at x = L. For convenience, we normalize the natural modes so as to satisfy 

so that, combining Eqs. (8.157) and (8.158), we obtain the orthonormality relations 

~ L m ( x ) U r ( x ) U s ( x ) d x + M U r ( L ) U s ( L ) = 6 r s ,  r , s  = 1,2 ,  ... (8.159) 

Next, we add w; MU, ( L )  Us ( L )  to both sides of Eq. (8.152) consider boundary condition 
(8.149) and write 

so that, inserting Eqs. (8.159) into Eqs. (8.160), we obtain the companion orthonormality 
relations 

Similarly, Eqs. (8.155) and (8.159) give the alternative companion orthonormality rela- 
tions 

As in Sec. 8.5, we can state an expansion theorem for the response of the rod under 
consideration as follows: Any function U ( x )  representing apossible displacement of the 
rod, which implies that U ( x )  satisjes boundary conditions (8.148) and (8.149) and is 
such that ( d / d x ) [ E A ( x ) d U ( x ) / d x ]  is a continuous function, can be expanded in the 
absolutely and uniformly convergent series of the eigenfunctions 

00 

U ( X )  = C c r u r ( x )  (8.163) 
r=l 

where the constant coefficients are defined by 
L 

C r = S ,  m(x )U, (x )U(x )dx  + M U r ( L ) U ( L ) ,  r = 1 ,2 , .  . . (8.164) 
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and 

Equations (8.164) and (8.165) can be verified by means of the orthonormality relations 
(8.159) and (8.161), respectively, in conjunction with Eq. (8.163) with r replaced by s. 

Although the developments in this section were carried out for a rod in axial 
vibration, the developments are equally valid for a string in transverse vibration and a 
circular shaft in torsion, subject to the dependent variable and parameter changes listed 
in Table 8.1. 

The orthogonality relations and expansion theorem for the cantilever beam with a 
lumped mass at the end depicted in Fig. 8.17a can be produced in the same manner as 
for the rod in axial vibration just discussed. Indeed, by analogy with Eq. (8.146), when 
f (x, t )  = 0, the solution of Eqs. (8.140)-(8.142) can be assumed to have the form 

where Y(x11 is the displacement profile. Then, dividing through by Ccos(wt - 4), we 
obtain the eigenvalue problem consisting of the differential equation 

and the boundary conditions 

and 

At this point, we consider two distinct solutions of the eigenvalue problem, Yr (x) 
and Y, (x) , and write 

and 

Multiplying Eq. (8.170) by Y, (x) and integrating over the length of the beam, we have 
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Two integrations by parts of the left side of Eq. (8.172), with due consideration of 
boundary conditions (8.168) and (8.169), yield 

lL d2 Ys ( x )  d2 Yr ( x )  
= -w,~MY,(L)Y,(L) + E Z ( X ) ~ - - -  d x  

d x  dx2  

Introducing Eq. (8.173) in Eq. (8.172) and rearranging, we obtain 

Similarly, multiplying Eq. (8.171) by Yr ( x ) ,  integrating over the length of the beam and 
using the same process as that leading to Eq. (8.173), we can write 

d 2  yr ( x )  d 2  Y, ( x )  L lL EZ(x)------ 
dx2 dx2  

dx=w:[Jd m(x)Yr(x )YS(~)dx+My, (L)Ys(L)  I 
(8.175) 

But, the left side of Eqs. (8.174) and (8.175) is the same. Hence, subtracting Eq. (8.175) 
from Eq. (8.174), we have simply 

so that, for W ;  # w:, Eq. (8.176) can be satisfied only if 

Equations (8.177) represent the orthogonality conditions for a beam in bending with 
a lumped mass at x = L. They are essentially the same as the orthogonality relations 
for a rod in axial vibration with a lumped mass at x = L, Eqs. (8.157), except that the 
transverse displacement Y replaces the axial displacement U .  

Taking the cue from Eq. (8.164), we normalize the natural modes so as to satisfy 
m ( x )  ~ : ( x ) d x  + MY:(L) = 1 (r  = 1,2,  . . . ), so that the resulting modes satisfy the 

orthonormality relations 
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Now, we add W ~ M Y ~  (L)Y,(L) to both sides of Eq. (8.172), use the second of boundary 
conditions (8.169) and write 

It follows immediately from Eqs. (8.178) and (8.179) that the normal modes also satisfy 
the companion orthonormality relations 

and from Eq. (8.174) that they satisfy the alternative companion orthogonality relations 

as well. 
The preceding developments permit us to state the following expansion theorem 

concerning a cantilever beam with a mass at the end: Any function Y ( x )  represent- 
ing a possible displacement of the beam, which implies that Y ( x )  satisfies boundary 
conditions (8.168) and (8.169) and is such that ( d 2 / d x 2 ) [ ~  I ( x ) d 2 y  ( x ) / d x 2 ]  is a con- 
tinuous function, can be expanded in the absolutely and unijormly convergent series of 
the eigenfunctions 

where the constant coeficients are dejned by 

and 

Equations (8.183) and (8.184) can be verified by means of Eqs. (8.178) and (8.180), 
respectively, in conjunction with Eq. (8.182) with r replaced by s. 

The expansion theorem for rods in axial vibration with lumped masses at bound- 
aries, and by implication for strings in transverse vibration and shafts in torsion, and 
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that for beams in bending form the basis for a modal analysis for the response to ini- 
tial excitations and applied forces. The corresponding theorems, in turn, are based on 
the orthogonality relations, which are more involved for systems with lumped masses 
at boundaries than for systems with all other types of boundaries. The orthogonality 
conditions involving the stiffness properties, Eqs. (8.161) for rods and Eqs. (8.184) for 
beams, appear particularly intimidating. In spite of this, modal analysis retains the same 
simplicity for systems with lumped masses at boundaries as for all other systems, as we 
shall see in Sec. 8.10. 

Example 8.6. Solve the eigenvalue problem for a uniform circular shaft in torsion fixed 
at x = 0 and with a rigid disk at x = L for the parameter ratio I  L / I D  = 1, where I  is the 
polar mass moment of inertia per unit length of shaft and ID  is the polar mass moment of 
inertia of the disk. Plot the three lowest modes. 

By analogy with the eigenvalue problem for a rod in axial vibration, Eqs. (8.147)- 
(8.149), the eigenvalue problem for a shaft in torsion consists of the differential equation 

where O(x) is the twist angle and G J (x)  is the torsional stiffness, in which G is the shear 
modulus and J(x)  the area polar moment of inertia of the shaft, and the boundary conditions 

and 

For auniform shaft, I  (x) = I  = constant, G J (x) = G J =constant, the differential equation 
reduces to 

and boundary condition (c) can be written as 

The solution of Eq. (d) is 

O(x) = Asinox + Bcospx (f) 

Inserting Eq. (f) into boundary condition (b), we conclude that B = 0, so that the solution 
reduces to 

O (x) = A sin o x  (g) 

Then, introducing Eq. (g) in boundary condition (e), we obtain the characteristic equation 

which represents a transcendental equation to be solved numerically for the eigenvalues 
@, L  (r  = 1,2, . . .). Inserting these eigenvalues into Eq. (g), the natural modes are simply 
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FIGURE 8.18 
Graphical solution of the characteristic equation for a shaft fixed at x = 0 and 
with a rigid disk at x = L 

Moreover, from the second of Eqs. (d), the natural frequencies are 

A graphical solution of Eq. (h) is shown in Fig. 8.18. The first three eigenvalues are 
PI L = 0.8903, P2L = 3.4256, P3L = 6.4373. The first three modes, normalized so that 
A, = 1 (U = 1,2,3), are plotted in Fig. 8.19. 

FIGURE 8.19 
Natural modes for a shaft fixed at x = 0 and with a rigid disk at x = L 
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We observe from Eq. (h), and Fig. 8.18, that 

lim PrL = (r - 1 ) ~  
r+cc (k) 

which coincide with the eigenvalue of a fixed-fixed uniform shaft. Hence, as the mode 
number increases, the behavior of a shaft with one end fixed and with a rigid disk attached 
at the other end approaches that of a fixed-fixed shaft. This conclusion is corroborated by 
the natural modes displayed in Fig. 8.19. 

Example 8.7. Solve the eigenvalue problem for a uniform cantilever beam with a lumped 
mass M at the tip for the parameter ratio M/mL = 1. Plot the three lowest modes and draw 
conclusions. 

Letting EI (x)  = E I  = constant, m(x) = m = constant, the differential equation, 
Eq. (8.167), reduces to 

d4  Y (x) w2m 
-p4y(x)  =o,  0 < x  < L, p4= --- 

dx4 E I 
Moreover, boundary conditions (8.168) remain in the form 

whereas boundary conditions (8.169) become 

The eigenvalue problem for a uniform cantilever beam was discussed in Example 
8.4. The only difference between the problem at hand and that in Example 8.4 lies in the 
second of boundary conditions (c) .  Hence, combining Eqs. (i) and (m) of Example 8.4, we 
can write 

sinPL + sinhPL 
(COS px - coshpx) 

cosPL + coshPL 1 
so that the only problem remaining is to enforce the second of boundary conditions (c). 
lnserting Eq. (d) into the second of Eqs. (c), we obtain the characteristic equation 

sinPL + sinhPL 
AD' [- cos px - cosh @x - (sin px  - sinh px) 

cosPL + coshPL 1 
sinPL +sinhPL 

(cospx - coshpx) = 0, x = L (e) 
m cosPL +coshPL 1 

which, for M/.rnL = 1, reduces to 

Equation (0 is a transcendental equation to be solved numerically for the eigenvalues 
,Or L (U = 1,2, . . .). Inserting these eigenvalues into Eq. (d), the natural modes are simply 

sinP,L + sinhP,L 
~in/3~x--sinh/?,x- (COS ,Orx - cosh,B,x) 

cos p, L + cosh p, L 

and from the second of Eqs. (a), the natural frequencies are 
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FIGURE 8.20 
Natural modes for a cantilever beam with a lumped mass at the tip 

The first three eigenvalues are P1 L = 1.2479, P2 L = 4.03 1 1, P3 L = 7.1341 and the 
corresponding three modes, normalized so as to satisfy Eqs. (8.178), are plotted In F I ~ .  8.20. 
Note that the coeffic~ents have the values A 1  = 0.7727, A2 = 0.9946 and A3 = 0.9956. We 
observe that, as the mode number increases, the end x = L acts more as a pinned end than 
a free end with a lumped mass. 

8.8 RAYLEIGH'S QUOTIENT. THE VARIATIONAL APPROACH 
TO THE DIFFERENTIAL EIGENVALUE PROBLEM 

Cases in which the differential eigenvalue problem admits a closed-form solution are very 
rare indeed, almost invariably involving uniformly distributed parameters and simple 
boundary conditions. Hence, for the most part, one must be content with approximate 
solutions. In this regard, Rayleigh's quotient plays a pivotal role. 

We consider the eigenvalue problem for a rod in axial vibration fixed at x = 0 and 
with a spring of stiffness k at x = L. Using the analogy with the string in transverse 
vibration and referring to Eqs. (8.14)-(8.16), it is not difficult to verify that the eigenvalue 
problem consists of the differential equation 

and the boundary conditions 

Equations (8.185) and (8.186) represent the strong form of the eigenvalue problem in 
question. The implication is that the solution U(x) must satisfy the differential equation 
(8.185) at every point of the domain 0 < x < L, as well as boundary conditions (8.186), 



and we observe that the first boundary condition is geometric and the second is natural. 
For the most part, an exact solution of the eigenvalue problem in the strong form is 
beyond reach, particularly when the mass and stiffness parameters depend on the spatial 
variable x . 

An approximate solution of the eigenvalue problem requires some form of dis- 
cretization of the differential equation, Eq. (8.185). The simplest discretization consists 
of lumping the distributed parameters. We discuss a number of such procedures in Ch. 9. 
Another approach is to replace the differential equation by a set of finite difference equa- 
tions, namely, a set of algebraic equations in the unknowns U1 = U ( x , )  , ( i  = l ,  2, . . . , n) 
and the parameter A, thus replacing a differential eigenvalue problem by an algebraic 
one. Finite difference solutions are not very suitable for vibration problems, so that we 
do not pursue this subject any further. The most widely used approximate methods resort 
to series discretization. Among these, we distinguish between variational techniques, 
which include the Rayleigh-Ritz method and the finite element method, and weighted 
residuals methods, such as the Galerkin method and the collocation method. We discuss 
these methods in Chs. 9 and 10. 

The variational approach to the series discretization of the differential eigenvalue 
problem makes use of Rayleigh's quotient to develop the algebraic eigenvalue problem. 
To derive the expression of Rayleigh's quotient for a given system, it is necessary to cast 
the differential eigenvalue problem in a weak form. To this end, we multiply Eq. (8.185) 
by a testfunction V ( x ) ,  integrate over the length of the rod and write 

Equation (8.187) implies that the solution of the differential eigenvalue problem is in a 
weighted average sense only, where the test function V ( x )  plays the role of a weighting 
function. In the context of an approximate solution of the eigenvalue problem, it is 
common to refer to U ( x )  as a trial function. In the same context, it is often advantageous 
to symmetrize the left side of Eq. (8.187) in U ( x )  and V ( x ) .  To this end, we insist that the 
test function V ( x )  satisfy the geometric boundary condition at x = 0 ,  i.e., that V ( 0 )  = 0 .  
Assuming that this is the case, integrating the left side of Eq. (8.187) by parts and 
considering boundary conditions (8.186), we have 

so that, inserting Eq. (8.188) into Eq. (8.187), we obtain 
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Equation (8.189) represents the weak form of the eigenvalue problem. To examine the 
implications of Eq. (8.189), we first recall that the test function V ( x )  must satisfy the 
geometric boundary condition at x = 0 and then observe that V ( x )  must be differentiable 
once for the integral on the left side of Eq. (8.189) to be defined. We refer to the class 
of functions that satisfy the geometric boundary condition and are once differentiable 
as admissiblefinctions for second-order systems of the type given by Eqs. (8.185) and 
(8.186). In view of this, Eq. (8.189) can be interpreted as follows: Determine the values 
of the parameter X and the associatedfunctions U ( x )  such that Eq. (8.189) is satisfied 
for all admissible functions V ( x ) .  In seeking approxin~ate solutions to the eigenvalue 
problems, the weak form has many advantages over the strong form, as it places fewer 
demands on the trial function U ( x ) .  In fact, we observe from Eq. (8.189) that the trial 
function need only be from the class of admissible functions, although this may not 
be always desirable. We return to this subject in Chs. 9 and 10, when we discuss the 
Rayleigh-Rit~ method and the finite element method. 

Next, we consider the case in which the test function is equal to the trial function. 
Letting V ( x )  = U ( x )  in Eq. (8.189), we can write 

Equation (8.190) represents Rayleigh's quotient for the rod described by Eqs. (8.185) 
and (8.186). Clearly, the value of R depends on the trial function U ( x ) .  One question 
of interest in vibrations is how the value of R behaves as U ( x )  changes. To answer this 
question, we refer to the expansion theorem (Sec. 8.5), use the analogy with the string 
in transverse vibration and expand U (x) in the series 

where Ui ( x )  (i = 1 , 2 ,  . . . ) are the normal modes satisfying the orthonormality conditions 

and 

in which X i  are the system eigenvalues. Inserting Eq. (8.191) into Rayleigh's quotient, 
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Eq. (8.190), and considering Eqs. (8.192) and (8.193), we can write 

L " dU, ( x )  00 dU, ( x )  00 00 1 ~ ~ ( x ) ~ c , - - ~ c , ~ d x + k x c , ~ ~ ( ~ ) x c , ~ , ( ~ )  
r=1 d x  

1=1 r=1 7=1 

+ kU, (L)UJ ( L ) ]  

- - 
00 00 

~ ~ c ~ c j  l L m ( x ) ~ r ( x ) ~ j ( x ) d x  
1=1 ]=I 

In Sec. 7.13, it was demonstrated that the behavior of Rayleigh's quotient for discrete 
systems becomes interesting only when a trial vector enters the neighborhood of an 
eigenvector. But, an eigenfunction can be regarded as an eigenvector of infinite dimen- 
sion. Hence, using the analogy with discrete systems, we consider the case in which the 
trial function U (x) resembles closely a given eigenfunction U ,  ( x ) .  In terms of the series 
expansion for U ( x ) ,  Eq. (8.191), this implies that all coefficients c, are small, with the 
exception of c,; this can be expressed as 

where ~i are small numbers. Inserting Eqs. (8.195) into Eq. (8.194), dividing top and 
bottom by cz and ignoring terms in E; of order larger than two, we obtain 

00 W - (A,  + r'A,) ( 1  - 5 €:) A, + ~ ( h  - A,)r: (8.196) 
r=l r=l 1 = 1  
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But, our postulate was essentially that the trial function U ( x )  differs from the rth eigen- 
function Ur ( x )  by a small quantity of first order in E, or U ( x )  = U,  ( x )  + O ( E ) ,  and Eq. 
(8.196) states that in this case Rayleigh's quotient differs from the rth eigenvalue by a 
small quantity of second order in E ,  or R = A, + 0 (E') .  The implication is that Rayleigh 's 
quotient has a stationary value at an eigenfinction Ur ( x ) ,  where the stationary value 
is the associated eigenvalue A, (r = 1,2,  . . . ). This can be interpreted as stating that the 
process of rendering Rayleigh's quotient stationary is equivalent to solving the weak 
form of the eigenvalue problem. A more formal proof of this statement can be found in 
Ref. 13. 

A case of particular interest is that in which r = 1, in which case Eq. (8.196) 
becomes 

00 

R 2 X I  + x ( A ,  - A1)~f (8.197) 
1 =2 

In view of the fact that the eigenvalues satisfy the inequalities X 1  5 X 2  . . . , we conclude 
that 

Inequality (8.198) states that Rayleigh's quotientprovides an upper bound for the lowest 
eigenvalue X I .  Inequality (8.198) can be given a somewhat different interpretation by 
stating that 

= w: = min R ( U )  = R ( U I )  (8.199) 

or, the lowest eigenvalue A1 is the minimum value that Rayleigh's quotient can take, 
where the minimum value occurs at the lowest eigenfunction, U ( x )  = Ul ( x ) .  Equation 
(8.199) is referred to at times as Rayleigh's principle. 

For most structures, the lowest natural frequency is the most important one. Quite 
often, particularly in preliminary design, the interest lies in producing a quick estimate of 
this lowest natural frequency, a task for which Rayleigh's principle is ideally suited. To 
this end, all that is necessary is to introduce a trial function U ( x )  closely resembling the 
lowest natural mode U l ( x )  in Rayleigh's quotient, Eq. (8.190), carry out the indicated 
integrations and calculate the value R = X = w2. Then, because of the fact that Rayleigh's 
quotient has a minimum at the lowest eigenfunction, the value w = thus calculated 
will be one order of magnitude closer to the lowest natural frequency wl than U ( x )  is 
to Ul ( x ) .  A trial function U ( x )  resembling the lowest natural mode reasonably well 
consists of the static displacement curve due to the own weight of the structure. Another 
good choice for a trial function U ( x ) ,  although not likely to be as good as the static 
displacement curve, is the lowest eigenfunction of an intimately related but simpler 
structure. Examples of such simpler structures are structures with uniform parameter 
distributions, as opposed to nonuniform ones, and with simpler boundaries, such as a 
free end instead of spring-supported end or an end with a lumped mass. 

Rayleigh's quotient expression given by Eq. (8.190) is for a rod in axial vibration 
with the end x = 0 fixed and the end x = L attached to a spring of stiffness k. Yet, the 
stationarity of Rayleigh's quotient and Rayleigh's principle hold for a much larger class 
of systems, of which the rod in question is a mere example. Indeed, they hold for the 
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very large class of conservative systems. In view of this, we propose to derive a generic 
form of Rayleigh's quotient, not restricted to any particular structural member. To this 
end, we first consider a rod with the end x = 0 fixed and with a lumped mass M at the 
end x = L. The corresponding eigenvalue problem was discussed in Sec. 8.7. Hence, 
using Eq. (8.154), we can write Rayleigh's quotient in the form 

Similarly, for a beam in bending supported by a spring at x = 0 and pinned at x = L, we 
conclude from Eq. (8.100) that Rayleigh's quotient can be written as 

Moreover, using Eq. (8.174), Rayleigh's quotient for a cantilever beam with a lumped 
mass at x = L is 

Examining the Rayleigh's quotient for all the above systems, we conclude that they all 
have one thing in common, namely, the numerator is a measure of the potential energy 
and the denominator a measure of the kinetic energy. As an illustration, the potential 
energy for a rod in axial vibration fixed at x = 0 and restrained by a spring at x = L has 
the expression 

and the kinetic energy is simply 

But, as established in Sec. 8.4, the free vibration of conservative systems is harmonic. 
Hence, by analogy with Eqs. (8.57) and (8.66), we can express the axial displacement 
u (x, t )  in the form 
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Inserting Eq. (8.205) into Eq. (8.203), we can rewrite the potential energy as follows: 

= V,, cos2 (wt - 4) (8.206) 

represents the maximum potential energy, obtained for cos(wt - 4) = +I. Similarly, 
inserting Eq. (8.205) into Eq. (8.204), we have 

L 

T (t) = [l m(x) u2 (x)dx sin2 (wt - 4) = W'T,~ sin2(wt - 4) (8.208) I 
in which 

represents a reference kinetic energy. It is easy to see that Vm, is one half of the 
numerator of Rayleigh's quotient, Eq. (8.190), and Tref is one half of the denominator. 
In view of this, we can express Eq. (8.190) in the form 

It is easy to see that the same form applies to the systems with the Rayleigh's quotient 
given by Eqs. (8.200)-(8.202), and to any conservative system in general. Clearly, Eq. 
(8.210) represents the generic form of Rayleigh's quotient sought. In fact, Eq. (8.210) 
applies not only to conservative distributed systems but to all conservative systems in 
general, including conservative discrete systems. 

Example 8.8. Estimate the lowest eigenvalue of the string fixed at x = 0 and spring- 
supported at x = L of Example 8.2 by means of Rayleigh's principle. Solve the problem in 
two ways: 1) using as a trial function the static displacement curve due to the string's own 
weight and 2) using the lowest eigenfunction of the fixed-free string. Compare results and 
draw conclusions. 

Rayleigh's quotient for the string of Example 8.2 is 

where Y (x) is the trial function, T the tension in the string, k the spring constant and p the 
mass density of the string. The estimates for the two cases are obtained as follows: 

kamal
Rectangle

kamal
Rectangle

kamal
Rectangle

kamal
Rectangle



1) The static displacement curve as a trial function 
Using Eqs. (a) and (b) of Example 8.2 as a guide, we conclude that the static dis- 

placement curve satisfies the boundary-value problem defined by the differential equation 

where g  is the gravitational constant, and the boundary conditions 

The solution of Eq. (a) is simply 

in which cl and c2 are constants of integration. Inserting Eq. (c) into Eqs. (b), the constants 
of integration can be shown to have the values 

Hence, using the parameter ratio k L / T  = 0.5 from Example 8.2, the static displacement 
curve has the expression 

5 p g L  l p g  2 
Y(x)=-----x+--x =--- 

6 T 2 T  

Inserting Eq. (e) into Rayleigh's quotient, Eq. (a), and carrying out the indicated 
integrations, we obtain 

so that, recalling that p2 = W ~ ~ / T ,  the estimate of the lowest eigenvalue is 

P L  = = 1.8487 (g) 

which is slightly higher than the actual eigenvalue PI L = 1.8366, obtained in Example 8.2. 
In fact, the error is 

which is extremely small. 
2) The lowest eigenfunction of a fixed-free string as a trial function 

The lowest eigenfunction of a fixed-free string is simply 

77-x 
Y (x) = sin - 

2 L  
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Inserting Eq. (i) into Eq. (a), we have 

so that the estimated lowest eigenvalue is 

PL = d%@= 1.8621 

which is somewhat higher than the estimate obtained by using the static displacement curve, 
and hence not as good. The error is indeed higher, 

The conclusion is that excellent results can be obtained by using the static displace- 
ment curve as a trial function. The disadvantage of this approach is that it may not be so easy 
at times to determine the static displacement curve. Somewhat poorer results, although still 
very good, can be expected with the lowest eigenfunction of a closely related but simpler 
system as a trial function. We observe that both estimated eigenvalues are higher than the 
actual eigenvalue, thus confirming the fact that Rayleigh's quotient provides an upper bound 
for the lowest eigenvalue. 

8.9 RESPONSE TO INITIAL EXCITATIONS 

As pointed out on several occasions, although various types of distributed-parameter 
systems exhibit similar vibrational characteristics, their mathematical description tends 
to differ in appearance. This difference is most obvious in the stiffness term. Hence, to 
discuss the system response, it is necessary to choose a certain elastic member. 

From Sec. 8.4, the transverse displacement y(x, t) of a string in free vibration is 
given by the partial differential equation 

in which T (x) is the tension and p(x) the mass density. The solution of Eq. (8.21 1) must 
satisfy two boundary conditions, one at each end. In the case of discrete systems, the 
free vibration is caused by initial displacements and initial velocities of the individual 
masses. But, as shown in Sec. 8.1, distributed-parameter systems can be regarded as 
limiting cases of lumped-parameter systems whereby the lumped masses are spread 
over the entire domain of the system. Extending the analogy, we conclude that the free 
vibration of distributed systems is caused by initial excitations in the form of the initial 
displacement and initial velocity functions 

We refer to Eqs. (8.212) as initial conditions. 



In Sec. 8.4, it was indicated that the free vibration of a distributed-parameter system 
can be expressed as a linear combination of natural motions with amplitudes and phase 
angles depending on the initial conditions. The natural motions themselves consist of 
the natural modes multiplied by time-dependent harmonic functions with frequencies 
equal to the natural frequencies. This implies that, before we can solve for the response, 
we must solve the eigenvalue problem. The process can be formalized by considering 
the expansion theorem, which for a string in transverse vibration consists of Eqs. (8.93)- 
(8.95). Hence, consistent with this, we express the solution of Eq. (8.21 1 )  in the form 

00 

y ( x ,  t )  = C ~ , ( x ) v , ( t )  (8.213) 
r=l 

in which Yr ( x )  are the normal modes of the system and rl, ( t )  are time-dependent func- 
tions. Introducing Eq. (8.213) in Eq. (8.21 I ) ,  we can write 

Then, multiplying Eq. (8.214) by Y, ( x )  and integrating over the length of the string, we 
have 

Next, we consider the orthonormality relations, Eqs. (8.90) and (8.91), denote derivatives 
with respect to time by overdots and obtain the independent set of modal equations 

where v r ( t )  ( Y  = 1,2,  . . .) can now be identified as modal coordinates, and we observe 
that Eqs. (8.216) resemble entirely the equation of motion of an undamped single-degree- 
of-freedom system, Eq. (2.2). Hence, by analogy with Eq. (2.13), the solution of Eqs. 
(8.216) can be written as 

lir(0) . q r ( t ) = C ~ ~ ~ ~ ( ~ r t - ~ r ) = ~ ( 0 ) ~ ~ ~ ~ , t + - - - - ~ l n ~ r t , r = l , 2 ,  ... (8.217) 
Wr 

in which, from Eqs. (2.12), the amplitudes C, and phase angles 4, are related to the 
initial modal displacements 77, (0)  and initial modal velocities r j ,  (0)  by 

where, in turn, 7 ,  (0) and 6, (0)  are related to the actual initial conditions. To express the 
initial modal displacements in terms of the actual initial displacement function yo(x), 
we let t = 0 in Eq. (8.213), use the first of Eqs. (8.212) and write 

00 

y(x.0) = yr(x)%(o) =  YO(^) (8.219) 
r=l 
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Then, multiplying Eq. (8.219) by p(x)Ys ( x ) ,  integrating over the length of the string and 
using the orthonormality relations (8.90), we obtain 

Using the same procedure, it is not difficult to see that 

The formal solution of the free vibration problem is completed by inserting Eqs. (8.217) 
into Eq. (8.213). 

The process presented here is valid for arbitrary parameter distributions and bound- 
ary conditions, provided the eigenvalue problem admits an exact solution. Clearly, the 
same developments apply to all second-order systems, such as rods in axial vibration 
and shafts in torsion, and they are not restricted to strings in transverse vibration. All 
that is necessary is to replace T ( x )  and p(x) by the corresponding parameters listed in 
Table 8.1. 

With some modifications, the same procedure can be used to obtain the response 
of beams in bending vibration. Indeed, in this case, from Eq. (8.691, the free vibration 
is described by the partial differential equation 

a2 
= m ( x )  a2y(x,  t ) ,  < < ax2  at2 

where the solution y(x ,  t )  is subject to initial conditions analogous to those of Eqs. 
(8.212). Similarly, the solution can be expressed in a form resembling the series given 
by Eq. (8.213), which implies that it is necessary to solve the differential eigenvalue 
problem for the system. Following the procedure used earlier, we conclude that Eq. 
(8.214) must be replaced by 

and Eq. (8.215) by 

Then, Eqs. (8.216)-(8.221) remain the same, except that m ( x )  replaces p(x) in Eqs. 
(8.220) and (8.221). 

At this point, we wish to demonstrate a statement made toward the end of Sec. 8.4 
that every one of the natural modes can be excited independently of the other modes by 
proper initial conditions. To this end, we assume that the initial displacement of a string 
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in transverse vibration is made to resemble the pth mode Y, (x) exactly. Hence, we have 

where A is a constant amplitude. Inserting Eq. (8.225) into Eqs. (8.220) and using the 
orthonormality relations (8.90), we can write 

A for r = p 
(8.226) 

O f o r r = l , 2  , . . . ,  p - l , p + l ,  ... 

Moreover, the initial modal velocities G, (0) are all zero (r = 1,2, . . . ) . It follows from 
Eqs. (8.217) that 

Acoswrt for r = p 
%(t) = (8.227) 

Oforr = 1 , 2  ,..., p - l , p + l ,  ... 

Finally, inserting Eqs. (8.227) into Eq. (8.213), we obtain 

y (x, t) = AYp (x) coswp t (8.228) 

which demonstrates that the ensuing motion is vibration of the string in the pth mode 
alone. 

Next, we turn our attention to the response of systems with lumped masses at the 
boundaries to initial excitations. From Sec. 8.7, the boundary-value problem for a rod 
in free axial vibration fixed at x = 0 and with a lumped mass M at x = L (Fig. 8.16a) is 
given by the partial differential equation 

and the boundary conditions 

and 

The interest lies in the response of the system to the initial displacement and initial 
velocity 

respectively. 
By analogy with Eq. (8.213), we assume a solution of Eq. (8.229) in the form 
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where Ur ( x )  are the system normal modes and qr ( t )  are the modal coordinates (r  = 
1,2,  . . .). Inserting Eq. (8.233) into Eq. (8.229), multiplying through by U s ( x )  and 
integrating over the length of the rod, we obtain 

But, from Eqs. (8.160) and (8.161), we have 

and 

2 d u r x ]  -wr6rs,  Ur ( x ) ]  d x  = [u, ( x )  E A ( x )  - 
d x  .=L 

so that Eqs. (8.234) can be rewritten as 

But, observing from boundary condition (8.231) and Eq. (8.233) that 

we conclude that Eqs. (8.237) reduce to the standard independent modal equations 

2 i j s ( t )+wsvs( t )  =0 ,  s = 1,2 ,  ... (8.239) 

Equations (8.239) have the familiar solution 

where q, (0 )  are initial modal displacements and r j ,  ( 0 )  are initial modal velocities ( s  = 
1,2 ,  . . .). Their values can be obtained from the actual initial displacement uo(x )  and 
initial velocity vo(x) ,  respectively. To this end, we let t = 0 in Eq. (8.233) and write 

00 



Then, multiplying both sides of Eq. (8.24 1 )  by m ( x )  U, ( x )  and integrating over the length 
of the rod, multiplying both sides of Eq. (8.241) evaluated at x = L by MU, (L), adding 
the two results and using the orthonormality relations (8.1591, we obtain 

L 

~ ~ ( 0 )  = m(x)US(x)uo(x)dx +MU,(L)uo(L),  s = l , 2 , .  . . (8.242) 

Similarly, it is easy to see that 
L 

7is(0) = m(r)Us(r)uo(x)dx +MUS(L)vo(L) ,  s = 1,2, ... (8.243 ) 

The formal solution for the response to initial excitations is obtained by inserting Eqs. 
(8.240) in conjunction with Eqs. (8.242) and (8.243) into Eq. (8.233). 

The response to initial excitations of a beam in bending cantilevered at x = 0 and 
with a lumped mass at x = L has the same form as that of a rod in axial vibration fixed 
at x = 0 and with a lumped mass at x = L, Eqs. (8.2331, (8.240), (8.242) and (8.243), 
the only difference being that the symbols u (x ,  t ) ,  uo(x) and U, ( x )  must be replaced by 
y ( x ,  t ) ,  yo(x) and Y, ( x ) ,  respectively. 

Example 8.9. Determine the response of the uniform string of Example 8.1 to the initial 
displacement shown in Fig. 8.21. The initial velocity is zero. From Fig. 8.21, the initial 
displacement function has the analytical expression 

From Eq. (8.213), the response of the system is given by 

X 

0 a L 

FIGURE 8.21 
Initial displacement function for a string fixed at both ends 
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L where Yr (x) are the normal modes satisfying lo ,o(x)~?(x)dx = 1 and rl, (t) are the modal 
coordinates (r = 1,2, . . . ). The natural modes were obtained in Example 8.1. Hence, using 
Eqs. (k) of Example 8.1 and normalizing according to the formula just given, we obtain the 
normal modes 

d 2 rnx  
Y,(x)= -sin--, r = 1 , 2  ,... 

PL L 

where p is the constant mass density. Moreover, in view of the fact that vo(x) = 0, we let 
lir (0) = 0 (7 = 1,2,  . . .) in Eqs. (8.217), and obtain the modal coordinates 

qr(t)=qr(0)cosw,t, r = 1 ,2  ,... (d) 

in which, from Eqs. (8.220), 

are the initial modal displacements and, from Eqs. (i) of Example 8.1, 

are the natural frequencies, where T is the string tension. Hence, inserting Eqs. (a) and (c) 
into Eqs. (e), we obtain the initial modal coordinates 

Finally, inserting Eqs. (c)-(g) into Eq. (b), we obtain the response 

ZA L" 1 . r?ra . r r x  
y(x3 t )  = c ;i s ~ n  -- s ~ n  -- cos r r  

n2a(L -a )  L L 

and we observe that the contribution of the higher mode is inversely proportional to the 
square of the mode number. 

As a matter of interest, we, consider the case in which a = L/2. To this end. we 
observe that 

( -I)( ' -~) /~ for r odd 
sln -- = sin - = 

L 2 0 for r even 

so that only the odd-numbered modes contribute to the response, or 



This can be easily explained by the fact that for a = L / 2  the initial displacement function is 
symmetric with respect to x = L/2,  so that the even-numbered modes, which are observed 
from Fig. 8.10 to be antisymmetric, cannot be excited. 

Example 8.10. Determine the response of the cantilever beam with a lumped mass at the 
end of Example 8.7 to the initial velocity 

The initial velocity function is plotted in Fig. 8.22. The initial displacement is zero. 
From Sec. 8.6, the boundary-value problem for the free vibration of the system under 

consideration is given by the differential equation 

where the displacement y (x, t )  is subject to the boundary conditions 

ay(x, t ,  - 0 ,  = 0 y(x, t )  = 0 ,  ----- - ax (c) 

and 

The solution of Eq. (b) can be expressed in the form 

where the modes Y,(x) are given by Eqs. (g) of Example 8.7. For convenience the coeffi- 
cients A, in Eqs. (g) are such that the modes satisfy the orthonormality relations 

m ~ L Y , ( x ) Y s ( x ) d x + M Y , ( L ) Y s ( L ) = 6 , , ,  r , s  = 1.2, ... (f 

and 

FIGURE 8.22 
Initial velocity function for a cantilever beam with a lumped mass at the 
tip 
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as can be concluded from Eqs. (8.178) and (8.180), respectively. Inserting Eq. (e) into Eq. 
(b), multiplying through by Y, (x), integrating over the length of the beam and rearranging, 
we can write 

which, in view of the second of boundary conditions (d), reduce to 

Because the initial displacement is zero, the solution of Eqs. (i) is 

where, by analogy with Eqs. (8.243), 

Hence, combining Eqs. (e), Cj) and (k), using Eq. (g) of Example 8.7 and recalling from that 
example that M = m L, we obtain the response 

00 sin /3, L + sinh ,!?, L 
y(x.t) = XC, [sin/$x-sinhhx - (cosP,.~ - cosh/3,x) sinw,t 

r=l COSD,L + c o s ~ / ~ , L  I 
The first three coefficients have the values C1 = -0.0404, C2 = 0.7761, C3 = -0.0003, 
and we observe that C2 has the largest value, which implies that the second mode has been 
excited the most. This should come as no surprise, as the initial velocity resembles the 
second mode, as can be concluded by comparing Figs. 8.20 and 8.22. 

8.10 RESPONSE TO EXTERNAL EXCITATIONS 

As pointed out in the beginning of Sec. 8.9, the various types of distributed-parameter 
systems differ more in appearance than in vibrational characteristics. Still, because of 
this difference in appearance, in discussing the response to external excitations, it is 
necessary to carry out the derivation of the response by means of a specific conservative 
vibrating system. With certain modifications, the same developments apply to all systems 
in this class. 

We consider the response of a beam in bending supported by a spring of stiffness 
k at x = 0 and pinned at x = L. From Sec. 8.3, we obtain the corresponding partial 



differential equation 

and, from Sec. 8.4, the boundary conditions 

and 

To derive the response of the system under consideration, we must use modal 
analysis. To this end, we first solve the associated eigenvalue problem, Eqs. (8.72)- 
(8.74), which yields the natural modes Yr(x)  and natural frequencies w, (r = 1,2, . . .). 
The natural modes are orthogonal and we assume that they have been normalized so as 
to satisfy the orthonormality conditions 

m(x)Y,(x)Y,(x)dx = S,,, r , s  = 1,2 , .  . . (8.247) 

and 

Then, we assume a solution of Eq. (8.244) in the form 

00 

Y ( x ,  t )  = C ~ r ( x ) ~ r ( t )  (8.249) 
r=l 

where q ( t )  (r = 1,2, . . .) are modal coordinates. Next, we insert Eq. (8.249) into Eq. 
(8.244), multiply by Y, ( x ) ,  integrate over the length of the beam, consider Eqs. (8.247) 
and (8.248) and obtain the independent modal equations 

in which 

Y r ( x ) f ( x , t ) d x , r = l , 2 ,  ... (8.251) 

are the modal forces (r  = 1,2,  . . . ) . 
Equations (8.250) resemble entirely the modal equations for discrete systems, Eqs. 

(7.206). Hence, to discuss their solution, we follow the pattern established in Sec. 7.15. 
First, we consider the case in which the excitation is harmonic and express it in the form 

f ( x ,  t )  = F(x)cosQt (8.252) 



Introducing Eq. (8.252) in Eqs. (8.251), we obtain the modal forces 

L 

N,(t) = [l Y,(x)F(x)dx  cos n t  = F, cos a t ,  r = I ,  2 ,  . . . I (8.253) 

where 

are modal force amplitudes. Inserting Eqs. (8.253) into Eqs. (8.250), it is easy to verify 
that the steady-state solution is 

so that, in view of Eq. (8.249), the steady-state harmonic response is 

Y,(x) cosnt y ( x J ) = [ g &  ] 
From Eqs. (8.254) and (8.256), we conclude that, if the excitation amplitude func- 

tion F ( x )  resembles the product of the mass density m ( x )  and one of the normal modes, 
say F ( x )  = m (x)Yk ( x ) ,  then F, = 0, r + k, so that the response reduces to 

y ( x ,  t )  = - Fk Y,(x) cos nt 
w; - a2 

which implies that only the kth mode is excited. Moreover, if the excitation frequency is 
equal to one of the natural frequencies, then the system experiences resonance. These are 
basically the same conclusions as those reached in Sec. 7.15 in conjunction with discrete 
systems. This demonstrates that, whereas discrete and distributed systems constitute two 
different types of models, as long as they represent conservative systems, their behavior 
is entirely analogous. 

In the case in which the external excitation f ( x ,  t )  is arbitrary, the modal forces 
N,(t) (r = 1,2,  . . . , n) are arbitrary. Then, as in Sec. 7.15, the modal displacements, 
obtained by solving Eqs. (8.250), can be expressed in the form of the convolution integrals 

so that, using Eq. (8.249), the response of the distributed system to arbitrary excitations 
is 

If there are initial excitations, then, by virtue of the superposition principle, the response 
to initial excitations can be obtained separately by the approach of Sec. 8.9, and added 
to Eq. (8.259). 



It should be stressed here that, although we derived the response using a beam 
supported by a spring at x = 0 and pinned at x = L, the developments remain essentially 
the same for all other boundary conditions, and the same can be said about other systems, 
such as strings in transverse vibration, rods in axial vibration and shafts in torsion. 

Example 8.11. Derive the response of a uniform pinned-pinned beam to a concentrated 
force of amplitude Fo acting at x = L/2  and having the form of a step function. The 
concentrated force can be treated as distributed by writing 

f (x, t) = FoS(x - L/2)m(t) (a) 

where S(x - L/2) is a spatial Dirac delta function having the property 

iL g(x)h(x - a)dx =*(a) (b) 

The eigenvalue problem for a uniform pinned-pinned system was solved in Example 
8.3, from which we obtain the natural modes 

and eigenvalues 

If normalized so as to satisfy Eqs. (8.247), then the normal modes become 

Moreover, the natural frequencies are 

The response is given by Eq. (8.259), which requires the modal forces N,(t) (r = 
1,2, . . .). Inserting Eqs. (a) and (e) into Eq. (8.251) and considering Eq. (b), we obtain the 
modal forces 

r 77- 
= EFoIy(t) sin - 2 = (- 1) (r-1),2 

Then, introducing Eqs. (g) in Eqs. (8.258) and evaluating the convolution integrals, we 
obtain the modal coordinates 

( - l ) ( r - l ) / 2 ~ ~  m ~ 4  
- - ( r 7 ~ ) ~  - 1  E I  mL - c o s r 2 t ]  m L4 , r = odd 
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Finally, inserting Eqs. (e) and (h) into Eq. (8.249), we can write the response 
00 00 (-l)('-')Iz~o mL4 2 . rxx  

y(x, t )  = X ~ , ( x ) r l r ( t )  = X -- 

r=l r=1,3, ( r ~ ) ~  E I  mL L 

- - 
~ F ~ L ~  O0 - I ~  r a x  [ /zt] -- C ,4 

sin ---- 1 - c o s ( r ~ ) ~  - 
T ~ E I  r=1,3, ... L 

We note that the even-numbered modes sin2xxl L ,  sin4xx/L, . . . , which are antisymmet- 
ric, do not participate in the response. This can be easily explained by the fact that the load 
is concentrated at x = L/2, and the antisymmetric modes have a node at that point, so that 
they cannot be excited. Instead of skipping over the even integers in the summation, we 
replace r by 2 j - 1 and write the response in the form 

~ F ~ L ~  " (-1)(JP1) (2 j  - 1)xx 
y(x,t) = ----- sin 

x 4 E I  (2j - L 

where now the summation is over all integers. We note that the mode contribution to the 
response is inversely proportional to (2 j  - 114, which indicates that the mode participation 
decreases rapidly as the mode number increases. Indeed, the contribution of the second 
participating mode, which is actually the third natural mode, is only a little over one percent 
compared to the contribution of the first mode. 

8.11 SYSTEMS WITH EXTERNAL FORCES AT BOUNDARIES 

In many cases, the system is subjected to external forces at the boundaries. Such systems 
differ from those encountered until now, because forces independent of displacements 
andlor velocities render the corresponding boundary conditions nonhomogeneous. Prob- 
lems with nonhomogeneous boundary conditions do not lend themselves to the derivation 
of the response by modal analysis, so that difficulties can be expected. It  turns out, how- 
ever, that a reformulation of the problem can obviate these difficulties, thus permitting 
the use of modal analysis. 

We consider a rod in axial vibration fixed at x = 0 and with an arbitrary force 
F ( t )  applied at x = L, as shown in Fig. 8.23. For simplicity, we assume that the initial 
conditions are zero. The partial differential equation of motion for the system is 

where the axial displacement u ( x ,  t )  must satisfy the boundary conditions 

Clearly, the second of boundary conditions (8.261) is nonhomogeneous, which precludes 
the use of modal analysis for the response. 

The problem under consideration consists of a homogeneous differential equation, 
Eq. (8.260), and two boundary conditions, one homogeneous, the first of Eqs. (8.261), 
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FIGURE 8.23 

I, --+ 
Rod fixed at x = 0 and with an axial force at x = L 

and one nonhomogeneous, the second of Eqs. (8.261). A solution of the problem can be 
obtained by transforming it into a problem defined by a nonhomogeneous differential 
equation and two homogeneous boundary conditions, where the latter can be solved by 
modal analysis. Such an approach is used in Ref. 13, but the strictly analytical approach 
tends to be tedious, and so does the solution. A simpler and more intuitive approach 
achicving the same goal, namely, the transfer of the nonhomogeneity from the boundary 
condition at x = L to the differential equation, is to treat the force F ( t )  concentrated at 
the end x = L as if it were distributed over a very small segment of the rod given by 
L- < x < L, where L- denotes a point to the immediate left of x = L, as depicted 
in Fig. 8.24. For all practical purposes, Figs. 8.23 and 8.24 depict equivalent systems. 
Mathematically, the equivalent distributed force can be expressed as 

where S(x - L )  is a spatial Diral delta function applied immediately to the left of x = L 
and defined as 

In view of this, we can reformulate the problem by rewriting the differential equation in 
the form 

FIGURE 8.24 
Concentrated axial force at x = L treated as distributed 
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which is nonhomogeneous, and the boundary conditions as 

which are both homogeneous. The boundary-value problem defined by Eqs. (8.264) 
and (8.265) is of the standard type, and its solution can be obtained routinely by modal 
analysis, as described earlier in this chapter. 

To obtain the response of the system described by Eqs. (8.264) and (8.265) by 
modal analysis, we must first solve the eigenvalue problem defined by the differential 
equation 

and the boundary conditions 

The solution consists of the eigenfunctions Ur (x) and the eigenvalues w: (r = 1,2, . . . ). 
The eigenfunctions are orthogonal and are assumed to have been normalized so as to 
satisfy the orthonormality conditions 

A m (x) Ur (x) Us (x)dx = ST,, r ,  s = 1,2, . . . 

and 

Next, we assume a solution in the form 
00 

I*(x, t) = C ur (x )~ r ( t )  (8.270) 
r=l 

so that, inserting Eq. (8.270) into Eq. (8.264), multiplying by Us (x), integrating over the 
length of the rod and considering the orthonormality relations (8.268) and (8.269), we 
obtain the modal equations 

where 

Nr(t)= U r ( x ) F ( t ) S ( x - L ) d x = U r ( L ) F ( t ) , r = 1 , 2 ,  ... S," (8.272) 

are the modal forces. Then, the solution of the modal equations can be written in the 
form of the convolution integrals 

I' LtF( t - r ) s i nw , rd r ,  r = 1,2, . . .  t = - Nr ( t  - r)  sin w r r d r  = - 
Wr W r 

(8.273) 



The response of the rod to the boundary force F ( t )  is completed by introducing Eqs. 
(8.273) in Eq. (8.270). 

Example 8.12. Obtain the response of a uniform rod, EA(x) = EA = constant, m(x) = 
m = constant, fixed at x = 0 and subjected to a boundary force at x = L in the form 

F(t)  = F w ( t )  (a) 

where ~ ( t )  is a unit step function. 
From Eqs. (8.266) and (8.267), the eigenvalue problem for the uniform rod fixed at 

x = 0 and free at x = L is given by the differential equation 

and the boundary conditions 

It can be verified that the solution of the eigenvalue problem consists of the orthonormal 
modes 

and the natural frequencies 

Introducing Eq. (a) in Eqs. (8.273) and considering Eqs. (d) and (e), we can write 
the modal coordinates 

u2rL) 
F w ( t  - r) sin w , i d ~  = -- vr(t) = - (1 - coswt)  

w,2 

Finally, inserting Eqs. (d) and (f) into Eq. (8.270), we obtain the response of the rod 

8FoL O0 (-1)'-l (2r - 1)nx (2r - l ) n  
u(x,t)=---- --- 

+PA (21 - 112 
sin 

2 L r=l 

The response at x = 3L/4 is shown in Fig. 8.25 as a function of time. 
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FIGURE 8.25 
Axial displacement at x = 3L/4  due to a force in the form of a step function at x = L 

8.12 THE WAVE EQUATION 

A phenomenon intimately related to vibration is wave propagation. In fact, under certain 
circumstances vibration and wave propagation are two different representations of the 
same motion, namely, one in terms of standing waves and the other in terms of traveling 
waves. 

The simplest form of wave motion is associated with second-order systems, such 
as strings in transverse vibration, rods in axial vibration and shafts in torsion, with 
uniformly distributed parameters. For easy visualization, we introduce the ideas by 
means of a string. For constant tension and uniform mass distribution, the free vibration 
of a string, Eq. (8.55), can be expressed in the form 

Equation (8.274) represents the one-dimensional wave equation, in which c is the wave 
propagation velocity. It is not difficult to verify by substitution that the general solution 
of Eq. (8.274) is 

where f l  and f2 are arbitrary functions of the arguments x - ct and x + ct, respectively. 
We see that f i  ( x  - ct)  represents a displacement wave of arbitrary shape f l  kaveling 
in the positive x direction with the constant velocity c and without altering the shape. 
Similarly, f2(x + c t )  is a displacement wave of shape f2 traveling in the negative x 
direction. Hence, the most general type of motion of the string consists of a superposition 
of two waves of arbitrary shape traveling in opposite directions, as shown in Fig. 8.26. 

A case of particular interest in vibrations is that of sinusoidal waves. One such 
wave having the amplitude A and traveling in the positive x direction can be expressed 
as 

27r(x - ct)  
y(x ,  t )  = Asin 

X 



x 

FIGURE 8.26 
Superposition of two waves traveling ~n opposlte directions 

where X is the wavelength, defined as the distance between two successive crests. Equa- 
tion (8.276) can be rewritten in the form 

y (x, t) = A sin(27rkx - wt) (8.277) 

where 

is known as the wave number, defined as the number of waves per unit distance, and 

is the frequency of the wave. Moreover, 

is the period, namely, the time necessary for a complete wave to pass through a given 
point. 

Next, we consider a displacement consisting of two identical waves traveling in 
opposite directions. Recalling that sin(a f P )  = sin a cos P f cos a sin P, we can write 

y (x, t )  = A sin(27rkx - wt) + A sin(27rk.x + wt) 

= 2Asin2n-kx cos wt (8.281) 

Equation (8.28 1) states that the combination of two identical waves traveling in opposite 
directions represents a wave whose profile 2A sin2nkx no longer travels but oscillates 
harmonically about the zero position with the frequency w. Such waves are known as 
stationary, or standing waves. At the points for which 2kx assumes integer values, 
y(x, t) reduces to zero, with the implication that the two traveling waves cancel each 
other. Such points represent nodes. On the other hand, at points for which 2kx is equal 
to an odd integer multiple of 112, y (x, t)  has the largest amplitude, with the implication 
that the two traveling waves reinforce each other. These latter points, which lie halfway 
between any two successive nodes, are called loops, or antinodes. 

From Eq. (8.281), it is possible to conclude that there is some connection between 
vibration in a certain mode, Eq. (8.228), and standing waves. For a string of length L 
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fixed at both ends, Eq. (8.228) states that the frequency w p  has a certain value, obtained 
by solving the differential eigenvalue problem. On the other hand, the frequency w in 
Eq. (8.281) is arbitrary, which can be attributed to the fact that no boundary conditions 
have been imposed. However, if we assume that the string experiencing wave motions 
has nodes at x = 0 and x = L, as in the case of the vibrating string, then the wave number 
must satisfy the relation 

Inserting the above values into Eq. (8.278) and considering the second of Eqs. (8.274) 
and Eq. (8.279), we obtain the natural frequencies 

7 

which are identical to the natural frequencies of a fixed-fixed string, as can be concluded 
from Eq. (i) of Example 8.1. Hence, the normal-mode vibration of a string of finite length 
can be regarded as consisting of standing waves, where the wave profile corresponding 
to the rth mode oscillates about the equilibrium position with the natural frequency w,. 

8.13 TRAVELING WAVES IN RODS OF FINITE LENGTH 

In Sec. 8.12, we discussed the subject of standing and traveling waves in the context 
of a string of unspecified length. The problem of wave propagation in infinite and 
semiinfinite strings is an interesting one, but not very pertinent to vibrations, as infinite 
and semiinfinite strings do not possess natural modes. On the other hand, the response 
of strings of finite length can be expressed in terms of either standing waves or traveling 
waves. 

We consider a uniform rod fixed at x = 0 and with an arbitrary force F ( t )  applied 
at x = L, as shown in Fig. 8.23; the initial excitations are assumed to be zero. In Sec. 
8.11, we obtained the response of the system by modal analysis, which can be regarded 
as being in terms of standing waves. In this section, we wish to obtain the response of the 
same system in terms of traveling waves. To this end, we consider the formulation given 
by Eqs. (8.260) and (8.261), assume that E A  ( x )  = E A  = constant, m ( x )  = m = constant 
and express the partial differential equation of motion in the form of the wave equation 

where the axial displacement u ( x ,  t )  must satisfy the boundary conditions 

We propose to obtain a traveling wave solution of Eq. (8.284) in conjunction with 
Eqs. (8.285) by means of the Laplace transformation method. This represents a new use 
of the Laplace transformation method, which until now has been used to solve ordinary 



differential equations. In the first place, we define the Laplace transform of u (x ,  t )  as 

Moreover, assuming that ePstu(x ,  t )  is such that differentiation with respect to x and 
integration with respect to t are interchangeable, we can write 

In addition, recalling that the initial conditions are zero, we have 

Hence, Laplace transforming Eq. (8.284) and using Eqs. (8.287) and (8.288), we obtain 
the ordinary differential equation 

Similary, transforming Eqs. (8.285), we can write the transformed boundary conditions 

where 

is the transformed boundary force. 
The general solution of Eq. (8.289) is 

Using the first of Eqs. (8.290), we have 

so that c2 = --el and 

Inserting Eq. (8.294) into the second of Eqs. (8.290), we can write 



from which we conclude that 

Hence, the transformed response is 

where 

The response is obtained by inverse transforming U ( x ,  s ) ,  Eq. (8.297). In view of 
the fact that U ( x ,  s )  is the product of two functions of s ,  we use the convolution theorem 
(Sec. B.7) and write 

Equation (8.299) implies that, before we can evaluate the integral, it is necessary to 
carry out the inverse Laplace transformation of G ( x ,  s )  to obtain G ( x ,  t ) .  It turns out 
that there are two distinct ways in which the inversion can be canied out. One leads to a 
response in terms of standing waves, thus duplicating the results of Sec. 8.1 1. The other 
one yields a response in terms of traveling waves, and is the one we pursue. To this end, 
we recall the binomial expansion 

and expand G ( x ,  s )  as follows: 

,(s/c)x - e-(s/c)x e - ( ~ I c ) L  e ( ~ I ~ ) x  - e - ( s / ~ ) x  
G ( x ,  s) = -- - 

s [ e ( ~ / ~ ) L  + e - ( ~ / ~ ) L ]  s 1 + e - 2 ( ~ / ~ ) L  

+ e-(slc)(3L+x) + e-(s/c)(5L-x) - . . . 1 (8.301) 

Then, using the second shifting theorem (Sec. B . 3 ,  we have 



Next, we insert Eq. (8.302) into Eq. (8.299) and write 

Equation (8.303) can be expressed in a simpler form. To this end, we consider the 
integral /;m(t - a - r )  F ( r ) d r  corresponding to a typical term m(t - a )  in Eq. (8.302) 
in which cu is a positive quantity. Before we can evaluate the integral, some sketches 
revealing the effect of shifting in the argument of the unit step function should prove 
rewarding. Figure 8.27a shows the case in which t > a, from which we conclude that 

1 for r < t - a  
m(t - a - 7 )  = 

0 for r > t - a  

On the other hand, Fig. 8.27b shows the case in which t < a, which yields simply 

In view of this, we can write 

I' ( " - a  F ( r ) d r  for t > a 
m(t - a - r ) F ( r ) d r  = (8.306) 

0 for t < a 

FIGURE 8.27 
a. Unit step function shifted by -(t -a)  for t > a, b. Unit step function shifted by -(t -a)  and 
folded for t  > a, c. Unit step function shifted by -(t -a)  fort  < a, d. Unit step function shifted by 
-(t -a)  and folded fort  < a 
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which can be expressed more compactly in the form 

lt w(t - a - r ) F ( r ) d r  = w(t - a)  lt-Y F ( r ) d r  (8.307) 

Finally, we insert Eq. (8.307) into Eq. (8.303) and obtain the response 

which represents a traveling wave solution. 
The statement that Eq. (8.308) represents a traveling wave solution requires elabo- 

ration. In the first place, we observe that in contrast to a standing wave solution in which 
the wave profiles begin oscillating as soon as the excitation begins, a point at a distance 
x  from the left end and L - x  from the right end remains at rest for t  < ( L  - x ) / c ,  
and begins to move at t  = ( L  - x) /c .  Recognizing that t  = ( L  - x ) / c  represents the 
time necessary for a displacement wave to travel the distance L  - x  from the right 
end to point x, we refer to t  = ( L  - x ) / c  as the first arrival time. Moreover, the first 
term on the right side of Eq. (8.308) is called the incident wave; its amplitude is given 

t - ( L - x ) / c  by the integral lo F(7)dr.  The wave continues to travel past point x  in the 
negative x  direction until it reaches the fixed end x  = 0 ,  at which point it becomes a 
negative displacement wave traveling in the positive x  direction. This wave is called 
a rejected wave and its amplitude is J ~ - ( ~ + ~ ) ' ~  F(r )d r ;  it is represented by the sec- 
ond term on the right side of Eq. (8.308). The reflected wave arrives at point x  at 
t  = ( L  +x ) / c .  It reaches the end x  = L  at t  = 2L/c,  at which point it is reflected as a 
negative displacement wave, defined by the third term in Eq. (8.308). Hence, the times 
t  = ( L  - x ) / c ,  ( L  + x ) / c ,  (3L - x ) / c ,  . . . can all be identified as arrival times, i.e., the 
times required for the incident wave and all the subsequent reflected waves to arrive at 
point x.  In the time interval 0  5 t  5 ( L  - x ) / c  nothing is sensed at point x ,  during the 
time interval ( L  - x ) / c  I t I ( L  + x ) / c  only the incident wave is sensed, during the 
time interval ( L  + x ) / c  5 t  I (3L - x ) / c  the incident wave and the first reflected wave 
are sensed, etc. At a fixed boundary a displacement wave is reflected as a displace- 
ment wave of opposite sign, thus canceling each other out. On the other hand, at a free 
boundaly a displacement wave is reflected as a displacement wave of the same sign, thus 
doubling up. All waves travel without changing shape. Of course, the shape of the wave 
is determined by the force F(t) .  
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Another traveling wave of interest is the force wave, which can be obtained from 
Eq. (8.308) by writing 

From Leibnitz's rule for differentiation of definite integrals: we can write 

Moreover, at points for which S [ t  - (nL ~ x ) / c ]  is not zero, the upper limit of the 
integral, and hence the integral itself is zero. It follows that Eq. (8.309) reduces to 

which expresses the force at any point x as a superposition of traveling waves. As with 
the displacement waves, the force waves travel without changing shape. In contrast with 
displacement waves, however, we conclude from Eq. (8.311) with n = 0 that a force 
wave is reflected at a fixed boundary as a force wave of the same sign, thus doubling up. 
Moreover, letting x = L in Eq. (8.311), we see that a force wave is reflected at a free 

'pipes, L.A., Applied Mathematics for Engineers and Physicists, 2nd ed., McGraw-Hill Book Co., New York, 
1958, Sec. 11.9. 
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boundary as a force wave of opposite sign, thus canceling out. This leaves the applied 
force F ( t )  as the only force at x = L ,  as should be expected. 

As an illustration, we consider the case in which the applied force has the form of 
the step function 

which is the same as the force in Example 8.12. Inserting Eq. (8.312) into Eq. (8.308), 
we obtain the displacement as a superposition of traveling waves in the form of ramp 
functions, as follows: 

The response at x = 3 L / 4  is plotted in Fig. 8.28 as a function of time. We note that Fig. 
8.28 is identical to Fig. 8.25, which demonstrates that the traveling waves solution ob- 
tained here is entirely equivalent to the solution obtained in Sec. 8.11 by modal analysis. 
Similarly, introducing Eq. (8.312) in Eq. (8.31 I ) ,  we can write simply 

which gives the force at point x as a superposition of traveling waves in the form of step 
functions. The force at x = 3 L / 4  is plotted in Fig. 8.29 as a function of time. 

C C C C C 

FIGURE 8.28 
Axial displacement at x = 3L/4 due to a force in the form of a step function at x = L as 
a superposition of traveling waves 
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FIGURE 8.29 
Axial force at x = 3L/4  due to a force in the form of a step functlon at x = L as a 
superposition of traveling waves 

Equation (8.313) can be given an interesting interpretation by considering the 
traveling waves shown in Fig. 8.30. The first wave on the right represents the incident 
wave I, the first wave on the left represents the first reflected wave R1 at the fixed end 
x = 0, which is the reflection of the incident wave at x = 0, the second wave on the right 
represents the reflection R2 at the end x = L of the reflected wave R1, etc. All waves 
start traveling simultaneously with the velocity c, waves I, R2, R4, . . . to the left and 
waves R1, R3, Rs ,  . . . to the right. The waves add up linearly as they arrive at any 
given point. We observe from Fig. 8.30 that the combination of the incident and reflected 
waves add up to zero displacement at x = 0. On the other hand, the waves add up to 
the maximum value of 2FoL/EA at t = 2L/c, 6L/c, . . . and to the minimum value of 
zero at t = 0, 4L/c, 8L/c, . . . . A similar scheme can be devised for the force waves 
(Problem 8.45). 

FIGURE 8.30 
System response as a combination of the incident and reflected waves 
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8.14 SUMMARY 

Systems with lumped, or discrete, parameters and systems with distributed parameters 
represent two distinct classes of models of vibrating systems from a mathematical point of 
view. Indeed, the vibration of discrete systems is described by sets of ordinary differential 
equations, whereas the vibration of distributed systems is described by boundary-value 
problems, which consists of a partial differential equation and given boundary conditions. 
Physically, this difference is more in appearance than in substance, as the two classes 
of systems exhibit analogous dynamic characteristics. This should come as no surprise, 
as a given physical system can be modeled either as discrete or as distributed. This fact 
was amply demonstrated in Sec. 8.1 in which we first derived the ordinary differential 
equations of motion for a system of lumped masses attached to a massless string and 
then derived the boundary-value problem for a string with distributed mass and stiffness 
by spreading the lumped masses over increments of length and letting the increments 
become infinitesimally small. A different type of analogy exists between strings in 
transverse vibration, rods in axial vibration and shafts in torsion, as the vibration of these 
three elastic members is described by a similar second-order (in the spatial variable) 
partial differential equation and boundary conditions, the only difference lying in the 
nature of the displacements and excitations, as well as in the system parameters. In 
the case of distributed-parameter systems, the extended Hamilton principle is clearly 
superior to the Newtonian approach, as it permits the derivation of boundary-value 
problems on the basis of three scalar quantities alone, the kinetic energy, potential energy 
and virtual work of the nonconservative forces. Because the first two represent quadratic 
expressions, and the steps leading to the boundary-value problem are well defined, the 
opportunity for errors is much smaller than in Newtonian mechanics, which relies a great 
deal on physical insight. This statement is even more true for beams in bending, which 
are defined by fourth-order partial differential equations and more complex and larger 
in number boundary conditions. 

The parallels in dynamic characteristics between discrete and distributed systems 
become evident when the free vibration problem is considered. Indeed, for distributed 
systems as well the free vibration problem leads to an eigenvalue problem, albeit to a 
differential eigenvalue problem rather than an algebraic one. The solution of the eigen- 
value problem consists once again of natural frequencies and natural modes, although 
for distributed systems their number is infinite rather than finite and the modes represent 
functions rather than vectors. Moreover, the modes are orthogonal with respect to the 
mass density and in some sense to the stiffness distribution, which forms the basis for 
a modal analysis. A Rayleigh quotient in the form of a ratio with the numerator being 
a measure of the potential energy and the denominator a measure of the kinetic energy 
can be defined as well, the only difference being that for distributed systems the quotient 
involves integrals rather than matrix products, which is consistent with the fact that sum- 
mations represent discrete counterparts of integrations. Of course, the Rayleigh quotient 
possesses an analogous stationarity property, except that for distributed systems there is 
no highest eigenvalue. The response to initial excitations and external forces can also 
be obtained by modal analysis, thus completing the analogy with lumped systems. 



The motion of strings, rods and shafts with uniformly distributed parameters lends 
itself to a representation in terms of waves traveling with constant velocity and without 
change of shape. When two identical sinusoidal waves travel in opposite directions in a 
uniform string, rod, or shaft, the two waves can be combined into a wave with a profile 
no longer traveling but oscillating harmonically. In view of this, for a string, rod or shaft, 
vibration in a given normal mode can be regarded as a standing wave. 

PROBLEMS 

8.1. Consider a lumped system in horizontal vibration under the action of applied forces, as 
shown in Fig. 8.31, and use the incremental approach of Sec. 8.1 to derive the boundary- 
value problem for a rod in axial vibration fixed at x = 0 and attached to a spring of stiffness 
k a t x = L .  

--t --t--ax,++~z+,+t- + 
x1 " 1 - 1  X, X1+l xn 

FIGURE 8.31 
Lumped system m horizontal vibration 

8.2. Consider a system consisting of n thin rigid disks connected by massless shafts in torsion, 
where the disks are subjected to external torques. The system is fixed at x = 0 and supported 
by a torsional spring at x = L. Draw a sketch of the system analogous to that shown in Fig. 
8.31 and use the approach of Sec. 8.1 to derive the corresponding boundary-value problem. 

8.3. Use the Newtonian approach to derive the boundary-value problem for a rod in axial vibration 
attached to a spring of stiffness k at x = 0 and free at x = L by regarding the system as 
distributed from the onset (Fig. 8.32). The rod is subjected to the force per unit length 
f (x, t ) ,  its mass per unit length is m ( x )  and its axial stiffness is E A ( x ) ,  where E is the 
modulus of elasticity and A ( x )  the cross-sectional area. 

FIGURE 8.32 
Rod in axial vibration attached to a spring at x = 0 and free at 
x = L  
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8.4. Use the Newtonian approach to derive the boundary-value problem for a shaft in torsional 
vibration restrained by torsional springs at both ends by regarding the system as distributed 
from the onset (Fig. 8.33). Explain the difference in signs in the two boundary conditions. 

FIGURE 8.33 
Shaft in torsional vibration restrained by torsional springs at 
both ends 

8.5. Solve Problem 8.3 by the extended Hamilton principle. Compare results with those obtained 
in Problem 8.3 and draw conclusions as to the merits of each of the two approaches. 

8.6. Solve Problem 8.4 by the extended Hamilton principle. Compare results with those obtained 
in Problem 8.4 and draw conclusions as to the merits of each of the two approaches. 

8.7. A cable of uniform mass per unit length, p(x) = p = constant, hangs freely from the ceiling, 
as shown in Fig. 8.34. Assume that the cable possesses no flexural stiffness and derive 
the boundary-value problem for the transverse vibration. Hint: The boundary condition at 
x = 0, ordinarily associated with a free end, is satisfied trivially in the case at hand, without 
involving the displacement. Hence, it must be replaced by a different boundary condition, 
based on physical considerations and the nature of the solution (see also Problem 8.13). 

FIGURE 8.34 
Cable in transverse vibration 
hanging freely from the ceiling 
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8.8. Use the Newtonian approach to derive the boundary-value problem for the bending vibration 
of a beam pinned at x  = 0 and pinned but with the slope to the deflection curve restrained by 
a spring at x  = L, as shown in Fig. 8.35. 

FIGURE 8.35 
Beam in bending pinned at x = 0 and with a spring 
restraining rotation at x = L 

8.9. Solve Problem 8.8 by the extended Hamilton principle. 
8.10. Derive the eigenvalue problem for a shaft in torsional vibration free at both ends. Then, let 

I ( x )  = I = constant, G J ( x )  = G  J = constant, solve the eigenvalue problem and plot the 
three lowest modes. 

8.11. Derive the eigenvalue problem for the rod in axial vibration considered in Problem 8.3.  Then, 
let m ( x )  = m = constant, E A ( x )  = E A  = constant and solve the eigenvalue problem for the 
two cases: 1) k = 0.5 E A / L  and 2) k = 2 E A / L .  Plot the three lowest modes for each of the 
two cases and draw conclusions as to the effect of the spring stiffness k on the system. 

8.12. Derive the eigenvalue problem for the shaft in torsional vibration considered in Problem 8.4. 
Then, let I (x) = I = constant, G J ( x )  = G  J = constant and solve the eigenvalue problem 
for the two cases: 1) kl  = k2 = 0.5 G  J / L  and 2)  kl  = 0.5 G J / L ,  k2 = G J I L .  Plot the three 
lowest modes for each of the two cases and explain the mode shapes in case 1. 

8.13. Derive and solve the eigenvalue problem for the hanging cable of Problem 8.7. Plot the three 
lowest modes. Hints: Devise a certain coordinate transformation capable of reducing the 
differential equation to a Bessel equation. Then, the boundary condition at the free end of 
the cable must be such as to permit elimination of the unacceptable solution. 

8.14. Derive the eigenvalue problem for the bending vibration of a beam pinned at x  = 0 and free 
at x  = L (Fig. 8.36). Then, let m ( x )  = m = constant, E I ( x )  = E I  = constant, solve the 
eigenvalue problem and plot the three lowest modes. Hint: The system is only semidefinite, 
as it admits a rigid-body rotation. 

FIGURE 8.36 
Beam in bending pinned at x = 0 and free at x = L 



vibration of a beam free at both ends (Fig. 
8.37). Then, let m ( x )  = m = constant, E l  ( x )  = E  I = constant, solve the eigenvalue problem 
and plot the four lowest modes. Hint: The system is only semidefinite and it admits two 

translation and the other rotation. 

FIGURE 8.37 
Free-free beam in bending 

8.16. Derive the eigenvalue problem for the beam of Problem 8.8. Then, let m (x) = m = constant, 
E l  (x) = E l  = constant, k = 0.5 E I I L ,  solve the eigenvalue problem and plot the three 
lowest modes. 

8.17. Derive the orthogonality relations for the rod in axial vibration considered in Problem 8.11. 
8.18. Derive the orthogonality relations for the shaft in torsional vibration considered in Problem 

8.12. 
8.19. Verify that the modes of the hanging cable obtained in Problem 8.13 are indeed orthogonal. 
8.20. Derive the orthogonality relations for the pinned-free beam of Problem 8.14. Then, verify 

that the modes obtained in Problem 8.14 are indeed orthogonal and explain the meaning of 
the fact that the rigid-body mode is orthogonal to the remaining modes. 

8.21. Derive the orthogonality relations for the free-free beam of Problem 8.15. Make sure that 
the modes obtained in Problem 8.15 are indeed orthogonal and explain the meaning of the 
fact that each of the two rigid-body modes is orthogonal to the remaining modes, including 
the other rigid-body mode. 

8.22. Derive the orthogonality relations for the beam of Problem 8.16. 
8.23. Derive the boundary-value problem for a rod in axial vibration with a lumped mass M at 

x = 0 and fixed at x = L  (Fig. 8.38). Compare the boundary condition involving the lumped 
mass obtained here with the one obtained in Sec. 8.6 and explain the sign difference. 

FIGURE 8.38 
Rod in axial vibration with a lumped mass at x = 0 
and fixed at x = L 



8.24. Derive the boundary-value problem for a beam in bending vibration with a lumped mass M at 
x = 0 and fixed at x = L (Fig. 8.39). Compare the boundary condition involving the lumped 
mass obtained here with that obtained in Sec. 8.6 and explain the sign difference. 

FIGURE 8.39 
Beam in bending with a lumped mass at x = 0 
and clamped at x = L 

8.25. Derive the eigenvalue problem for the rod in axial vibration of Problem 8.23. Then, let 
EA(x) = EA =constant, m(x) = m =constant, M = 0.5 mL, solve the eigenvalue problem 
and plot the three lowest modes. Draw conclusions as to the effect of the lumped mass on 
the modes. 

8.26. Derive the eigenvalue problem for the beam in bending vibration of Problem 8.24. Then, let 
E l  (x) = EI = constant, m(x) = m = constant, M = 0.5 rnL, solve the eigenvalue problem 
and plot the three lowest modes. Draw conclusions as to the effect of the lumped mass on 
the modes. 

8.27. Estimate the lowest natural frequency of the hanging cable of Problem 8.13 by means of 
Rayleigh's principle in conjunction with the trial function Y(x) = cosrrx/2L. Calculate the 
error involved in the estimate obtained here compared to the actual lowest natural frequency 
from Problem 8.13. 

8.28. Estimate the lowest natural frequency of the beam of Problem 8.16 by means of Rayleigh's 
principle in conjunction with the trial function Y (x) = sinrrxlL. Calculate the error involved 
in the estimate obtained here compared with the actual lowest natural frequency from Problem 
8.16. 

8.29. Estimate the lowest natural frequency of the beam of Problem 8.26 by means of Rayleigh's 
principle in conjunction with the trial function Y (x) = 2 - 3(x/L) +- ( x / L ) ~ .  Calculate the 
error involved in the estimate obtained here compared with the actual lowest natural frequency 
from Problem 8.26. 

8.30. Determine the response of the uniform shaft of Problem 8.10 to the initial excitation Q(x, 0) = 
80 (1 - 2x1 L) , h(x, 0) = 0. Discuss the mode participation in the response. 

8.31. Determine the response of the uniform rod of Problem 8.11 to the initial excitation u(x, 0) = 
0,  i ( x ,  0) = vo6(x), where 6(x) is a spatial Dirac delta function located at x = 0. 

8.32. The hanging cable of Problem 8.13 is displaced initially according to y (x, 0) = yo (1 - xlL) .  
Determine the response of the cable subsequent to being released from rest in the displaced 
position. 

8.33. Determine the response of the uniform pinned-free beam of Problem 8.14 subsequent to 
being released from rest in the deformed configuration y ( x ,  0) = y o ( x / ~ ) 2 .  Discuss the 
mode participation in the response. 



8.34. Determine the response of the uniform beam of Problem 8.16 to the initial excitation y  ( x ,  0 )  = 
yo[ l3(x /L)  - 2 7 ( x / ~ ) ~  + 1 4 ( x / ~ ) ~ ] ,  j ( x ,  0 )  = 0.  Discuss the mode participation in the 
response. 

8.35. Determine the response of the rod of Problem 8.25 to the excitation y ( x ,  0 )  = 0,  j ( x ,  0 )  = 
vo ( 1  - x /  L) .  Discuss the mode participation in the response. 

8.36. Determine the response of the rod of Problem 8.1 1 to the uniformly distributed harmonic 
force f  ( x ,  t )  = fo cos S2t. Discuss the mode participation in the response. 

8.37. Determine the response of the beam of Problem 8.14 to the concentrated harmonic force 
F( t )  = Fo cos fit applied at x  = L. Discuss the mode participation in the response. Note that 
the concentrated force can be represented as the distributed force f ( x ,  t )  = FoS(x - L )  cos Qt, 
where S(x - L )  is a spatial Dirac delta function (see Eq. (8.263)). 

8.38. Determine the response of a free-free uniform rod in axial vibration to a longitudinal impulsive 
force acting in the middle of the rod at t  = 0. Discuss the mode participation in the response. 
Note that the concentrated force can be expressed as the distributed one f  ( x ,  t )  = FoS(x - 
L/2)S(t) ,  where fi0 is the impulse magnitude, S(x - L/2 )  is a spatial Dirac delta function 
(see Eq. (8.263)) and S(t) is the unit impulse. 

8.39. Determine the response of the cantilever beam of Example 8.4 to the uniformly distributed 
force in the form of the rectangular pulse f ( x ,  t )  = fo[m(t) -m(t - T ) ] ,  where ~ ( t )  is the 
unit step function. Discuss the mode participation in the response. 

8.40. Determine the response of the beam of Problem 8.16 to a concentrated force expressed as 
distributed in the form f  ( x ,  t )  = FoS(x - 3L/4)[r ( t )  -u(t - T ) ] ,  where 6(x - 3L/4)  is a 
spatial Dirac delta function located at x  = 3  L /4  and r  ( t )  is the unit ramp function. Discuss 
the mode participation in the response. 

8.41. Determine the response of the rod with a lumped mass at the end considered in Problem 
8.23 to the distributed sinusoidal pulse described by f  ( x ,  t )  = fo(1 - x/L)[sinQtm(t)  + 
sin S2 ( t  - .rr/ S2)za(t - .rr/ Q)] .  Discuss the mode participation in the response. 

8.42. Determine the response of the rod of Problem 8.1 1 to the impulsive force F( t )  = fioS(t) 
applied at x = L. Discuss the mode participation in the response. 

8.43. Determine the response of a uniform pinned-pinned beam to a moment in the form of the rect- 
angular pulse M(t )  = Mo[m(t) -m(t - T ) ]  applied at x = 0. Discuss the mode participation 
in the response. Hint: A concentrated moment M ( t )  applied at x = 0 in the counterclock- 
wise sense can be represented as the distributed force f ( x ,  t )  = -M(t)S1(x) ,  where Sf (x )  is 
a spatial unit doublet (Ref. 13, p. 499), in which S(x)  is a spatial Dirac delta function and 
the prime denotes the derivative with respect to x. Then, the modal forces can be obtained 
through an integration by parts involving the spatial unit doublet with due consideration of 
the boundary conditions. 

8.44. A free-free uniform rod in axial vibration is struck by the impulsive force P( t )  = &S(t) at 
x = 0.  Obtain a traveling wave solution, plot the displacement at x  = L  as a function of time 
and interpret physically the motion of the rod. 

8.45. Develop a traveling force solution for the free-free rod of Problem 8.44. Then, verify that 
the solution satisfies both boundary conditions. 



CHAPTER 

DISTRIBUTED-PARAMETER SYSTEMS: 
APPROXIMATE METHODS 

Chapter 8 was devoted entirely to distributed-parameter systems admitting closed-form 
solutions. The implication is that the solutions could be expressed in terms of known 
functions. But, whereas many such solutions were obtained in Ch. 8, for the most part the 
solutions were for systems characterized by uniformly distributed parameters and simple 
boundaries. In real life, however, most systems do not possess these properties, so that 
closed-form solutions represent the exception rather than the rule. It follows that, more 
often than not, we must be content with approximate solutions. In this regard, the theory 
developed in Ch. 8 in conjunction with exact solutions is essential to the development 
of techniques for approximate solutions. 

All approximate techniques have one thing in common, namely, they all model 
distributed-parameter systems as discrete systems, which amounts to spatial discretiza- 
tion and truncation. The approximate methods can be broadly divided into two classes, 
lumped-parameter methods and series discretization methods. The first is more physical 
in nature, but lacks rigor, and the second is more abstract, but has a solid mathematical 
foundation. The latter also tends to yield more predictable and accurate results. 

In real life, parameters are distributed for the most part. In lumped-parameter 
methods, as the name suggests, the parameters are lumped at discrete points of the 
system. In particular, the length of the system is divided into small increments and the 
distributed mass within these increments is lumped at either the geometric center, or at 
the mass center if higher accuracy is desired. Then, any two lumped masses are assumed 
to be connected by massless springs of stiffness equivalent to the stiffness of the segment 
between the two masses. Consistent with this, the continuous displacement, say y(x, t ) ,  
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is replaced by the discrete displacement y, ( t ) ,  where i identifies the lumped mass m, . 
The net result is a discrete model of a type encountered in Ch. 7. In a somewhat different 
approach, the stiffness is modeled by means of influence coefficients, whereas the mass is 
lumped as described above. Both approaches yield sets of ordinary differential equations 
generally associated with multi-degree-of-freedom systems. 

Another lumped-parameter method is concerned primarily with the eigenvalue 
problem for shafts in torsion but can be equally applied to rods in axial vibration and 
strings in transverse vibration. It consists of dividing the mass of the shaft into rigid disks 
of appropriate mass moments of inertia connected by massless uniform shafts. Then, 
in a step-by-step approach, relations between the angular displacement and torque on 
both sides of a disk as well as on both sides of a shaft segment are established. Finally, 
imposing the boundary conditions at the two ends of the shaft, a characteristic equation 
is derived whose roots are the natural frequencies of the discrete model. This technique 
is associated with the name of Holzer. Another step-by-step approach, this time to the 
bending vibration of beams, was developed by Myklestad. The details of Myklestad's 
method are appreciably more involved than the details of Holzer's method, as now there 
are four variables of interest, the transverse displacement, angular displacement, bending 
moment and shearing force, instead of two. 

An entirely different class of discretization techniques is based on Rayleigh's 
principle, according to which the lowest eigenvalue of a conservative system is the 
minimum value Rayleigh's quotient can take. In an attempt to minimize the estimate 
of the lowest eigenvalue, as well as to compute higher modes, Ritz conceived of the 
idea of representing an approximate solution of the differential eigenvalue problem as a 
finite series of trial functions multiplied by undetermined coefficients, and determining 
these coefficients by rendering Rayleigh's quotient stationary. This task reduces to the 
solution of an algebraic eigenvalue problem similar to that for multi-degree-of-freedom 
systems. This variational approach is commonly referred to as the Rayleigh-Ritz method, 
and amounts to series discretization of distributed-parameter systems. The Rayleigh- 
Ritz method is based on a rigorous mathematical theory and is capable of yielding very 
accurate results with only a limited number of degrees of freedom. Another series 
discretization method is Galerkin's method; it is based on the idea of reducing the 
weighted average error to zero. Galerkin's method is broader in scope than the Rayleigh- 
Ritz method, as it is applicable to both conservative and nonconservative systems. The 
collocation method is also a series discretization procedure, but instead of reducing the 
average error to zero, it reduces the error at discrete points to zero. 

9.1 DISCRETIZATION OF DISTRIBUTED-PARAMETER SYSTEMS 
BY LUMPING 

In Sec. 8.1, we derived the partial differential equation of motion for a string in transverse 
vibration by first writing the ordinary differential equations of motion for a system of 
lumped masses m, on a massless string, expressing the equations in the form of difference 
equations and taking the limit by letting the distance between masses approach zero. In 
the process, the indexed nominal position x, became the independent spatial variable x 
and the transverse displacement y, ( t )  became y (x, t ) ,  where the latter depends on two 



independent variables, x and t .  The net result was to replace a set of ordinary differential 
equations representing a discrete system by a partial differential equation representing 
a distributed system. This demonstrates clearly that lumped systems and distributed 
systems are intimately related and can be regarded merely as two different models of the 
same physical system. 

In practice, it is simpler to solve ordinary differential equations than partial dif- 
ferential equations, so that it is more common to transform a distributed system into a 
discrete one. In this section, we consider the simplest approach, namely, lumping the 
distributed parameters. To illustrate the ideas, and to relate to some of the developments 
in Ch. 7, we consider a rod in axial vibration, such as that shown in Fig. 9.1, and divide 
it into n segments Axi (i = 1,2,  . . . , n).  Then, we lump the mass and axial force in each 
of these segments by writing 

In the process, the continuous independent variable x has been replaced by the index 
i and the continuous displacement u (x, t )  by the discrete ones ui ( t )  (i = 1,2, . . . , n).  
Moreover, we represent the stiffness of the segment between mi-1 and mi by the spring 
constant 

The corresponding lumped system is displayed in Fig. 9.2. Note that there is some 
discrepancy in the discretization process, as the increment of rod used for lumping the 
mass is not the same as that used for lumping the stiffness. The stipulation is that the 
increments Ax, are sufficiently small that no meaningful errors are incurred. 

The equations of motion for the discretized system can be derived by means of 
Lagrange's equations using the model of Fig. 9.2 directly. Adapting the notation to that 
used in this section, Lagrange's equations, Eqs. (6.42), have the form 

where 

FIGURE 9.1 
Rod in axial vibration 



FIGURE 9.2 
Lumped model for the rod of Fig. 9.1 

is the kinetic energy and 

is the potential energy. In the Lagrangian formulation the generalized nonconservative 
forces are obtained from the virtual work z,,, Eq. (6.38). In the case at hand, the 
generalized forces coincide trivially with the discretized forces F, ( t ) ,  a fact already 
taken into account in Eqs. (9.3). Next, we use Eq. (9.4) and form 

so that 

Similarly, we use Eq. (9.5) and write 

Inserting Eqs. (9.7) and (9.8) into Eqs. (9.3) and observing that the kinetic energy does 
not depend on displacements, we obtain the equations of motion 

m,u, -klul-l  4- (k ,  +k,+l)u, -k,+lu,+l = F , ,  uo = 0; i = 1,2, .  . . , n  (9.9) 
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Equations (9.9) can be written in the more compact form 

where 

can be identified as stiffness influence coefficients, first encountered in Sec. 7.2. 
In general, the lumping method just described tends to yield poor numerical results. 

To increase accuracy, it is necessary to increase the number of degrees of freedom, which 
implies a reduction in the size of the increments Axi (i = 1,2, . . . , n). The method is not 
recommended, except when accuracy is not particularly important, such as in preliminary 
design. 

9.2 LUMPED-PARAMETER METHOD USING INFLUENCE 
COEFFICIENTS 

In Sec. 9.1, we introduced a very simple lumping method, whereby the elastic rod was 
divided into n increments Ax, (i = 1,2, .  . . , n), the mass inside these increments was 
lumped at corresponding discrete points and the stiffness distributed parameter was 
lumped by considering equivalent springs corresponding to the rod segments between 
any two adjacent mass points. Then, in the context of the lumped model depicted in Fig. 
9.2, it was stated that the accuracy of the method could be improved by increasing the 
number of increments. 

Another kind of discrete model of distributed systems can be produced by lump- 
ing the distributed mass only, and continuing to regard the stiffness as distributed a 
little longer. In particular, the stiffness characteristics, or rather the flexibility charac- 
teristics, can be described in terms of a flexibility influence function a(x, t), defined as 
the displacement at x due to a unit force at E. Then, the discretization of the flexibil- 
ity characteristics can be carried out by calculating the flexibility influence coefficients 
a,, = a (x, , x,), which simply amounts to evaluating a (x, I) at the locations x, and xJ 
of the lumped masses m, and m J ,  respectively. In this regard, it should be recalled that 
the flexibility influence coefficients represent a static concept, and the masses m ,  and 
m J  play no role in the definition of a,, ; they merely indicate the location of the points x,  
and xJ, respectively. As an illustration, we consider the rod of Fig. 9.1 and assume that 
a concentrated unit force is applied at x = I, F (t) = 1. The force must be balanced by 
a unit reaction force at x = 0, as shown in Fig. 9.3. Then, using Eq. (1.93), we can write 



FIGURF, 9.3 
The rod of Fig. 9.1 subjected to a unit force at x = [ 

which upon integration yields 

For arbitrary axial stiffness E A ( x ) ,  the integrals in Eq. (9.13) may have to be evaluated 
numerically. Hence, the flexibility influence function can be written in the form 

The flexibility influence coefficients aLJ = a(x, , x J )  can be derived by letting [ = 
xJ in Eq. (9.14) in conjunction with Eq. (9.13) and obtaining n displacement curves 
a ( x ,  xJ ) ( j  = 1,2, . . . , n ) .  Then, the flexibility influence coefficients are obtained by 
sampling each of the functions a ( x ,  x J )  at x = x, (i = 1 ,2 , .  . . , n) .  B y  Maxwell's 
reciprocity theorem, the influence function is symmetric, a ( x  , [) = a ([, x )  . Moreover, 
the indices i and j correspond to the same set of points, so that the influence coefficients 
are symmetric a,] = all . The flexibility influence coefficients can be arranged in the 
n x n flexibility matrix [acJ]  = A. Then, the stiffness coefficients k,, can be obtained 
from the stiffness matrix K by computing the inverse of A,  or 

Of course, the preceding discretization process applies equally well to strings in 
transverse vibration and shafts in torsion, subject to the replacement of the displacement, 
parameters and excitation indicated in Table 8.1. 

The same approach can be used to develop a discretization process using influence 
coefficients for beams in bending. However, the process is more complex than for rods 
in axial vibration, which can be traced to the fact that the flexibility influence function is 
more difficult to obtain. The problem of determining the displacement curve for a beam 
in bending is discussed in Sec. 1.8. 

Although Eqs. (9.10) imply the need for stiffness coefficients, this is not strictly 
necessary, and flexibility coefficients suffice. Indeed, to solve Eqs. (9.10), it is necessary 



to solve the associated eigenvalue problem, which can be written in the matrix form 

K u  = w 2 ~ u  (9.16) 

where M is a diagonal matrix. Premultiplying both sides by K-' = A, we can rewrite 
the eigenvalue problem as 

AMu = Xu, X = l / w 2  (9.17) 

Example 9.1. A rod in axial vibration fixed at x = 0 and free at x = L has the parameter 
distributions 

Construct a lumped model for the rod by dividing it into ten equal segments Axi = Ax = 
L/10 (i = 1 ,2 , .  . . , 10) and assume that the mass within each of these segments is con- 
centrated at (2i - l)Ax/2 = (2i - l)L/20. Moreover, assume that the lumped masses 
are connected with springs (Fig. 9.2) equivalent to uniform rods of length e ,  equal to the 
distance between masses and of stiffness EAj equal to EA(x) evaluated at one half that 
distance (Sec. 9.1). Then, construct a second model using influence coefficients based on 
the influence function given by Eq. (9.14) evaluated at the location of the lumped masses. 
Solve the eigenvalue problems corresponding to the two models and discuss the results. 

The value of the lumped masses can be obtained using the first of Eqs. (a) and writing 

which yields the explicit values 

m9 = 0.0766mL, mlo = 0.0658wiL 

Moreover, the equivalent spring constants are given by 

EAl - EA(LI40) 
kl = -- - 

EAi EA[(i- l)L/lO] . , k, = ---- = 
Ax12 L/20 L/ l0  

1 = 2 , 3  , . . . ,  10 (d) 
Ax 

so that, using the second of Eqs. (a), we have 

The eigenvalue problem is given by Eq. (9.16), in which the mass matrix is 

M = diag[ml m2 . . . mlO] = mLdiag[0.1198 0.1186 0.1162 0.1126 0.1078 

0.1018 0.0964 0.0862 0.0766 0.06581 (f) 



and the stiffness matrix has the form 

in which the entries not listed are zero. 
The flexibility function a(x, [) is given by Eq. (9.14) which requires the displacement 

u(x). Inserting the second of Eqs. (a) into the top of Eq. (9.13) and integrating, we obtain 

Hence, inserting Eq. (h) into Eq. (9.14), the flexibility influence function is 



which upon discretization yields 

5L ~ / Z L + X ~  
In - , 0 < x i  < x j  

6 4 5 ~ ~  &L-xi 
ajj  = a(xi, xi) = 

5L & L S X ~  
x j  <Xi < L 

6&EAinz/ZL -x j  ' 

We note that, to obtain all the flexibility coefficients, it is only necessary to calculate a,i (i = 
1,2,  . . . , lo), which amounts to evaluating the top line of Eq. C j )  at x, = (2i - I)L/20 (i = 
1,2, . . . , 10). In view of this, the flexibility matrix can be verified to be 

Symmetric 

Symmetric 

Of course, the mass matrix remains as that given by Eq. (f). 
The eigenvalue problem has been solved twice, the first time using Eq. (9.16) in 

conjunction with Eqs. (0 and (g) and the second time using Eq. (9.17) in conjunction with 
Eqs. (f) and (k). For comparison purposes, we list the two sets of natural frequencies, 
normalized according to 

The results are as follows: 

1. Using the stiffness matrix, Eq. (g), 



HOLZEFS METHOD FOR TORSIONAL VIBRATION 473 

FIGURE 9.4 
Modal vectors for a lumped model of a rod fixed at x = 0 and free at x = L 

2. Using the flexibility matrix, Eq. (k), 

The frequencies were computed with 14 decimal places accuracy, but we listed only four 
decimal places for brevity. We observe that the two sets of natural frequencies are almost 
identical. This is not to be interpreted as both approaches being capable of giving very 
accurate results, but that the two models are virtually equivalent. In fact, the results are not 
accurate at all. Worse yet, there are no guidelines for predicting on what side of the exact 
natural frequencies the results are. As a matter of interest, the first three computed modal 
vectors are displayed in Fig. 9.4. To the resolution of the graphs, the results obtained by 
the two approaches are indistinguishable. 

9.3 HOLZER'S METHOD FOR TORSIONAL VIBRATION 

In Sec. 9.1, we introduced a technique for the discretization of a rod in axial vibration 
whereby the mass and stiffness distributed parameters are lumped at discrete points. 
The resulting discrete system resembles entirely an undamped multi-degree-of-freedom 
system of the type shown in Fig. 7.3. The equations of motion for such systems can be 
derived by Newton's second law in conjunction with one free-body diagram for each 
mass or by means of Lagrange's equations. As shown in Example 9.1, the dynamic char- 
acteristics of undamped multi-degree-of-freedom discretized systems can be obtained 
by solving a standard algebraic eigenvalue problem. 
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Another approximate technique, based on the same lumping process as that de- 
scribed in Sec. 9.1, suggests a different approach to the formulation and solution of the 
eigenvalue problem. Indeed, the points at which the n lumped rigid masses are located 
are referred to as stations and the segments between any two stations, referred to as 
fields, are treated as massless uniform elastic members. Then, the equation of motion 
expresses the force on the right side of a station in terms of the displacement and force 
on the left side, while the displacement on both sides of the station is the same. On 
the other hand, the force-deformation relation expresses the displacement on the right 
side of a field in terms of the displacement and force on the left side, while the force on 
both sides of the field is the same. The approach amounts to a step-by-step procedure 
relating the displacement and force at the right end of the system to those at the left end. 
The imposition of the end conditions results in a characteristic equation for the natural 
frequencies. 

The procedure described in the preceding paragraph is essentially known as Hol- 
zer's method, developed for the torsional vibration of shafts. Of course as pointed out 
on various occasions, rods in axial vibration and shafts in torsion, as well as strings 
in transverse vibration, represent analogous systems (see Table 8.1). Consistent with 
tradition, in this section we present the procedure using a shaft in torsion. To this end, 
we consider the analogy with a rod in axial vibration, refer to Eq. (1.93) and express the 
relation between the angular displacement 0(x, t )  and torque M(x, t )  as follows: 

where G J(x)  is the torsional stiffness. Moreover, using the analogy with Eq. (8.55), 
and considering Eq. (9.18), the differential equation for the free vibration of a shaft in 
torsion can be written in the form 

in which I (x) is the mass polar moment of inertia per unit length. Because free vibration 
is harmonic, we can write 

where w is the frequency of oscillation, eliminate the time dependence and replace Eqs. 
(9.18) and (9.19) by 

and 

respectively. Equations (9.21) and (9.22) form the basis for an incremental approach to 
the problem. 

Next, we consider the nonuniform shaft of Fig. 9.5a and represent it by n + 1 rigid 
disks connected by n massless circular shafts of uniform stiffness, as shown in Fig. 9.5b. 
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b. 
FIGURE 9.5 
a. Nonuniform shaft in torsion, b. Lumped model of the shaft 

The disks possess mass polar moments of inertia. 

where the increments Axi are sufficiently small that the above approximation can be 
justified. Moreover, we use the notation 

GJ,  = G J ( x , + i A x , ) ,  i = 1 , 2  ,... , n  (9.24) 

Figures 9.6a and 9.6b show correspondingly free-body diagrams for station and field 
i. The superscripts R and L refer to the right and left sides of a station, respectively. 
In keeping with this notation, we observe that the left and right sides of field i use 
the notation corresponding to the right side of station i and left side of station i + 1, 
respectively. 

At this point, we invoke Eqs. (9.21) and (9.22) and write expressions relating the 
angular displacements and torques on both sides of station i and field i .  Because the 
disks are rigid, the displacements on both sides of station i are the same, 

On the other hand, Eq. (9.22) can be written in the incremental form 

so that, using Eqs. (9.23) and (9.25), Eq. (9.26) becomes 



a. b. 
FIGURE 9.6 
a. Free-body diagram for station i, b. Free-body diagram for field i 

Because the segment of shaft associated with field i is assumed to be massless, and hence 
to possess no mass moment of inertia, Eq. (9.22) yields simply 

M:+~ = M; (9.28) 

Moreover, Eq. (9.21) can be expressed in the incremental form 

which, upon using Eq. (9.28), reduces to 

where 

represents a torsional flexibility influence coefficient, defined as the angular displacement 
of disk i + 1 due to a unit moment M:+~ = M! = 1 at station i + 1 with disk i held fixed. 

Equations (9.25) and (9.27) give the angular displacement and torque on the right 
side of station i in terms of the same quantities on the left side. The equations can be 
written in the matrix form 

Then, letting 

be the station vectors corresponding to the right side and left side of station i and 
introducing the station transfer matrix 
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relating these two station vectors, Eq. (9.32) can be rewritten as 

In a similar way, Eqs. (9.28) and (9.30) can be expressed in the matrix form 

where 

is referred to as aJield transfer matrix. Inserting Eq. (9.35) into (9.36), we obtain 

in which 

represents the transfer matrix relating the station vector on the left side of station i + 1 
to that on the left side of station i. 

The transfer matrices T, (i = 1,2, . . . , n), TF,O and Ts,, can be used as building 
blocks to construct an overall transfer matrix T relating the angular displacement and 
torque at one end of the system to the angular displacement and torque at the other 
end. Embedded in this overall transfer matrix is the frequency equation, which can be 
extracted by imposing the end conditions. Before this can be done, it is necessary to 
abandon generalities and consider specific cases, as follows: 

I. Clamped-free shaft. In accordance with our convention, as implied in Fig. 9.5b, the 
notation is dictated by the stations, with field i lying to the right of station i .  Hence, for 
a clamped-free shaft modeled as an n-degree-of-freedom system, we have n stations, 
i = 1,2,  . . . , n, and n fields, i = 0,1, . . . , n - 1, as shown in Fig. 9.7. Then, beginning 

FIGURE 9.7 
Lumped model of a clamped-free shaft in torsion 



from the left end, we can write the recursive relations 

The last of relations (9.40) can be expressed in the compact form 

where 

T = Ts,,Tn-IT,-2.. . T2TlTF,0 (9.42) 

is the overall transfer matrix for a clamped-free shaft. It is a 2 x 2 matrix of the form 

with every entry being a polynomial in w2. Inserting Eq. (9.43) into Eq. (9.41), we 
can write the matrix relation as the two scalar equations 

At this point we invoke the end conditions. At a clamped end the displacement 
is zero, and the torque is not zero, and at a free end the torque is zero, and the 
displacement is not zero. Hence, Eqs. (9.44) reduce to 

R 
On = t12(w2>Mo, 0 = t22(w2)Mo (9.45) 

so that, because Mo # 0 ,  O: # 0,  we conclude that 

t22 (w2) = 0 (9.46) 

Clearly, Eq. (9.46) represents the frequency equation, in which t22 is a polynolnial of 
degree n in w2. It has n roots w;, where wr (r = 1,2, . . . n )  are recognized as the natural 
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FIGURE 9.8 
Lumped model of a clamped-clamped shaft in torsion 

frequencies, which can be computed by a root-finding algorithm, such as the secant 
method, or the Newton-Raphson method. Upon solving the frequency equation, Eq. 
(9.46), the modal vectors 0, (r = 1,2,  . . . , n )  can be obtained by inserting w: into the 
transfer matrices in the recursive relations (9.40), letting arbitrarily Mo = G J / L  = 1, 
computing the station vectors on the left side of the equations, in sequence, and 
retaining the top component. The vector of torques in the same mode can be obtained 
by retaining the bottom component of the station vectors. 

2. Clamped-clamped shaft. In this case, there are n stations and n + 1 fields, as shown 
in Fig. 9.8. Following the same procedure as with the clamped-free shaft, we obtain 
a set of recursive relations, the last of which having the form 

[ : I,,,, = T [  : lo  
where this time the overall transfer matrix is given by 

T = TnTnP1.. . T2TlTF.0 

By analogy with Eqs. (9.44), Eq. (9.47) can be written in the scalar form 

The end conditions for a clamped-clamped shaft are Oo = = 0, so that Eqs. 
(9.49) reduce to 

But, because Mo # 0 ,  Mn+, # 0 ,  we conclude that the frequency equation is 

t I2 (w2) = 0 (9.51) 

in which t l 2  is a polynomial of degree n in w2. 

3. Free-free shaft. From Fig. 9.9, we observe that there are n stations and n - 1 fields. 
Following the usual steps, we obtain a set of recursive relations, the last of which is 
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FIGURE 9.9 
Lumped model of a free-free shaft in torsion 

where the overall transfer matrix has the form 

The end conditions are M: = M: = 0, which leads to the frequency equation 

Although t21 is a polynomial of degree n in w2, it can be verified that w2 can be 
factored out, so that Eq. (9.54) can be rewritten as 

where t.& is a polynomial of degree rz - 1 in w2.  It follows that the frequency equation 
admits a solution W! = 0 and n - 1 nonzero solutions W? (r  = 1,2, . . . , a - 1). This 
is consistent with the fact that the system, being unrestrained, admits a rigid-body 
mode with the natural frequency equal to zero and n - 1 elastic modes. 

4.  Clamped-spring restrained shaft. This case is similar to the clamped-free case, the 
only difference being that the right end is restrained by a torsional spring kT (Fig. 
9.10). In fact, the recursive relations, the last of these relations and the overall 
transfer matrix have the same form as those given by Eqs. (9.40), (9.41) and (9.42), 
respectively. However, in the case at hand the end conditions are 

FIGURE 9.10 
Lumped model of a clamped-spring supported shaft in torsion 



so that Eq. (9.41) yields the two scalar equations 

Inserting the first of Eqs. (9.57) into the second and recognizing that Mo # 0, M: # 0, 
we conclude that the frequency equation is 

k ~ t 1 2 ( ~ ' )  + t22(w2) = 0 (9.58) 

which is of degree n in w2. 

Example 9.2. The polar mass moment of inertia per unit length and torsional stiffness of 
a tapered shaft clamped at x = 0 and free at x = L are given by 

Compute the three lowest natural frequencies and modes by means of Holzer's method. 
Plot the three modes, as well as the torque vector in the first mode. 

The shaft under consideration is entirely analogous to the rod in axial vibration 
considered in Example 9.1. Hence, to permit a comparison of results, we use exactly the 
same lumping as in Example 9.1. The lumped model is exhibited in Fig. 9.1 1. The stations 
are located at x, = (2i - 1)L/20 ( i  = 1,2, . . . lo), so that using Eqs. (c) of Example 9.1, 
the polar mass moments of inertia of the disks are 

Moreover, from Eqs. (9.3 1) and Eqs. (d) of Example 9.1, and recalling the fields notation 
from Fig. 9.11, we conclude that the torsional flexibility influence coefficients are the 

' A x  
2 

FIGURE 9.11 
Lumped model of a clamped-free tapered shaft 



reciprocals of the equivalent spring constants, or 

so that, using Eqs. (e) of Example 9.1, we can write 

L L 
a8 = 0.1225-, a9 = 0.1401 - 

G J G J 
The overall transfer matrix is given by Eq. (9.42) in the form 

Introducing the notation 

where /3 is recognized as being nondimensional, and using Eqs. (b) and (d), the constituent 
matrices in Eq. (e) can be shown to be 

Inserting Eqs. (h) into Eq. (e) and retaining the bottom right comer entry, we obtain the 
frequency equation 

t22(u2) = t 22 (~2)  = 1-4.1025 x 10-'p2+3.2173 x 10-2p4 - 1.005 x I O - ~ ~  

+ 1.6099 x - 1.4884 x 10-~plO + 3.9994 x 1 0 - l l p ~ ~  -2.9389 x 

+ 6.2206 x I o - ' ~ / ? ' ~  - 7.2955 x 1 0 - ~ ~ / 3 ' ~  + 3.6384 x 1 0 - ' ~ p ~ ~  = 0 (0  

The three lowest roots are 

p: = 3.1377, ,b'; = 22.7697, pi = 59.5335 (i) 

so that the three lowest natural frequencies are 



To generate a given modal displacement vector 0, and associated torque vector M,, 
we must first compute the transition matrices TF,O, T I ,  T2,. . . , T9, TS , IO.  Then, recalling 
that Oo = 0,  and choosing arbitrarily Ma = G J / L  = 1, we obtain the station vectors from 
the recursive relations, Eqs. (9.40). As an illustration, to obtain the station vectors in the 
first mode, we use Eqs. (h) and compute the transition matrices 

1 - 1.0732 x 10-'pf 0.1401 ] = [ 0.9663 0.1401 ] 
~ 9 ' 8 )  = [ ( ) 0 7 6 6 @ :  1 -0.2403 1 

1 
T ~ , ~ ~ ( ~ : )  = [ -0.065813: ] = [ -0.2065 1 

Hence, inserting Eqs. (1) into Eqs. (9.40) and considering the end conditions indicated above, 
we obtain 

1 0.0418 ] [ , ] = [ 0.0:18 ] 
0.9685 0.0838 ] [ 0.0:18 ] = [ 0.1243 ] 

0.9843 

0.9684 0.0850 ] [ 0.1243 ] = [ 0.2040 ] 
[ 1: = ~ ~ ( p ? )  [ E 1: = [ -0,3721 1 0.9843 0.9380 

As indicated earlier, the modal vectors consist of the top component of the station 
vectors corresponding to the system eigenvalues. In particular, taking the top component 
of the station vectors on the left side of Eqs. (m), which correspond to /3' = P:, we obtain 
the first modal vector 

0 1  = [0.0418 0.1243 0.2040 0.2794 0.3487 0.4103 0.4627 

0.5048 0.5344 0 .55031~ (n) 

The three lowest modal vectors, el, 0' and 0 3 ,  are displayed in Fig. 9.12. Note that the 
modal vectors have been normalized so that the last component is equal to 1. Similarly, 
taking the bottom component of the station vectors on the left side of Eqs. (m), we obtain 



FIGURE: 9.12 
Modal vectors for a lumped model of the clamped-free shaft 

FIGURE 9.13 
Torque vector for the first mode of the clamped-free shaft 

the torque vector in the first mode, M I ;  it is shown in Fig. 9.13. We note that the plot 
consists of 11 points, rather than 10. The first 10 points represent the torques on the left 
side of the stations 1-10, M:, M:, . . . , M k ,  and the eleventh represents the torque on the 
right side of station 10, namely M;; it is equal to zero, as it should be. 

9.4 MYKLESTAD'S METHOD FOR BENDING VIBRATION 

Myklestad's method for the formulation and solution of the eigenvalue problem for 
beams in bending vibration can be regarded as the counterpart of Holzer's method for 
shafts in torsional vibration. But, whereas the general ideas are similar, the extension 
from shafts in torsion to beams in bending is not as simple as one might expect. 

As in Holzer's method, the first step is to generate a lumped model of the beam 
under consideration, generally a nonuniform beam. To this end, the distributed mass is 
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FIGURE 9.14 
Lumped model for a beam in bending 

lumped at individual points and the segments between the lumped masses are regarded 
as massless uniform beams. Here too, we refer to the locations of the lumped masses 
as stations and to the segments between the stations as fields. We do not dwell on the 
generation of a lumped model, which was covered adequately in Secs. 9.1 and 9.3, and 
concentrate instead on the eigenvalue problem formulation. 

The general process for deriving and solving the eigenvalue problem for beams in 
bending rcmains essentially the same as for shafts in torsion, with one notable difference: 
for beams in bending the station vectors are two-dimensional and the transfer matrices 
are 4 x 4. We recall that for shafts in torsion the station vectors are two-dimensional, 
consisting of the angular displacements O and torque M. This is consistent with the fact 
that the differential eigenvalue problem for shafts in torsion (as well as for rods in axial 
vibration and strings in transverse vibration) are of order two. On the other hand, the 
differential eigenvalue problem for beams in bending is of order four, so that the station 
vectors must be four-dimensional. The components of the station vectors represent the 
translational displacement, angular displacement, bending moment and shearing force. 

We assume that a nonuniform beam has been discretized through lumping, resulting 
in a system of lumped rigid masses connected by uniform massless beams (Fig. 9.14), 
and focus our attention on the free-body diagram for a typical station i (Fig. 9.15). The 
equation of motion for mass m, is simply 

Our interest lies in setting up recursive relations of the type given by Eqs. (9.40) for 
the purpose of solving eigenvalue problems. The implication is that Eq. (9.59) must 
represent free vibration, so that the displacement y, ( t )  is harmonic, as are the shearing 

FIGURE 9.15 
Free-body diagram for a typical station i 



a. Station i b. Field i 
FIGURE 9.16 
a. Free-body diagram for station i, b. Free-body diagram for field L 

forces Q f (t) and Q: (t) . Hence, letting 

in Eq. (9.59), where Y, , Q: and Qf. are amplitudes and w is the free vibration frequency, 
and dividing through by cos(wt - $), we can rewrite Eq. (9.59) in the form 

Equation (9.61) expresses the shearing force on the right side of station i in terms of the 
shearing force on the left side and the inertia force. In view of this, we can replace the free- 
body diagram of Fig. 9.15 by that shown in Fig. 9.16a, in which M: and M; represent 
the amplitudes of M: ( t )  and M: (t), respectively. Moreover, qL is the amplitude of the 
angular displacement $, (t), which is the same as the slope of the displacement curve. 
Because mass m, is regarded as a point mass, so that its mass moment of inertia is zero, 
we must have 

By continuity, the displacement and slope on both sides of station i must be the same, 
so that we can write 

Taking a cue from the developments in Sec. 9.3, Eqs. (9.61)-(9.63) can be expressed in 
the matrix form 



where the notation for the station vectors is obvious and 

is the station transfer matrix for station i .  
Next, we propose to derive the field transfer matrix, which is appreciably more 

involved than for shafts in torsion. To this end, we refer to the free-body diagram of 
Fig. 9.16b, in which we recall that the superscripts R and L refer to the right and left 
side of a station, and not of a field. Before we derive the internal loads-deformations 
relations, it is convenient to regard station i as clamped and introduce several definitions 
of flexibility influence coefficients, as follows: 

a r M  = displacement at i + 1 due to a unit moment at i + 1, M:+~ = 1 

aYQ = displacement at i + 1 due to a unit force at i + 1, Q;+~ = 1 

a" = slope at i + 1 due to a unit moment at i + 1, M:+~ = 1 

a" = slope at i + 1 due to a unit force at i + 1, Q!+, = 1 

Using developments from Sec. 1.8, it can be verified that the above flexibility coefficients 
represent the reciprocals of the corresponding stiffness coefficients for a cantilever beam. 
Hence, we have 

Then, from Fig. 9.16b, we can write 

Moreover, because beam segments are assumed to be massless, we conclude from Fig. 
9.16b that 

M:+~ = M: - Ax, Q: 

Qt;1= QP 



Inserting Eqs. (9.68) into Eqs. (9.67), we obtain 

Equations (9.68) and (9.69) relate the components of the station vector on the left 
side of station i + 1  to those on the right side of station i . They can be cast in the matrix 
form 

where 

is recognized as the field transfer matrix for field i. Inserting Eq. (9.64) into Eq. (9.70), 
we can write 

1 

in which 

1  Ax, ( A X , ) ~ / ~ E Z ,  - ( A x , ) ~ / ~ E  I,  1 0 0 0  

TZ = TF,, Ts,, = 
A x , / E I ,  1  - ( A X , ) ~ / ~ E I ~ ]  -Ax,  [ : 0 1 0  1 0  

0  1 -w2m, 0  0  1 

is the transfer matrix relating the station vector on the left side of station i + 1 to the 
station vector on the left side of station i .  

Except for the fact that the station vectors are four-dimensional and the various 
transfer matrices are 4 x 4 ,  the general process for deriving the frequency equation and 
the modal vectors remains essentially the same as for Holzer's method. Indeed, the 



recursive relations are as given by Eqs. (9.40) and the overall transfer matrix as given 
by Eq. (9.42), subject to changes in the first and last matrices, depending on the nature 
of the end conditions. 

As an illustration, we consider the cantilever beam shown in Fig. 9.14. In this 
case, the overall transfer matrix is indeed as given by Eq. (9.42), namely 

To derive the frequency equation, we express the overall transfer matrix in the generic 
form 

The end conditions are 

so that a relation analogous to the last of the recursive relations (9.40) leads to the four 
scalar equations 

The last two of Eqs. (9.77) have a nontrivial solution provided the determinant of the 
coefficients is equal to zero, which yields the frequency equation 

det [ t33(W2)  t34(W2) = h3(w2)t44(w2) - t 3 4 ( ~ 2 ) t 4 3 ( ~ 2 )  = 0 I (9.78) 
f43 (w2> t44 (w2) 

The solution of the frequency equation consists of the eigenvalues w;, whose 
square roots represent the natural frequencies w, (r  = 1,2,  . . . , n). Then, as in Holzer's 
method, inserting the eigenvalues w:, w;, . . . , wi into relations analogous to relations 
(9.40), in sequence, and retaining the top component of the station vectors, we obtain 
the modal vectors Y Y2 ,  . . . , Y,, respectively. Before we can initiate the process, 
however, we must choose a station vector for the left end. Of course, as stated by the 
first two of Eqs. (9.76), Yo = 0 and qo = 0 ,  but the question remains as to the other 
two components, Mo and Qo. In view of the fact that the magnitude of the station 
vector is arbitrary, we choose Mo = 1. Then, from the third of Eqs. (9.77), we can write 
Qo = -[t33 ( w ~ ) / ~ ~ ~ ( w ~ ) ] M ~  = - t33(w2) / t34(~2) .  It should be noted that, had we used 
the fourth of Eqs. (9.77), the result would have been the same, because the third and 
fourth of Eqs. (9.77) are proportional to one another. Hence, to compute the station 



vectors corresponding to the rth mode, we choose as the left end station vector 

For models with a small to moderate number of degrees of freedom, say n 5 10, 
the slopes, represented by the second component of the station vectors, can enhance the 
plots of the modal vectors. For large n, say n 2 100, the graph resolution is likely to be 
such that displacements alone suffice for plotting the modes. 

Another case of interest is the pinned-pinned beam, shown in lumped form in Fig. 
9.17. In this case, the overall transfer matrix has the expression 

T = TnTn-1 . . . T ~ T ~ T F , ~  

The end conditions are 

so that the four equations corresponding to the last of the recursive relations are 

0 = t12(w2)'4'o + ti4(w2) QO 

Qn+l = t42(w2)q0 f t44(w2) QO 

It is not difficult to see that in this case the frequency equation is 

det [ ' 1 2 ( ~ ' )  t14(W2) = ~ ~ ~ ( ~ ~ ) t ~ ~ ( w ~ )  - t 1 4 ( ~ 2 ) h 2 ( ~ 2 )  = 0 
t32 (w2> t34 (w2) 

(9.83) 

Moreover. from the first of Eqs. (9.82), we can write Qo = -[t12(w2/t14(w2)]qo, SO that 
by choosing Wo = 1 and considering the first two of Eqs. (9.81), we can use as the left 
end station vector for the rth mode 

FIGURE 9.17 
Lumped model for a pinned-pinned beam 



Example 9.3. The pinned-pinned beam depicted in Fig. 9.18 has the mass distribution 

m ,  0 < x < 0.2L and 0.8L < x < L 
1.2m, 0.2L < x < 0.4L and 0.6L < x < 0.8L (a) 
1.4m, 0.4L < x < 0.6L 

and stiffness distribution 

E l ,  0 < x < 0.2L and 0.8L < x < L 
1.44EI, 0.2L < 0.4L and 0.6L < x < 0.8L (b) 
1.96EI, 0.4L < x < 0.6L 

Construct a ten-degree-of-freedom lumped model as that shown in Fig. 9.17 and compute 
and plot the three lowest modes of vibration by means of Myklestad's method. 

Dividing the beam into 10 equal increments and placing the lumped masses at the 
center of these increments, we conclude from Fig. 9.17 that 

Then, from Eqs. (a) and Fig. 9.18, the lumped masses are given by 

Moreover, taking the average value in the increments in which the stiffness experiences a 
discontinuity, the lumped stiffnesses have the values 

E I ,  i = 0,1,9,10 
1.22E1, i = 2 , 8  

1.70EI, i = 4 , 6  
1.96E1, i = 5 

Next, we assign some convenient values to the parameters. These values will affect 
the natural frequencies, but in a known manner. In particular, we let 

In general, the natural frequencies can be expressed as 

where the coefficients c, are computed by means of the frequency equation, Eq. (9.83). 
In the case at hand, the computed natural frequencies correspond to the parameter values 
given by Eqs. (f). In the case in which L = lorn, the natural frequencies are = 

FIGURE 9.18 
Nonuniform pinned-pmned beam 
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times the natural frequencies computed on the basis of L = 1 m, i.e., 100 times smaller. Of 
course, the postulated parameters do not affect the mode shapes. 

Inserting n = 10 into Eq. (9.80), we can write the overall transfer matrix 

where, using Eq. (9.71) with i = 0 in conjunction with Ax0 = 1/20, we can write 

Moreover, using Eq. (9.73), we have 

The frequency equation is obtained by introducing Eqs. (i) and Cj) into Eq. (h) and using 
Eq. (9.83). The first three roots of the frequency equation are the three lowest natural 
frequencies 

To compute the modal vectors, we insert Eqs. (k) into Eq. (9.84), in sequence, and 
obtain the left end station vectors 

Then, we use relations analogous to the recursive relations (9.40) to compute the station 
vectors for each of the three cases, r = 1,2 and 3. The modal vectors Y I ,  Y2 and Y3 can be 
plotted by taking the top component of the corresponding station vectors, with some help 
from the second component; they are shown in Fig. 9.19. 



RAYLEIGH'S PRINCIPLE 493 

9.5 RAYLEIGH'S PRINCIPLE 
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The lumped-parameter methods discussed in Secs. 9.1-9.4 have the advantage that they 
are easy to understand physically. They have two main disadvantages, however; they 
lack mathematical rigor and the results tend to be inaccurate. What is worse is that, 
lumping being an arbitrary process, it is difficult to predict on what side of the actual 
natural frequencies the computed natural frequencies are. It is logical to assume that, 
as the number of degrees of freedom of the model is increased, the computed natural 
frequencies approach the actual ones, but there are no criteria for estimating how fast 
convergence is. Experience shows that good accuracy can be achieved only with a 
relatively large number of degrees of freedom. 

An entirely different type of approximations of distributed-parameter systems by 
discrete models is based on the variational approach to the differential eigenvalue prob- 
lem. As demonstrated in Sec. 8.8, Rayleigh's quotient has a stationary value in the 
neighborhood of an eigenfunction and this stationary value is actually a minimum at the 
lowest eigenfunction. The latter can be stated mathematically in the form 

-1 

A, = wf = min R(Y)  = R(Yl )  (9.85) 

'a,.' 
- -  

or, in words, the lowest eigenvalue is the minimum value that Rayleigh's quotient can 
take by letting the trial function Y (x) vary at will. Of course, the minimum value is 
achieved when Y ( x )  coincides with the lowest eigerzfunction Yl ( x ) .  Equation (9.85) 
represents Rayleigh's principle. 

FIGURE 9.19 
Modal vectors for the lumped model o f  the pinned-pinned beam 
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Before we discuss how the variational approach can be used to develop approx- 
imate solutions to the eigenvalue problem, we wish to elaborate on the approximation 
process itself. To this end, we consider the differential eigenvalue problem for a string 
in transverse vibration fixed at x = 0 and supported by a spring of stiffness k at x = L. 
The eigenvalue problem is described by the differential equation 

where Y ( x )  is the displacement, T ( x )  the tension and p(x) the mass per unit length, and 
the boundary conditions 

The solution of Eqs. (9.86) and (9.87) consists of an infinite set of eigenvalues A, 
and associated eigenfunctions Y, ( x )  (r = 1,2, . . . ). Unfortunately, exact solutions are 
possible only in relatively few cases, most of them characterized by constant tension and 
uniform mass density. Hence, for the most part, we must be content with an approximate 
solution. In seeking an approximate solution, sacrifices must be made, in the sense that 
something must be violated. Almost always, one forgoes the exact solution of the 
differential equation, Eq. (9.86), which will be satisfied only approximately, but insists 
on satisfying both boundary conditions (9.87) exactly. 

Another differential eigenvalue problem likely to cause difficulties is that of a beam 
in bending fixed at x = 0 and with a lumped mass M at x = L. The eigenvalue problem 
for such a beam is defined by the differential equation 

and the boundary conditions 

Rayleigh's principle, Eq. (9.85), suggests a way of approximating the lowest eigen- 
value, and hence the lowest natural frequency of a system without solving the differential 
eigenvalue problem directly. Indeed, if a trial function Y (x) reasonably close to the low- 
est eigenfunction Yl ( x )  can be found, because of the minimum character of Rayleigh's 
quotient R, insertion of the trial function into Rayleigh's quotient will result in a value 
R ( Y )  one order of magnitude closer to the lowest eigenvalue R(Yl )  = XI = w; than Y ( x )  
is to the lowest eigenfunction Yl ( x ) .  The question remains as to the form of Rayleigh's 
quotient for a given system. To answer this question, we multiply Eq. (9.86) by Y ( x ) ,  
integrate over the length of the string, rearrange and obtain Rayleigh's quotient for the 
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string in the form 

A similar expression can be written for rods in axial vibration and shafts in torsion, 
subject to the changes in the dependent variable and parameters prescribed in Table 8.1. 
Following the same pattern as for the string in transverse vibration, Rayleigh's quotient 
for a beam in bending can be verified to be 

Contrasting Eqs. (9.86) and (9.91), as well as Eqs. (9.88) and (9.92), we conclude 
that minimizing Rayleigh's quotient is equivalent to solving the differential equation 
in a weighted average sense, where the weighting function is Y ( x ) .  Of course, the 
approximation R ( Y )  = X = w2 for XI = w: arises from using Y ( x )  instead of Yl  ( x )  in 
Rayleigh's quotient. 

Next, we wish to explore the nature of the trial functions. To this end, we observe 
that, in the form given by Eq. (9.91), or by Eq. (9.92), Rayleigh's quotient is defined 
for all trial functions Y ( x )  that are differentiable twice, or four times, respectively, 
and satisfy all the boundary conditions. This differentiability requirement imposed on 
the trial functions coincides with the order of the differential equation, Eq. (9.86) or 
Eq. (9.88), which should come as no surprise as the numerator of Rayleigh's quotient 
involves the stiffness expression from the differential equation. In the absence of a more 
suitable term, it will prove convenient to refer to Rayleigh's quotient in the form given by 
Eqs. (9.91) and (9.92) as the weighted average form of Rayleigh's quotient. We observe 
that the boundary conditions do not appear explicitly in the weighted average form of 
Rayleigh's quotient. As a result, to ensure that the characteristics of the system are 
taken into account as much as possible, the trialfunctions used in conjunction with the 
weighted average form of Rayleigh's quotient must satisb all the boundary conditions of 
the problem. We refer to trial functions that are as many times differentiable as the order 
of the system and satisfy all the boundary conditions as comparisonfinctions. Hence, 
when used in conjunction with the weighted average form of Rayleigh's quotient, the 
trial functions mqst be from the class of comparison functions. 

Generating comparison functions can cause problems at times. The differentia- 
bility of the trial functions is seldom an issue, but the satisfaction of all the boundary 
conditions, particularly the satisfaction of the natural boundary conditions (Sec. 8.1) 
can be. In view of this, we wish to examine the implications of violating the natural 
boundary conditions. We recall that the weighted average form of Rayleigh's quotient, 
e.g., Eqs. (9.91) and (9.92), does not account explicitly for the boundary conditions, so 
that a different form of Rayleigh's quotient is desirable. To this end, we integrate the 



numerator of Eq. (9.91) by parts, with due consideration to boundary conditions (9.87), 
and write 

Inserting Eq. (9.93) into Eq. (9.91), we can express Rayleigh's quotient in the generic 
form (Sec. 8.8) 

where 

is the maximum potential energy, defined as the potential energy in which the time 
dependence has been eliminated, and 

is the reference kinetic energy, namely, the kinetic energy with j ( x ,  t )  replaced by Y ( x ) .  
Equation (9.94) is valid for any distributed-parameter system and for any type 

of boundary conditions, provided they can be accounted for in Vm, and Tref. As an 
illustration of a case in which a boundary condition is accounted for in Tref, we integrate 
the numerator in Eq. (9.92) by parts, consider boundary conditions (9.89) and (9.90) and 
write 

d 2 Y ( x )  d2 Y ( x )  d 2 y ( x )  d Y ( x )  
= Y ( x ) -  [ E Z ( X ) ~  d x  ]/,-dx 

d x  

so that Eq. (9.92) can be rewritten as 
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Upon rearranging Eq. (9.98), Rayleigh's quotient can be expressed once again in the 
generic form (9.94), in which 

and 

For obvious reasons, we refer to the generic form of Rayleigh's quotient, Eq. (9.94), 
as the energy form of Rayleigh's quotient. We observe that Eq. (9.94) involves Vmm and 
Lf, which are defined for trial functions that are half as many times differentiable 
as the order of the system and need satisfy only the geometric boundary conditions, 
as the natural boundary conditions are accounted for in some fashion. We refer to 
trial functions that are half as many times differentiable as the order of the system and 
satisfy the geometric boundary conditions alone as admissible functions. We encountered 
admissible functions for the first time in Sec. 8.8. Hence, when used in conjunction with 
the energy form of Rayleigh's quotient, the trial finctions need be from the class of 
admissible functions only. This does not preclude the use of comparison functions 
in conjunction with the energy form of Rayleigh's quotient, because when comparison 
functions are used, the weighted average form and the energy form of Rayleigh's quotient 
are equivalent. In fact, if comparison functions are available, then their use is preferable 
over the use of admissible functions, because the results are likely to be more accurate. 
Moreover, the use of comparison functions with the energy form of Rayleigh's quotient 
is advisable, because it requires simpler computations than the weighted average form. 
The conclusion is that the energy form of Rayleigh's quotient is always the preferred 
choice, whether we use comparison functions or admissible finctions. 

It should be pointed out that, in using admissible functions in conjunction with the 
energy form of Rayleigh's quotient, the natural boundary conditions are still violated. 
But, the deleterious effect of this violation is somewhat mitigated by the fact that the 
energy form of Rayleigh's quotient, Eq. (9.94), includes contributions to V,, from 
springs at boundaries and to T,f from masses at boundaries. 

Rayleigh's principle, Eq. (9.85), has practical as well as theoretical implications. 
In particular, it can be used to generate a quick estimate of the lowest natural frequency 
of a system, a fact already established in Sec. 8.8. To this end, all that is necessary is a 
reasonable guess of the lowest eigenfunction. Inserting this trial function into Rayleigh's 
quotient, in view of the stationarity property, we obtain a value of Rayleigh's quotient 
that is one order of magnitude closer to the lowest eigenvalue than the trial function is 
to the lowest eigenfunction. This procedure is known as Rayleigh's energy method and 
it implies the use of the energy form of Rayleigh's quotient in conjunction with either a 
comparison function or an admissible function; it can produce remarkably good estimates 
of the lowest natural frequency. A suitable trial function is the static deflection curve 
obtained by loading the system with a distributed force proportional to its own mass. 
Another suitable trial function may be the lowest eigenfunction of a closely related, but 
simpler system. For example, to estimate the lowest natural frequency of a nonuniform 



cantilever beam, a good trial function is  likely to  be  the lowest eigenfunction of a uniform 
cantilever beam. 

Our interest in  Rayleigh's principle is not as  much as a way of estimating the 
lowest natural frequency but in  its role i n  the development of a mathematical theory for  
the discretization of distributed-parameter systems. Reference is made here to  the theory 
behind the Rayleigh-Ritz method (Sec. 9.6). In turn, the Rayleigh-Ritz theory forms the 
mathematical foundation for the finite element method to b e  discussed in Ch. 10. 

Example 9.4. Estimate the lowest natural frequency of the fixed-free tapered rod in axial 
vibration of Example 9.1 by means of Rayleigh's energy method. Use as a trial function 
the lowest eigenfunction of a uniform clamped-free rod. 

From Example 9.1, the mass and stiffness distributions are given by 

Moreover, from Example 8.12, the lowest eigenfunction of a uniform rod fixed at n = 0 and 
free at x = L is 

7rx 
U (x) = sin - 

2 L 
which represents a conlparison function. Hence, inserting Eqs. (a) and (b) into Eqs. (9.94)- 
(9.96), letting k = 0 and carrying out the integrations, we obtain 

so that the estimate of the lowest natural frequency is 

For comparison purposes, we recall that in Examples 9.1 and 9.2 we solved essentially 
the same problem using three lumped-parameter methods, where we computed the val- 
ues of 1.7668,/-, 1.7663,/- and 1.7713 4- for the lowest nat- 
ural frequency. As we shall see in Example 9.5, the lowest natural frequency is w l  = 
1 . 7 7 4 2 J m ,  so that the estimate of the lowest natural frequency given by Eq. (d) 
is much closer to the actual value than those computed by the three lumped-parameter 
methods. Of course, the lumped-parameter models can be modified to bring the computed 
lowest natural frequency in closer agreement with the actual value. The difficulty with this 
argument is that the lumped-parameter methods give no clues as to where the true value lies. 
On the other hand, because the estimate obtained by Rayleigh's energy method is known to 
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be larger than the actual value of the lowest natural frequency, it is always safe to lower the 
estimate, as this will cause the estimate to approach the actual value. Moreover, it is clear 
that the actual value can only be approached from above. 

9.6 THE RAYLEIGH-RITZ METHOD 

Rayleigh's principle states that Rayleigh's quotient has a minimum at the lowest eigen- 
function of a conservative system, where the minimum value is the lowest eigenvalue. 
Rayleigh's energy method represents a technique for estimating the lowest eigenvalue, 
based on the idea behind Rayleigh's principle that, insertion of a trial function close to 
the lowest eigenfunction into Rayleigh's quotient results in a value one order of magni- 
tude closer to the lowest eigenvalue than the trial function is to the lowest eigenfunction. 
Because the lowest eigenvalue is the minimum value of Rayleigh's quotient, any estimate 
is larger, or at least not smaller, than the lowest eigenvalue. Hence, it is only logical to 
look for ways of lowering the estimates, relying on the fact that no estimate can ever fall 
below the lowest natural frequency, where the latter acts as a safety net. The Rayleigh- 
Ritz method provides a rational approach toward this goal. However, matters do not 
stop there, as the Rayleigh-Ritz method yields estimates not only of the lowest natural 
frequency, but of a given number of lower natural frequencies. This is accomplished by 
assuming a solution in the form of a linear combination of trial function, rather than a 
single trial function, in a process know11 as series discretization. Essentially, the process 
represents a variational approach whereby a conservative distributed-parameter system 
is approximated by a discrete model. 

The title Rayleigh-Ritz method implies some shared developments by two re- 
searchers, with Rayleigh being the main contributor, but this is not quite the case. The 
method was developed by Ritz as an extension of Rayleigh's energy method. Although 
Rayleigh claimed that the method originated with him, the form in which the method 
is generally used is due to Ritz. For this reason, the method is referred to at times as 
the Ritz method. Because the original developments on which the series discretization 
technique is based are due to Rayleigh, and because the method is almost universally 
referred to it as the Rayleigh-Ritz method, retaining the name can be justified. 

The first step in the Rayleigh-Ritz method is to construct the minimizing sequence 

~( ' ' (x )  = al (x) 

where dl (x), 42 (x), . . . , 4n (x) represent independent trial functions and a1 , a2, . . . , an 
are undetermined coefficients. The next step is to introduce the minimizing sequence, 
Eqs. (9.101), in Rayleigh's quotient and carry out the indicated integrations, thus elim- 
inating the spatial dependence. As a result, Rayleigh's quotient becomes a function of 



the undetermined coefficients a1 , a2, . . . , a, alone, 

A(,) = R(Y (,)) = R ( a l ,  a z ,  . . . , a,) (9.102) 

We observe that, by approximating the solution Y ( x )  of the eigenvalue problem by the 
function Y(,) (x), which represents a series consisting of n terms, we automatically reduce 
a distributed system, which can be regarded as having an infinite number of degrees of 
freedom, to a discrete system with n degrees of freedom. 

Our objective is to produce an n-degree-of-freedom discrete model best approxi- 
mating the distributed system under the assumption that the trial functions 41 ( x ) ,  $2 (x ) ,  
. . . ,q5, ( x )  are given. This implies that the coefficients a1 , a2, . . . , a, must be so adjusted 
as to produce the desired approximate model. But, it is shown in Ref. 13 that rendering 
Rayleigh's quotient stationary is equivalent to solving the weak form of the differential 
eigenvalue problem. Hence, we insist that the coefficients a1 , a2, . . . , a, be determined 
so as to render Rayleigh's quotient stationary, which requires that the first variation of 
Rayleigh's quotient be zero. Because, according to Eq. (9.102), Rayleigh's quotient 
is a function of the coefficients a1 , az, . . . , a, alone, the stationarity condition can be 
expressed as 

where &al.  &a2, . . . , Sa, are variations in the undetermined coefficients. The indepen- 
dence of the trial functions q51(x), d 2 ( x ) ,  . . . , $,(x) implies the independence of the 
coefficients a1 , a2, . . . , a,, which in turn implies the independence of the variations 
Gal, Sa2, . . . , Sa,. In view of this, Eq. (9.103) can only be satisfied if the quantities 
multiplying &al,  &a2, . . . , Sa, are all equal to zero, so that the necessary conditions for 
the stationarity of Rayleigh's quotient are 

At this point, we recall that Rayleigh's quotient is really a ratio, so that it is convenient 
to write it in the form 

where N denotes the numerator and D the denominator of the quotient, both functions 
of the undetermined coefficients a1 , az, . . . , a,. Inserting Eq. (9.105) into Eqs. (9.104), 
we have 

a R  (aN/aa i )D - (aD/aai)N -- - a ai D2 

Hence, the necessary conditions for the stationarity of Rayleigh's quotient are 



Equations (9.107) represent n algebraic equations with the coefficients a l ,  a2, . . . ,an 
as unknowns and with as an unknown parameter, so that solving the equations 
amounts to determining the coefficients, which were undetermined until now, as well 
as to determining A("). Inserting the coefficients 01, az, . . . ,an thus determined into 
Eqs. (9.101), we obtain the approximate solution Y ( " ) ( x )  of the distributed-parameter 
problem. Before we discuss the details of the solution, we wish to explore the nature of 
the solution. 

A question always arising in conjunction with approximate solutions is how good 
the approximation is. The answer to this question depends on the nature of the trial 
functions d l  ( x )  , 4 2  ( x )  , . . . , $n ( x ) ,  as the problem can be regarded as solved for all 
practical purposes as soon as the trial functions and their number have been selected. Of 
course, there are still the tasks of setting up Eqs. (9.107) and computing their solution, 
but these tasks follow an established pattern, which is shown later in this section to be 
a very familiar one. We recall from Sec. 9.5 that there are many advantages to the use 
of the energy form of Rayleigh's quotient. Hence, in the future, we will use the energy 
form of Rayleigh's quotient exclusively, and simply refer to it as Rayleigh's quotient. 
Then, we will use trial functions in the form of comparison functions if available, and 
in the form of admissible functions if comparison functions are not available. 

To illustrate the Rayleigh-Ritz process, we consider the differential eigenvalue 
problem for the string in transverse vibration described by Eqs. (9.86) and (9.87), so that 
Rayleigh's quotient is given by Eqs. (9.94) to (9.96). Introducing the last of Eqs. (9.101) 
in Eq. (9.95), we can write the numerator of Rayleigh's quotient as 

n n L 

2 
d'l d'i dx + k~~ (I,)$] ( L ) ]  = ' ~ ~ a , a ,  [l ~ ( x ) ~ ~  

1=1j=1 

where 

are symmetric stifiess coeficients. On the other hand, the denominator of Rayleigh's 
quotient, Eq. (9.96), has the form 
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in which 
L 

m,, = m,, = 1 p(x)4r(x)h (xldx, i ,  j = l,Z, . . . , n (9.111) 

are symmetric mass coeficients. As pointed out earlier in this section, the trial functions 
can be either from the class of comparison functions or from the class of admissible 
functions. 

Next, we return to Eqs. (9.107). From Eqs. (9.108), and (9.110), we see that 
the numerator N of Rayleigh's quotient is a quadratic form in terms of the stiffness 
coefficients k,, and the denominator D is a quadratic form in terms of the mass coefficients 
rn,, . To permit proper differentiation with respect to a,,  we replace the indices in the 
quadratic forms and write 

I 

and 

so that, recalling the symmetry of the stiffness coefficiepts, we have 

Similarly, invoking the symmetry of the mass coefficients, we can write 

Hence, inserting Eqs. (9.114) and (9.115) into Eqs. (9.107), we obtain the set of algebraic 
equations 

s=l s=l 

Equations (9.1 16) are recognized as representing an algebraic eigenvalueproblem, which 
is a very familiar problem (see Ch. 7). 

The eigenvalue problem, Eqs. (9.116), can be cast in the matrix form 

where K ( ~ )  is an n x n stiffness matrix, M ( ~ )  an n x n mass matrix, both symmetric, 
a(") an n-dimensional vector and a scalar, in which the superscript (n) indicates 
that the eigenvalue problem corresponds to n terms in the approximating series, the last 



expression in the minimizing sequence given by Eqs. (9.101). The eigenvalue problem, 
Eqs. (9.11 6) or Eq. (9.1 17), resembles entirely the eigenvalue problem for a conservative 
n-degree-of-freedom discrete system, which justifies our statement in the beginning of 
this section that the Rayleigh-Ritz method is essentially a series discretization technique 
approximating a conservative distributed-parameter system by a discrete system. 

The solution of the algebraic eigenvalue problem, Eq. (9.117), consists of the 
eigenvalues A?) and associated eigenvectors a?) (r = 1,2, . . . , n), referred to as Ritz 
eigenvalues and Ritz eigenvectors, respectively. The Ritz eigenvalues A?) represent 
approximations to lhe actual eigenvalues A, (r = 1,2, . . . , n) of the distributed-parameter 
system. To obtain the approximate eigenfunctions, referred to as Ritz eigenfunctions, 
we use the last of Eqs. (9.101) and write 

n 

Y ~ ( x )  = C (x)aj:) = 4' ( x ) a p  (9.118) 
1=1 

in which a$) is the ith component of the Ritz eigenvector a?) and 4(x) = (x) 42(x) 
. . . q5,(x)lT is the vector of trial functions. From earlier studies in Ch. 7, we know 
that the eigenvectors a?) are orthogonal with respect to the mass matrix M ( ~ ) ,  as well 
as with respect to the stiffness matrix Kcn). Assuming that the eigenvectors have been 
normalized so that ~ ( , ) a ? )  = 1 (r = 1,2, . . . , n), the orthonormality conditions 
have the form 

~ ' , ) a ? )  = S,, , (a?))T ~ ( ~ ) a p )  = x~)s , ,  , r, s = 1,2, . . . , n (9.119) 

Then, recalling the definition of the stiffness and mass coefficients, e.g., Eqs. (9.109) 
and (9.1 11), respectively, it is possible to derive orthonormality relations for the Ritz 
eigenfunctions y,(nl(x) (r = 1,2,  . . . , n) (see Problems 9.25-9.27). 

The Rayleigh-Ritz method calls for a sequence of approximations obtained by 
letting n = 2,3, . . . in the minimizing sequence, Eqs. (9.101). We note that the case 
n = 1 represents Rayleigh's energy method, which does not involve the solution of an 

I eigenvalue problem at all (see Example 9.4). As the number n of terms in the series 
1 increases, there is steady improvement at the lower end of the eigenvalue spectrum, while 

1 new approximate eigenvalues are added at the higher end of the spectrum. The process 
I is stopped when a desired number of eigenvalues reach sufficient accuracy, i.e., when the 
I addition of terms to the series does not produce improvement in these eigenvalues within 

1 the specified accuracy level. This brings up an interesting peculiarity of the Rayleigh- 
Ritz method (or of any discretization method). In particular, only a fraction of the Ritz 1 eigenvalues at the lower end of the spectrum tend to be accurate, with the newly added 
ones at the higher end being wildly in error. As a rough guideline, the number of terms in 
the series should be about twice as large as the number of accurate eigenvalues desired. 

The question remains as to how the Ritz eigenvalues A?) relate to the actual 
eigenvalues A, (r = 1,2,  . . . n). For convenience, we order the Ritz and actual eigenvalues 
so as to satisfy A?) _( A t )  . . . I A;) and XI  5 A2 5 . . . , respectively. Then, assuming 
that the trial functions (x), $2(x), . . . , $,(x), . . . are all from a complete set, which 
implies that the error incurred in using an approximate solution instead of the exact 
solution can be made as small as desired by simply increasing n in Eqs. (9.101), we 



conclude that the Ritz eigensolutibns approach the actual eigensolutions as n + a. 
Completeness is a mathematical concept having primarily negative implications, in the 
sense that it hurts convergence if the set of trial functions is not complete. But, the fact that 
completeness guarantees convergence as the number of terms in the series approaches 
infinity is not particularly meaningful, because in deriving approximate solutions the 
interest lies in convergence with as few terms as possible. It should be pointed out that 
the sets of trial functions to be considered in this text are complete almost by definition. 

The approximation of a distributed-parameter system with an infinite number of 
degrees of freedom by a discrete system with n degrees of freedom implies trz~ncation. 
In terms of the series given by the last of Eqs. (9.1011, truncation is tantamount to 
the statement that the higher-order terms in the series have been ignored, so that the 
constraints 

have been imposed on the distributed system. Constraints tend to increase the stiffness 
of a system, without a commensurate increase in inertia. In terms of Rayleigh's quotient, 
this implies that the numerator tends to increase relative to the denominator, from which 
we conclude that 

The nature of the Ritz eigenvalues requires further elaboration. To this end, we 
add one more term to the approximating series and write 

Following the usual steps, we obtain an (n + 1)-degree-of-freedom discrete system de- 
scribed by the eigenvalue problem 

which is of order n + 1, as opposed to the nth-order eigenvalue problem given by Eq. 
(9.117). As a result, there are n + 1 eigensolutions A?"), a?+') (r = 1,2, . . . , n + 1). 
A question of particular interest is how the eigenvalues A?+') (r = 1,2, . . . , n + 1) of the 
(n + 1)-degree-of-freedom approximation relate to the eigenvalues A?) (r = 1,2, . . . , n) 
of the n-degree-of-freedom approximation. To answer this question, we observe that the 
extra term in series (9.122) does not affect the mass and stiffness coefficients computed 
on the basis of an n-term series. The implication is that the mass and stiffness matrices 
possess the embedding property, defined by 

where the x's imply one extra row and column, so that the symmetric matrices M(,+') 
and K(,+') are obtained by adding one row and one column to matrices M ( ~ )  and K(,), 
respectively. It is demonstrated in Ref. 13 that, for matrices satisfying Eqs. (9.124), the 



eigenvalues A?' ') (r = 1,2,  . . . , n + 1 )  and A?' (r = 1,2,  . . . , n )  satisfy the separation 
theorem, defined by the inequalities 

which state that the eigenvalues of the (n  + 1)-degree-of-jkedom model bracket the 
eigenvalues of the n-degree-of-freedom model. Inequalities (9.125) can be broken into 
inequalities for every eigenvalue as follows: 

which highlights the fact that the eigenvalues of the problem of order n + 1 are generally 
lower, or at least never higher, than the eigenvalues of the problem of order n. Hence, 
as n increases, there is a steady decrease in the value of the Ritz eigenvalues, with the 
largest improvement taking place in the eigenvalues at the higher end of the spectrum. 
Coupled with the fact that the actual eigenvalues serve as lower bounds for the Ritz 
eigenvalues, we conclude that as n increases, the Ritz eigenvalues approach the actual 
eigenvalues asymptotically and from above, so that we can write 

lim x ~ ) = x , ,  r = I , 2  ,..., n 
n+oo 

The above results are illustrated in Fig. 9.20. 
The separation theorem and the consequent statement on the asymptotic behavior 

of the Ritz eigenvalues make the Rayleigh-Ritz theory unique in vibration analysis. 
Unfortunately, there are no such precise statements concerning the Ritz eigenfunctions, 
although as n increases there is steady improvement in the eigenfuhctions as well. 

a?) 
e - - - -  A:" 

-0- - - -  

FIGURE 9.20 
Convergence of Ritz eigenvalues to actual eigenvalues 



Finally, we must address a frequently asked question in connection with the Ray- 
leigh-Ritz method, namely, how to choose suitable comparison functions, or admissible 
functions, as the requirement that all boundary conditions, or merely the geometric 
boundary conditions be satisfied is too broad to serve as a guideline. This choice is more 
important than it may seem, because there may be several sets of functions that could 
be used and the rate of convergence tends to vary from set to set. Indeed, whereas all 
sets of comparison functions or admissible functions will lead to convergence, the rate 
of convergence can be unacceptably slow, particularly for admissible functions. This 
problem is aggravated by the fact that it is virtually impossible to predict the rate of 
convergence for a given set of functions. Still, some guidelines can be stated. In the 
first place, it is imperative that the functions be from a complete set, because other- 
wise convergence may not be possible. Among complete sets, we list power series, 
trigonometric functions, Bessel functions, Legendre polynomials, etc. Also complete 
for a given system are the eigenfunctions of a simpler but closely related system. For 
example, the eigenfunctions of a uniform cantilever beam are likely to be a suitable set 
of comparison functions for a nonuniform cantilever beam. Moreover, they are likely 
to match better the dynamic characteristics of the nonuniform cantilever beam than any 
other set. In this particular case, the natural boundary conditions at the free end are rel- 
atively easy to satisfy. Extreme care must be exercised when the end involves a discrete 
component, such as a spring or a lumped mass. As an illustration, we consider a rod in 
axial vibration fixed at x = 0 and restrained by a spring of stiffness k at x = L. In this 
case, if we choose as admissible functions the eigenfunctions of a uniform fixed-free 
rod, then the rate of convergence will be very poor. Indeed, the boundary condition at 
x = L i s  

and the admissible functions are 

(2i - 1 ) ~ x  , 
g5i (x) = sin , z = 1 , 2  ,..., n 

2 L 
But, whereas boundary condition (9.128) states that the rod experiences a nonzero slope 
at x = L, the slope of the admissible functions given by Eqs. (9.129) is zero at x = L. 
Assuming a solution in the form 

we conclude that the number of terms in the series must be infinite for the slope 
d~(")/dx to acquire a finite value at x = L, at least in theory. In practice, for a 
given number of decimal places accuracy, convergence is achieved with a finite num- 
ber of terms, albeit a large one. The rate of convergence can be vastly improved by 
using comparison functions, which can be generated for the problem at hand in the 
form 



where the constants Dl are determined by requiring that 4, satisfy boundary condition 
(9.128), or 

In the example at hand, it is relatively easy to generate comparison functions. 
Unfortunately, more often than not this is not the case. The task is considerably more 
difficult for two-dimensional members, such as membranes and plates, for which even 
admissible functions may be beyond reach, particularly if the boundaries are not simple, 
such as circular and rectangular. 

For problems for which suitable trial functions can be found, the Rayleigh-Ritz 
method tends to produce excellent results with a relatively small number of degrees of 
freedom. The method is helpless, however, for problems with complicated boundary 
conditions, irregular boundaries (arising mostly in two-dimensional systems) and in 
general for very complex structures. A different version of the Rayleigh-Ritz method 
does not have these limitations, although it tends to require a large number of degrees of 
freedom for satisfactory accuracy. Reference is made here to the finite element method, 
discussed in detail in Ch. 10. As demonstrated there, the Rayleigh-Ritz theory is essential 
to a deep appreciation of the finite element method. 

Example 9.5. Solve the eigenvalue problem for the fixed-free tapered rod in axial vibration 
of Example 9.4 by the Rayleigh-Ritz method using the comparison functions 

(2i - 1)zx , 

q5i (x) = sin , 1 = 1 , 2  , . . . ,  n 
2L 

Give the natural frequencies and plot the modes for n = 2 and n = 3. Then, determine the 
number n of terms required for computing the lowest natural frequency with six decimal 
places accuracy. 

In the case at hand, Rayleigh's quotient is given by Eq. (9.94), in which 

and 

Inserting EA(x) and m(x), Eqs. (a) of Example 9.4, as well as the approximating series 

n n 
(2i - 1 ) ~ x  

u(")(x) = Cal(n)qbl (x) = Cal(n) sin 
1=1 1=1 

2 L 

into Eqs. (b) and (c), we can write 
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in which k,(;) are symmetric stiffness coefficients given by 

- 
6 E A  (2i - 1 ) ~  ( 2 j  - 1 ) ~  

- --- 
(2i - l ) ~ x  ( 2 j  - l ) ~ x  

5 2L 2 L lL[l-f(t)?]cos 2~ cos 2 L d x ,  

i , j = 1 , 2  ,..., n (f) 

as well as 

where m!;) are symmetric mass coefficients having the form 

1 x 2 (2i - 1)nx . ( 2 j  - 1)nx 
= e l L [ ~ - I ( z ) ] ~ i n  2L sin x i j =  . n (h) 

5 2L 

To obtain the natural frequencies and natural modes, we solve the algebraic eigen- 
value problem given by Eq. (9.117) with the entries of the stiffness matrix K ( ~ )  and mass 
matrix M ( ~ )  given by Eqs. (f) and (h), respectively. For n = 2, the stiffness and mass 
matrices are 

and 

respectively. The solution of the eigenvalue problem consists of the Ritz natural frequencies 
and modal vectors 

so that the %tz natural modes are 

7i-x 3nx 
~1 (2 ) ( x )  = 1.511481 sin - -0.015311 sin -- 

2 L 2 L 

T X  ~ T X  
U f ) ( x )  = -0.233683 sin - + 1.443148 sin -- 

2 L 2 L 

(2) in which ( m ~ ) - ' / ~  was omitted. The modes, normalized so that Ur ( L )  = 1 (r  = 1,2), 
are plotted in Fig. 9.21. 



FIGURE 9.21 
Two lowest modes of a fixed-free rod computed by the Rayleigh-Ritz method using two comparison 
functions 

Similarly, for n = 3, the stiffness and mass matrices are 

.(.I= E! 0.337500 11.253305 2.109375 (m) [ 
1.383701 0.337500 -0.104167 

-0.104167 2.109375 30.992514 

and 

0.439207 0.075991 -0.021953 
0.075991 0.493245 0.064592 I (n) 

-0.021953 0.064592 0.497568 

respectively. Solving once again the eigenvalue problem, we obtain the Ritz natural fre- 
quencies and modal vectors 

so that now, ignoring ( m ~ ) - l / ~ ,  the Ritz natural modes are 

7lx 37i-x 57rx 
u ~ ) ( x )  = -0.236352sin - + 1.448321 sin - - 0.040348 sin - 

2 L 2 L 2 L 

7rx 37rx 57rx UP) ( x )  = 0.097373 sin - - 0.163450 sin - + 1.432793 sin - 
2 L 2 L 2 L 

(3) The natural modes, normalized so that U, ( L )  = 1 (r  = 1,2,3) ,  are plotted in Fig. 9.22. 



FIGURE 9.22 
Three lowest modes of a fixed-free rod computed by the Rayleigh-Ritz method using three 
comparison functions 

The Ritz eigenvalues for the two approximations are 

and they can be verified to satisfy the separation theorem, inequalities (9.125). This comes 
as no surprise, as the mass and stiffness matrices possess the embedding property, Eqs. 
(9.124). 

We observe from Eqs. (k) and (0) that improvement in the first two Ritz natural 
frequencies and natural modes from n = 2 to n = 3 is very small, which indicates that 
the chosen comparison functions, Eqs. (a), resemble very closely the actual natural modes. 
Another way of establishing this fact is by observing that the major contribution to the first, 
second and third mode is from the first, second and third comparison function, respectively, 
as can be concluded from the relative magnitude of the coefficients in the series given by 
Eqs. (p). The same pattern holds for the higher modes. 

Convergence to the lowest eigenvalue is obtained with 11 terms in the approximating 
series. The value of the lowest eigenvalue is 

Example 9.6. Consider the case in which the end x = L of the rod of Example 9.5 is 
restrained by a spring of stiffness k = E A / L  and obtain the solution of the eigenvalue 
problem derived by the Rayleigh-Ritz method in two ways: 1) using q5i (x) = sin(2i - 
1)7rx/2L (i = 1,2, . . . , n) as admissible functions and 2) using the comparison functions 



defined by Eqs. (9.131) and (9.132). Give the Ritz natural frequencies and plot the modes 
for n = 2 and n = 3. Then, determine the number n of terms required for computing the 
three lowest natural frequencies with six decimal places accuracy. 

In the first case, 4, ( x )  = sin(2i - 1)7rx/2L (i = 1,2, . . . , n ) ,  which are only admis- 
sible functions. Following the pattern of Example 9.5, we obtain the stiffness coefficients 

- 
6 E A  (2i - 1)7r ( 2 j  - l ) ~  --- iL [ I  - ; ( ; ) 2 ]  cm (2i ---)rx cos ( 2 j  - 1)rx  dx  

5 2L 2 L 2 L 

E A  (2i - 1)7r . ( 2 j  - 1)7r + - sin ------ sin - i , j = 1 , 2  , . . . ,  n 
L 2 2 '  

(a) 

The mass coefficients remain as in Example 9.5, namely, 

For n = 2, the stiffness and mass matrices are 

and 

respectively. Solving the corresponding 2 x 2 eigenvalue problem. we obtain the Ritz 
natural frequencies and modal vectors 

so that, ignoring ( m ~ ) - ~ / ' ,  the Ritz natural modes are 

7rx 37rx ~1(2) ( x )  = 1.47 1927 sin - + 0.16001 8 sin -- 
2 L 2 L 

(2)  7rx 37rx 
U2 (x) = -0.415467 sin - + 1.434331 sin -- 2 L 2 L 

The modes, normalized so that u,(~) ( L )  = 1 (Y = 1,2) ,  are plotted in Fig. 9.23. 
For n = 3, the stiffness and mass matrices are 

2.383701 -0.662500 0.895833 
-0.662500 12.253305 1.109375 I (g) 

0.895833 1.109375 31.992514 



FIGURE 9.23 
Two lowest modes of a fixed-spring supported rod computed by the Rayleigh-Ritz method using 
two admissible functions 

and 

yielding the Ritz natural frequencies and modal vectors 

-0.054500 

Hence, omitting (mL)-'I2, the Ritz natural modes are 

7rx 37rx 57rx ~1(3) = 1.468344 sin - + 0.162283 sin --- - 0.054500 sin -- 
2 L 2 L 2 L 

7rx 37rx 5nx u2@) = - 0.40077 1 sin - + 1.422469 sin - + 0.075563 sin -- 
2 L 2 L 2 L 

ti) 

The modes, normalized so that u , (~ ) (L)  = 1(r = 1,2,3), are plotted in Fig. 9.24. 
The convergence using admissible functions is extremely slow. Using n = 30, none 

of the natural frequencies has reached convergence with six decimal places accuracy. For 



-' t 
FIGURE 9.24 
Three lowest modes of a fixed-spring supported rod computed by the Rayleigh-Ritz method using 
three admissible functions 

later comparison, we list the values as follows: 

w ( 3 0 ) = 2 . 2 1 8 9 5 0 , / ~ z ,  1 uf0)=5.102324 ,/a, up =8.118398 ,/'= 
(k) 

In the second case, we use the comparison functions 

where, from Eq. (9.132), 

The stiffness and mass matrices are obtained by inserting Eqs. (1) in conjunction with Eqs. 
(m) into Eqs. (a) and (b), respectively. For n = 2, the stiffness matrix is 

and the mass matrix is 



The solution of the corresponding 2 x 2 eigenvalue problem consists of the Ritz natural 
frequencies and modal vectors 

Hence, omitting ( r n ~ ) - ' / ~ ,  the Ritz natural modes are 

The modes, normalized so that u,(')(L) = 1(r = 1,2, ), are plotted in Fig. 9.25; they differ 
from the modes computed by means of admissible functions, particularly in the neighbor- 
hood of x = L, as can be observed by comparing Figs. 9.23 and 9.25. 

For n = 3, the stiffness matrix is 

and the mass matrix is 

FIGURE 9.25 
Two lowest modes of a fixed-spring supported rod computed by the Rayleigh-Ritz method using 
two comparison functions 



yielding the Ritz natural frequencies and modal vectors 

so that, ignoring (m L ) - ' I 2 ,  the Ritz natural modes are 

FIGURE 9.26 
Three lowest modes of a fixed-spnng supported rod computed by the Rayleigh-Ritz method using 
three comparison functions 



+ 1.422089 sin 8.057941 5 
L 

The modes, normalized so that u , (~ ) (L)  = 1 (r = 1,2,3), are plotted in Fig. 9.26, and once 
again we observe that they are more accurate than the modes obtained using admissible 
functions (Fig. 9.24), particularly in the neighborhood of x = L. 

Convergence to six decimal places is reached by the three lowest natural frequencies 
as follows: 

Clearly, comparison functions yield superior results to those obtained using admissible 
functions. 

9.7 AN ENHANCED RAYLEIGH-RITZ METHOD 

From Sec. 9.6, we conclude that, when comparison functions rather than admissible 
functions are used, the Rayleigh-Ritz method tends to yield more accurate approximate 
solutions to the differential eigenvalue problem. However, comparison functions are 
often unavailable, so that for the most part it is necessary to use admissible functions. 
But, as demonstrated in Sec. 9.6, there is a price to be paid for using admissible functions, 
particularly in cases involving springs and masses at boundaries, as the violation of the 
natural boundary conditions results in poor convergence. Hence, the question arises as 
to the possibility of choosing the admissible functions so as to enhance the convergence 
rate of the approximate solutions. 

In the application of the Rayleigh-Ritz method, there seems to be a tacit under- 
standing that all the trial functions for a given problem are to be from the same family 
of functions. However, there is no explicit statement to that effect in the Rayleigh-Ritz 
theory. Indeed, because of our exclusive use of the energy form of Rayleigh's quotient, 
the trial functions need only be admissible, and there is no stipulation that they all be 
from a single fanlily. In view of this, we propose to explore the possibility of improving 
accuracy, and hence convergence rate, by combining admissible functions from several 
families, each family possessing different dynamic characteristics of the system under 
consideration. To illustrate the idea, we consider once again the nonuniform rod in axial 
vibration of Example 9.6; the rod is fixed at x = 0 and supported by a spring at x = L. 
We showed in Sec. 9.6 that a solution consisting of admissible functions representing 
the eigenfunctions of a uniform fixed-free rod is unable to satisfy the natural boundary 
condition at x = L with a relatively small number of terms. In fact, the number of terms 



required to achieve satisfactory accuracy must approach infinity, at least in theory. The 
reason for this is that the spring force at the right end requires that the slope of the dis- 
placement curve be different from zero, whereas the slope of the admissible functions is 
zero at x = L, and only the product of infinity and zero can yield a finite number. Hence, 
the question is whether a linear combination of admissible functions can be found so as 
to satisfy boundary condition (9.128). To this end, we consider a linear combination of 
two functions as follows: 

XX T X  
U (x) = a1 sin - + a2 sin - 

2 L L 
We observe that, although the two trigonometric functions may appear to be from a 
single family, they belong to two families with different dynamic characteristics as far 
as the system at hand is concerned. Indeed, s i n ~ x / 2 L  is equal to one and its slope is 
zero at x = L, which is typical of a free end, whereas s i n ~ x / L  is equal to zero and 
its slope is -rr/L at x = L, which is characteristic of a fixed end. Clearly, a boundary 
cannot be free and fixed at the same time. But, the linear combination (9.133) can be 
made to satisfy the boundary condition for a spring-supported end by merely adjusting 
the coefficients a1 and a2. Indeed, inserting Eq. (9.133) into Eq. (9.128), we have 

yielding 

so that Eq. (9.133) becomes 

rrx 
U (x) = at sin - + ------ sin - [ 2L nEA(L) L 

Because U(x), as given by Eq. (9.136), satisfies both the geometric boundary condition 
at x = 0 and the natural boundary condition at x = L, we conclude that two admissible 
functions from different families have been combined into a single comparison function. 
The comparison function U (x) given by Eq. (9.136) will be used as a trial function in 
conjunction with Rayleigh's energy method in Example 9.7 at the end of this section to 
obtain an excellent approximation to the lowest natural frequency of the rod of Example 
9.6. 

Equation (9.134) represents a constraint equation defining a relation between the 
coefficients a1 and a2 ensuring the satisfaction of the natural boundary condition (9.128), 
thus determining the shape of the comparison function U(x) uniquely. When used in 
conjunction with Rayleigh's quotient, U(x) produces a unique estimate of the lowest 
eigenvalue, but there is no minimization process involved. Hence, the question arises 
whether it would not be better to regard Eq. (9.133) as part of a minimizing sequence, 
i.e., to regard a1 and a2 as independent undetermined coefficients, and let the Rayleigh- 
Ritz process determine these coefficients, or rather the ratio a2/al. Of course, in this 



case the natural boundary condition (9.128) would not be satisfied exactly, but only 
approximately. However, by not imposing the constraint (9.134) on the two admissible 
functions sin7rxl2L and s innx l l ,  the solution of the differential equation is likely to 
be approximated with better accuracy. Clearly, for independent a1 and az, U(x) is no 
longer a comparison function. This is not as important as the fact that the character of 
the admissible functions sin TX /2L and sin 7rx / L guarantees that the natural boundary 
condition can be satisfied exactly by merely adjusting the ratio az/al. This motivates 
us to create a new class of functions referred to as quasi-comparison functions (Ref. 
13) and defined as linear combinations of admissible functions capable of satisfiing 
all the boundary conditions of the problem. Note that, for U(x) to qualify as a quasi- 
comparison function, it must possess a minimum number of terms, exceeding the number 
of constraint equations at least by one. As an example, in the case of the rod fixed at 
one end and supported by a spring at the other end, there is one constraint equation, 
so that the minimum number of terms is two. Clearly, the function U (x) given by Eq. 
(9.133) in which a1 and a2 are independent represents a quasi-comparison function. It 
should be stressed here that no attempt should be made to satisfy the natural boundary 
conditions exactly, even if U(x) has a sufficiently large number of terms, because this 
would reduce the number of degrees of freedom of the discrete model, thus reducing 
accuracy. Moreover, this would introduce complications in an otherwise uncomplicated 
process. 

The preceding ideas can be generalized by observing that 

TX 7rx 37rx n7rx 
~ ( x )  = a l  sin- +a2sin- +agsin- +.. .+ansin- 

2L L 2 L 2 L 

. inx 
= k a i  sm- 

2 L 

represents a quasi-comparison function for a rod fixed at x = 0 and supported by a spring 
at x = L. The admissible functions come from two families, the first one consisting of 
sin 7rx/2L, sin 3nx/2L, . . . , and representing the eigenfunctions of a uniform fixed-free 
rod, and the second one consisting of sin r x / L ,  sin27rxl L , . . . , and representing the 
eigenfunctions of a uniform fixed-fixed rod. The quasi-comparison functions obtained 
by letting n = 2,3, . . . are used in Example 9.8 to solve the problem of Example 9.6. 
The results show that quasi-comparison functions can yield faster convergence than 
comparison functions. 

One word of caution is in order. Each of the two sets of admissible functions, 
s i n ~ x / 2 L ,  sin3r/2L, . . . and sinnxlL, sin 2nx/L, . . . , is complete, as each repre- 
sents the eigenfunctions of a given system. As a result, a given function in one set can 
be expanded in terms of the functions in the other set. The implication is that, as the 
number of terms n increases, the two sets tend to become dependent, thus violating the 
requirement that the coefficients a, (i = 1,2, . . . n) be independent. When this happens, 
the mass and stiffness matrices tend to become singular and the eigensolutions mean- 
ingless. But, because convergence to the lower modes tends to be so fast, in general 
the singularity problem does not have the chance to materialize. The problem can arise, 
however, if the interest lies in a large number of modes. 



Example 9.7. Use the comparison function given by Eq. (9.136) in conjunction with 
Rayleigh's energy method to estimate the lowest natural frequency of the rod of Exam- 
ple 9.6. 

Ignoring the coefficient a1 , which is irrelevant when using Rayleigh's energy method, 
the comparison function has the expression 

7rx kL 7rx 
U(x) = sin - + - sin - 

2L 7rEA(L) L 

But, from Example 9.6, k = EAIL. Moreover, EA(L) = 0.6 EA. Hence, 

"X 1 "x 7rx 7rx 
U(x) = sin - + --- sin - = sin - +0.530516sin - 

2L 0 . 6 ~  L 2 L L 
For convenience, we write Rayleigh's quotient in the form 

R(U(x)) = w2 = (c) 
Tref 

where, using Eq. (b), 

V,,, = 2 /oL EA(x) [ ~ ] 2 d x + ~ k U 2 ( L )  

7rx 

1 6EA 1 x 2  2 2 TX 

= { T L L [ l l ( L )  2 I[(&) 'OS E 
7r 7r 7rx 7rx 

+2x0.530516- - cos - cos -+0.530516~ 
2L L 2L L L 

1 EA 
= - (2.383701 + 2 x 0.530516 x 1.363968 + 0.530516~ x 4.784802) - 

2 L 

1 EA 
= - x 5.177584- 

2 L 
(dl 

and 
L "X 7rx 

Ter = il m ( x ) U 2 ( x ) d x = ~ @ ~ L  2 5 [I-; (~)2](sin-+0.530516sin-)2dx 2 L 
L 

7rx 7rx 7rx 
- 1% lL [I - 1 (;)'I (sin2- +2x0.530516~1n-s1n- 

2 5 2 L 2L L 

I 
= - x 1.024737mL (el 

2 
Inserting Eqs. (d) and (e) into Eq. (c) and taking the square root, we obtain the estimate of 
the lowest frequency 



Comparing w = 2.247798 with uf4) = 2.215524J- computed in Ex- 
ample 9.6, we conclude that the estimate is very good. The error is 

In fact, for a quick estimate, the result is excellent. Note that using the static displacement 
of the rod loaded with an axial force distribution proportional to the mass density as a trial 
function, which most likely would yield a more accurate estimate, would require in the case 
at hand considerably more effort than generating Eq. (a). 

Example 9.8. Solve the problem of Example 9.6 using the quasi-comparison functions 

compare results with those obtained in Example 9.6 by means of comparison functions and 
draw conclusions. 

Inserting Eqs. (a) into Eqs. (a) and (b) of Example 9.6, we can write correspondingly 
the stiffness coefficients 

- - A  6 E A  i n  j r  lL [ I - -  1 ( x ) ? ]  - cos - ~ T X  cos -dx x + - E A  sin . - i n  sin -, j n  - 
5 2L  2L  2 L 2L  2L  L 2 2  

and the mass coefficients 

L  
mjy) = 1 x  2 i n x .  j ~ x  

m(x)*,(x)mj(x)dx = F I L  [1 - I ( L )  ] sinitsmitdx. 

For n = 2, the stiffness matrix is 

and the mass matrix is 

Solving the corresponding 2 x 2 eigenvalue problem, we obtain the Ritz natural frequencies 
and modal vectors 



The modal vectors can be used to obtain the Ritz natural modes 

in which (mL)-l/' was ignored. The natural modes, normalized so that U;')(L) = 1 (r  = 

1,2) are plotted in Fig. 9.27. It should be noted that UP) (x) is grossly in error due to the 
small number of admissible functions. 

For n = 3, the stiffness and mass matrices are 

and 

0.439207 0.415189 0.075991 
0.415189 0.515198 0.306358 I (i) 
0.075991 0.306358 0.493245 

respectively. The corresponding 3 x 3 eigenvalue problem yields the Ritz natural frequen- 
cies and modal vectors 

FIGURE 9.27 
Two lowest modes of a fixed-spring supported rod computed by the enhanced Rayleigh-Rltz 
method using two quasi-comparison functions 



Using the modal vectors, we obtain the Ritz natural modes 

7lx 7rx 37lx u?) = 0.217568 sin - - 0.705970sin - + 1.778731 sin -- 
2  L L 2  L  

7rx 7rX 37rx ~ 3 ( 3 )  = - 9.537960 sin - + 11.040485 sin - - 5.308067 sin - 
2 L L L  

which are plotted in Fig. 9.28, following normalization so that u , (~ ) (L)  = 1 (r  = 1,2,3) .  
(3) Note that U f ) ( x )  is vastly improved compared to u?)(x), but U3 ( x )  is grossly in error 

due to the inability of quasi-comparison functions to yield accurate highest eigenvalue and 
eigenfunction for discretized models of any order. 

Convergence to six decimal places is very rapid, as can be concluded from Table 9.1 
showing the three lowest Ritz natural frequencies. 

A comparison with results obtained in Examples 9.6 and 9.7 is quite revealing. In 
the first place, we observe that the Rayleigh-Ritz method in conjunction with a quasi- 
comparison function consisting of two admissible functions yields a more accurate lowest 
natural frequency than by sacrificing one degree of freedom to generate one comparison 

FIGURE 9.28 
Three lowest modes of a fixed-spring supported rod computed by the enhanced Rayleigh-Btz 
method using three quasi-comparison functions 



Table 9.1 Normalized Ritz Natural Frequencies 

function, w y )  = 2 . 2 2 3 5 9 5 J m i  versus w = 2.249798-, the latter obtained 
in Example 9.7. For two, three and four degrees of freedom, the natural frequencies com- 
puted by means of comparison functions are slightly more accurate than those computed 
by means of quasi-comparison functions. Note that, although the highest natural frequency 
and mode computed by means of quasi-comparison functions are grossly in error, this is not 
important, as higher Ritz frequencies are typically unreliable, no matter what trial functions 
are used. What is remarkable about the quasi-comparison functions is the convergence rate. 
Indeed, from Table 9.1 we see that all three lowest natural frequencies achieve convergence 
with only six terms in the approximating series. By contrast, it took 14 comparison func- 
tions for the two lowest natural frequencies and 20 comparison functions for the third lowest 
to converge, as can be concluded from Example 9.6. To place matters in proper perspective, 
we note that the three lowest natural frequencies computed in Example 9.5 with 30 ordinary 
admissible functions were far from convergence, where "ordinary" is in the sense that linear 
combinations of these admissible functions did not represent quasi-comparison functions. 

9.8 THE ASSUMED-MODES METHOD. SYSTEM RESPONSE 

The assumed-modes method is a procedure for the discretization of distributed-parameter 
systems closely related to the Rayleigh-Ritz method. In fact, it is often referred to as the 
Rayleigh-Ritz method, which can be justified in view of the fact that the discrete model 
derived by the assumed-modes method is identical to that derived by the Rayleigh-Ritz 
method. The advantage of the assumed-modes method over the Rayleigh-Ritz method 
is that it is very easy to understand. Of course, the main reason why the assumed-modes 
method appears so easy to grasp is the earlier exposure to the Rayleigh-Ritz method. In 
fact, virtually all questions that could be raised in connection with the assumed-modes 
method find their answer in the Rayleigh-Ritz theory. Whereas the Rayleigh-Ritz method 
is essentially concerned with the discretization of the differential eigenvalue problem, the 
assumed-modes method begins with the discretization of the boundary-value problem, 
albeit in an implicit manner. T h s  provides us with the opportunity to formulate the 
discretized system forced response problem, rather than merely the free response, a 
formulation that is equally valid for systems discretized by the Rayleigh-Ritz method. 

As demonstrated in Sec. 8.2, the boundary-value problem describing the vibration 
of a distributed-parameter system can be derived by means of the extended Hamilton's 
principle, which requires the kinetic energy T, potential energy V and virtual work of 
the nonconservative forces ma,. Because we are concerned with distributed systems 
for which no closed-form solutions are expected, we are not really interested in deriving 
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boundary-value problems. Indeed, our interest lies in the equations of motion for dis- 
crete models of distributed systems. The assumed-modes method aims at deriving such 
equations of motion by first discretizing the kinetic energy, potential energy and virtual 
work and then making use of Lagrange's equations. 

We consider a distributed system and approximate the displacement y (x, t )  by the 
finite series 

n 

where 4i (x) are known trial functions and qi (t) are unknown generalized coordinates 
(i = 1,2, . . . , n). Assuming that there are no lumped masses at the boundaries, we can 
discretize the kinetic energy as follows: 

where 
L 

m(x)$i(x)q5j(x)dx, i, j = l ,2 ,  ... , n  (9.140) 

are symmetric mass coefficients. As can be concluded from Ch. 8 and this chapter, 
the potential energy expression varies from system to system. As an example, for a 
nonuniform beam in bending fixed at x = 0 and supported by a spring of stiffness k at 
x = L, the potential energy has the form 

so that inserting Eq. (9.138) into Eq. (9.141), we can write the discretized potential 
energy 



in which 
L 

d2'1(X) d2'~ ("dx + k 4 1  ( ~ 1 4 ~  ( L ) ,  i ,  j = I ,  2, . . . , n klJ = k,, = l El(x)------- 
dx2 dx2 

are symmetric stiffness coefficients. Finally, letting f ( x ,  t )  be a distributed nonconser- 
vative force, we discretize the virtual work as follows: 

where 
L 

i n  = f ( x , t ) h ( x ) d x ,  i = 1 ,2 ,  ... , n  (9.145) 

are generalized nonconservative forces, some abstract quantities depending on the trial 
functions q5i ( x ) .  

From Sec. 6.5, Lagrange's equations have the form 

in which the subscript "nc" was omitted from the generalized nonconservative forces. 
But, by analogy with Eqs. (9.1 15) and (9.1 14), we can write 

respectively. In addition, the kinetic energy does not depend on q k ,  so that aT/dqk 
= 0 (k = 1,2,  . . . , n). Hence, replacing the subscript k by i ,  we obtain the equations of 
motion 

n n 

which resemble entirely the equations of motion for an n-degree-of-freedom undamped 
system. It follows that the assumed-modes method is simply a series discretization 
technique yielding the discrete equations of motion directly from the kinetic energy, 
potential energy and virtual work of the nonconservative forces. 

The question remains as to the nature of the trial functions. Of course, they 
are known functions, selected in advance by the analyst. From the structure of Eqs. 
(9.140) and (9.143), we observe that the mass and stiffness coefficients possess the same 
expressions as those obtained in Sec. 9.6 by means of the Rayleigh-Ritz method. Hence, 
the trial functions 4, ( x )  can be chosen from the class of admissible functions, comparison 
functions, or quasi-comparison functions, as discussed in Secs. 9.6 and 9.7. It follows 



that the algebraic eigenvalue problem corresponding to Eqs. (9.148) coincides exactly 
with that obtained by the Rayleigh-Ritz method, so that the assumed-modes method can 
be regarded as merely another version of the Rayleigh-Ritz method. The significance 
of this is that the whole Rayleigh-Ritz theory, and in particular how the choice of trial 
functions affects accuracy and convergence, applies equally well to the assumed-modes 
method. It is perhaps appropriate to mention here that the term "assumed modes" 
represents a misnomer, as the trial functions 4, (x) are no modes at all for the system 
under consideration. The term simply implies that the trial functions can be chosen at 
times as the modes of a related simpler system, which is done as a matter of course in 
the Rayleigh-Ritz method. 

Finally, we must point out that the developments in this section represent precisely 
the steps to be followed in deriving the system response by the Rayleigh-Ritz method. 

Example 9.9. Use the assumed-modes method in conjunction with a three-term series to 
obtain the response of the tapered rod of Example 9.6 to the uniformly distributed force 

where fo is a constant andm(t) is the unit step function. Use as trial functions the comparison 
functions 

$i (x) = sin pix (b) 

in which, from Example 9.6, 

The equations of motion of the discretized model are given by Eqs. (9.148), which 
can be expressed in the matrix form 

where q(t) and Q(t) are the three-dimensional generalized displacement vector and non- 
conservative force vector, respectively. Moreover, from Eqs. (r) and (s) of Example 9.6, 

and 

are the stiffness matrix and mass matrix, respectively. Inserting Eqs. (a) into Eqs. (9.149, 
we can write the components of the three-dimensional generalized nonconservative force 
vector Q(t) in the general form 

L 

Q i  (i) = 1 f (r,  t)& (x)dx = f o ~ ( r )  
fo~~-( t)(I  -cosPiL) . 

, 1 = 1 ,2 ,3  
Pi 



which, upon using Eqs. (c), can be expressed in the explicit form 

To obtain the solution of Eq. (d), we use the linear transformation 

where, from Eqs. (t) of Example 9.6, 

is the orthonormal modal matrix. Introducing Eq. (i) in Eq. (d) and premultiplying by uT, 
we obtain the independent modal equations 

in which, using Eqs. (t) of Example 9.6, 

is a diagonal matrix of the Ritz natural frequencies wr), w f )  and wf) squared. Moreover, 

is a vector of modal forces. 
The solution of Eq. (k) can be written by components in the form of convolution 

integrals, as follows: 

- - 
0.955753 f o ~ ' / ~  

(1 - cos w1 t) 
m1/2wf 



r/2(t) = - N2(t - T) sin w2.rdr = I' 0.130856 f o ~ 1 / 2  

w2 0 m1,2W2 
1 -0 - .r) s i n w ~ d ~  

- - 
0.130856 fOL1I2 

(1 - cos wzt) 
m1/2w; 

Finally, inserting Eqs. Cj) and (n) into Eq. (i), and the result into Eq. (9.138) with y(x, t) 
replaced by u(x, t), we obtain the response of the rod in the form 



We observe that the largest contribution to the response is from the first mode, with 
the contributions from the second and third modes being two orders of magnitude smaller 
than that from the first. This can be attributed to the fact that the external force is uniformly 
distributed, which tends to excite the lowest mode far more than the remaining modes. 

9.9 THE GALERKIN METHOD 

Galerkin's method belongs to a family of techniques for the approximate solution of 
differential eigenvalue problems known as weighted residual methods. As the Rayleigh- 
Ritz method, Galerkin's method also represents a series discretization technique whereby 
the approximate solution is assumed in the form 

n 

y(n'(x) = caJ&J(x) (9.149) 
J=I 

where the trial functions 41 ( x )  , 4 2  ( x )  , . . . , 4, ( x )  are known independent comparison 
functions from a complete set and a1 , a2, . . .a, are undetermined coefficients. Solution 
(9.149) does not satisfy exactly the differential equation defining the eigenvalue problem, 
so that some error is incurred, where the error is denoted by R ( Y ( ~ ) ( x ) ,  x )  and referred 
to as residual. Because Y(")(x)  is a linear combination of comparison functions, the 
boundary conditions are satisfied exactly. To determine the coefficients, al ,  a2, . . . , a,, 
we multiply the residual R ( Y ( ~ )  ( x ) ,  x )  by g51 ( x ) ,  42 ( x ) ,  . . . , 4 ,  ( x ) ,  in sequence, inte- 
grate the result over the domain of the system and set the result equal to zero, or 

so that the comparison functions ( x ) ,  42 ( x ) ,  . . . , $n ( x )  also play the role of test func- 
tions, or weighting functions (see Sec. 8.8). Following integration, Eqs. (9.150) become 
a set of algebraic equations in the unknowns al ,  az,  . . .a, with X = acting as a pa- 
rameter; they are called Galerkin S equations and they represent an algebraic eigenvalue 
problem. The rest of the process is the same as for the Rayleigh-Ritz method. 

There is a basic difference between the Raleigh-Ritz method and the Galerkin 
method. The Rayleigh-Ritz method represents a variational approach, whereby the 
eigenvalue problem is derived by rendering Raleigh's quotient stationary, and is restricted 
to conservative systems, whereas in the Galerkin method the eigenvalue problem is de- 
rived by setting the integrated weighted errors equal to zero. As a result, Galerkin's 
method is more general in scope and can be used for both conservative and nonconser- 
vative systems. 

Equations (9.150) imply mathematically that the residual R is orthogonal to every 
trial function 4, ( x )  ( i  = 1,2, . . . , n ) .  As n increases without bounds, R can remain 
orthogonal to an infinite set of independent functions only if it tends itself to zero, or 

lim R ( Y ( ~ ) ( x ) , x )  = 0 ,  0 c x < L 
n+cc 

(9.151) 

But, if the error tends to zero at every point, we must have 

lim Y ( ~ ) ( x )  = Y ( x )  
n-cc 

(9.152) 

which demonstrates the convergence of Galerkin's method. 



As an illustration, we first consider a conservative system in the fonn of a beam 
in transverse vibration. The eigenvalue problem is defined by the differential equation 

and certain boundary conditions. For arbitrary mass and stiffness distributions andlor 
complex boundary conditions, no closed-form solution can be expected, so that we 
consider an approximate solution by the Galerkin method. To this end, we insert Eq. 
(9.149) into Eq. (9.153), and write the residual in the form 

R(Y (n)  ( x )  , x )  = --- E z ( x )  d 2 Y ( n ) ( x ) ]  - ~ i n ) ~ ( ~ ) y ( n ) ( ~ )  
dx2  d2 [ d x 2  

where we replaced the actual eigenvalue X by the approximate eigenvalue Intro- 
ducing Eq. (9.154) in Eqs. (9.150), we have 

in which 

are stiffness coefficients, which are symmetric because 4, (x) (i = 1,2,  . . . , n) are com- 
parison functions, and 

L 

m,, = m,, = m(x14, (XI$,  ( x ) d x ,  i, j = 1.2,. . . ,n (9.157) 

are symmetric mass coefficients. It should be pointed out that these are the same coeffi- 
cients as those obtained by the Rayleigh-Ritz method. Equations (9.155) can be written 
in the familiar matrix form 

~ ( n ) ~ ( n )  = ~ ( n ) ~ ( n ) ~ ( n ) ,  ~ ( n )  = ( " ( ~ 9 2  (9.158) 

where the notation is obvious. 



To demonstrate how the Galerkin method works for a nonconservative system, 
we consider a viscously damped beam in transverse vibration. The partial differential 
equation describing the free vibration can be written as 

in which -c(x)ay(x ,  t ) /at  is a viscous damping force density. The solution of Eq. 
(9.159) is subject to given boundary conditions. It has the exponential form 

y ( x ,  t )  = ext  Y ( x )  (9.160) 

Inserting Eq. (9.160) into Eq. (9.159) and dividing through by ext , we obtain the differ- 
ential eigenvalue problem consisting of the differential equation 

and two boundary conditions at each end. 
Assuming that the eigenvalue problem does not admit an exact solution, we con- 

sider an approximate solution in the form of Eq. (9.149). Hence, inserting Eq. (9.149) 
into Eq. (9.161) and replacing X by the approximate eigenvalue A("), we have simply 

n n 

R(Y(")(x) ,  X )  = ( A ( ~ ) ) ~ ~ ( x )  C a J 4 ,  ( x )  + x(")c(x) C U ] + ~ ( X )  
J=1 J=1 

so that, multiplying Eq. (9.162) by 4, ( x )  ( i  = 1,2,  . . . , n )  and integrating over the length 
of the beam, we can write 

Then, introducing the damping coefficients 

and using Eqs. (9.156) and (9.157), we obtain the algebraic eigenvalue problem 

which can be written in the matrix form 

( ~ ( n ) ) 2 ~ ( n ) ~ ( n )  + ~ ( n ) ~ ( n ) ~ ( n )  + K(n)a(n) = 0 (9.166) 



We assume that c ( x )  is such that the damping coefficients are symmetric, c,, = c,, (i, j = 
1 ,2 ,  . . . , n ) ,  so that the damping matrix c(") is symmetric. 

The eigenvalue problem (9.166), although defined by symmetric matrices, differs 
materially from the eigenvalue problem given by Eq. (9.158). In fact, in general the 
problem cannot be solved in the form given by Eq. (9.166). An exception to this is the 
special case in which the damping term c ( x ) Y ( x )  is a linear combination of the mass 
term m ( x ) Y ( x )  and the stiffness term ( d 2 / d x 2 ) [ ~ Z ( x ) d 2 ~ ( x ) / d . x 2 ] ,  or 

In this case, it is not difficult to verify that the damping matrix is a linear combination 
of the mass matrix and stiffness matrix of the form 

Such damping is known as proportional damping and was discussed in Sec. 7.15.2, in 
whichit was shown that the same matrix that diagonalizes themass and stiffness matrices, 
namely, the modal matrix for the undamped system solving Eq. (9.158), also diagonalizes 
the damping matrix. We denote the modal matrix by U = [a?) a t )  . . . a?)], where 

a?) (r  = 1 ,2 ,  . . . , n )  are the modal vectors satisfying Eq. (9.158), and assume that the 
modal vectors have been normalized so that 

u T ~ ( " ) u  = I, u ~ K ( " ) u  = A = d' lag[(wl("))' (ut)l2 . . . ( w ? ) ) ~ ]  (9.169) 

where w?) (r = 1,2 ,  . . . n )  are the natural frequencies of the discretized undamped sys- 
tem. Then, introducing the linear transformation 

in Eq. (9.166), premultiplying the result by uT and considering Eqs. (9.168) and (9.169), 
we obtain 

which represents a set of independent quadratic equations in A("). Introducing the nota- 
tion 

the independent quadratic equations can be rewritten as 

which can be solved for the approximate eigenvalues A?) of the proportionally damped 
system. Finally, inserting these eigenvalues into Eq. (9.166), we obtain sets of algebraic 
equations, which can be solved for the eigenvectors a?). Note that the eigenvalues and 
eigenvectors occur in general in pairs of complex conjugates. 

In the general case of viscous damping, i.e., when the damping is nonproportional, 
the undamped modal matrix U does not diagonalize the damping matrix c("), so that a 
different approach is necessary. This approach consists of transforming the eigenvalue 
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problem, Eq. (9.166), to state form. To this end, we adjoin an obvious identity, rearrange 
Eq. (9.166) and obtain 

Then, introducing the 2n-dimensional state vector x ( ~ )  = [(a(n))T ~ ( ~ ) ( a ( ~ ) ) ~ ] ~ ,  Eqs. 
(9.174) can be expressed in the form of the standard eigenvalue problem 

~ ( n ) ~ ( n )  = ~ ( n ) ~ ( n )  (9.175) 

where the 2n x 2n coefficient matrix has the familiar form (Sec. 7.16) 

Finally, it should be pointed out that, although the Galerkin method calls for the 
use of comparison functions, as with the Rayleigh-Ritz method, excellent results can be 
obtained through the use of quasi-comparison functions.' 

9.10 THE COLLOCATION METHOD 

The collocation method also belongs to the family of weighted residual methods, so 
that many of the concepts and developments in Sec. 9.9 remain the same. The main 
difference between the collocation method and Galerkin's method lies in the weighting 
functions, which in the case of the collocation method represent spatial Dirac delta 
functions. Hence, whereas Eq. (9.149) retains its form, Eqs. (9.150) must be replaced 

by 

Due to the sampling property of the Dirac delta function, Eqs. (9.177) require no inte- 
grations, and yield directly the set of n algebraic equations 

so that the process amounts to evaluating the residual at x = x, . ' 
Although it may not be evident at this point, Eqs. (9.178) represent the algebraic 

eigenvalue problem. To substantiate this statement, we consider the eigenvalue problem 
for a beam in transverse vibration with the differential equation given by Eq. (9.153). 
Moreover, the residual is as given by Eq. (9.154). Hence, letting x = x, in Eq. (9.154), 

'~eirovitch,  L and Hagedom, P., "A New Approach to the Modeling of Distributed Non-Self-Adjolnt Sys- 
tems,'' Journal of Sound and Wbratzons, vol 178, no. 2, 1994, pp. 227-241. 
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we can write simply 

in which $1 ( x ) ,  $2 ( x ) ,  . . . , $n ( x )  are comparison functions. Equations (9.179) repre- 
sent the algebraic eigenvalue problem 

n  n  

j=1 j=1 

where 

are the stiffness coefficients and 

are the mass coefficients. The eigenvalue problem can be expressed in the matrix form 

~ ( n ) ~ ( n )  = ~ ( n ) ~ ( n ) ~ ( n )  (9.183) 

where the notation is obvious. We note that, in contrast with the Galerkin method, in the 
collocation method the stiffness matrix K ( ~ )  and mass matrix M ( ~ )  are not symmetric. 

The main advantage of the collocation method is simplicity. Indeed, we observe 
from Eqs. (9.181) that the determination of the stiffness coefficients only requires dif- 
ferentiation and evaluation of the stiffness term at the chosen locations, x = x, ( i  = 
1 ,2 ,  . . . , n). Moreover, the determination of the mass coefficients merely requires eval- 
uation of the products of the mass density and the comparison functions at the chosen 
locations. However, the price to be paid for this simplicity is that the stiffness and mass 
matrices are not symmetric, in spite of the fact that this is a conservative system. As 
a result, the efficient computational algorithm typical of symmetric eigenvalue prob- 
lems cannot be used. Although in general nonsymmetric eigenvalue problems possess 
complex solutions, for the most part the conservative nature of the system prevails, and 
the eigensolutions tend to be real. Still, if the eigensolutions are used to synthesize the 
system response, then it is necessary to obtain both right and left eigenvectors and to 
use a state space expansion theorem (Sec. 7.16), even though the eigenvalue problem, 
Eq. (9.183), is formulated in the configuration space and not in the state space. 

Before the eigensolutions can be produced, it is necessary to cast the eigenvalue 
problem (9.183) into one in terms of a single matrix, of course a nonsymmetric one. To 
this end, we omit the superscript (n) for simplicity of notation, premultiply both sides 
of Eq. (9.183) by M-' and write the eigenvalue problem in the standard form 

Aa = Xa (9.184) 

where 
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The solution of Eq. (9.184) consists of the eigenvalues A, and the right eigenvectors 
a, (r  = 1,2, . . . , n).  In addition, we must solve the adjoint eigenvalue problem 

which yields the same eigenvalues A, and the left eigenvectors bs (s = 1,2, . . . , n). We 
recall from Sec. 7.16 that the right and left eigenvectors are biorthogonal and can be 
normalized so as to satisfy the biorthonormality relations 

The biorthonormality relations form the basis for the expansion theorem mentioned 
above. 

Although both the Galerkin method and the collocation method are weighted resid- 
ual methods, the fact that the weighting functions in the collocation method are spatial 
Dirac delta functions, as opposed to the weighting functions coinciding with the trial 
functions in the Galerkin method, makes the nature of the two methods entirely dif- 
ferent. Indeed, in the Galerkin method the average weighted error is reduced to zero, 
whereas in the collocation method the error at a given number of individual points is 
annihilated. This makes the collocation method easier to visualize, and less abstract than 
the Galerkin method, but it also gives it a heuristic character. In addition, there is some 
arbitrariness in choosing the location of the points, which causes the results to differ from 
one choice to another. More importantly, the collocation method requires the solution 
of two nonsymmetric eigenvalue problems. Accuracy of the results can be improved by 
increasing the number of points at which the error is driven to zero, but this tends to be 
a slow process. Although convergence is assured as the number of points approaches 
infinity, it cannot be demonstrated rigorously as in the Rayleigh-Ritz method. Moreover, 
it cannot always be predicted from what side of the actual eigenvalues the approximate 
eigenvalues converge. Note that, for conservative systems, the Galerkin method has the 
same excellent convergence characteristics as the Rayleigh-Ritz method. 

Example 9.10. Consider the eigenvalue problem of Example 9.6 for the tapered rod fixed 
at x = 0 and spring-supported at x = L. Solve the problem by the collocation method in two 
different ways: 1) using the locations x, = L / n  ( i  = 1,2, . . . , n) and 2) using the locations 
x, = (2i - 1)L/2n ( i  = 1,2, . . . , n);  give results for n = 2 and n = 3. Then, list the three 
lowest natural frequencies for n = 2 ,3 ,  . . . ,30 and discuss the nature of the convergence 
for both cases. Use the comparison functions from Example 9.6 throughout. 

From Eqs. (1) of Example 9.6, the comparison functions are 

where the constants p, represent solutions of Eq. (9.132). The first three are given by 

The stiffness coefficients for the problem at hand are 



and the mass coefficients are 

The eigenvalue problem can be written in the general form 

Aa = Xa, X = w 2 r n L 2 / ~ ~  

in which 

where K and M are the stiffness and mass matrices with the entries given by Eqs. (c) and 
(d), respectively. 

1. Locations at xi = i L / n  
In this case, the stiffness coefficients, Eqs. (c), reduce to 

(g) 

and the mass coefficients, Eqs. (d), are simply 

For n  = 2, the stiffness matrix is 

and the mass matrix is 

M = m  
[ 0.939479 0.614764 ] 

0.479492 -0.569574 

so that 

A = [  4.132826 -0.273503 
2.152427 21.759635 1 

The eigenvalues, right eigenvectors and left eigenvectors of A, normalized so as to satisfy 
Eqs. (9.187), are 

Moreover, the natural frequencies are the square roots of the eigenvalues; they can be 
found in Table 9.2. Expanding in terms of the right eigenvectors, according to Eq. 
(9.149) with U replacing Y, the natural modes are 

They resemble those shown in Fig. 9.25. 
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Table 9.2 Normalized Natural Frequencies 
w: = w, J- for xi = i ~ / n  

For n = 3, the stiffness matrix is 

and the mass matrix is 

yielding 

The matrix A has the eigenvalues, right eigenvectors and left eigenvectors 

The normalized natural frequencies are displayed in Table 9.2 for n = 2,3,  . . . ,30. The 
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natural modes expanded in terms of the right eigenvectors are 

The modes resemble those displayed in Fig. 9.26. 

2. Locations at  x, = (2i - 1)L/2n 
In this case, the stiffness coefficients, Eqs. (c), have the expressions 

L (2i - l)Dj L 
COS 

2n 

and the mass coefficients, Eqs. (d), are given by 

Following the same steps as for x, = iL/n, it is possible to compute the eigenvalues, 
right eigenvectors and left eigenvectors for various values of n. For brevity, we omit 
these results and only list in Table 9.3 the three lowest normalized natural frequencies 
f o r n = 2 , 3  ,... ,30. 

We observe with interest from Table 9.2 that for x, = i L i n  (i = 1,2,  . . . , n) 
the natural frequencies increase as n increases. This can be explained by the fact that 
the specified locations tend to make the rod longer than it actually is. Because an 
increased length, while everything else remains the same, tends to reduce the stiffness, 
the approximate natural frequencies are lower than the actual natural frequencies and 
approach the latter from below. On the other hand, the locations x, = (2i - 1) L/2n tend 
to make the rod shorter than it actually is, so that the stiffness of the model is larger 

Table 9.3 Normalized Natural Frequencies 
w , ~  = w , J m f o r  xi = (2i - 1 ) ~ / 2 n  
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than the stiffness of the actual system. As a result, the approximate natural frequencies 
are larger than the actual natural frequencies and approach the latter from above, as can 
be concluded from Table 9.3. This points to the arbitrariness and lack of predictability 
inherent in the collocation method, with the nature of the results depending on the choice 
of locations. In this regard, the collocation method acts like a lumped-parameter method 
even though the parameters have not been lumped, only sampled. 

Finally, it will prove instructive to compare some of the results obtained here with 
corresponding results obtained in Example 9.6 by means of the Rayleigh-Ritz method 
and in Example 9.8 by means of the enhanced Rayleigh-Ritz method. In particular, 
we observe that the three lowest natural frequencies computed in Example 9.6 using 
30 ordinary admissible functions are not nearly as close to the actual values as the 
corresponding ones computed by means of the collocation method using the locations 
x, = i L / n  and x, = (2i - 1)L/2n (i = 1,2, . . . ,30). These results should not be con- 
strued as an indication that the collocation method has good convergence characteristics, 
but as an indication that the use of admissible functions, which are unable to satisfy the 
natural boundary condition at x = L even when taken in a linear combination, penalizes 
convergence greatly. Indeed, the fact is that neither the Rayleigh-Ritz method using 
ordinary admissible functions nor the collocation method achieves convergence with a 
discrete model possessing 30 degrees of freedom. By contrast, the two lowest natural 
frequencies computed by means of the Rayleigh-Ritz method using comparison func- 
tions converge with 14 terms and the third one converges w ~ t h  20 terms. Convergence 
is even more dramatic using quasi-comparison functions, as demonstrated in Example 
9.8. Indeed, all three lowest natural frequencies converge with only six terms. 

9.11 MATLAB PROGRAM FOR THE SOLUTION OF THE 
EIGENVALUE PROBLEM BY THE RAYLEIGH-RITZ METHOD 

The Rayleigh-Ritz method reduces differential eigenvalue problems for conservative 
systems to algebraic eigenvalue problems defined by the mass matrix M and stiffness 
matrix K. The latter resembles the eigenvalue problem for discrete systems, except that 
the entries of M and K for the Rayleigh-Ritz method consist of integrals in need of 
evaluation. As a result, the program 'evpc.mf given in Sec. 7.18, which assumes that 
the numerical values of M and K are given, cannot be used, and a new program must 
be written. The new program, entitled 'rayritz.mf, carries out the integrations for the 
entries of M and K,  using integrands provided by two separate programs, 'mass.mf and 
'stiffness.mf, respectively. The program 'rayritz.mf reads as follows: 

% The program 'rayritz.mf sets up the eigenvalue problem for the fixed-free rod of 
% Example 9.5 by the Rayleigh-Ritz method, solves it and plots the first three modes 

clear 
clf 

N=3; % number of comparison functions in the approximating series 

for m=l:N, 
for n=l:N, 

M(m,n)=quad8('massf, 0, 1, [ I ,  [ I ,  m, n); % mass matrix using program 'mass.mf 
% and MATLAB function 



K(m,n)=quad8('stiffnessf, 0, 1, [ 1, [ 1, m, n); % stiffness matrix using program 
% 'stiffness.mf and MATLAB function 

end 
end 
[v,W]=eig(K, M); % solution of the eigenvalue problem using MATLAB function 

for i= 1 :N, 
wl(i)=sqrt(W(i, i)); % setting the approximate natural frequencies in an 
% N-dimensional vector 

end 
[w, I]=sort(w 1); % arranging the approximate natural frequencies in ascending order 

for j=l:N, 
U(:, j)=v(:, I($); % arranging the modal vectors in ascending order 

end 
x=[O: 0.01: 11; % origin of x-axis, nondimensional rod increment, nondimensional 
% rod length 

for i= 1 :N, 
suma=O; 
for j=l:N, 

suma=suma+U(i, i)*sin((2*j-l)*x*pi/2); % approximate eigenfunctions 
end 

u(i, :)=suma/suma(size(suma, 2)); % normalization of the approximate eigenfunc- 
% tions so as to equal unity at the free end 

end 

for k=1:3, 
f=0.1; if k>=2; f=0.2; end 
axes('positionf,[0.3 0.8-0.35*(k-1) 0.4 fl); % positioning of the plots 
% in the workspace 

st=num2str(w(k)); 
st l=int2str(k); 
st2=int2str(N); 
st3=strcat('U-', stl, '^{(',st2,')} (x)'); 
st4=strcat('Natural Mode ', {' '1, stl, {' , '1, '\omega-', stl, 
' ̂ {(',st2,'))' , ' =', st, '[EAImL "2]{1/2)'); 

end 

The 'rayritz.mf program must be run in conjunction with 



% The program 'mass.mf provides the entries to be integrated to obtain the mass 
% matrix by the Rayleigh-Ritz method 

function mij=mass(x,m,n) 
mij=6*(1 -(x.&2)/2).*sin((2*m- l)*pi*x/2). *sin((2*n- l)*pi*x/2)/5; % integrands for 
% M(m,n) in program 'rayritz.mf 

and 

% The program 'stiffness.mf provides the entries to be integrated to obtain the 
% stiffness matrix by the Rayleigh-Ritz method 

function kij=stiffness(x,m,n) 
kij=6*(2*m-1)*(2*n-l)*(pi~2)*(1-(x.A2)/2).*cos((2*m-I)*pi*x/2).*cos((2*n 

-l)*pi*x/2)/20; % integrands for K(m,n) in program 'rayritz.ml 

9.12 SUMMARY 

Systems with nonuniformly distributed parameters seldom admit closed-form solutions. 
Hence, one must be content with approximate solutions, which can only be obtained by 
means of discrete models acting as surrogates for distributed systems. Approximate tech- 
niques can be broadly divided into lumped-parameter methods and series discretization 
methods. 

In the simplest of the lumped-parameter methods the system is divided into seg- 
ments and the distributed mass and force over the segments are concentrated at certain 
discrete points inside these segments. Moreover, the stiffness is replaced by equivalent 
springs connecting these points. Another method differs from the one just described 
in that the stiffness distribution is represented by means of influence coefficients. In 
both cases, the equations of motion can be obtained by means of Lagrange's equations. 
Two different lumped-parameter procedures are concerned with computing the natural 
frequencies and natural modes only, Holzer's method for shafts in torsion and Myk- 
lestad's method for beams. They are step-by-step procedures, going from one lump to 
the next, and derive a frequency equation by invoking the boundary conditions; the natu- 
ral frequencies squared are the roots of the corresponding characteristic polynomial. The 
lumped-parameter methods are easy to understand, but they lack rigor. Convergence im- 
proves as the number of lumped masses increases, but the process can be slow. Moreover, 
the lumping process is arbitrary, and it is difficult to predict whether the approximate 
natural frequencies are smaller or larger than the actual ones. 

The origin of the series discretization methods can be traced to Rayleigh's energy 
method, a technique for approximating the lowest natural frequency of a conservative 
system. It is based on Rayleigh's principle, which states that Rayleigh's quotient has a 
minimum value equal to the lowest eigenvalue when the trial function used in conjunc- 
tion with Rayleigh's quotient is the lowest eigenfunction. For convenience, the preferred 
form of Rayleigh's quotient is the energy form, namely, that in which the numerator is 
a measure of the potential energy and the denominator a measure of the kinetic en- 
ergy. When the lowest eigenfunction is not known, a quick approximation to the lowest 
eigenvalue can be obtained by inserting into Rayleigh's quotient a trial function approxi- 



mating the lowest eigenfunction closely. Then, because of the stationarity of Rayleigh's 
quotient, the resulting value of Rayleigh's quotient is an even better approximation to 
the lowest eigenvalue. Clearly, to improve the approximation, it is only necessary to 
find a trial function capable of lowering the approximation. This is the essence of the 
Rayleigh-Ritz method, which consists of constructing a sequence of improving approxi- 
mations to the lowest eigenvalue by using a minimizing sequence of trial functions in the 
form of linear combinations of admissible functions multiplied by undetermined coeffi- 
cients and determining the coefficients by rendering Rayleigh's quotient stationary. The 
process represents the variational approach to the differential eigenvalue problem, and 
yields not only improved approximations to the lowest eigenvalue, but also improved 
approximations to the higher eigenvalues. The approximate eigenvalues, known as Ritz 
eigenvalues, satisfy the separation theorem, which states that the eigenvalues obtained 
by using n + 1 terms in the approximating series bracket the eigenvalues obtained with 
n terms in the series. The approximate eigenvalues converge to the actual eigenvalues 
from above. Convergence of the Rayleigh-Ritz method can be slow when there are 
natural boundary conditions, which are generally violated by admissible functions. In 
such cases, convergence can be improved significantly through the use of comparison 
functions and even more dramatically through the use of quasi-comparison functions. 
The Rayleigh-Ritz method is capable of producing accurate results with only a small 
number of terms in the approximating series, which translates into a discrete model with 
a small number of degrees of freedom. On the other hand, the Rayleigh-Ritz method can 
only handle systems with relatively simple geometry, and in particular one-dimensional 
structural members, or two-dimensional members of regular shape, such as rectangular 
and circular. A technique known as the assumed-modes method is regarded by some 
as the Rayleigh-Ritz method. It is more physically motivated and it obtains the same 
results as the Rayleigh-Ritz method. The assumed-modes method can be used to derive 
the equations of motion in conjunction with the Rayleigh-Ritz method. 

Another class of series discretization techniques is known generically as weighted 
residuals methods and produce approximate solutions by satisfying the differential equa- 
tion in some sense. The best known is the Galerkin method, and to a lesser extent the 
collocation method. As in the Rayleigh-Ritz method, an approximate solutioll is assumed 
in the form of a finite series of trial functions multiplied by undetermined coefficients. 
Then, the resulting error in the differential equation, known as a residual, is multiplied 
by a set of weighting functions, in sequence, and each of the weighted residuals is inte- 
grated over the domain of the system and set equal to zero. The result consists of a set 
of algebraic equations, which permits the determination of the coefficients. Because the 
procedure works with the differential equation alone, to ensure that all boundary condi- 
tions are satisfied, the trial functions must be from the class of comparison functions. In 
the Galerkin method, the weighting functions are the same as the trial functions. On the 
other hand, in the collocation method the trial functions are spatial Dirac delta functions 
located at judiciously chosen points of the domain. Hence, in the Galerkin method the 
differential equation is satisfied in an average sense and in the collocation method it 
is satisfied at individual points. The weighted residual methods are broader in scope 
than the Rayleigh-Ritz method, as they can be applied to both conservative and non- 
conservative systems. For conservative systems, the Galerkin method yields the same 
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symmetric mass and stiffness matrices as the Rayleigh-Ritz method, but the collocation 
method yields nonsymmetric matrices. For nonconservative systems, such as systems 
with viscous damping, or with aerodynamic forces, both formulations must be cast in 
state form. In general, the usefulness of the weighted residuals methods is limited to the 
same kind of systems with simple geometry as the Rayleigh-Ritz method. 

Although the Rayleigh-Ritz method reduces a differential eigenvalue problem to 
an algebraic eigenvalue problem in terms of two symmetric matrices resembling that 
for a multi-degree-of-freedom system, the eigenvalue problem cannot be solved by the 
MATLAB program 'evpc.mf developed in Sec. 7.18. The reason is that in the Rayleigh- 
Ritz method the entries of the mass and stiffness matrices represent integral expressions 
rather than simple combinations of parameters. A new MATLAB program, entitled 
'rayritz.ml, demonstrates how to address this problem. 

PROBLEMS 

9.1. The tubular shaft in torsional vibration shown in Fig. 9.29 has the radius r  ( x )  = v[ l  + x(L  - 
x ) / L ~ ] ,  thickness t ,  mass per unit volume p and shear modulus G, where the thickness t 
is small compared to the radius r (x) .  Use the procedure described in Sec. 9.1 to construct 
a ten-degree-of-freedom lumped model approximating the distributed system and derive 
the corresponding ordinary differential equations of motion. Then, derive and solve the 
eigenvalue problem. Note that the shaft is symmetric with respect to x  = L/2.  

FIGURE 9.29 
Tubular shaft in torsional vibration 

9.2. The rod in axial vibration shown in Fig. 8.32 has the mass density m(x )  = m(1 - x /2L)  
and the axial rigidity EA(x )  = EA(1 - x/2L).  Use the procedure described in Sec. 9.1 to 
construct a ten-degree-of-freedom lumped model approximating the distributed system and 
denve the corresponding ordinary differential equations of motion. Then, derive and solve 
the eigenvalue problem fork = O.SEA/L. 

9.3. Solve Problem 9.1 by the lumped-parameter method using influence coefficients. 
9.4. Solve Problem 9.2 by the lumped-parameter method using influence coefficients. Hint: To 

formulate the problem, it is convenient to describe the absolute displacement of a given 
lumped mass as the sum of the displacement u(0, t )  of the end x = 0 and the displacement 
of the lumped mass relative to u(0, t ) .  Then, for the kinetic energy, use absolute velocities. 
On the other hand, regard the potential energy as consisting of two parts, one due to the 
deformation of the spring and one due to the elastic displacements of the lumped masses 
relative to u (0, t ) .  Define the latter potential energy in terms of influence coefficients obtained 
by holding the end x = 0 fixed. 
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9.5. Construct a ten-degree-of-freedom lumped model for the tapered cantilever beam shown in 
Fig. 9.30; the beam has unit width and its height is h ( x )  = h ( 1  - x /2L) .  Derive the eigenvalue 
problem by the lumped-parameter method using influence coefficients. 

FIGURE 9.30 
Tapered cantilever beam 

9.6. Construct a ten-degree-of-freedom lumped model for the pinned-free uniformly distributed 
beam of Problem 8.14 based on the lumped-parameter method using influence coefficients. 
Then, derive and solve the eigenvalue problem, compare the three lowest natural frequencies 
and flexible modes with those obtained in Problem 8.14 and draw conclusions. Hint: To 
formulate the problem, it is convenient to describe the absolute displacement of any given 
mass as the sum of a displacement due to the rigid-body rotation of the beam about the pin 
and an elastic displacement of the mass obtained by regarding the end x  = 0 as clamped. 
Then, for the kinetic energy, use absolute velocities. On the other hand, for the potential 
energy, use influence coefficients corresponding to a beam clamped at x  = 0. 

9.7. The symmetric system shown in Fig. 9.31 is intended as a simple model of a flexible aircraft 
and it consists of the fuselage, represented by the lumped Inass 8M, two engines, each 
represented by a lumped mass M, and the wing, each half possessing the distributed mass 
m(x )  = (8M/7L)(1-  x /4L ) .  The wing is to be regarded as a beam with the flexural rigidity 
EZ(x) = EZ(1 - x / 4 ~ ) ~ .  Construct an all lumped model of the aircraft by lumping the 
distributed mass of the wing at the points x  = 0 ,  &i LI5 (i = 1,2,  . . . , 5 ) .  Note that the wing 
mass lumped at x  = 0 and x = +2L/5 is to be added to the mass of the fuselage and engines, 
respectively. Derive the equations of motion for the aircraft based on the lumped-parameter 
method using influence coefficients. Then, derive and solve the eigenvalue problem and plot 
the two lowest flexible modes. Hint: Define the absolute displacement of a given lumped 
mass as the sum of three parts, one due to the vertical translation of the mass center C of the 
undeformed aircraft, a second due to the rotation of the aircraft axis x  about the mass center 
C and a third due to the elastic displacement of the lumped mass relative to axis x. For the 
kinetic energy, use absolute velocities. For the potential energy, use influence coefficients 
obtained by regarding the flexible wing as clamped at x = 0. 
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FIGURE 9.31 
Model of a flexible aircraft 

9.8. Solve the eigenvalue problem for the tubular shaft of Problem 9.1 by means of Holzer's 
method. Compare results with those obtained in Problem 9.1 and draw conclusions. 

9.9. Formulate a lumped-parameter eigenvalue problem for rods in axial vibration analogous to 
Holzer's method for shafts in torsional vibration. Then, use the formulation to solve the 
eigenvalue problem for the rod of Problem 9.2. Compare results with those obtained in 
Problem 9.2 and draw conclusions. 

9.10. Derive the eigenvalue problem for the tapered beam of Problem 9.5 by means of Myklestad's 
method. Solve the eigenvalue problem and plot the two lowest modes. 

9.11. Derive the eigenvalue problem for the pinned-free beam of Problem 9.6 by means of Myk- 
lestad's method. Solve the eigenvalue problem for the three lowest flexible modes, compare 
results with those obtained in Problem 9.6 and draw conclusions concerning the accuracy of 
the two methods. Plot the modes. 

9.12. Derive the eigenvalue problem for the aircraft of Problem 9.7 by means of Myklestad's 
method. Solve the eigenvalue problem for the two lowest flexible modes, compare results 
with those obtained in Problem 9.7 and draw conclusions concerning the accuracy of the two 
methods. Plot the modes. 

9.13. Estimate the lowest natural frequency of the tubular shaft of Problem 9.1 by means of 
Rayleigh's energy method. Compare result w ~ t h  results obtained in Problems 9.1, 9.3 and 
9.8 for the lowest natural frequency and draw conclusions concerning the accuracy of the 
estimate. 

9.14. Estimate the lowest natural frequency of the rod of Problem 9.2 by means of Rayleigh's 
energy method. Compare result with results obtained in Problems 9.2, 9.4 and 9.9 for the 
lowest natural frequency and draw conclusions concerning the accuracy of the estimate. 

9.15. Estimate the lowest natural frequency of the tapered beam of Problem 9.5 by means of 
Rayleigh's energy method. Compare result w ~ t h  results obtained in Problems 9.5 and 9.10 
for the lowest natural frequency and draw conclusions concerning the accuracy of the estimate. 

9.16. Estimate the lowest nonzero natural frequency of the pinned-free beam of Problem 9.6 by 
means of Rayleigh's energy method. Compare result with results obtained in Problems 
9.6 and 9.1 1 for the same frequency and draw conclusions concerning the accuracy of the 
estimate. 

9.17. Derive and solve the eigenvalue problem for the tubular shaft of Problem 9.1 by means of 
the Rayleigh-Ritz method using the trial functions 4, (x) = sin inx/L (i = 1,2, . . . , n). Let 
n increase until the lowest eigenvalue converges to six decimal places. Compare the three 
lowest eigenvalues obtained for n = 10 with the corresponding ones obtained in Problems 



9.1, 9.3 and 9.8 and draw conclusions concerning the accuracy of the results obtained here. 
Plot the three lowest eigenfunctions. Note that, because there are only geometric boundary 
conditions, the trial functions are both admissible functions and comparison functions at the 
same time. 

9.18. Derive and solve the eigenvalue problem for the rod of Problem 9.2 by means of the 
Rayleigh-Ritz method using the trial functions 4i(.x) = c o s i ~ x / L  (i = 0, 1 , .  . . , n - 1) for 
n = 2,3, . . . , l o .  Compare the three lowest eigenvalues obtained for n = 10 with the corre- 
sponding ones obtained in Problems 9.2, 9.4 and 9.9 and draw conclusions concerning the 
accuracy of the results obtained here. Plot the three lowest eigenfunctions. 

9.19. Derive the eigenvalue problem for the rod of Problems 8.23 and 8.25 by means of theRayleigh- 
Ritz method using the trial functions q5i ( x )  = cos(2i - l ) ~ x / 2 L  (i = 1,2, . . . n) .  Solve the 
eigenvalue problem for n = 2,3, . . . ,6, compare the two lowest eigenvalues obtained here 
with the exact ones obtained in Problem 8.25 and draw conclusions concerning convergence 
characteristics. 

9.20. Derive the eigenvalue problem for the tapered beam of Problem 9.5 by means of the Rayleigh- 
Ritz method in the two ways: 1) using the trial functions 4i (.x) = xi+' (i = 1,2, . . . n )  and 2) 
using as trial functions the eigenfunctions of a uniform cantilever beam. Solve the eigenvalue 
problems through n = 6, compare results and draw conclusions concerning convergence 
characteristics. 

9.21. Derive the eigenvalue problem for the beam of Problems 8.24 and 8.26 by means of the 
Rayleigh-Ritz method using as trial functions the eigenfunctions of a uniform free-fixed 
beam. Solve the eigenvalue problem for n = 2,3,  . . . ,6, compare the two lowest eigenvalues 
obtained here with the exact ones obtained in Problem 8.26 and draw conclusions concerning 
convergence characteristics. 

9.22. Derive the eigenvalue problem for the aircraft of Problem 9.7 by means of the Rayleigh-Ritz 
methodusing the following trial functions: di ( x )  = ( x / L ) ~ - ' ,  -L < x < L (i = 1,2, .  . . , n) .  
Solve the eigenvalue problems for n = 4,5, . . . , 10  and discuss the convergence characteris- 
tics. 

9.23. Derive the eigenvalue problem for the aircraft of Problem 9.7 by means of the Rayleigh- 
Ritz method using the following trial functions: #q(x)  = 1, 42(x) = x/L, -L < x < L; 
42i-l(x) = &'(x)  for 0 cr x < L and 0 for -L < x < 0; 452i(x) = 0 for 0 < x i L 
and ?liiPl (-x)  for -L < x i O(i = 2,3, .  . . , j ) ,  where & ( x )  is the ith eigenfunction of a 
uniform cantilever beam. Solve the eigenvalue of a uniform cantilever beam. Solve the 
eigenvalue problems for n = 2 + 2 ( j  - I), j = 1,2, . . . ,5, and discuss the convergence 
characteristics. Then, compare results obtained here with those obtained in Problem 9.22 
and draw conclusions concerning the merits of the two sets of trial functions. 

9.24. Derive the eigenvalue problem for the aircraft of Problem 9.7 by means of the Rayleigh-Ritz 
method using as trial functions the eigenfunctions of a uniform free-free beam. Note that the 
eigenfunctions of a uniform free-free beam were obtained in Problem 8.15 and normalized 
in Problem 8.21. Solve the eigenvalue problem for n = 4,5, . . . ,8 ,  where n includes the two 
rigid-body modes, compare results with those obtained in Problems 9.22 and 9.23 and draw 
conclusions concerning the accuracy of the results obtained through the use of the various 
trial functions. 

9.25. Assume that the solution to the eigenvalue problem for the shaft of Problem 8.4, obtained by 
the Rayleigh-Ritz method using n terms in the approximating series, is given and it consists 
of the Ritz eigenvalues A?) and associated eigenvectors a?) (r = I ,  2, . . . , n). Begin with the 
orthonom~ality relations for the Ritz eigenvectors, Eqs. (9.1 19), and derive the orthonormality 
relations for the Ritz eigenfunctions o?) ( x )  (r = 1,2, . . . , n).  
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9.26. Assume that the solution to the eigenvalue problem for the beam of Problem 8.8, obtained by 
the Rayleigh-Ritz method using n terms in the approximating series, is given and it consists 
of the Ritz eigenvalues A?) and associated eigenvectors a?) (r  = 1,2, . . . , n) .  Begin with the 
orthonormality relations for the Ritz eigenvectors, Eqs. (9.119), and derive the orthonormality 
relations for the Ritz eigenfunctions y,(n) ( x )  ( I .  = 1,2, . . . , n ) .  

9.27. Assume that the solution to the eigenvalue problem for the aircraft of Problem 9.24, obtained 
by the Rayleigh-Ritz method using n terms in the approximating senes, is given and it consists 
of the Ritz eigenvalues A?) and associated eigenvectors a?) (u = 1,2,  . . . , n) .  Begin with the 
orthonormality relations for the Ritz eigenvectors, Eqs. (9.119), and derive the orthonomality 
relations for the Ritz eigenfunctions y,(n) ( x )  (r  = 1,2, . . . n ) .  

9.28. Derive the eigenvalue problem for the rod of Problem 9.2 by means of the Rayleigh-Ritz 
method using comparison functions in the form of the eigenfunctions of the associated uni- 
form rod spring-supported at x = 0 and free at x = L. Then, derive the eigenvalue prob- 
lem by the enhanced Rayleigh-Ritz method using the quasi-comparison functions U ( x )  = 
Cr=l a, sin[(2i - 1 ) ~ x / 2 L ]  + C;=l bl cos j ~ x / L ,  r, s = 1 ,2 , .  . . ; r + s = n. Solve the 
eigenvalue problems for n = 2 ,3 ,  . . . ,6 in each of the two cases, compare results and draw 
conclusions concerning convergence characteristics. Note that, for the enhanced Rayleigh- 
Ritz method, in the case n = 3 there are two quasi-comparison functions possible, one cor- 
responding to r = 1 and s = 2 and the other corresponding to r = 2 and s = 1, and a similar 
statement can be made concerning the case n = 5. 

9.29. Determine the response of the shaft of Problem 9.1 to the distributed torque m ( x ,  t )  = mx ( L  - 
x)6( t )  by means of the assumed-modes method using three terms in the series for theresponse. 
Note that the eigenvalue problem for the shaft was solved by means of the Rayleigh-Ritz 
method in Problem 9.17. Discuss the mode participation in the response. 

9.30. Determine the response of the cantilever beam of Problem 9.5 to the uniformly distributed 
rectangular pulse f ( x ,  t )  = fo[m(t) -m(t - T ) ]  by means of the assumed-modes method 
using three terms in the series for the response. Note that the associated eigenvalue problem 
was solved by means of the Rayleigh-Ritz method in Problem 9.20. 

9.31. Derive the eigenvalue problem for the beam of Problems 8.16 by means of the Galerkin 
method using the comparison functions 4, ( x )  = ( L ~  - x2)  sin pix (i = 1,2, . . . , n) ,  where 
the values of 0, are to be obtained by satisfying the natural boundary condition at x = L. 
Solve the eigenvalue problem for n = 2 , 3 , .  . . , 8 ,  compare the computed eigenvalues with 
the exact ones obtained in Problem 8.16 and draw conclusions concerning accuracy. 

9.32. Solve Problem 9.3 1 under the assumption that the beam is subjected to uniformly distributed 
viscous damping described by cY ( x )  = 0 . 1 & E X 4 d 4 ~  ( x ) / d x 4 .  

9.33. Determine the response of the beam of Problem 9.32 to the excitation f ( x ,  t )  = FoS(x - 
L/2)m(t)  using three terms in the response series. 

9.34. Derive the eigenvalue problem for the beam of Problem 9.31 by means of the collocation 
method using equally spaced locations x, (i = 1,2, . . . , n).  Solve the eigenvalue problem 
for n = 2 ,3 , .  . . and determine the number n of points x, necessary to match the lowest 
eigenvalue computed in Problem 9.31 by means of the Galerkin method with n = 8. Draw 
conclusions concerning the accuracy of the collocation method. 

9.35. Solve Problem 9.18 by MATLAB. 
9.36. Solve Problem 9.19 by MATLAB. 
9.37. Solve Problem 9.20 by MATLAB. 
9.38. Solve Problem 9.22 by MATLAB. 
9.39. Solve Problem 9.23 by MATLAB. 



9.40. Solve Problem 9.24 by MATLAB. 
9.41. Solve Problem 9.28 by MATLAB. 
9.42. Write a MATLAB program for the system of Problem 9.30 and solve the problem. 
9.43. Write a MATLAB program for the system of Problem 9.31 and solve the problem. 
9.44. Write a MATLAB program for the system of Problem 9.32 and solve the problem. 
9.45. Write a MATLAB program for the system of Problem 9.34 and solve the problem. 



CHAPTER 

THE FINITE ELEMENT METHOD 

The finite element method is without a doubt the most important development in the 
static and dynamic analysis of structures in the second half of the twentieth century. The 
method was developed originally for the static stress analysis of complex distributed- 
parameter structures,' but has since broadened its scope significantly. It is basically 
a discretization technique that owes its enormous success to the development of the 
digital computer, which took place about the same time. Indeed, the method requires 
the solution of large sets of algebraic equations for static problems and large-order 
eigenvalue problems in the case of vibrations, which are numerical problems that would 
be impractical without a computer. 

Although the finite element method was developed independently of any other 
method, and can be used without reference to any other method, it was soon recognized 
as the most important variant of the Rayleigh-Ritz method. To distinguish between 
the two, the latter is sometimes referred to as the classical Rayleigh-Ritz method. At 
this point, the popularity of the finite element method far exceeds that of the classical 
Rayleigh-Ritz method, to the extent that many regard the classical Rayleigh-Ritz method 
as mainly of academic interest. However, there are certain advantages to treating the 
finite element method as a Rayleigh-Ritz method. Indeed, the Rayleigh-Ritz theory lies 
on a solid mathematical foundation, providing a great deal of insight into the dynamic 

'~urner,  M. J., Clough, R. W., Martin, H. C. and Topp, L. J., "Stiffness and Deflection Analysis of Complex 
Structures," Journal of Aeronautical Sciences, vol. 23, 1956, pp. 805-823. 
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characteristics of a discretized model compared to the characteristics of the original 
distributed structure. Having the benefit of this theory, it is possible to develop a deeper 
understanding of the finite element method, and in particular of the implications of some 
of the current finite element practices. 

As with the classical Rayleigh-Ritz method, the finite element method also envi- 
sions approximate solutions to problems of vibrating distributed systems in the form of 
linear combinations of known trial functions multiplied by undetermined coefficients, 
and determines the coefficients by solving corresponding eigenvalue problems. More- 
over, the expressions for the stiffness and mass matrices defining the eigenvalue problem 
are the same as for the classical Rayleigh-Ritz method. The basic difference between 
the two approaches lies in the nature of the trial functions. Whereas in the classical 
Rayleigh-Ritz method the trial functions are global functions, in the sense that they ex- 
tend over the entire domain of the system, in the finite element method they are local 
functions extending over small subdomains of the system, namely, over finite elements. 

The use of local functions, commonly known as interpolation functions, gives the 
finite element method enormous versatility. Because the finite elements are in general 
very small, the differentiability tends to fade away as an issue, so that the interpolation 
functions can be low-degree polynomials, quite often satisfying the minimum differ- 
entiability requirements imposed on admissible functions. Moreover, the interpolation 
functions are the same for every element. As a result, the derivation of the stiffness 
and mass matrices can be carried out very efficiently by first deriving element stiffness 
and mass matrices and then assembling them into matrices for the whole system. In 
fact, the element stiffness and mass matrices for most structural members of interest 
can be readily found in any textbook on the subject, and the assembly task reduces to 
combining them so as to accommodate arbitrary parameter distributions and boundary , 
conditions. Another advantage of the finite element method, of particular importance in 
two-dimensional domains such as membranes and plates, is that the finite elements can 
be made to fit any irregular boundary, thus permitting solutions where all other methods 
fail. Perhaps the most important feature of the finite element method is that the entire 
process lends itself to routine computer coding. In fact, many computer codes capable 
of accommodating a large variety of structures are available commercially. 

In this chapter, the finite element method is presented in the context of the Ray- 
leigh-Ritz theory, thus lending it the rigor lacking in the original developments of the 
method. When practical considerations dictate that the Rayleigh-Ritz requirements be 
violated, the effects of these violations on the nature of the solution are examined. The 
discussion includes the usual structural members, such as rods, shafts, strings and beams, 
as well as some that are not frequently discussed, such as trusses and frames. 

10.1 THE FINITE ELEMENT METHOD AS A RAYLEIGH-RITZ 
METHOD 

In Sec. 9.6, we demonstrated that the Rayleigh-Ritz method is essentially a discretiza- 
tion technique for deriving approximate solutions to differential eigenvalue problems 
whereby the displacement Y (x) of a distributed elastic system is expressed as a linear 
combination of known trial functions q5j (x) multiplied by undetermined coefficients 



Y(x) = CU,Q,(X) (10.1) 
J=1 

The coefficients a l ,  a2, . . . , a, can be determined by solving an algebraic eigenvalue 
problem obtained by inserting Eq. (10.1) into the energy form of Rayleigh's quotient 

where V,, is the elastic potential energy with y (x, t) replaced by Y (x) and Tref is the 
kinetic energy with jl (x, t) replaced by Y ( x ) ,  and rendering Rayleigh's quotient station- 
ary. The algebraic eigenvalue problem represents an approximation to the differential 
eigenvalue problem. 

The principal question is how well the solutions of the algebraic eigenvalue prob- 
lem approximate the solutions of the differential eigenvalue problem. The answer to this 
question lies in the nature of the trial functions, as well as their number. In Secs. 9.6 
and 9.7, we explored this question in great detail and, to this end, we introduced several 
classes of functions. The nature of the solution being different in the finite element 
method than in the classical Rayleigh-Ritz method, we focus our attention on only one 
class of functions, namely, one that is of particular interest in the finite element method. 
This is the class of admissible functions, defined as functions that are only half as many 
times differentiable as the order of the differential eigenvalue problem and satisfy the 
geometric boundary conditions alone. We note that admissible functions must satisfy 
only the conditions required for Rayleigh's quotient, Eq. (10.2), to be defined. 

In the classical Rayleigh-Ritz method, the trial functions are often trigonometric 
functions, hyperbolic functions and products thereof, and they are defined over the 
entire domain of the system. The mass and stiffness coefficients are integrals involving 
squares and products of trial functions, and more often than not must be evaluated 
numerically. Moreover, in many cases the trial functions are not readily available and 
must be generated. These facts have tended to inhibit the wide use of the Rayleigh-Ritz 
method, even though in many cases the method can yield extremely accurate results 
with only a handful of degrees of freedom. Most objections to the classical Rayleigh- 
Ritz method have been overcome by the finite element method. Although the finite 
element method was originally developed independently of the Rayleigh-Ritz method, 
it can be regarded as a different version of the Rayleigh-Ritz method. It turns out 
that there are many advantages to treating the finite element method as a Rayleigh- 
Ritz method, the most important one being that it can claim a rigorous mathematical 
foundation. Hence, adopting the framework of the classical Rayleigh-Ritz method, in 
the finite element method as well we expand a solution as the linear combination given by 
Eq. (10.1) and determine the coefficients a1 , az,  . . . , a, by rendering Rayleigh's quotient, 
Eq. (10.2), stationary. Moreover, the mass and stiffness coefficients are given by the same 
expressions as in the Rayleigh-Ritz method. One significant difference between the two 
methods lies in the nature of the trial functions (x), and hence of the coefficients 
aJ  ( j  = 1,2, . . . , n). Indeed, in the finite element method the trial functions, known as 
interpolationfunctions, are defined over small subdomains of the system, called$nite 



elements, and are zero everywhere else, where the set of finite elements is referred to 
as the mesh. Moreover, the interpolation functions represent low degree polynomials, 
sometimes the lowest degree admissible, and they are the same for each finite element. 
As a result, the computation of the mass and stiffness coefficients can be first carried out 
for each finite element separately, thus generating element mass and stiffness matrices, 
and then extended to the whole system to obtain global mass and stifiess matrices. In 
fact, for most problems of interest there is an inventory of element mass and stiffness 
matrices, which can be used to construct global mass and stiffness matrices for a variety of 
systems. In general, the finite element method is ideally suited for producing numerical 
solutions on a computer. 

Some of the unique features of the finite element method can be conveniently 
illustrated by considering a string in transverse vibration fixed at x = 0 and supported 
by a spring at x = L, as shown in Fig. 10.la. This being a second-order system, V,, 
is defined for functions that are only once differentiable with respect to x, so that a 
finite element approximation to the displacement curve can be generated by dividing 
the length L into n increments of length h = L l n  and connecting the corresponding 
displacements by straight lines, as depicted in Fig. 10.lb. The displacement curve 
can be described in the form of series (10.1), in which a typical trial function 4, (x), 
known as a roof function, is as shown in Fig. 10.2. We note that the trial functions 
are linear in x, so that they represent admissible functions for the system. In fact, they 
represent the lowest-degree trial functions admissible, as lower-degree functions would 
be sectionally-constant. This would make the displacement profile look like a staircase, 

FIGURE 10.1 
a. Displacement curve for a fixed-spring supported string in transverse vibration, b. Finite 
element approximation of the displacement curve 
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FIGURE 10.2 
Roof functions 

which is not admissible, because it implies infinite slope at the points of discontinuity, 
namely, at the boundary points between adjacent finite elements. The amplitude of all 

( x )  was taken to be equal to unity, a very convenient choice not only because all 
trial functions are the same, except for locations, but also because this choice makes 
the coefficients a, in Eq. (10.1) actual displacements at x, = jh ( j  = 1,2, . . . , n), thus 
lending them important physical meaning. By contrast, in the Rayleigh-Ritz method, 
the coefficients a, are abstract quantities, not unlike the coefficients in a Fourier series. 
Another matter of interest, and one with computational implications, is the fact that the 
trial functions $1 ( x )  ,4z ( x ) ,  . . . ,4, ( x )  are nearly orthogonal, as 4, ( x )  overlaps only 
$,-I ( x )  and $,+I (x ) .  As a result, the mass and stiffness matrices are banded, with the 
only nonzero entries lying in the principal diagonal and on the diagonals immediately 
above it and below it, independently of the system parameters. 

We observe from Fig. 10.2 that the trial function 4 j ( x )  extends over two finite 
elements, ( j  - l ) h  < x  < jh and jh < x  < ( j  + 1)h. Actual computations are carried 
out over a single element at a time. For example, from Figs. 10. l b  and 10.2, we can regard 
the displacement Y ( x )  in the interval ( j  - 1)h < x -c jh as consisting of contributions 
from the right half of ( x )  and the left half of 4, (x ) ,  as shown in Fig. 10.3. Hence, 
we can express Y ( x )  as the linear combination 

FIGURE 10.3 
String displacement as a combination of two linear trial 
functions 
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It should be mentioned here that, in the finite element terminology, the nominal points 
x, = jh are referred to as nodal points and a, are called nodal displacements ( j  = 
1,2 , .  .. , n ) .  

We recall from Sec. 9.6 that the accuracy of the discrete models derived by the clas- 
sical Rayleigh-Ritz method can be improved by increasing the number of trial functions 
in the approximating series, and hence the number of degrees of freedom of the models. 
By contrast, the accuracy of finite element models can be improved by reducing the size 
h  of the finite elements in a process known as refining the mesh, which is the same as 
increasing the number n of elements. Accuracy can also be improved by increasing the 
degree of the interpolation functions, but this approach is less common than refining the 
mesh. Both approaches result in an increase in the number of degrees of freedom of the 
finite element models. 

In another departure from the classical Rayleigh-Ritz method, the global coordi- 
nate x is replaced by a local coordinate [. This simplifies the limits of the integrals for 
the element mass and stiffness matrices. 

Beginning in Sec. 10.2, we present an efficient approach to the spatial discretiza- 
tion of vibrating distributed-parameter systems blending the mathematical rigor of the 
Rayleigh-Ritz theory with the systematic methodology of the traditional finite element 
method. 

10.2 STRINGS, RODS AND SHAFTS 

In Sec. 10.1, we introduced some of the basic ideas of the finite element method regarded 
as aRayleigh-Ritz method. For easy visualization, we illustrated these ideas by means of 
a string in transverse vibration. As demonstrated in Ch. 8, strings represent second-order 
distributed systems, and so do rods in longitudinal vibration and shafts in torsion. Hence, 
subject to the analogies in displacement, excitation and parameters listed in Table 8.1, 
the developments in this section apply to all three systems. We choose to illustrate the 
development of the stiffness and mass matrices using a rod in axial vibration. 

Using the variational approach to the eigenvalue problem, (Secs. 9.5 and 9.6) we 
consider the energy form of Rayleigh's quotient, Eq. (9.94), and write 

where, consistent with a finite element formulation, we express the maximum potential 
energy for a rod fixed at x = 0 and spring-supported at x = L in the form of a sum over 
the individual elements 

and the reference kinetic energy in a similar fashion as 



STRINGS, RODS AND SHAFTS 555 

in which, by analogy withEq. (10.3), the displacement U ( x )  represents the vector product 

where q5J ( x )  = [4J-1 ( x )  4, (x) lT is a vector of interpolation functions and a, = 
[aJp1  aJIT is a vector of nodal displacements for element j .  

From the Rayleigh-Ritz theory (Sec. 9.6), admissible functions for the second- 
order problem at hand need be differentiable once only and they must satisfy the geo- 
metric boundary condition at x = 0. Hence, the minimum requirements are that they 
be linear and be zero at x = 0. Figure 10.3 with U replacing Y shows the typical finite 
element j with the displacement U ( x )  varying linearly with x between the nodal points 
x = ( j  - l ) h  and x = jh. Of course, the boundary condition at x = 0 is satisfied by 
setting a0 = 0. 

For convenience, we replace the global coordinate x by the local coordinate 

e = ( j h  - x ) / h  (10.8) 

The objective is to simplify the integrals in Eqs. (10.5) and (10.6). To this end, we write 

Moreover, we must transform the limits of the integrals. From Eq. (10.8), we observe 
that x = ( j  - l )h  transforms into [ = 1 and x = jh transforms into 5 = 0. Next, we 
express the interpolation functions in terms of <. Referring to Fig. 10.3 and using the 
similarity of triangles, we have 

aJ-l4j- l (x)  jh - x  
4 j - l ( ~ )  = -- - 

aJ-1 h 
(10.10) 

aJ4J(x> x - ( j - l ) h  jh - x  - 4,(x> = - - = I - -  
a~ h h 

Hence, denoting 4 J - l  ( x )  and 4J (x) by 41 (c)  and 42([), respectively, and introducing 
Eq. (10.8) in Eqs. (10.10), we can write simply 

= E ,  4 2 ( 0  = 1 - E  (10.11) 

The functions given by Eqs. (10.1 1) are commonly known as linear interpolation func- 
tions, and we observe that they apply to all finite elements, not merely to finite element 
j .  Then, the displacement over the jth finite element, Eq. (10.7), can be rewritten as 

so that, using the first of Eqs. (10.9), it follows that 

Introducing Eqs. (10.9), (10.12) and (10.13) in the quantity inside brackets in Eq. (10.5), 



we obtain 

where 

are the element stifiess matrices, in which, using Eq. (10.8), 

E A ( x )  = EA[h( j  -[)I = EAj(<)  (10.16) 

is the axial rigidity inside element j. Moreover, the integral in Eq. (10.6) can be evaluated 
as follows: 

where, 

are the element mass matrices, in which 

m(x> =m[h( j -C)I=mj(E)  

is the mass density inside element j . 
It is common finite element practice to approximate the stiffness and mass dis- 

tributions by assuming them to be sectionally constant, i.e., constant over each finite 
element. Strictly speaking, this approximation represents a violation of the Rayleigh- 
Ritz code tending to impart to the finite element method some of the characteristics of 



STRINGS, RODS AND SHAFTS 557 

the lumped-parameter method. For practical purposes, this issue may not be as critical 
as it may appear, because accuracy considerations dictate the use of a large number n of 
elements, in which case the sectionally constant parameter distributions become nearly 
exact. Of course, when the parameters are in fact either uniformly distributed or sec- 
tionally constant, the finite element method can be safely regarded as a Rayleigh-Ritz 
method. 

For constant axial rigidity over each element, E A  ( E )  = E A j  = constant, the 
element stiffness matrices reduce to 

Similarly for mj ( E )  = m j  = constant, the element mass matrices become 

Next, we use the element stiffness and mass matrices to construct the global stiff- 
ness and mass matrices in a process referred to at times as assembly. To this end, we insert 
Eqs. (10.5), (10.6), (10.14) and (10.17) into Eq. (10.4) and write Rayleigh's quotient in 
the form 

where a = [al a2 . . . anlT is the system nodal vector and K and M are global sti#ness 
and mass matrices. We observe that the nodal coordinate a, appears twice, once as the 
bottom component in the element nodal vector a, and once as the top component in the 
element nodal vector aJ+l. Hence, in carrying out the summations in Eq. (10.22), the 
right bottom entry (2,2) of the element matrix KJ and the left top entry (1,l) of K,+l 
add up, and the same can be said about the corresponding entries in matrices M, and 

Moreover, because the rod is fixed at x = 0, a0 = 0, a fact we already took into 
account in the nodal vector a. For the same reason, we must cross out the first row 
and column in the element matrices K1 and MI. Hence, the global stiffness and mass 
matrices have the schematic form shown in Fig. 10.4, where the heavy symbols denote 
entries representing the sum of the (2,2) entry of K, and MI and the (1, 1) entry of 
K,+l and respectively. Clearly, K and M are banded due to the nature of the 
interpolation functions. Hence, using Eqs. (10.20) and (10.21) in conjunction with the 



scheme of Fig. 10.4, the global stiffness and mass matrices are 

and 

respectively. Matrices K and M are said to have half-bandwidth one, because there is 
one nonzero diagonal above and below the main diagonal. 

In generating the global matrices, Eqs. (10.23) and (10.24), on a computer, it is 
convenient to implement the scheme of Fig. 10.4 sequentially, such as in a "do" loop 
or a "for" loop. As an illustration, to generate the global stiffness matrix K, we begin 
with an n x n null matrix K and add, in sequence, K1 to the submatrix (actually a scalar 
in this case) K1l of K ,  K2 to the 2 x 2 submatrix [ K l l  K12; K21 K22] of K ,  K3 to the 
submatrix [K22 Kz3; K3z K33] of K ,  etc., where the semicolon indicates the end of a 
row. 

FIGURE 10.4 
Scheme for the assembly of global matrices from element matrices for second-order systems using 
linear interpolation functions 
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Following the usual steps in the Rayleigh-Ritz method, in conjunction with Ray- 
leigh's quotient in the form given by Eq. (10.22), we obtain the eigenvalue problem 

Ka = XMa, X = w2 (10.25) 

which can be solved by one of the methods in Rev. 13. 
The solution of the eigenvalue problem, Eq. (10.25), consists of the approximate 

eigenvalues A?) and associated eigenvectors a?) (r = 1,2, . . . , n ) ,  where the superscript 
( n )  was added to remove any ambiguity in notation. The approximate natural frequen- 

cies are simply up) = @ (r = I ,  2, . . . , n) .  Moreover, the approximate natural 

modes U?)(X) can be obtained by recognizing that U,(n) (h ) ,  u,(n1(2h), . . . , ~ , (n ) (nh )  = 
(n) UP' (L) are simply the components a!':), a2,, , . . . , a t !  of the rth modal vector a?) (r = 

1,2 , .  . . , n) .  

Example 10.1. Solve the eigenvalue problem for the tapered rod in axial vibration of 
Example 9.6 by the finite element method in the two ways: (1) use the element stiffness 
and mass matrices given by Eqs. (10.15) and (10.18), respectively, and (2) approximate the 
stiffness and mass distributions over the finite elements as follows: 

Determine how the accuracy of the three lowest natural frequencies improves as the mesh 
is refined; begin the computations with n = 10. Compare results obtained by the finite 
element method in the two indicated ways, as well as with those obtained in Example 9.6 
by the Rayleigh-Ritz method using both admissible and comparison functions and draw 
conclusions. 

From Example 9.6, and using the transformation implied by Eqs. (1 0.16) and (10.19), 
the system parameters are 

Moreover, we recall that the spring at x = L has the stiffness k = EAIL.  Inserting the 
first of Eqs. (b) into Eqs. (10.15) and carrying out the integrations, we obtain the element 
stiffness matrices 

(c) 

where K1 is really a scalar. Using Eqs. (c) in conjunction with the scheme for K shown in 



Fig. 10.4, we obtain the global stiffness matrix 

Similarly, introducing the second of Eqs. (b) in Eqs. (10.18) and carrying out the 
integrations, the element mass matrices can be shown to be 

Equations (e) can be combined as indicated by the scheme for M in Fig. 10.4 to yield the 
global mass matrix 

The eigenvalue problem, obtained by inserting Eqs. (d) and (f) into Eq. (10.25), 
. . .  was solved for n = 10,11, ,75. The three lowest normalized natural frequencies are 

displayed in Table 10.1. The three lowest natural modes corresponding to n = 20 are 
plotted in Fig. 10.5. 

Next, we consider the case in which the stiffness and mass distributions are assumed 
to be constant over each finite element according to Eqs. (a). Inserting A from the first of 



Table 10.1 Normalized Natural Frequencies for Linear Interpo- 
lation Functions-Exact Parameter Distributions 

FIGURE 10.5 
Three lowest modes computed using 20 finite elements in conjunction with linear interpolation 
functions 



Eqs. (a), as well as h = L l n ,  into Eq. (10.23), we obtain the global stiffness matrix 

Similarly, introducing the second of Eqs. (a), as well as h = L / n ,  in Eq. (10.24), we obtain 
the global mass matrix 

The eigenvalue problem, obtained by Eqs. (c) and (e) in Eq. (10.25), was solved for 
n = 10, 11, ... ,75. The three lowest normalized natural frequencies, are listed in Table 
10.2. The corresponding natural modes are similar to those in Fig. 10.5. 

We observe that the three lowest natural frequencies computed by means of the 
finite element method using exact parameter distributions, Table 10.1, and those using ap- 
proximate parameter distributions, Table 10.2, show steady improvement in accuracy as n  
increases. A co~nparison of the natural frequencies computed by means of the finite ele- 
ment method with those computed by the Rayleigh-Ritz method using admissible functions 
presents amixedpicture. Indeed, fromExample 9.6, we have wl3') = 2.2189504-, 

w y )  = 5 . 1 0 2 3 2 4 J m  and w y O )  = 8.1 18398J-, so that the lowest natural 



Table 10.2 Normalized Natural Frequencies for Linear Interpo- 
lation Functions-Approximate Parameter Distribu- 
tions 

frequency computed by means of the finite element method with a thirty-degree-of-freedom 
model is closer to the actual value than that computed by the Rayleigh-Ritz method using ad- 
missible functions, but the opposite is true for the second and third natural frequencies. This 
is not as comforting as it may seem, as the three lowest natural frequencies computed by the 
Rayleigh-Ritz method using comparison functions reach convergence as follows: w{14) = 

2.2155244-, w;l4) = 5.0995254-, w y )  = 8 . 1 1 6 3 1 8 4 m .  On 
the other hand, as can be seen from Tables 10.1 and 10.2, the three lowest natural frequen- 
cies computed by means of the finite element method using 75 linear interpolation functions, 
i.e., 15 degrees of freedom, are quite far from convergence, as the rate of convergence is 
quite low. 

10.3 HIGHER-DEGREE INTERPOLATION FUNCTIONS 

In Sec. 10.2, we considered the derivation of approximate solutions to the eigenvalue 
problem for strings, rods and shafts by the finite element method using linear interpolation 
functions. In the process, we highlighted several attractive features of the finite element 
method, and in particular that it uses low-degree interpolation functions as ad~llissible 
functions and that it renders the task of deriving the stiffness and mass matrices almost 
routine. The net result is a procedure ideally suited for computer coding. All this ease 
of implementation comes at a price, however, as the number of degrees of freedom 
of the discrete model tends to be very large compared to that required by the classical 
Rayleigh-Ritz method for the same level of accuracy. The advantages and disadvantages 
can be attributed to the use of linear interpolation functions, which are the lowest-degree 
admissible functions for second-order systems, such as strings, rods and shafts. Hence, 
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the question arises as to whether the situation can be mitigated by using higher-degree 
interpolation functions. 

The interpolation functions of next higher degree are quadratic. But, in attempting 
to use quadratic interpolation functions for strings, rods and shafts, we run immediately 
into some difficulty. For easy visualization of the problem, we go back to the string 
in transverse vibration considered in Sec. 10.1. From Fig. 10.3, we conclude that, by 
connecting two nodal displacements by a straight line, the string displacement at any 
point inside the finite element is defined uniquely. In fact, we can generate the two linear 
interpolation functions given by Eqs. (10.11) in this manner. To show this, and to help 
with the forthcoming generation of the quadratic interpolation functions, we express the 
linear displacement inside element j in terms of the local coordinate as follows: 

Y(J) = ci +c2J, 0 (. E < 1 (10.26) 

where cl and c2 are constants. They can be determined by observing from Fig. 10.3 that 

Y(O)=a, =c l ,  Y( l )=a, - l=cl+c 2 (10.27) 

Equations (10.27) have the solution 

c1 =a,, c2 =a,-1 -aJ (10.28) 

so that, inserting Eqs. (10.28) into Eq. (10.26), we obtain the equation of the straight line 
passing through the nodal displacements a, -1 and aJ in the form 

Y(t )=aJ- lE+aJ( l -O,  O < E <  1 (10.29) 

But, by analogy with Eq. (10.3), we can write 

Y(5) = a,-141(t> +a,h(E> (10.30) 

from which we conclude that 

h ( ~ > = t ,  42(<)=1-<, O < t < 1  (10.31) 

Equations (10.3 1) are identical to Eqs. (10.1 1) describing the linear interpolation func- 
tions for the problem at hand. 

Next, we explore the possibility of approximating the displacement curve by means 
of quadratic interpolation functions. To this end, we express the displacement inside the 
finite element in the form of the generic quadratic function 

Y(5) = cl +c25+c3J2, 0 < J < 1 (10.32) 

Following the same steps as earlier in this section, we write 

Y(O)=a, =cl ,  Y(l)=a,-1 =cl+cz+c3 (10.33) 

so that the difficulty is obvious: there are three unknowns, cl, c2 and c3, and only two 
equations. It follows that two nodal displacements cannot be connected by a unique 
quadratic function. Indeed, there is an infinity of quadratic functions passing through 
two points. To render the quadratic function unique, we must have a third equation 
for cl, c2 and c3, which necessitates that we specify a third point through which the 
curve must pass. Common sense dictates that we create a third nodal point located 
at x = ( j  - 1/2)h, which is halfway between the two original nodal points located at 



x = ( j  - l ) h  and x = jh; we denote the corresponding nodal displacement by a,-ll2. 
We refer to x = ( j  - 1/2)h as an internal node, which makes the original two external 
nodes. Recognizing that the local coordinate of the internal node is ( = 112, we can 
write the desired third equation as 

Solving Eqs. (10.33) and (10.34), we obtain 

so that Eq. (10.32) becomes 

Y ( 0  = a,-I(-( f 2t2> f al-1/2(4t - 4 t2 )  +aJ (1 - 3<+2t2), 0 < E < 1 (10.36) 

Then, using the analogy with Eq. (10.30) and writing 

we conclude that the quadratic interpolation functions, the same for every element, have 
the form 

$i(E>=E(2E-1>, $2(E>=4t( l - ( ) ,  43(E)=(1-E)(1-2E) (10.38) 

They are displayed in Fig. 10.6. 
Next, we return to the rod in axial vibration fixed at x = 0 and spring-supported 

at x = L considered earlier in this section. To derive the element stiffness and mass 
matrices corresponding to quadratic interpolation functions, we use the analogy with 
Eq. ( 1  0.12) and write the displacement in the form 

where 

is the vector of interpolation functions and 

5- 5- 5- 
-1- -I----* 

FIGURE 10.6 
Quadratic interpolation functions 



is the vector of nodal coordinates. Then, by analogy with Eq. (10.13), we write 

Inserting Eq. (10.42) into Eq. (10.14), recalling the second of Eqs. (10.9) and following 
the same steps as for linear interpolation functions, we obtain 

in which 



are the element stiffness matrices. Similarly, by analogy with Eq. (10.17), we have 

where 

are the element mass matrices. 
For constant axial rigidity over the elements, EAj (<)  = EA, = constant, the 

element matrices reduce to 

and, for constant mass density over the elements, rnj(<) = mj = constant, the mass 
matrices become 

The assembly process for the generation of the global stiffness and mass matrices 
is essentially the same as for linear interpolation functions, although there are some 
differences. In the first place, because of the end condition a0 = 0, matrices K1 and M I  
are only 2 x 2, obtained by removing the first row and column from Eqs. (10.44) and 



FIGURE 10.7 
Scheme for the assembly of global matrices from element matrices for second-order systems using 
quadratic interpolation functions 

(10.46), or Eqs. (10.47) and (10.48), respectively. Moreover, the summation of entries 
takes place only for external nodes. Hence, the global stiffness and mass matrices K and 
M, respectively, have the schematic form shown in Fig. 10.7, where the heavy symbols 
correspond to the sum of the entries (1,l) and (3,3) of the element matrices. Note that 
the global matrices K and M are 2n x 2n, which is consistent with the fact that a finite 
element model using quadratic interpolation functions in conjunction with n elements 
has 2n degrees of freedom; the corresponding 2n-dimensional nodal vector is defined by 
a = [a1/2 a1 a312 . . . an-1/2 nnlT. The process is illustrated in the following example. 

The generation of the global stiffness matrix K on a computer follows the same 
pattern as that described in Sec. 10.2, except that K1 is added to the 2 x 2 submatrix 
[ K l l  K l z ;  Kzl K223 of K ,  K2 is added to the 3 x 3 submatrix [K22 KZ3 K24; 
K32 K33 K34; K42 K43 K441 of K ,  etc. 

Example 10.2. Solve the eigenvalue problem for the tapered rod of Example 10.1 by the 
finite element method using quadratic interpolation functions. Compare results with those 
obtained in Examples 9.6 and 10.1 and draw conclusions. 

First, we consider the case in which the system parameters over the elements are 
accounted for exactly; they are given by Eqs. (b) of Example 10.1. Hence, inserting the first 
of these equations into Eqs. (10.44) and carrying out the indicated integrations, we obtain 
the element stiffness matrices 



Then, using the scheme for K in Fig. 10.7, the global stiffness matrix can be shown to be 

- 1 6 - 8  0 O . . .  0 0 0 
-8 14 -8 1 ... 0 0 0 

... 0 -8 16 -8 0 0 0 

... 0 1 -8 14 0 0 0 

Similarly, introducing the second of Eqs. (b) of Example 10.1 in Eqs. (10.46), we obtain 
the element mass matrices 



so that, using the scheme for M in Fig. 10.7, we obtain the global mass matrix 

The eigenvalue problem, obtained by inserting Eqs. (b) and (d) into Eq. (10.25), was 
solved for n = 5,6, ... ,75. The three lowest normalized natural frequencies are displayed 
in Table 10.3. The corresponding natural modes for n = 20 are shown in Fig. 10.8. 

Next, we solve the eigenvdue problem by approximating the stiffness and mass 
distributions. Using the sectionally constant axial stiffness from the first of Eqs. (a) of 
Example 10.1, the element stiffness matrices, Eqs. (10.47), become 



Table 10.3 Normalized Natural Frequencies for Quadratic Inter- 
polation Functions-Exact Parameter Distributions 

Hence, using the first diagram in Fig. 10.7, the global stiffness matrix is 

73 
74 
75 

- 1 6 - 8  0 O . . .  0 0 0 
-8 14 -8 1 ... 0 0 0 

0 -8 16 -8 . . .  0 0 0 
0 1 - 8  14 . . .  0 0 0 

D.0.f. = degrees of freedom 

146 
148 
150 

8.116319 
8.116319 
8.116319 



FIGURE 10.8 
Three lowest modes computed using 20 finite elements in conjunction with quadratic interpolation 
functions 

Similarly, from Eqs. (10.48), the element mass matrices are 

so that the global mass matrix is 
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The eigenvalue problem is obtained by inserting Eqs. (f) and (h) into Eq. (10.25). 
The three lowest natural frequencies, computed for n = 5,6, . . . ,75, are displayed in Table 
10.4. 

The results listed in Tables 10.3 and 10.4 reveal a number of important points. In 
the first place, we observe that quadratic interpolation functions tend to yield more accu- 
rate results than linear interpolation functions. More specifically, we observe from Table 
10.3 that, using quadratic interpolation functions in conjunction with exact parameter dis- 
tributions, the first natural frequency converges with six decimal places accuracy with 38 
degrees of freedom, the second natural frequency converges with 82 degrees of freedom 
and the third natural frequency is very close to convergence with 150 degrees of freedom. 
We recall from Example 10.1 that the three lowest natural frequencies computed with linear 
interpolation functions and exact parameter distributions were far from convergence with 
75 finite elements, which for linear interpolation functions is the same as 75 degrees of 
freedom. The results based on sectionally constant parameter approximations are equally 
interesting, but in a somewhat negative way. Indeed, from Table 10.4, we see in the first 
place that none of the natural frequencies converges with six decimal places accuracy with 
150 degrees of freedom. More significantly, however, we see that the computed naturalfre- 
quencies approach the actual ones from below. Hence, in this particular case, the violation 

Table 10.4 Normalized Natural Frequencies for Quadratic Inter- 
polation Functions-Approximate Parameter Distri- 
butions 

I 1 I 

D.0.f. = degrees of freedom 
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of the Rayleigh-Ritz code causes the convergence to acquire characteristics more typical of 
a lumped-parameter process than a Rayleigh-Ritz process, where in the latter convergence 
is from above. Although these conclusions are based on a specific example, the results 
demonstrate what can be expected when the Rayleigh-Ritz code is violated. 

10.4 BEAMS IN BENDING VIBRATION 

From Chs. 8 and 9, we see that beams in bending vibration differ from strings in transverse 
vibration, rods in longitudinal vibration and shafts in torsion, although the differences 
are more in form than in substance. In particular, the differential equation of motion 
for beams is of order four, as opposed to that for strings, rods and shafts, which is of 
order two only. Hence, it should come as no surprise that the finite element formulation 
for beams is more involved than that for strings, rods and shafts. Because, the potential 
energy for beams involves second derivatives with respect to the spatial variable x, we 
conclude that the interpolation functions must be of minimum degree two. It turns out 
that other considerations make second-degree interpolation functions unsuitable, and 
the minimum degree is three. Still the discretization process for fourth-order systems is 
basically the same as for second-order systems. 

Taking a cue from Myklestad's method for beams in bending vibration, we must 
formulate the problem in terms of two displacements at each nodal point xJ = j h, namely, 
the translation YJ and the rotation OJ . Hence, the nodal displacement vector must have 
four components, which requires cubic interpolation functions. We note that, because 
there are two displacements at each nodal point, for a total of four, no internal nodes 
are necessary. Except for having two displacements at each nodal point, the process for 
deriving element and global mass and stiffness matrices remains as for strings, rods and 
shafts. 

Figure 10.9 shows a typical finite element j for a beam in transverse vibration, 
where [ represents the local coordinate defined by Eq. (10.8). Using the approach of 
Secs. 10.2 and 10.3, we define the displacement as follows: 

FIGURE 10.9 
Finite element for a beam in bending showing the 
nodal displacements 
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where 4(<) = [41(<) 42(<) 4 3 ( < )  44(t)]T is a vector of interpolation functions and 
a, = [YJP1 Y, h@,lT is a vector of nodal displacements. We note that, for 
convenience, we multiplied the angular displacements and O, by h so as to give 
all four components of a, units of length. As a result, all four components of +(t) are 
dimensionless. Following the pattern of Sec. 10.3, we represent the displacement by the 
cubic 

where ci (i = 1,2,3,4)  are constants to be determined. In the first place, from Fig. 10.9, 
the transverse displacement at < = 0 is Y j ,  so that 

The rotation O , is equal to the derivative of the displacement with respect to x at x = jh, 
which transforms as follows: 

Hence, using Eqs. (10.52) and (10.50), 

At the other end, t = 1, we have 

Y ( l )  =Yj - l  =c1+c2+cs+c4 

and 

Solving Eqs. (10.51), (10.53), (10.54) and (10.55), we obtain 

cl = Y,, c2 = -h@,, c3 = 3Y,-1+h@,-1 -3YJ +2h@,, 
(10.56) 

cq = -2YJP1 - h@,-i +2YJ +3h@, 

so that, inserting Eqs. (10.56) into Eq. (10.50) and rearranging, we can write 

Finally, contrasting Eqs. (10.49) and (10.57), we conclude that the interpolation functions 
are 

They are commonly known as Hermite cubics. 



Next, we derive the element stiffness and mass matrices. Following the same steps 
as in Sec. 10.2, we first write the maximum potential energy as the sum over the elements 

But, using Eq. (10.8) and the first of Eqs. (10.9), we conclude that 

d 2 y ( x )  1 d 2 y ( [ )  -- 
dx2  h2 d t 2  

and, by analogy with Eq. (10.16), we have 

E I ( x )  = E I [ h ( j  - 0 1  = El j (<)  

Then, using the second of Eqs. (10.9), we can write 

where, using Eqs. (10.58), 

are the element stiffness matrices. To determine the element mass matrices, we write 
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the reference kinetic energy in the form 

in which, using Eqs. (10.58), 

are the element mass matrices. 
For constant EIJ  over the elements, following integration, Eqs. (10.63) yield the 

element stiffness matrices 

and for constant mJ over the elements, upon integration of Eqs. (10.65), we obtain the 
element mass matrices 

The assembly process for the derivation of the global stiffness and mass matrices, 
as well as their generation on a computer, follows the same pattern as for strings, rods and 
shafts, except that the element matrices are 4 x 4 and the sum involves 2 x 2 matrices, 
rather than'scalars The global stiffness and mass matrices are shown schematically in 
Fig. 10.10. Of course, we must strike out rows and columns from the global matrices as 
the boundary conditions require. 



/ Kl p X X X X X X  11 
x x x x x x  

X X X X  
x x x x  

,EKJ x x x x x x  

x x x x x x  

/ Ml mxT~2 
x x x x x x  
x x x x x x  

x x x x  1:___f X X X X X X  

x x x x x x  

FIGURE 10.10 
Scheme for the assembly of global matrices from element matrices for fourth-order systems 

Finally, before we close this section, it should prove of interest to clear up a 
matter arising from time to time in connection with the mass matrix. To place things in 
perspective, it should be mentioned that the finite element method was first developed 
as a structural analysis method, and in particular as a procedure for static stress analysis 
of complex structures. For the most part, this amounts to deriving the stiffness matrix 
only. In extending the finite element method to problems of vibrations, it is expedient 
to use a lumped mass matrix. But, as can be concluded from Ch. 9 and this chapter, 
in the variational approach to the eigenvalue problem, as typified by the Rayleigh-Ritz 
method, the element and global stiffness and mass matrices are derived in a consistent 
manner. Because it is not consistent with the variational approach to lump parameters, 
a lumped mass matrix is referred to at times as an inconsistent mass matrix. In using an 
inconsistent mass matrix, the stationarity of Rayleigh's quotient no longer holds, so that 
errors can occur and convergence can suffer. Hence, the use of a lumped mass matrix in 
conjunction with the finite element method is not advised. 

Example 10.3. Solve the eigenvalue problem for the pinned-pinned beam of Example 9.3 
by means of the finite element method using 10 elements. Compare results with those 
obtained in Example 9.3 by means of Myklestad's method and draw conclusions. 

The beam and the finite element mesh for n = 10 are shown in Fig. 10.11. Because 
the number of elements is the same as the number of increments used for the solution by 
Myklestad's method, we obtain from Example 9.3 the mass and stiffness distributions over 
the elements 

The element stiffness and mass matrices are given by Eqs. (10.66) and (10.67), re- 
spectively, in which provisions must be made for the boundary conditions. In particular, 
because the beam is pinned at both ends, we must set Yo = Y1g = 0, which amounts to 
striking out the first row and column from K1 and M1 and the third row and column from 
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FIGURE 10.11 
Finite elements for a nonunifonn pinned-pinned beam 

Klo and Mlo. Hence, the element stiffness matrices are 

so that, from Fig. 10.10, upon striking out the rows and columns corresponding to Yo and 
Y1O, the 20 x 20 global stiffness matrix is 



Similarly, the element mass matrices are 

so that, from Fig. 10.10 with the rows and columns corresponding to Yo and Ylo struck out, 
the 20 x 20 global mass mahix is 

Inserting Eqs. (c) and (e) into Eq. (10.25) and solving the eigenvalue problem, we ob- 
tain the approximate eigenvalues and associated eigenvectors asz0) (r = 1,2,  . . . ,20). 
The eigenvalues can be used to compute the approximate natural frequencies by taking the 
square root. The three lowest approximate natural frequencies are as follows: 



t 
FIGURE 10.12 
Three lowest modes for the pinned-pinned beam using 10 finite elements 

We observe that all three are smaller than the corresponding approximate natural frequencies 
computed in Example 9.3 by Myklestad's method. Because in this case the mass and 
stiffness distributions were accounted for exactly, so that the Rayleigh-Ritz code was not 
violated, the actual natural frequencies are sure to be smaller than the approximate ones 
given by Eqs. (f). It follows that, at least in this example, the finite element method yielded 
more accurate approximations to the natural frequencies than Myklestad's method, where 
in both methods the same number of degrees of freedom was used. 

To determine the approximate natural modes Y , ( ' ~ ) ( X ) ,  we recall that the eigenvec- 
tors a!'') provide the displacements Y , ( ~ O )  ( j h )  and slopes 0120) ( j h )  at the nodal points 
x = jh ( j  = 1,2 , .  . . ,20). The three lowest approximate natural modes are displayed in 
Fig. 10.12. 

10.5 ERRORS IN THE EIGENVALUES 

As for any discretization process, the eigenvalues and eigenfunctions computed by means 
of the finite element method experience errors. In general, these errors are difficult to 
estimate, particularly if the mass and stiffness parameter distributions are not accounted 
for properly within the framework of a variational process. The implication is that, 
strictly speaking, errors cannot be estimated if the Rayleigh-Ritz code is violated. In- 
deed, as demonstrated in Examples 10.1 and 10.2, when nonuniform mass and stiffness 
distributions are approximated by sectionally constant distributions, not only that errors 
in the approximate eigenvalues cannot be estimated but it is difficult to predict whether 
the approximate eigenvalues are larger or smaller than the actual eigenvalues. 

We consider the case in which the finite element model does respect the Rayleigh- 
Ritz code, so that the finite element discretization can be regarded as a Rayleigh-Ritz 
method. This implies that the system is conservative and that the mass and stiffness 
parameters have been accounted for exactly. In this case, some estimates of the errors in 



the eigenvalues and eigenfunctions are possible. Indeed, it can be shown2 that, for small 
h, the errors experienced by the approximate eigenvalues A?) satisfy the inequalities 

where c is some constant, k - 1 is the degree of the interpolation functions and p is 
the order of the highest spatial derivative in the potential energy. But h is inversely 
proportional to n, so that inequalities (10.68) indicate that errors decrease as n increases, 
which conforms to intuition. Moreover, the rate at which the errors decrease increases 
with the degree of the interpolation functions, a fact established numerically in Example 
10.2. On the other hand, because the eigenvalues increase in value with the mode num- 
ber, the error increases as the mode number increases. In fact, the higher approximate 
eigenvalues tend to be quite inaccurate. As a rough guide, less than one half of the ap- 
proximate eigenvalues computed by means of the finite element method can be regarded 
as accurate. Hence, the number of degrees of freedom of the discrete model should be 
at least twice as large as the number of accurate eigenvalues desired. 

Inequalities (10.68) tend to yield very conservative estimates, as the actual errors 
are in general much smaller than those suggested by the inequalities. As an illustration, 
we compare actual errors for the rod in axial vibration of Examples 10.1 and 10.2 with 
those prescribed by the inequalities. To this end, we first consider natural frequencies 
computed by means of linear interpolation functions, so that k = 2. From Table 10.1, 
for n = 20, we obtain the approximate lowest eigenvalue A?) = 4 . 9 1 3 4 8 8 ~ ~ l m  L2, 
whereas the lowest eigenvalue is XI = 4 . 9 0 8 5 4 7 ~ ~ 1 m ~ ~ .  Inserting these values into 
inequalities (10.68) with r = 1, observing that for rods in axial vibration p = 1, letting 
c /L2  = 1 and ignoring E A / ~ L ~ ,  we obtain 

and we observe that the actual error is more than one order of magnitude smaller than 
the error implied by inequalities (10.68). Next, we consider the error in the lowest 
eigenvalue computed by means of quadratic interpolation functions, so that k = 3. From 
Table 10.3, for n = 7, we obtain the approximate lowest eigenvalue A:) = 4.908591. 
Hence, 

- - 

'strang, G. and Fix, G. J., An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 
1973, Sec. 6.3. 



so that the actual error is over three orders of magnitude smaller than the error suggested 
by inequalities (10.68). We note here that n = 7 translates into a fourteen-degree- 
of-freedom discrete model. Comparing the actual errors in (10.69) and (10.70), we 
conclude that the error incurred using quadratic interpolation functions in conjunction 
with a fourteen-degree-of-freedom model is over two orders of magnitude smaller than 
the error experienced using linear interpolation functions in conjunction with a twenty- 
degree-of-freedom model. Of course, the use of inequalities (10.68) is intended for cases 
in which the actual eigenvalues are not known and some bounds on the error are desired. 

Unfortunately, the approximate eigenfunctions do not lend themselves to the same 
type of meaningful error estimates as the approximate eigenvalues. In fact, error es- 
timates are possible only in a weighted average sense, rather than error estimates at 
individual points of the elastic member. 

The validity of inequalities (10.68) can be extended to cases in which the parameter 
distributions have been approximated in some fashion and the number of degrees of 
freedom of the finite element model is sufficiently large that the approximations are 
quite close to the actual distributions. 

Errors of a different kind occur when the mass matrix is the result of some lumping 
process. In such cases the mass matrix represents an inconsistent mass matrix (Sec. 10.4) 
and, because the Rayleigh-Ritz code is violated, inequalities (10.68) can no longer be 
counted on to provide error estimates. In fact, errors can be negative, so that the ap- 
proximate eigenvalues can drop below the corresponding actual ones. Another difficulty 
can arise in using lumped matrices for beams in bending. Indeed, if the lumped model 
makes no provisions for mass moments of inertia corresponding to the nodal angular 
displacements O J ,  then the mass matrix is only positive semidefinite, which not only 
violates the physics of the problem but is also likely to cause computational problems. 
Moreover, whereas lumping the mass distribution into discrete masses is a relatively 
straightforward process, it is not entirely obvious how to generate discrete masses with 
equivalent mass moments of inertia. Hence, the use of lumped mass matrices in the 
context of the finite element method is not advised. 

10.6 FINITE ELEMENT MODELING OF TRUSSES 

Trusses represent two-dimensional structures consisting of assemblages of rods in axial 
vibration, where the ends of the rods are pinned at joints. Finite element modeling of 
trusses involves certain features not encountered before in this text. In particular, rods 
can have arbitrary orientations relative to a given reference frame and ordinarily several 
rods are pinned at one joint. As a result, the assembly process is appreciably more 
complicated than for single members. 

We consider a typical truss member i making an angle 0, with respect to the 
x-direction and denote the two end joints by k and f and the corresponding joint dis- 
placements by Uk, and Uky and Ul, and Uly, respectively, as shown in Fig. 10.13. We 
regard the truss member as a uniform rod undergoing elastic vibration in the axial direc- 
tion and rigid-body motion in the transverse direction. The rigid-body motion does not 
affect the maximum potential energy, and hence the stiffness matrix. Hence, modeling 



FIGURE 10.13 
Typical tmss member i making an angle P, with respect to the 
x-direction 

the rod by means of ni finite elements, using the analogy with Eq. (10.23) and observing 
that the left end is not fixed, the disjoint global stiffness matrix for member i has the 
form 

where EAi  is the axial rigidity and hi is the size of the finite element. We note that 
"disjoint" is in the sense that the global stiffness matrices are for individual members 
standing alone rather than for the members as parts of a truss. On the other hand, both 
the elastic vibration and the rigid-body motion affect the reference kinetic energy, so 
that we distinguish between a global mass matrix Mei due to the axial elastic vibration 
and a global mass matrix Mybi due to the transverse rigid-body motion. By analogy with 
Eq. (10.24), the disjoint global mass matrix for member i due to the elastic vibration is 

2 1 0 ... 0 0 
1 4 1 ... 0 0 

m,h, 0 1 4 ... 0 0 
M e  = - 1 (10.72) 

6 ......................... 
0 0 0 . . .  4 1 
0 0 0 ... 1 2 

in which m, is the mass density. The corresponding nodal vector of axial displacements 
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... is ai = [Ui,o Ui,l Ui,,JT. But the nodal displacements at the joints must satisfy the 
boundary conditions 

Ui,o = Ukx cos Pi + Uky sin Pi, Ui,,, = Ul, cos pi + Uly sin pi (10.73) 

so that the nodal vector is 

We observe from Eq. (10.74), however, that vector ai has ni + 1 components and 
it contains ni + 3 unknowns, so that it is convenient to introduce an (ni + 3)-dimensional 
vector of independent displacements as follows: 

... in which U, = [UZr1 U,,J U,,,,-llT is a vector of nodal displacements excluding 
the joint displacements and U Jk = [Ukx ukylT and U ~t = [Ut, ut,lT are vectors of 
joint displacements. From Eqs. (10.74) and (10.75), we conclude that the vector a, is 
related to the vector a, by 

cp, spl 0 0 ... 0 0 

a, = Cia, (10.76) 

0 0 0 ... 1 0 
0 0 0 0 ... 0 cpi sp, 

where 

cp, s f i  0 0 ... 0 0 0 
0 0 1 0  ... 0 0 0 

0 0 1 . . .  0 0 
........................................... 

cz=[ ;  0 0 0 0  0 0 ... ... 0 1 0  cp, sp, : ]  
is an (n, + 1) x (n, + 3) transformation matrix playing the role of a constraint matrix, 
in which cp, = cosp, and sp, = sin/?,. The transformation from the constrained vector 
a, to the independent vector a, requires a corresponding transformation in the disjoint 
global stiffness matrix Kc and mass matrix M,. To this end, we write the maximum 
potential energy for member i in the form 



where, using Eqs. (10.71) and (10.77), 

is the desired (ni + 3) x (ni + 3)  disjoint global stiffness matrix for member i . Similarly, 
we use Eq. (10.76) and write the reference kinetic energy due to elastic vibration 

where, using Eqs. (10.72) and (10.77), 

is the (n ,  t 3) x (n, + 3)  disjoint global mass matrix for member i due to the elastic 
vibrations. 

Next, we derive the disjoint global mass matrix due to the transverse rigid-body 
motion. To this end, we write the corresponding reference lunetic energy. Denoting the 
transverse displacements of the end points of member i by W,,o and Wi,,, (Fig. 10.13), 
the transverse displacement at a distance C from the left end is simply 

in which Li is the length of member i. Hence, the kinetic energy due to the rigid-body 



motion is 

But, from Fig. 10.13, the transverse displacements are related to the joint displacements 
by 

Wi,o = Uky cos p, - Ukx sin pi, Wi,,, = Uey C O S ~ ~  - Uex sin Pi (10.84) 

so that the reference kinetic energy due to the rigid-body motion can be rewritten as 

where once again the notation cp, = cos p, , s/3, = sin p, has been used and in which 

is the disjoint global mass matrix for member i due to the rigid-body motion. But, the 
total reference lunetic energy is the sum of contributions from both the elastic vibration 
and the rigid-body motion, so that 

I-,  - T -  I-,  - - 
Tref,, ="Tref,e, + Tref,rbc = -a, Me,% f -2, Mrbzq = -a, M a ,  

2 
(10.87) 

2 2 
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in which 

is the disjoint global mass matrix for member i .  
At this point, we turn our attention to the assembly process. To this end, we write 

the system maximum potential energy, i.e., the maximum potential energy for the whole 
truss, as follows: 

where N is the total number of members in the truss, a is the system displacement vector 
and K is the system stifiess matrix. Similarly, the system reference kinetic energy is 

in which M is the system mass matrix. Hence, the assembly process reduces to the gener- 
ation of the system stiffness and mass matrices corresponding to the system displacement 
vector. 

In contrast to one-dimensional problems, in two-dimensional problems it is neces- 
sary to specify the system configuration before the assembly process can be carried out. 
This requires that we consider a specific truss configuration. We illustrate the process 
by means of the truss of Fig. 10.14, with the pertinent data summarized in Table 10.5. 
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FIGURE 10.14 
Specific truss configuration 

The disjoint global stiffness and mass matrices for member i are given by Eqs. (10.79) 
and (10.88), respectively. For convenience, we replace the size of the finite elements by 
the number of elements by simply writing 

Table 10.5 Truss Data 

Moreover, inserting the angles from Table 10.5 into Eq. (10.79), the disjoint global 

Member 
No. 
1 

2 
3 

4 
5 
6 

Element 
Size-h, 

Llnl 
2Lln2 
Llns 

2 / 7 ~ / n 4  
2 L l n ~  
Lln6 

Mass Den- 
sity-m, 

m i  

m2 
m3 

m4 
m5 

m6 

No. of 
Elements 

n I 
n2 
n3 

n4 

n5 
n6 

Joint 
Nos 

2 

3 

3 
4 

Cross-Section 
Area-A, 

A1 
A2 
A3 

A4 

A5 
A6 

1 3  
1 4  

4 
4 

5 
5 

Angle w.r 
to x - 0, 

o 
-60" 

0 
9 0 "  
-60" 

0 



stiffness matrices are 
- 

1 0  -1 0  ... 0  0  0  
0 0  0  o . . .  0  0 0  

-1 0  2 -1 . . .  0  0  0  

0  0  -1 2 ... 0  0  0  
............................................. 

0  0  0  0  ... 2 -1 0  

... 0 0  0  0  -1 1  0  
0 0  0  o . . .  0  0 0  

- 

, i = 1,3 ,6  



and, using Eq. (10.88), the disjoint global mass matrices are 

- m,L, M, = - 
6n, 

- - 
2 0 1 0  ... 0 0  0  
0  271, 0  0  ... 0  0  0  

1  0 4 1  ... 0 0  0 

0  0  1  4 ... 0  0  0  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0 0 0 0  ... 4 1  0  

0  0 0 0  ... 1 2  0  
0  0  0  0  ... 0  0  2n1 

- - 

, i = 1,3 ,6  



The next step is the assembly process itself. This amounts to placing the entries 
of the member stiffness and mass matrices in the system stiffness and mass matrices, 
respectively. To this end, one must decide on the location of the joint and member 
displacements in the system displacement vector a. It is convenient to list first the joint 
displacement vectors UJk (k = 1,2, . . . ,5)  and then the member displacement vectors 
U, (i = 1,2,  . . .6), where the latter exclude the joint displacements. Hence, using the 
notation in Fig. 10.14, the system displacement vector can be written in the form 

a = [uT1 uT2 . . . u;~  UT U: . . . u;lT (10.94) 

Then, a scheme can be devised to generate the system stiffness and mass matrices from 
the disjoint member global stiffness and mass matrices. Before this can be done, it is 
necessary to choose the remaining tmss data in Table 10.5, namely, the number ni of 
elements per truss member, the cross-sectional area Ai and the mass density mi (i = 
1,2, . . . ,6).  The generation of the system stiffness and mass matrices is demonstrated 
in Example 10.4. 

Example 10.4. Let EAi = E A,  mi = rn (i = l , 2 ,  . . . , 6 )  and solve the eigenvalue problem 
for the truss of Fig. 10.14 by the finite element method for the two cases: one element per 
member and two elements per member. Compare results and draw conclusions. 

The developments of this section apply to two or more elements per member. In 
the case of a single element per member, by analogy with Eq. (10.79), the disjoint global 
stiffness matrices can be shown to be 

I , i = l , 2  , . . . ,  6 

(a) 

where hi are given by Eqs. (10.91) and pi are listed in Table 10.5. According to Eq. (10.88), 
the disjoint global mass matrices are the sum of the corresponding global mass matrices 
due to axial vibration and the global mass matrices due to transverse rigid-body motion. 
But, by analogy with Eq. (10.81), the disjoint global mass matrices due to axial vibration 
are 
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Moreover, using the analogy with Eq. (10.86), the disjoint global mass matrices due to the 
rigid-body motion are 

Hence, letting L, = hi and using Eq. (10.88), we obtain the total disjoint global mass 
matrices 

Then, letting n, = 1 in Eqs. (10.91) and using the values of /3, from Table 10.5 (i = 
1,2, . . . ,6),  Eqs. (a) yield the disjoint global stiffness matrices 

Similarly, the disjoint global mass matrices are 
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The transfer of the entries of the disjoint global stiffness matrices K, (i = 1,2, . . . ,6) 
to the system stiffness matrix K can be carried out by referring to the member and joint 
location in the truss of Fig. 10.14 and the matrix row and column in Table 10.6. As an 
illustration, the entry ~ 1 ( 1 , 1 )  transfers to K (1, I), K~ (1,3) to K (1,5) and (3,3) to 
X(5,5). The system stiffness matrix K is 10 x 10, where the matrix was derived on the 
assumption that all joints are free. In reality, joints 1 and 2 are fixed, so that U1, = U1, = 
Uzx = Uzy = 0. In view of this, the first four rows and columns in K must be deleted. 
Hence, the resulting 6 x 6 system stiffness matrix is 

Similarly, recognizing that Table 10.6 applies to mass matrices as well, the system mass 
matrix can be shown to be 

Next, we consider the case in which each member is divided into two elements, 
ni = 2(i = 1,2, . . . ,6). From Eqs. (10.92), we obtain the disjoint global stiffness matrices 

L o o  0 o o j  
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Table 10.6 Transfer of Entries from K, (i = 1,2, . . . ,6) to K. One 
Element per Member 

o f  K for 7 
i = 1 . 2  ..... 6  

Row 
andlor 

Column 

and, from Eqs. (10.88), the disjoint global mass matrices are 

i = l  I i = 2  / i = 3  / i = 4  I i = 5  / i = 6  I 

Table 10.7 Transfer of Entries from K, ( 1  = 1,2, . . . ,6) to K. Two 
Elements per Member 

The derivation of the system stiffness matrix from the disjoint global stiffness ma- 
hices follows the pattern established earlier in this example, as well as the scheme of Table 
10.7. After striking out the first four rows and columns, the result is 

1  

2  

3 
4  

Row 
andlor 

Column 

1  

2  

5 

6  

o f  K,, 
z 1 2  6  

1  
2  
3 
4  
5 

Of K for 

1 

1  

2  

7 
8 

i = 6  
7 
8 
16 
9 
10 

d = l  
1  
2  
11 
5  
6  

3 

4  

7 
8 

i = 3  
3 
4  
13 
7 
8 

i = 2  
1  
2  
12 
7 
8 

5  

6  

7 
8 

z = 4  
5  
6  
14 
7 
8 

i = 5  
5  
6  
15 
9 
10 

5  

6  

9 
10 

7 

8 
9 
10 
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Similarly, the system mass matrix is 

9+4& & 2& 

0 11+4& 
0 0 
3 0 
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Table 10.8 The Six Lowest Natural Frequencies for the Truss 
of Fig. 10.14 

The eigenvalue problem was solved for one, two ,and three finite elements per member, 
n, = 1, 2 and 3, yielding six, twelve and eighteen natural frequencies, respectively. The 
system stiffness and mass matrices for n,  = 1 are given by Eqs. (g) and (h) and those for 
n, = 2 by Eqs. (k) and (l), whereas those for n, = 3 are not listed. The six lowest natural 
frequencies for the three cases (the only ones actually for the first case) are displayed in 
Table 10.8. As expected, the accuracy of the approximate natural freque~lcies improves as 
the number of finite elements increases. 

10.7 FINITE ELEMENT MODELING OF FRAMES 

Frames represent two-dimensional structures consisting of assemblages of beams and 
columns, as shown in Fig. 10.15. Although the columns are acted upon by axial forces 
due to the structure's own weight, this effect is not central to the subject, so that it will 
be ignored. On the other hand, the effect of the horizontal inertia of the beam will 
be included. In view of the fact that the columns are regarded as structural members 
undergoing bending alone, we refer to all members as beams. 

We assume that all three beams are uniform and with parameters as shown in 
Fig. 10.15. Then, modeling the beams by the finite element method with n,  elements 

FIGURE 10.15 
Frame structure 



per member i ( i  = 1,2,3) ,  the nodal displacement vectors are simply 

a, = [W,,O h,@,,o W,,I h , @ , , ~  ... W,,,, hz@i,n,lT, i = 1,2,3 (10.95) 

Correspondingly, and using Eqs. (10.66) in conjunction with the scheme of Fig. 10.10, 
the member global stiffness matrices are 

- 1 2  6 -12 6 0 0 . . .  0 0  0 0 -  
4 - 6 2  0 0  ... 0 0  0 0 

24 0 -12 6 ... 0 0 0 0 
8 -6 2 ... 0 0 0 0 

........................................ 
24 0 -12 6 

Symmetric 
8 -6 2 

12 -6 
4 - - 

in which m, is the mass density for member i ( i  = 1,2,3).  It should be pointed out here 
that provisions must yet be made for the horizontal inertia m2L2 of beam 2; this will be 
done shortly. 

The member nodal vectors, global stiffness matrices and global mass matrices are 
disjoint, in the sense that they are for three beams acting independently of one another. 
In fact, Eqs. (10.95)-(10.97) imply that a11 three act as if they were free-free beams. The 
assembly process consists of forcing the three beams to act together as a single frame 
clamped at the bottom. To this end, it is necessary to impose the boundary conditions 

i = 1,2,3 

where E I, is the flexural rigidity and h,  the size of the elements for member i ( i  = 1,2,3).  
Similarly, the member global mass matrices are 

We first observe that the third and eleventh of boundary conditions (10.98) state that the 
top of the two columns undergo the same horizontal translation as beam 2. Hence, to 
account for the horizontal inertia of beam 2, we add m2 L2 /2  to the entry (2n, - 1, 2n, - 1 )  

(10.96) 

- mlhr  M, = ----- 
420 

- 1 5 6  22 54 -13 0 0 ... 0 0 0 0 -  
4 13 -3 0 0 ... 0 0 0 0 

312 0 54 -13 ... 0 0 0 0 
8 13 -3 ... 0 0 0 0 

............................................ 
312 0 54 -13 

Symmetric 
8 13 -3 

156 -22 
4 - - 
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of A?, (i = 1,3), which amounts to adding a lumped mass equal to one half of the mass 
of beam 2 to the top of each column. Then, in view of Eqs. (10.98), if we list the joint 
coordinates first, we can write the system nodal displacement vector as 

The process of transferring the entries of the member stiffness matrices K, and mass ma- 
trices M, (i = 1,2,3) to the system stiffness matrix K and mass matrix M, respectively, 
is similar to that for truss structures. In this regard, we must pay attention to the fact 
that the angular displacements in the member nodal displacement vectors are multiplied 
by the element size, so that if h ,  differs from member to member some problem can 
arise. Indeed, the global stiffness matrices K, and mass matrices M, are computed n 
this basis, so that if there is a mismatch in the angular coordinates, the assembly 2 111 
experience errors. To be more specific, in beam 1 the joint displacement is h1 01, whereas 
in beam 2 the joint displacement is h2Q1. Hence, some alteration in the matrix entries 
affected must be made. To illustrate this problem, and in general to demonstrate the 
assembly process, it is necessary to consider a specific example. 

Example 10.5. The parameters of the frame shown in Fig. 10.15 are as follows: 

Derive and solve the eigenvalue problem by the finite element method for the two cases: 
1) using one element per member and 2) using two elements per member. Compare results 
and draw conclusions. 

As indicated earlier in this sectlon, all three members are regarded as beams in 
bending. For a single element per member, n, = 1 (i = 1,2,3), Eqs. (10.96) and (10.97) 
do not apply, so that we must generate appropnate member stiffness and mass matrices. 
For a free-free member modeled by a single finite element, the stiffness matrix is given by 
Eq. (10.66). In the case of beam 1, in terms of the notation of Eqs. (10.95), the first row and 
column are associated with Wl,o, the second row and column with hlOl,o, the third with 
Wl, 1 and the fourth with h1 1 .  But, according to the first two of Eqs. (10.98), Wl,o = 0 
and Ol,o = 0, so that we must strike out the first two rows and columns from Eqs. (10.66). 
Hence, using data from Eqs. (a), as well as h, = L, (i = 1,2,3), the stiffness matrix for 
beam 1 is 

In the case of beam 2, the first row and column are associated with W2,0, the second with 
h202,0,  the third with W2,1 and the fourth with h202,1 .  But, from the fifth and seventh 
of Eqs. (10.98), W2,o = W2,1 = 0, so that we must strike out the first and third rows and 
columns from Eq. (10.66). Moreover, to prevent a mismatch at the joints between beams 1 
and 2 and beams 2 and 3, we must make the remaining second and fourth rows and columns 
correspond to hl02,o and hl 02, 1, rather than to h202,0 and h202,l, respectively. This can 
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be done through the maximum potential energy, as follows 

Hence, the stiffness matrix for beam 2 can be written as 

It should be pointed out here that in this particular case all the entries of the stiffness 
matrix were multiplied by ( h z l h ~ ) ~ ,  because both coordinates @z,o and 0 2 , 1  represent 
angular displacements, and hence required adjustment. When V,,,,, involves both ordi- 
nary displacements and angular displacements, and there is a mismatch between angular 
displacements in two beams or more, stiffness coefficients corresponding to displacements 
squared require no adjustment at all, those corresponding to products of a displacement and 
an angular displacement must be multiplied by h2/ hl and those corresponding to angular 
displacement squared must be multiplied by (hz/ hl)', as in the case of Eq. (c). Beam 3 is 
equivalent to beam 1 in every respect, so that 

Using Eq. (10.67), the member mass matrices can be obtained in the same manner. 
Here, however, we recall that the effect of the mass nz2L2 of the horizontal beam is to be 
taken into account through lumped masses m2L2/2 located at the top of beams 1 and 3, 
which amounts to adding mzL2/2 to the entry (1,l) of M I  and MQ,. Hence, striking out the 
first two rows and columns from Eq. (10.67) and considering Eqs. (a), the mass matrix for 
beam 1 is 

Using the same argument as for K Z ,  the mass matrix for beam 2 can be shown to be 

Moreover, 

Next, we turn our attention to the assembly process, which amounts to transferring 
the entries from the member stiffness and mass matrices to the system stiffness matrix and 
mass matrix, respectively. To this end, we note that the system nodal displacement vector 
is 

and point out that the entries of the member matrices have been adjusted so that they all 
correspond to the same multiplying factor L for the angular displacements Q1 and 02. To 



Table 10.9 Transfer of Entries from Z?i (i = 1,2,.  . . ,3) to K. 
One Element per Member 

Of K for 

Row andlor 
Column 

assemble the system stiffness matrix, we consider Table 10.9 and obtain 

24 -6 -6 

= $ [ 6  -6 2.5 9 I.:] 
(0 

Similarly, recognizing that Table 10.9 applies equally well to mass matrices, the system 
mass matrix can be shown to be 

1,118.4 -22 mL 
M = - [ -22 23.6608 -4.7456 

420 
-22 I (k) 

-22 -14.7456 23.6608 

Next, we consider the case of two finite elements per member, ni = 2, hi = Li /2 (i = 
1,2,3). Recalling Eqs. (a), the nodal displacement vector for beam 1 is 

so that, striking out the first two rows and columns in Eq. (10.96), the stiffness matrix for 
beam 1 is 

24 0 -12 24 0 -12 6 
8 8 -6 

K1= --- 

(m) 

To prevent mismatches, as in the case of one element per member, and recognizing that 
Wz,o = W2,2 = 0, we can write the maximum potential energy for beam 2 as 



Hence, striking out the first and fifth rows and columns in Eq. (10.96) and letting h2/ h l  = 
1.6, hl = L ,  the stiffness matrix for beam 2 can be shown to be 

and the corresponding nodal displacement vector is 

a2 = [(L/2)81 W2,l (L/21@2,1 ( ~ 1 2 1 8 2 1 ~  

Similarly, the stiffness matrix for beam 3 is 

and the associated nodal displacement vector is 

Following the same procedure and using Eqs. (10.97), the member mass matrices 
can be written as 

where we added m2Lz/2  = 0.96 m L  to the (3,3) entry of MI and ~ 3 ,  to account for the 
horizontal inertia of beam 2. 

For the assembly process, we use the system nodal displacement vector 

Correspondingly, the transfer of entries from the member matrices to the system matrices 
is according to Table 10.10. Hence. using the scheme of Table 10.10, the system stiffness 



Table 10.10 Tkansfer of Entries from Ki (i = 1,2, ,3) to K. Two 
Elements per Member 

Of K for 

and/or 

Column 
4 2 3 2 

Similarly, the system mass matrix is 

matrix can be shown to be 

The two eigenvalue problems, the first using one finite element per member and 
defined by the 3 x 3 stiffness and mass matrices given by Eqs. (j) and (k), respectively, and 
the second using two finite elements per member and defined by the 9 x 9 stiffness and 
mass matrices given by Eqs. (u) and (v), respectively, have been solved and the three lowest 

8 E I  
Kz- 

L3 

- 24 -6 -6 -12 -6 
-6 9 0 6 2 
-6 0 9 0 0 

-12 6 0 24 0 
-6 2 0 0 8 

0 -4.6875 4.6875 0 0 
0 2.5 2.5 0 0 

- 12 0 6 0 0 _ -6 0 2 0 0 



Table 10.11 The Three Lowest Natural Frequencies for the Frame 
of Fig. 10.15 

natural frequencies are listed in Table 10.11. Of course, in the first case the finite element 
model yields only three natural frequencies. We note that there is significant improvement 
in the approximate natural frequencies obtained by means of the model using two elements 
per member compared to those obtained by means of the model using only one element 
per member, particularly in the second and third lowest natural frequencies. Although the 
results show the correct trend, we conclude that only the lowest natural frequency exhibits 
any semblance of convergence. If frequencies higher than the first are of interest, then 
models using more than two finite elements per member must be used. 

10.8 SYSTEM RESPONSE BY THE FINITE ELEMENT METHOD 

The response of systems by the finite element method can be obtained in the same 
manner as the response by the Rayleigh-Ritz method, where the latter is the same as 
that by the assumed-modes method described in Sec. 9.8. We recall from Sec. 9.8 that 
the response by the assumed-modes method makes use of Lagrange's equations, which 
requires the kinetic energy, potential energy and virtual work of the nonconservative 
forces. Because the potential energy expression differs from system to system, we must 
discuss the response by means of a specific system. 

We consider a string in transverse vibration, such as that shown in Fig. 8.3, refer 
to Sec. 8.2 and write the kinetic energy 

the potential energy 

and the virtual work of the nonconservative forces 

in which p(x) is the mass per unit length of string, y ( x ,  t )  the transverse displacement, 
T ( x )  the string tension, k the spring constant and f ( x ,  t )  the force per unit length. 

To obtain the response by the finite element method, it is necessary to discretize 
Eqs. (10.100)-(10.102). To this end, we divide the domain 0 < x < L into n elements of 



width h. Then, by analogy with Eq. (10.3), we express the displacement over element j 
in terms of linear interpolation functions in the form 

y(x, t )  = a,-l(t)4,-l(x)+a1(t)4,(x), ( j  - 1)h < x -= jh (10.103) 

where a,-1 (t) and a, (t) are string displacements at the nodal points x = ( j  - l)h and 
x = jh, respectively, and, from Eqs. (10.10), 

41-1(x) = j -x lh ,  4,(x) = I - ( j  - ~ l h )  (10.104) 

are the linear interpolation functions. The displacement y (x , t) over element j , Eq. 
(10.103), can be expressed in terms of the nondimensional local coordinate E = j - x/  h 
as follows: 

Y(X, t )  = y[h(j - 0, tl = yJ(t,  t) = 4T(E>a,(t> (10.105) 

in which a, (t) = [aj-l (t) a, (t)lT is a vector of nodal displacements for element j and 
+([) = [q51 ([) 42([)]T is a vector of interpolation functions with components 

4 1 ( 0  = E, 42(0 = 1 - <,  0 < < < 1 (10.106) 

which are the same for every element. Moreover, the derivatives required for the kinetic 
energy and potential energy are 

and 

respectively. In addition, the distributed force can be expressed in terms of [ over element 
j as follows: 

f ( x , t ) = f [ h ( j - < ) , t l = f j ( E , t ) ,  0 < E < 1  (10.109) 

The derivation of the equations of motion parallels the derivation of the eigenvalue 
problem in Sec. 10.2. Hence, by analogy with Eqs. (10.6) and (10.17), the kinetic energy 
can be written in the form 

1 1 
= - x i T ( t ) ~ , a ~  (t) = -aT ( t ) ~ a ( t )  

2 j=1 2 

where 
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are the element mass matrices, in which p, (6)  is the mass density over element j and has 
an expression analogous to that given by Eq. (10.19). Moreover, a( t )  = [al ( t )  a2(t) . . . 
an(t)lT is the system nodal displacement vector, in which we considered the fact that 
ao(t) = 0, because the string is fixed at x = 0. In addition, M is the global mass matrix, 
and is similar in structure to that given in Fig. 10.4. Similarly, by analogy with Eqs. 
(10.5) and (10.14), the potential energy can be written as 

where 

are the element stiffness matrices, in which Tj  ( E )  is the string tension in the element j, 
and K is the global stiffness matrix having a structure similar to that in Fig. 10.4. 

Finally, we must discretize the virtual work of the conservative forces. To this end, 
we insert Eq. (10.105) into Eq. (10.102), consider Eq. (10.109) and write 

n 

= C ~ ; ( t ) 6 ~  ( t )  = F" (t)6a(t) 
j=l 

in which 

are the nodal forces and F(t) = [Fl ( t )  F2(t) . . . F, (t)lT is the global nodal force vector, 
and note that we omitted Fo(t) from F(t) because 6ao(t) = 0. Hence, the effect of the 
discretization process given by Eq. (10.1 15) is to generate concentrated forces acting at 
the nodal points to replace the distributed force f ( x ,  t ) .  We observe that, to obtain the 
global nodal force vector F(t) ,  we must carry out an assembly process, which amounts 
to adding the bottom component of F, ( t )  to the top component of F,+l ( t )  to generate 
the nodal force FJ ( t )  . 



The equations of motion for the discretized system can be obtained by inserting 
Eqs. (10.110) and (10.112) into Lagrange's equations, Eqs. (6.42), and carrying out the 
indicated differentiations. This is not really necessary, because from the quadratic forms 
of the kinetic energy and potential energy and the virtual work expression, we can write 
the equations of motion directly in the matrix form 

Ma(t) + Ka(t)  = F(t) (10.1 16) 

Of course, the same developments are valid for rods in axial vibration and shafts in 
torsion, subject to the parameter substitution specified in Table 8.1. 

With certain modifications, the preceding developments apply also to beams in 
bending (Sec. 10.4). In particular, the elements stiffness matrices K j  and mass matrices 
M, are 4  x 4 and they are given by Eqs. (10.63) and (10.65), respectively, and the 
element nodal displacement vectors are four-dimensional and have the form a j ( t )  = 
[yJPl  ( t )  hOj-1 ( t )  y j  ( t )  hOj (t)lT ( j  = 1,2, . . . , n). Moreover, using the analogy with 
Eqs. (10.1 15) in conjunction with Eqs. (10.58), the element nodal force vectors are 

r l  

We observe that the first and third components in F, ( t )  represent forces, whereas the 
second and fourth components represent moments, although they have units of force, 
because the rotations OJ- l  ( t )  and OJ ( t )  in the element modal displacement vector aJ ( t )  
have been multiplied by h so that all the components of aJ ( t )  have the same units. 

Consistent with the above, the global stiffness and mass matrices have structures 
similar to those shown in Fig. 10.10, the exact form depending on the boundary con- 
ditions. Finally, the third component of FJ ( t )  is to be added to the first component of 
F,+l ( t)  to obtain the nodal force FJ ( t )  and the fourth component of F, ( t )  is to be added 
to the second component of FJ+1(t) to obtain the nodal moment M, ( t ) ,  where we note 
that M, ( t )  actually has units of force. 

Example 10.6. Derive the equations of motion for the pinned-pinned beam of Example 
10.3. The beam is acted upon by the triangularly distributed force f ( x ,  t )  = ( x / L )  f ( t ) .  

The global mass and stiffness matrices entering into Eq. (10.1 16) were derived in 
Example 10.3 using 10 finite elements. Hence, the only task remaining is to derive the 
nodal force vector F(t) corresponding to the system nodal displacement vector 

a( t )  = [hQo(t) Y I  ( t )  hQl ( t )  ~ 2 0 )  h Q ~ ( t )  . . . y d t )  hQ&) h610(t)lT (a) 

To this end, we first use Eqs. (10.117) and derive the element nodal force vectors FJ ( t )  ( j  = 
1 ,2 , .  . . , l o ) .  Hence, recalling Eq. (10.109), we can write 

so that, inserting Eq. (b )  into Eqs. (10.1 17) and carrying out the indicated integrations, we 



obtain 

F, ( t )  = -- h : f ) i 1 ( j - 0 [ 3 < 2 - 2 ( 3  t2-c3 1 - 3 t 2 + 2 t 3  -<+2<2- f ' ]Td[  

-- - L f ( t )  [6(1Oj-7) 2 ( 5 j - 3 )  6 ( 1 0 j - 3 )  2 ( 5 j T  j = 1 2 , . . , 1 0  
1.2 104 

(c) 
Introducing the notation 

F ( t )  = --- L f  ('I ~ ~ j ,  j  = 1, 2 , .  . . ,10 
1.2 104 

(dl 

we can write the vectors Foi in the more explicit form 

[::I ["j ["I ['j 
Fo5 = 282 , Fo6 = 342 , F07 = 402 , Fog = 462 ' (el 

-46 -56 -56 -76 

Next, we carry out the assembly process. To this end, we recall that the translation 
of nodal point 1 is obtained b y  adding the third component of F1 ( t )  and the first component 
of Fz ( t )  and the rotation at the nodal point 1 is the sum of the fourth component of Fl ( t )  
and the second component of Fz(t) ,  etc. Moreover, the first component of Fl ( t )  and the 
third component of Flo(t)  must be deleted, because they correspond to yg(t) = ylo(t) = 0.  
The resulting system nodal force vector is 

8 840 8 960 8 1080 8 -961T (f) 
The desired equations of motion are obtained by inserting Eqs. (a) and (0, together with 
the global stiffness and mass matrices from Example 10.3, into Eq. (10.1 16). 

10.9 MATLAB PROGRAM FOR THE SOLUTION 
OF THE EIGENVALUE PROBLEM BY THE FINITE 
ELEMENT METHOD 

Although the formalism for the derivation of the eigenvalue problem by the finite element 
method is the same as for the Rayleigh-Ritz method, the details for generating the 
mass and stiffness matrices are different. In fact, as far as MATLAB programming is 
concerned, it turns out that the generation of the mass and stiffness matrices by the 
finite element method requires a more elaborate program than that by the Rayleigh-Ritz 
method. Following is a MATLAB program for solving the eigenvalue problem for the 
pinned-pinned beam of Example 10.3. 



% The program 'femppb.ml computes the natural frequencies and modes of the pinned- 
% pinned beam of Example 10.3 and plots the modes 

clear 
clf 

n=10; % number of finite elements 
Ke=[12 6 -12 6 ; 6 4 -6 2 ; -12 -6 12 -6 ; 6 2 -6 4]*nA3; % element stiffness 
% matrix 
Me=[156 22 54 -13 ; 22 4 13 -3 ; 54 13 156 -22 ; -13 -3 -22 4]/(420*n); 
% element mass matrix 
ke=[l 1 1.44 1.44 1.96 1.96 1.44 1.44 1 11; % stiffness distribution over the 
% elements arranged in an ten-dimensional vector 
me=[1 1 1.2 1.2 1.4 1.4 1.2 1.2 1 11; % mass distribution over the elements 
% arranged in an n-dimensional vector 

for k=l:n, 
IC(k,l)=k; % generation of a connectivity array placing the element stiffness and 
IC(k,2)=k+l; % mass matrices in the global stiffness and mass matrices 

end 

Kl=zeros (2*n+2,2*n+2); % nulling the global stiffness and mass matrices before 
Ml=zeros (2*n+2,2*n+2); % enforcement of the boundary conditions 
K=zeros (2*n,2*n); % nulling the stiffness matrix 
M=zeros (2*n,2*n); % nulling the mass matrix 

for k=l:n, 
for p=1:2, 

for q=1:2, 
K1(2*IC(k,p)-1,2*IC(k,q) -1)=K1(2*IC(k,p)-1,2*IC(k,q)-1) +ke(k)*Ke(2*p-1,2 

*q-1); 
K1(2*IC(k,p) - 1,2*IC(k,q))=K1(2*IC(k,p) -1,2*IC(k,q))+ke(k)*Ke(2*p -1,2*q); 
K1(2*IC(k,p),2*IC(k,q)-l)=K1(2*IC(k,p),2*IC(k,q)-l) +ke(k)*Ke(2*p,2*q-1); 
K1(2*IC(k,p),2*IC(k,q))=K1(2*IC(k,p),2*IC(k,q)) +ke(k)*Ke(2*p,2*q); 
M1(2*IC(k,p)-1,2*IC(k,q) -1)=M1(2*IC(k,p) -1,2*IC(k,q)-l)+me(k)*Me(2*p- 

1,2*q-1); 
M1(2*IC(k,p) -1,2*IC(k,q))=M1(2*IC(k,p)-1,2*IC(k,q))+me(k)*Me(2*p-1,2*q); 
M1(2*IC(k,p), 2*IC(k,q)-1)=M1(2*IC(k,p),2*IC(k,q)-l)+me(k)*Me(2*p,2*q-l); 
M1(2*IC(k,p),2*IC(k,q))=M1(2*IC(k,p),2*IC(k,q))+me(k)*Me(2*p,2*q) ; 
% assembly of the global matrices before enforcement of the boundary 
% conditions 

end 
end 

end 

for i=2:(2*n), 
for j=2: (2*n), 
K(i-1,j-l)=Kl(i,j); 
M(i-1,j-1)=Ml (i,j); 



end 
end 

for i=2: (2*n), 
K(2*n,i-l)=Kl(2*n+2,i); 
K(i- 1,2*n)=Kl(i,2*n+2); 
M(2*n,i-l)=Ml(2*n+2,i); 
M(i-1,2*n)=Ml(i,2*n+2); 

end 
K(2*n,2*n)=K1(2*n+2,2*n+2); 
M(2*n,2*n)=M1(2*n+2,2*n+2); 
% enforcement of the boundary conditions by retaining and relabeling the 
% nonzero entries 

[v,W]=eig(K,M); % solution of the algebraic eigenvalue problem using MATLAB 
% function 

for i=l:2*n, 
w l(i)=sqrt(W(i,i)); % natural frequencies arranged in a 2n-dimensional vector 
a=l/sqrt(v(:,j)'*M*v(:,j)); % normalization factors 
V(:,i)=a*v(:,i); normalization of the eigenvectors 

end 

[w,I]=sort(wl); % arranging the natural frequencies in ascending order 
for j=1:2*n, 

U1 (:,j)=V(:,I(i)); % arranging the modal vectors in ascending order 
end 

for i=l:2*n-1, 
for j=1:2*n-1, 

U(i+lj+l)=Ul(i,j); 
end 

end 

for j=l:2*n-1, 
U(2%+2,j+l)=U1(2*nj); 
U(j+1,2*n+2)=Ul(j,2*n); 

end 
U(2*n+2,2*n+2)=U1(2*n,2*n); 

s=[l:-0.05:0]; % local coordinate increments 
phil=3*sA2-2*s.^3; phi2=s.^2-s.^3; phi3=1-3*s.^2+2*s.^3; phi4=-~+2*~.^2-s.^3; 

for m=2:4, 
y=[ I; 
x=[ I; 
f=O.l; 
if m>=3; f=0.2; end 
axes('positionf ,[0.3 0.8-0.35*(m-2) 0.4 f l )  



for k=l:n, 
y l=phil *U(2*IC(k, 1)- I ,m)+phi2*U(2*1C(k,l),m)+phi3*U(2*IC(k,2)-1 ,m)+phi4* 

U(2*IC(k,2),m); 
xl=(k-s)/n; 
Y'[Y yll;  
x=[x xl]; 

end 

end 

10.10 SUMMARY 

In this textbook, we subscribe to the point of view that the finite element method is a 
Rayleigh-Ritz method, so that the finite element method can be assumed to share the 
formalism and theory developed for the Rayleigh-Ritz method. The most important 
difference between the two spatial discretization techniques lies in the nature of the 
trial functions. In the finite element method, the trial functions, known as interpolation 
functions, are low-degree polynomials defined over small finite elements, whereas in the 
Rayleigh-Ritz method they tend to be involved functions defined over the entire domain. 
It is the use of small finite elements that gives the finite element method enormous 
versatility in solving problems with complex geometry. 

Strings in transverse vibration, rods in axial vibration and shafts in torsion rep- 
resent second-order systems. The interpolation functions most commonly used in such 
cases are linear, which are the lowest-degree polynomials admissible. The derivation 
of the mass and stiffness matrices follows a well-established pattern, which consists 
of first deriving element matrices and then assembling them into global matrices. At 
some point, it is necessary to enforce the boundary conditions. Improper enforcement 
of the boundary conditions can result in singular global matrices. The components of 
the displacement vector for systems discretized by the finite element method represent 
actual displacements at the nodes, where nodes are defined as boundary points shared 
by adjacent finite elements (not points of zero displacement, as commonly defined in 
vibrations). Moreover, the computation of the element matrices can be greatly simplified 
by the use of nondimensional local coordinates. Although quadratic and cubic interpo- 
lation functions yield better accuracy than linear interpolation functions, this advantage 



is negated by the simplicity of the latter. Note that, if a sufficient number of elements is 
used in conjunction with linear interpolation functions, computer plots appear as con- 
tinuous. For beams in bending, which represent fourth-order systems, the lowest-degree 
polynomials that qualify as interpolation functions are cubics. In particular, the Her- 
mite cubics are almost universally used. The displacement vector includes, in addition 
to actual nodal translational displacements, also nodal rotations. The derivation of the 
global mass and stiffness matrices follows the same pattern as for second-order systems, 
but the details are more involved. Moreover, the number of degrees of freedom for the 
same number of elements is twice as large, as there are two nodal displacements per el- 
ement. Trusses represent assemblages of rods undergoing axial deformations, as well as 
transverse rigid-body translations. On the other hand, frames represent assemblages of 
structural members in bending, some subjected to axial forces, although the effect of the 
latter can be neglected at times. The assembly of element matrices into global matrices 
is significantly more involved for trusses and frames than for one-dimensional systems. 

Determination of the system response by the finite element method requires the 
derivation of the force vector, in addition to the mass and stiffness matrices. To this end, 
it is convenient to begin with the virtual work expression and follow the same steps as for 
the generation of global matrices, namely, derivation of the element nodal force vectors, 
global nodal force vector and enforcement of the boundary conditions, where the latter 
ordinarily amounts to deleting appropriate global nodal force vector components. 

A MATLAB program for the finite element solution of the eigenvalue problem 
for the pinned-pinned beam of Example 10.3 is included. Whereas the computational 
details involved in the finite element method are relatively simple, the computer program 
is more involved than one would expect. 

PROBLEMS 

10.1. Derive the eigenvalue problem for the tubular shaft of Problem 9.1 by means of the finite 
element method using linear interpolation functions. Solve the eigenvalue problem using 
10 finite elements and compare the three lowest eigenvalues with those obtained in Problem 
9.17 by means of the Rayleigh-Ritz method and draw conclusions concerning the accuracy 
of the two sets of results. Plot the three lowest modes obtained here. 

10.2. Derive the eigenvalue problem for the rod of Problem 9.2 by means of the finite element 
method using linear interpolation functions. Solve the eigenvalue problem using 10 finite 
elements and compare the three lowest eigenvalues with those obtained in Problem 9.18 by 
means of the Rayleigh-Ritz method and in Problem 9.28 by means of the enhanced Rayleigh- 
Ritz method and draw conclusions concerning the accuracy of the three sets of eigenvalues. 
Plot the three lowest modes obtained here. 

10.3. Solve Problem 10.1 with quadratic interpolation functions instead of linear. 
10.4. Solve Problem 10.2 with quadratic interpolation functions instead of linear. 
10.5. Solve Problem 10.1 with cubic interpolation functions instead of linear. 
10.6. Solve Problem 10.2 with cubic interpolation functions instead of linear. 
10.7. Derive the eigenvalue problem for the rod of Problem 9.19 by means of the finite element 

method using linear interpolation functions. Solve the eigenvalue problem corresponding to 
10 finite elements and compare the three lowest eigenvalues obtained here with those obtained 
in Problem 9.19 by means of the Rayleigh-Ritz method with n = 6 and draw conclusions. 
Plot the three lowest modes. 



10.8. Derive the eigenvalue problem for the tapered beam of Problem 9.5 by means of the finite 
element method using Hermite cubics as interpolation functions. Determine the number of 
finite elements required to compute the lowest eigenvalue with the same accuracy as that 
obtained in Problem 9.20 by means of the Rayleigh-Ritz method using six trial functions. 
Begin computations with six finite elements. Plot the three lowest modes. 

10.9. Derive the eigenvalue problem for the beam of Problem 8.16 by means of the finite element 
method using Hermite cubics as interpolation functions. Then, solve the eigenvalue problem 
using an increasing number of elements and determine the number of elements required to 
compute the lowest eigenvalue with the same accuracy as that obtained in Problem 9.31 by 
means of the Galerkin method using eight comparison functions. Begin computations with 
eight finite elements. Plot the three lowest modes. 

10.10. Derive the eigenvalue problem for the beam of Problem 9.21 by means of the finite element 
method using Hermite cubics as interpolation functions. Solve the eigenvalue problem cor- 
responding to 10 finite elements and compare the three lowest eigenvalues obtained here with 
those obtained in Problem 9.21 by means of the Rayleigh-Ritz method with n = 6 and draw 
conclusions. Plot the three lowest modes. 

10.11. Derive the eigenvalue problem for the aircraft of Problem 9.24 by means of the finite element 
method using Hermite cubics as interpolation functions. Solve the eigenvalue problem cor- 
responding to 10 finite elements and compare the two lowest nonzero eigenvalues obtained 
here with those obtained in Problem 9.24 by means of the Rayleigh-Ritz method with n = 8 
and draw conclusions. Plot the two lowest elastic modes. 

10.12. The truss shown in Fig. 10.16 is pinned at all joints and has the following parameters: 
mi = m (i = 1,2, ... S ) ,  E A I  = EAq = EA,  EA2 = EA3 = EA5 = 1.5EA. Derive and 
solve the eigenvalue problen~ modeling the truss by means of one finite element per structural 
member and using linear interpolation functions. 

FIGURE 10.16 
Tmss for Problem 10.12 

10.13. The truss shown in Fig. 10.17 is pinned at all joints and has the following parameters: 
m, = m (i = 1 , 2 , .  . .7), EA1 = EA2 = EA7 = EA,  EA3 = EA4 = EA5 = EA6 = 1.5EA. 



Derive and solve the eigenvalue problem modeling the truss by means of one finite element 
per structural member and using linear interpolation functions. 

FIGURE 10.17 
Truss for Problem 10.13 

10.14. Solve Problem 10.12 modeling the truss by means of two finite elements per strnctural 
member. Compare the eigenvalues obtained in Problem 10.12 with those obtained here and 
draw conclusions. 

10.15. Solve Problem 10.13 modeling the truss by means of two finite elements per structural 
member. Compare the eigenvalues obtained in Problem 10.13 with those obtained here and 
draw conclusions. 

10.16. The two-story frame of Fig. 10.18 has the following parameters: rnl = rn3 = rn4 = m6 = rn, 
rn2 =mg = 1.2~1,  II  =13 = 14 = 16 = 1,  12 = Z5 =21,  H =0.8L. Deriveand solve the 
eigenvalue problem by means of the finite element method using Hermite cubics and modeling 
the frame by means of one finite element per structural member. 



FIGURE 10.18 
Two-story frame for Problem 10.16 

10.17. Solve Problem 10.16 modeling the frame by means of two finite elements per member. 
Compare the eigenvalues obtained in Problem 10.16 with those obtained here and draw 
conclusions. 

10.18. Obtain the response of the shaft of Problem 10.1 to the distributed torque m ( x ,  t )  = 
mo{(2x/L)m(x)  - 2[(2x - L ) / L ] m ( x  - L/2)}S( t ) ,  where ~ ( x  - a )  is a spatial unit step 
functions beginning at x = a  and 6( t )  is the unit impulse. 

10.19. Obtain the response of the beam of Problem 10.8 to the distributed vertical force f ( x ,  t )  = 
fo[l - ( x / ~ ) ' / 2 ] m ( t )  using six finite elements, where m(t )  is the unit step function. 

10.20. Solve Problem 10.1 by MATLAB. 
10.21. Solve Problem 10.2 by MATLAB. 
10.22. Solve Problem 10.7 by MATLAB. 
10.23. Solve Problem 10.8 by MATLAB. 
10.24. Solve Problem 10.9 by MATLAB. 
10.25. Solve Problem 10.10 by MATLAB. 
10.26. Solve Problem 10.1 1 by MATLAB. 
10.27. Solve Problem 10.12 by MATLAB. 
10.28. Solve Problem 10.13 by MATLAB. 
10.29. Solve Problem 10.16 by MATLAB. 
10.30. Solve Problem 10.18 by MATLAB. 
10.31. Solve Problem 10.19 by MATLAB. 



CHAPTER 

NONLINEAR OSCILLATIONS 

As pointed out in Sec. 1.7, the question as to whether a system exhibits linear or nonlinear 
behavior cannot be answered unequivocally, unless the range over which the system 
operates is specified. Indeed, the answer to this question depends on the relation between 
the excitation and response, which in turn depends on that range. When a spring is 
subjected to a tensile force it stretches. Over a given range, generally corresponding to 
small deformations, the deformation is proportional to the restoring force in the spring, 
so that the relation between the two is linear, in which case the range is said to be linear. 
Beyond a certain point, however, the deformation ceases to be proportional to the force, 
so that the relation is nonlinear, and so is the range. The restoring force increases at 
a higher rate than the deformation for a "hardening spring" and at a lower rate for a 
"softening spring." Hence, the same simple mass-spring oscillator must be regarded 
as a linear system if its motion is confined to the linear range of the spring, and as a 
nonlinear system if its motion exceeds the linear range. Quite often, the point separating 
the linear from the nonlinear range is somewhat arbitrary, as it depends on the accuracy 
with which the response is measured. Perhaps the concept can be illustrated better by 
means of a simple pendulum. From Example 1.2, we see that the restoring moment 
about the point of support 0 is M,  = -mgL sing, where mg is the weight of the bob, 
L the length of the string and 0 the angle from the equilibrium position, where the latter 
coincides with the vertical through point 0. Hence, the linear range can be identified as 
that in which sin 0 can be approximated by 0, which raises immediately the question of 
accuracy of the approximation. In this regard, we recall that sin 6' represents an infinite 
series, which must be truncated for practical purposes, where the truncation is dictated 
by the number of accurate decimal places desired. Indeed, sine can be regarded as 
being equal to 6' when it is computed with four decimal places accuracy and different 
616 



FUNDAMENTAL CONCEPTS IN STABLITY EQUILIBRIUM POINTS 617 

from 0 with six decimal places. The preceding discussion was mainly to convey the 
idea that under certain circumstances a system can be regarded as linear and under other 
circumstances the same system must be treated as nonlinear. As pointed out in Sec. 2.1, a 
simple pendulum can be regarded as linear for surprisingly large angular displacements, 
as the error in approximating sin0 by 0 for 0 = 20" is about 2% and for 0 = 30" is less 
than 5%. 

The fact that a system is linear has profound implications on the analysis of vibra- 
tions problems, because the principle of superposition holds for linear systems alone, 
and does not hold for nonlinear systems. We recall from Sec. 1.12 that the principle 
of superposition states that the response of a linear system to a linear combination of 
excitations can be obtained by first obtaining the response to the individual excitations 
separately and then combining the individual responses linearly. There is no counterpart 
to the principle of superposition for nonlinear systems. This explains why the linear 
system theory is so well developed, and why the treatment of nonlinear systems often 
requires ad hoc methods of attack. In fact, because of the relative ease with which linear 
systems can be treated, one approach to nonlinear systems consists of assuming that the 
motion is confined to the neighborhood of known solutions, a process referred to as lin- 
earization. To be sure, caution must be exercised in using linearization, as demonstrated 
in this chapter. 

There are many approaches to the study of nonlinear systems, but they can all be 
divided into two broad classes, qualitative and quantitative. In the qualitative approach, 
the interest lies not so much in the explicit time history of the motion of the system as 
in a statement whether the motion in the neighborhood of a known solution is stable 
or unstable. For the most part, the known solution represents an equilibrium position. 
On the other hand, the quantitative approach is concerned with just these time histories. 
When the system nonlinearity is relatively small, a solution may be possible by a per- 
turbation technique whereby the response is expanded in a series in a small parameter 
representing a measure of the magnitude of the nonlinearity. Of special interest here is 
the case in which the actual solution is known to be periodic. When the nonlinearity is 
not small, time histories can be obtained by numerical integration, which requires that 
the equations of motion be cast in state form. In this chapter, we discuss both qualitative 
and quantitative techniques. 

11.1 FUNDAMENTAL CONCEPTS IN STABILITY. EQUILIBRIUM 
POINTS 

In Sec. 1.13, we introduced definitions of equilibrium points and stability of motion 
about equilibrium points by means of a vibrating single-degree-of-freedom system. In 
this section, we extend these concepts to general multi-degree-of-freedom dynamical 
system. 

We are concerned with the motion of an arbitrary n-degree-of-freedom system 
described by the differential equations 

where fi are in general nonlinear functions of the generalized coordinates qi( t )  and 



generalized velocities q, (t) (i = 1,2, . . . , n); they represent generalized forces per unit 
mass and include both conservative and nonconservative forces. Assuming that the 
functions f, and the initial displacements q, (0) and initial velocities 4, (0) are given, 
Eqs. (11.1) can be integrated, at least in theory, to obtain the coordinates q, (t) (i = 
1,2, . . . , n) as explicit functions of time. 

The solution of Eqs. (1 1.1) can be given a geometric interpretation by conceiving 
of an n-dimensional space defined by the coordinates q, and known as the conJiguration 
space. For a given value of time, the solution qi (t) (i = 1,2, . . . , n) can be represented 
by an n-dimensional vector q(t) = [ql (t) q2(t) . . . q,(t)]T in the configuration space, 
with the tip of the vector defining a point P called the representative point. As time 
unwinds, point P traces a path in the configuration space (Fig. 11.1) showing how 
the solution varies with time, although the time appears only implicitly. Whereas this 
geometric description is intuitively appealing, it is not very useful, because it does not 
describe the motion uniquely. As a simple illustration, we can envision the motion in 
the x ,  y-plane of a projectile leaving the gun muzzle with the velocity v = [i j lT  in a 
direction making an angle /3 relative to the horizontal axis. Neglecting air resistance, 
so that the projectile moves under the gravitational force alone, the path traced by the 
projectile in the x ,  y-plane is a parabola, with the time t playing the role of a parameter. 
The shape of the parabola depends on the initial conditions x (0), y (0), i (0) and j(0) ; 
Fig. 11.2 shows two parabolas, both corresponding to the case in which x (0) = y (0) = 0. 
By changing the initial velocities, the parabolas change, and the possibility exists that the 
two parabolas will intersect. At the point of intersection between two parabolas, unless 
more information than the position of the intersection point is available, it is not possible 
to say which path the projectile will follow. In particular, the same position corresponds 
to different velocities, and hence to different slopes (Fig. 11.2). It follows that, unless 
both the position and velocity vectors are specified, the motion is not described uniquely. 
In the following, we consider a geometric description of the motion that does not suffer 
from this drawback. 

FIGURE 11.1 
Point P tracing a path in the configuration space 
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FIGURE 11.2 
Intersecting paths in the configuration plane 

Equations (1 1.1) represent a set of second-order Lagrangian equations of motion 
in terms of the generalized coordinates q, ( t )  (i = 1,2, . . . , n). Quite often, the equations 
are nonlinear, and no closed-form solution to nonlinear equations can be expected in 
general. Hence, for the most part, it is necessary to integrate the equations numeri- 
cally. It is another drawback of second-order equations, and one intimately related to 
the difficulties in describing the motion geometrically in the configuration space, that 
second-order equations are not very suitable for numerical integration. Indeed, first- 
order differential equations are not only quite suitable for numerical integration but also 
permit a satisfactory geometric description of the solution. Hence, it is only natural to 
seek a transformation from the set of n second-order Lagrangian equations, Eqs. (1 1. l), 
to a set of first-order equations. To this end, we introduce the generalized momenta 

p, = aL/aq,, i = 1,2 ,... , n  (1 1.2) 

as a set of auxiliary variables, where L is the Lagrangian. But, from Sec. 6.4, and 
Example 6.1, we conclude that the Lagrangian is quadratic in the generalized velocities 
q,, so that p, are linear combinations of 4, with the coefficients of 4, being in general 
nonlinear functions of qi (i = 1,2, . . . , n). By the same token, 4, are linear combinations 
of p, . Hence, eliminating q, in favor of p, in Eqs. (1 1 . l)  and using Eqs. (1 1.2), it is 
possible to obtain a set of 2n first-order equations in q, and pi (i = 1,2, . . . , n) replacing 
the n second-order equations, Eqs. (1 1.1). 

The transformation from n second-order equations to 2n first-order equations can 
be carried out more efficiently by beginning with a set of generic Lagrange's equations, 
Eqs. (6.42), in which T - V was replaced by L, and ending with a set of generic 2n 
first-order equations known as Hamilton's equations (Ref. 13). Consistent with this for- 
mulation, it is possible to conceive of a 2n-dimensional space defined by the generalized 
coordinates q, and generalized momenta p, (i = 1,2, . . . , n) and known as the phase 
space. Then, the solution of Hamilton's equations for a given set of initial conditions 
q, ( Q ) ,  p, (0) (i = 1,2, . . . , n) can be described geometrically as a trajectory in the phase 
space. The advantage of the motion representation in the 2n-dimensional phase space 
over the representation in the n-dimensional configuration space is that trajectories in 
the phase space corresponding to different initial conditions do not intersect and have 
the appearance of a steady fluid flow. The implication is that each trajectory is unique to 
a given set of initial conditions. Exceptions to this rule are certain points representing 
special solutions, as discussed later in this section. 



As pointed out earlier in this section, to determine uniquely the trajectory of a 
projectile at any time, it is necessary to specify both the position and velocity vec- 
tors. Extending the idea to an n-degree-of-freedom system, such as that described by 
Eqs. (1 1.1), this amounts to specifying the generalized coordinates q, (t) and general- 
ized velocities q, (t) (i = 1,2, . . . , n). The phase space description of the motion does 
essentially the same thing, but in an indirect manner, through the generalized momenta 
pl (t) ( i  = 1,2, . . . , n). A simpler approach, and one used almost exclusively in engi- 
neering, is to work with q, (t) and q, (t) directly, i.e., without first using p, (t). To this 
end, we first introduce the notation 

Then, we combine the first two groups in Eqs. (1 1.3) into a set of identities playing the 
role of n auxiliary equations, transform the dynamical equations, Eqs. (1 1. I), into a set n 
first-order equations using the notation of Eqs. (1 1.3) and obtain the set of 2n first-order 
equations 

i i  (t) = Xi [XI (t), ~2 ( t ) ,  . . . , ~2~ (t)], i = 1,2, . . . ,2n (1 1.4) 

which are known as state equations; correspondingly, x, ( t )  (i = 1,2,  . . . ,2n) represent 
state variables. The variables x, (t) can be used to define a 2n-dimensional vector x(t) = 
[XI ( t )  x2 (t) . . . xzn (t)lT called the state vector. It is the same state vector first introduced 
in a narrower context in Sec. 7.16. Similarly, the quantities X, (t) can be regarded as the 
component's of the 2n-dimensional vector X(t) = [XI (t) X2(t) . . . ~2~ (t)lT, SO that 
Eqs. (1 1.4) can be written in the compact vector form 

It is convenient to think of X(t) as an excitation vector, although only the bottom half 
of the vector can be regarded as such. The components x, of the state vector define a 
2n-dimensional space called the state space. At any time t, the solution x(t) of Eq. (1 1.5) 
represents a vector in the state space. As time unwinds, the tips of the state vectors x(t) 
corresponding to different inertial conditions trace unique, nonintersecting trajectories in 
the state space resembling stream lines in fluid flow, as shown in Fig. 11.3. Exceptions are 
certain points, as discussed in the following paragraph. The trajectories in the state space 
are topologically equivalent to those traced by the solutions of Hamilton's equations in 
the phase space. 

A point for which x T X  = x?EI X: > 0 is referred to as an ordinary point, or a 
regular point. On the other hand, a point for which X = 0 is called a singular point, or 
an equilibrium point. Recognizing from Eq. (1 1.5) that x vanishes at points for which X 
is zero, and recalling that the upper half of the state vector x consists of displacements 
and the lower half consists of velocities, we conclude that the vanishing of x implies 
that all velocity and acceleration components are zero, which explains why a singular 
point is called an equilibrium point. It should be pointed out that, although it may not be 
immediately obvious, the concept of equilibrium points just defined is the same as that 
discussed in Secs. 1.10 and 1.13. In view of the fact that x is zero at a singular point, 
which implies that both the magnitude and direction of x are zero, there can be more 



FIGURE 11.3 
Nonintersecting trajectories in the state space 

than one trajectory beginning from or terminating at a singular point. This identifies 
the singular points as the special points mentioned earlier at which trajectories are not 
unique. However, not too much importance should be attached to this fact. Indeed, we 
observe that, because velocities reduce to zero at singular points, trajectories can only 
reach such points as t i f oo. It follows that the lack of uniqueness of trajectories 
at singular points does not compromise in any way the geometrical description of the 
motion in the state space. 

Because x is zero at an equilibrium point, the state vector at such a point must be 
constant; we denote that constant vector by x,, where x, must satisfy the equilibrium 
equation 

Recalling that the upper half of the state vector x consists of displacements and the lower 
half consists of velocities, it follows that equilibrium points are such that 

q, = constant, q, = 0 (1 1.7) 

which implies that all equilibrium points lie in the conjiguration space. But, from 
Eqs. (11.3), we conclude that the upper half of Eq. (11.6) is identically zero and the 
lower half represents the set of n algebraic equilibrium equations 

with the components ql,, qz,, . . . , q,, of the equilibrium displacement vector q, as the 
unknowns. If f, are linear functions of ql,, q2,, . . . , q,,, there is only one equilibrium 
point, and if f, are nonlinear functions of ql,, qz,, . . . , q,,, there is in general more than 
one equilibrium point. An important question in dynamics is how the solution behaves 



in the neighborhood of equilibrium points, and in particular how stable is the motion 
in the neighborhood of equilibrium points. When an equilibrium point coincides with 
the origin of the state space, the equilibrium is said to be trivial, and the corresponding 
solution is referred to as the null, or trivial solution. 

In Sec. 1.13, we introduced some simple definitions of stability. In this section, 
we provide some rigorous definitions. To this end, it is necessary to introduce a quantity 
serving as a measure of the amplitude of motion from equilibrium in a general sense. 
For convenience we assume that the equilibrium is at the origin of the state space, so that 
our interest lies in the stability of the trivial solution. In this case, a reasonable measure 
of the amplitude of motion is simply the distance from the origin of the state space to a 
point on the trajectory x( t ) ,  which is the same as the magnitude of the state vector x(t) .  
A measure of this magnitude is provided by the Euclidean norm, or Euclidean length, 
of the state vector x(t) ,  defined as ( (x ( t ) ( (  = [ ~ ~ ( t ) x ( t ) ] ' / ~  = [~ ; ! ! , x ; ( t ) ]~ /~ .  Then, a 
sphere of radius r with the center at the origin of the state space can be written simply 
as llxll = r and the domain inside the sphere as llxll < r . 

The most frequently used definitions of stability are due to Liapunov and can be 
stated as follows: 

1. The trivial solution is stable in the sense of Liapunov if for any arbitrary positive 
quantity e there exists a positive quantity 6 such that the satisfaction of the inequality 

implies the satisfaction of the inequality 

where xo = x(0) is the initial state vector. 
2. The trivial solution is asymptotically stable if it is Liapunov stable and in addition 

lim Ilx(t) 11 = 0 
t+oO 

(11.11) 

3. The trivial solution is unstable if it is not stable. 

Geometrically, the trivial solution is stable if any motion initiated inside the sphere 
llxll = 6 remains inside the sphere llxll = E for all times. If in addition the motion 
approaches the origin as t -+ co, the trivial solution is asymptotically stable. The trivial 
solution is unstable if x( t )  reaches the boundary of the sphere ( ( x  ( 1  = E in finite time. The 
three possibilities are illustrated in Fig. 11.4. The solution labeled as I is merely stable, 
solution TI is asymptotically stable and solution 111 is unstable. 

The Liapunov stability definitions are very precise, but they are mere definitions; 
they do not provide ways of ascertaining stability or instability. Perhaps the most effective 
way of investigating stability is to linearize the state equations about equilibrium, solve 
the associated eigenvalue problem and draw stability conclusions based on the nature 
of the eigenvalues. To this end, we assume that the state variables can be written in the 
form 

xi ( t )  = xi, + xi ( t )  , i = 1,2,  . . . ,2n (11.12) 



FIGURE 11.4 
Trajectories in the state space illustrating mere 
stability (I), asymptotic stability (11) and instability (111) 

where x,, are constants representing the values of the state variables at a given equilibrium 
point and X i  ( t )  are small perturbations from the equilibrium point, and expand the right 
side of Eqs. (1 1.4) in the Taylor's series 

2n ax, 
x1 [ X I  ( t ) .  x2(t). . . . , x h ( t ) ~  = X ,  ( X I , ,  x2,,. . . , x2,,,) + c - 1  ii ( t )  + 0(i2), 

J=I 8x1 .=xe 

where 0 (i2) denotes terms of degree two and higher in the state variables perturbations 
X I  ( t ) ,  X 2  ( t ) ,  . . . , X Z n  ( t ) ,  i.e., nonlinear terms. But, by virtue of the equilibrium equations, 
Eq. ( 1  1.6), the first term on the right side of Eqs. ( 1  1.13) is zero. Hence, introducing the 
notation 

in which alJ are constant coefficients, and ignoring the nonlinear terms, Eqs. ( 1  1.13) 
reduce to 

2n 

a i ( t ) ,  i = l , 2  ,..., 2n Xi [ X I  ( t ) ,  ~ 2 ( t ) ,  . . . , xzn(t)I= C 11 1 (11.15) 
~ = 1  

But, Eqs. (1 1.12) can be combined into 

where i ( t )  = [Zl ( t )  X2(t) . . . ZZn ( t ) l T  is the perturbation in the state vector. In view of 
this, Eqs. (1 1.15) can be written in the compact matrix form 



where A = [aij] is the coefficient matrix. Because x, is a constant vector, it follows from 
Eq. (1 1.16) that 

Inserting Eqs. (1 1.17) and (1 1.18) into Eq. (1 1 .3 ,  we obtain the linearized state equations 
in the matrix form 

Equation (1 1.19) represents a set of simultaneous homogeneous differential equations 
having the exponential solution 

f (t) = feXt (1 1.20) 

in which f is a constant 2n-dimensional vector and X is a constant scalar. Introducing 
Eq. (1 1.20) in Eq. (1 1.19) and dividing through by eXt , we obtain the algebraic eigenvalue 
problem 

The solution of the eigenvalue problem, Eq. (11.21), consists of 2n eigenvalues 
A, and eigenvectors f, (r = 1,2, . . . ,2n). As can be concluded from Eq. (1 1.20), the 
behavior of the solution depends on the eigenvalues. Because the coefficiellt matrix A 
is real, if some or all of the eigenvalues are complex, then they must occur in pairs of 
complex conjugates. We consider the following cases: 

1. All the eigenvalues are pure imaginary. In this case, it is convenient to introduce 
the notation 

so that, from Eq. (1 1.20), the solution of Eq. (1 1.19) has the general form 

Hence, the response consists of a superposition of pure oscillatory terms, in which 
w, (r = 1,2, . . . , n) are recognized as frequencies of oscillation. Because the response 
neither goes to zero with time nor does it increase without bounds, the motion in the 
neighborhood of equilibrium is merely stable, such as typified by curve I in Fig. 11.4. 

2. Some eigenvalues are complex and the rest are real, and all the complex eigen- 
values possess negative real part and all the real eigenvalues are negative. In 
this case, from Eq. (1 1.20), the response tends to zero as t -+ oo. If all the eigenval- 
ues are complex the motion represents oscillatory decay, and if all the eigenvalues 
are real the motion represents aperiodic decay. In all these cases, the equilibrium is 
asymptotically stable, and the trajectories resemble curve I1 in Fig. 11.4. 



FIGURE 11.5 
A-plane divided into regions of mere stability, asymptotic stabilitiy and instability 

3. Some eigenvalues are complex and the rest are real, and at least one complex 
eigenvalue pair possesses positive real part, or at least one real eigenvalue is 
positive. In this case, the response increases with time, so that the trivial solution is 
unstable; the corresponding trajectories resemble curve 111 in Fig. 11.4. 

It is convenient to represent the eigenvalues by points in a complex plane referred to as 
the A-plane (Fig. 11.5). For mere stability, all the eigenvalues must lie on the imaginary 
axis. On the other hand, for asymptotic stability, all the eigenvalues must lie in the left 
half of the A-plane (excluding the imaginary axis). Finally, for instability, at least one 
eigenvalue must lie in the right half of the A-plane (excluding the imaginary axis). 

Stability statements concerning nonlinear systems, but based on linearized equa- 
tions are qualified by referring to them as infinitesimal stability statements. If the lin- 
earized system is judged as asymptotically stable, or unstable, it is said to exhibit sig- 
nificant behavior. On the other hand, if the linearized system is found to be merely 
stable, it is said to exhibit critical behavior: Ifthe linearized system possesses signiJicant 
behaviol; then the stability characteristics of the nonlinear system are the same as those 
of the linearized system. On the other hand, i f  the linearized system possesses critical 
behavior: the stability conclusions do not necessarily extend to the full nonlinear system, 
so that the nonlinear terms must be taken into account. 

Example 11.1. Consider the two-degree-of-freedom system with a nonlinear spring shown 
in Fig. 11.6a, derive the state equations of motion, determine the equilibrium points and 
investigate the stability in the neighborhood of the equilibrium points. The force in the 
nonlinear spring has the expression 



Nonlinear 
spring 

b. 
FIGURE 11.6 
a. Damped two-degree of freedom system, b. Free-body diagrams 

Using Newton's second law in conjunction with the free-body diagrams of Fig. 11.6b, 
we can write 

2mq2 = cql - cq2 + kql - kg2 

so that the equations of motion are as given by Eqs. (1 1. l ) ,  in which 

Then, using the notation ql = X I ,  q2 = x2, q1 = x3, q2 = x4 in conjunction withEqs. (1 1.3), 
the state equations are 

1 
x4 = - (cx3 - C X ~  + kxl - kx2)  

2m 

The state equations have the matrix form given by Eq. (1 1.5) in which the state vector is 



x = [xl  x2 x3 x41T and the "excitation vector" is 

According to Eq. (1 1.6), the equilibrium points are obtained by setting X equal to 
zero, which yields the four equilibrium equations 

1 
X4 = - (cx3 - cx4 + kxl - kx2) = 0 

2m 

Solving Eqs. (f), we obtain three equilibrium points, the trivial one and two nontrivial ones, 
as follows: 

In terms of physical coordinates and velocities, they are given by 

confirming a statement made earlier that all equilibrium points lie in the configuration space. 
To investigate the stability of the equilibrium points, we first write 

Equations (i) can be used to derive the entries alJ of the coefficient matrix A corresponding 
to the individual equilibrium points. Introducing the first of Eqs. (g) in Eqs. (i), we obtain 
the coefficient matrix for the equilibrium point el 

r 0  0 1 0 1 



Similarly, using the second of Eqs. (g), the coefficient matrix for the equilibrium point e2 
is simply 

The coefficient matrix for the equilibrium point e3 is the same as for e2, which indicates 
that the two equilibrium points are dynamically equivalent. 

The eigenvalue problems for both equilibrium points have been solved for the pa- 
rameter ratios k l m  = l and c / m  = 0.1. The eigenvalues for the equilibrium point el are 

All four eigenvalues have negative real part, so that the equilibriurnpoint el is asymptotically 
stable. On the other hand, the eigenvalues for the equilibrium points e2 and e3 are 

Because X3 is positive, the equilibrium points e2 and e3 are unstable. We observe that all 
three equilibrium points exhibit significant behavior, so that the stability conclusions based 
on the linearized equations remain valid for the nonlinear equations. 

11.2 SMALL MOTIONS OF SINGLE-DEGREE-OF-FREEDOM 
SYSTEMS FROM EQUILIBRIUM 

In Sec. 11.1, we discussed ways of representing the motion of dynanlical systems geo- 
metrically in the state space. Whereas the idea is appealing, dimensionality prevents the 
approach from providing more than a general qualitative picture of the system behavior, 
as even a two-degree-of-freedom system implies plots in a four-dimensional state space. 
More quantitative statements can be made by linearizing the state equations about equi- 
librium points and checking the stability of these points by examining the eigenvalues 
of the linearized system. A combination of the two approaches can provide more in- 
formation concerning the system behavior, but dimensionality remains a problem. The 
problem does not exist for single-degree-of-freedom systems, for which state plane plots 
can be used in combination with eigenvalue information to shed a great deal of light into 
the nature of the motion in the neighborhood of equilibrium points. 

We consider a single-degree-of-freedom system, assume without loss of generality 
that the trivial solution is an equilibrium point and write the linearized equation for small 
motions from the equilibrium in the generic form 

where a and b are constants. Letting q = XI, q = x2, we obtain the corresponding state 
equations 

i l  (t> = x2 ( t )  

.i2(t) = - bxl ( t )  - ax2 ( t )  



which can be expressed in the matrix form 

where x ( t )  = [ x l ( t )  x2(t)lT is the state vector and 

is the coefficient matrix. Clearly, the behavior of the system depends on the coefficient 
matrix A, which in turn depends on the constants a arid b. 

To examine the behavior of the system, it is convenient to transform the state 
equations to modal form. To this end, we recall from Sec. 11.1 that the solution of a 
homogeneous equation such as Eq. (1  1.26) has the exponential form 

in which x is a constant vector and X is a constant scalar; their values are obtained by 
solving the eigenvalue problem 

The solution of Eq. ( 1  1.29) consists of the eigenvalues A, and right eigenvectors x, (r  = 
1,2) .  Because A is nonsymmetric, it is necessary to solve the adjoint eigenvalue problem 

as well; its solution consists of the same eigenvalues A, and left eigenvectors y, ( r  = 1,2) .  
The right and left eigenvectors are biorthogonal and can be normalized so as to satisfy 
the biorthonormality relations 

T y;x, = S,,, y, Ax, = X,S,,, r ,  s = 1,2  (11.31) 

Next, we consider the linear transformation 

x ( t )  = x l z l ( t )  +x2zz(t) 

where z l ( t )  and z2( t )  play the role of modal coordinates. Inserting Eq. (11.32) into 
Eq. (1 1.26), premultiplying by yT and y;, in sequence, and using the biorthonormality 
relations, Eqs. (1  1.3 I ) ,  we obtain the independent modal equations 

which have the solution 

where z lo  and 220 are the initial values of z l  ( t )  and zz( t ) ,  respectively. 
The behavior of the system in the neighborhood of the equilibrium depends on 

the nature of the eigenvalues XI and X2, which in turn depend on the constants a and 
b. To examine this dependence, we insert Eq. (11.27) into Eq. (11.29) and write the 
characteristic equation 

det[A - XI] = det [ 1: = X 2 + a h + b = 0  



a, < a, < 0 

FIGURE 11.7 
Trajectories in the case of a stable node 

which has the roots 

We distinguish the following cases: 

1. X1 and X2 are real and of the same sign. 
Solutions (1 1.34) can be rewritten as 

Z 1 Z2 In- = Xlt, In- = X2t 
Z10 -220 

so that, eliminating the time t ,  we have 

Equation (1 1,38) can be used to generate state plane trajectories, which are simply 
plots z2 versus z l  for various values of z l o  and z20, with the time t playing the role of 
an implicit parameter. The trajectories are shown in Fig. 11.7 for the case in which A1 

and Az are both negative and satisfy the inequality X2 < XI < 0. An equilibrium point 
of the type shown in Fig. 11.7 is called a node. Because the trajectories approach the 
equilibrium as t -+ CQ, this is a stable node. Note that stable nodes are by definition 
asymptotically stable. When both XI and X2 are positive and satisfy A1 > A2 > 0, the 
arrowheads in Fig. 1 1.7 simply reverse directions, and the equilibrium point becomes 
an unstable node. 

Stable nodes occur when a > 0, b > 0 and a2 > 4b. On the other hand, unstable 
nodes occur when a < 0, b > 0 and a2 > 4b. 

2. X1 and X2 are real and of opposite signs. 
We consider the case in which XI is positive and X2 is negative, or X2 < 0 < XI. In 



FIGURE 11.8 
Trajectories in the case of a saddle point 

this case, by analogy with Eq. (1 1.38), the state plane trajectories are given by 

They are plotted in Fig. 11.8 for various values of the initial conditions z lo  and z2o. 
Note that, to decide on the direction of the arrowheads, we consider Eqs. (1 1.34) and 
conclude that 

oo for zlo 1 0 
t+m 

lim z2(t)  = 0 
t+m 

In this case, the equilibrium point is called a saddle point, which is unstable 
Saddle points occur when b < 0, irrespective of the value of a.  

3. X1 and X 2  are complex conjugates, Xz = X 1 .  
In this case, the eigenvectors are also complex conjugates, x2 = xi. Then, because 
the state vector x ( t )  must be real, we conclude from Eq. (11.32) that the modal 
coordinates are complex conjugates as well, z2( t )  = il ( t ) ,  and so are their initial 
values, 220 = 210. 

Next, we introduce the notation 

as well as 

where 



are the magnitude and phase angle of 210, respectively. To determine (zlo(  and 4, we 
must first determine zlo. To this end, we let t = 0 in Eq. (1 1.32) and write 

in which x(0) is the initial state vector. Then, we premultiply Eq. (11.44) by yF, 
consider the first of the orthonormality relations (1 1.31) and obtain 

Next, we rewrite solutions (1 1.34) in the form 

from which it follows that 

ul (t) = l ~ ~ ~ ~ e " ~ c o s ( P t  - 4), vz(t) = ~zlole"%in(Pt - 4) (1 1.47) 

For any initial values vl(O), v2(0), the curve v2 versus v1 represents a trajectory having 
the form of a logarithmic spiral. Note that the initial values v1 (O), u2 (0) correspond 
to a given initial modal coordinate 210, which in turn corresponds to the initial state 
vector x(O), as can be concluded from Eq. (1 1.45). 

To plot the trajectory in the vl, v2-plane, it is convenient to introduce the defi- 
nitions 

where r(t) can be identified as the radius vector from the origin of the vl, vz-plane 
to a point on the trajectory and pt - 4 is the angle from axis v l  to r(t). The spiral is 
shown in Fig. 11.9 for a < 0 and /3 > 0. For ol > 0 and /3 > 0, the spiral unwinds, 

a < o , p > o  

FIGURE 11.9 
Trajectory in the case of a stable focus 



FIGURE 11.10 
Trajectories in the case of a center 

moving away from the origin. In both cases, the equilibrium point is known as a 
spiral point, or a focus. In the first case, a < 0, the focus is asymptotically stable, 
and in the second case, ac > 0, the focus is unstable. 

Stable foci occur when a > 0, b > 0 and a2  < 4b, and unstable ones when 
a < 0 , b > 0 a n d a 2 < 4 b .  

- 
4. XI  and X2 are pure imaginary complex conjugates, XI = i/3, X2 = X I  = -iP. 

This is a special case of the preceding case, obtained by letting a: = 0. The trajectories 
corresponding to different initial values v1 (O), v2(0) represent circles centered at the 
origin, as shown in Fig. 11.10. In this case the equilibrium point is known as a center, 
which is merely stable. 

Centers occur when a = 0 and b > 0. 

A great deal of insight into the system behavior can be gained by conceiving 
of a plane defined by the parameters a and b and divided into regions according to 
the equilibrium type. Such a parameter plane is shown in Fig. 11.1 1, from which we 
observe that stability is obtained only in the first quadrant. Indeed, in the region between 
the positive a-axis and the parabola a2  = 4b we obtain asympotically stable nodes, 
which imply aperiodically decaying response, between the parabola and the positive 
b-axis we obtain asymptotically stable foci, characterized by decaying oscillation, and 
on the positive b-axis itself, a = 0, we obtain merely stable centers, which imply pure 
harmonic oscillation at the frequency w = &. The whole second and third quadrants, 
b < 0, represent a region of saddle points, which imply unstable motion by definition. 
In the fourth quadrant, we have an exact mirror image of the first quadrant, except that 
the nodes and foci are unstable. As a matter of interest, we note that the parameter 
plane of Fig. 11.11, in addition to the stability information contained in Fig. 1.46, ties 
together the stability information and the various types of state plane trajectories shown 
in Figs. 11.7-11.10. 

The trajectories of Figs. 11.7 and 11.8 are plotted in the 21, z2-plane and those of 
Figs. 11.9 and 11.10 are plotted in the v l  , v2-plane. Hence, the question can be raised 
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nodes 
FIGURE 11.11 
Equilibrium points in the parameter plane 

as to whether the same characteristics of the equilibrium points would be present if the 
trajectories were plotted in the X I ,  x2-state plane. To answer this question, we observe 
that XI and x2 can be obtained from zl and 22, or from vl and v2, through a linear 
transformation. Such a transformation tends to change the shape of the trajectories, but 
does not change the nature of the equilibrium points. As an example, to plot the spiral 
trajectory depicted in Fig. 11.9 in the X I ,  xz-state plane, we insert the first of Eqs. (1 1.46) 

FIGURE 11.12 
State-plane trajectory corresponding to a stable focus 



into Eq. (1 1.32) and write 

The state-plane trajectory is  shown in Fig. 11.12. Clearly, a stable focus remains a stable 
focus. 

Example 11.2. The response of a viscously damped single-degree-of-freedom system is 
described by the differential equation (Sec. 2.2) 

where < = c/2mwn is the viscous damping factor and w, = is the frequency of 
undamped oscillation. Determine the nature of the equilibrium points and plot the state- 
plane trajectory for each of the following cases: i) < = 0, w, = 2rad/s, ii) < = 0.1, w, = 
2rad/s, iii) C = 1, w, = 2rad/s and iv) < = 1.5, w, = 2rad/s. The initial conditions are 
q(0) = 6 c m ,  q(0) = 16cm/s. 

Comparing Eq. (a) to Eq. (1 1.24), we conclude that the parameters are given by 

so that the state equations are 

i l ( t )  = x2(t) 
(c) 

i2 ( t )  = - wixl (t) - 2<wnx2(t) 

in which xl ( t )  = q(t), x2(t) = q(t). The state equations are subject to the initial conditions 
xl(0) = 6cm, x2(0) = 16cm/s. The coefficient matrix in Eq. (1 1.26) is 

which has the eigenvalues 

Equating the right side of the state equations to zero, we conclude that there is only one 
equilibrium point, namely, the trivial one. 

In case i, < = 0, w, = 2rad/s, the coefficients are a = 0, b = 4(rad/s12, so that the 
eigenvalues are pure imaginary complex conjugates 

Hence, the equilibrium point is a center, which is merely stable. The trajectory in the vl , v2- 
plane is a circle and in the xl ,  x2-plane is an ellipse. The latter can be obtained through 
a coordinate transformation from axes vl, v2 to axes x i ,  x2. Because in the case at hand 
a = 0, it is perhaps simpler to integrate the state equations directly. Dividing the second of 
Eqs. (c) by the first and letting < = 0, we obtain 

dx2 W;X~ 
A 

dxi x2 

which, upon integration, yields the equation of the ellipse 

2 2 w,x, (t) +x;(t) = wixt(0) +x;(o) 
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FIGURE 11.13 
State-plane trajectory for a 
harmonic oscillator 

or more explicitly 

The ellipse is plotted in Fig. 11.13. Of course, the motion is pure harmonic oscillation. 
In case ii, C = 0.1, w, = 2rad/s, the coefficients are a = 0.4rad/s, b = 4 ( r a d / ~ ) ~ ,  

so that the eigenvalues are the complex conjugates 

and the first right and left eigenvectors are 

and we note that the eigenvectors have been normalized so as to satisfy y Txl = 1. The other 
eigenvectors are the complex conjugates x2 = xl, y2 = yl, but they are not really needed. 
From Eqs. (1 1.47), in conjunction with Eqs. jj), it follows that the equilibrium point is a 
focus with the corresponding trajectory being defined in the vl , v2-plane by 

v2(t) = Izlo(eat sin(@ - 4) = ~zlole-O 2t sin(1.99t - 4) 
(1) 

To complete the determination of vl(t) and v2(t), we must first obtain lzlol and 4. To this 
end, we use Eq. (1 1.45) and write 

Then, from Eqs. (1 1.43), we obtain 



I 
FIGURE 11.14 
State-plane trajectory for an underdamped 
single-degree-of-freedom system 

so that the spiral is defined in the vl  , v2-plane by 

vl (t) = 9.3638e-0.2t cos(1.99t - 0.8638) 

It is plotted in Fig. 11.14. 
In case iii, C = 1, w, = 2rad/s, the coefficients are a = 4rad/s, b = 4(rad/sl2, so 

that the eigenvalues are real, negative and equal in magnitude 

From Eqs. (1 1.34) and (1 1.38), we conclude that the trajectory is a straight line through the 
origin 

which can be interpreted as the limiting case of a trajectory corresponding to an asymp- 
totically stable node. We recall from Sec. 3.2 that C = 1 represents the so-called "critical 
damping" corresponding to a borderline case between decaying oscillations and decaying 
aperiodic motions. 

In case iv, < = 1.5, w, = 2rad/s, the coefficients are a = 6rad/s, b = 4(rad/s12, so 
that both eigenvalues are real and negative 

Moreover, the right and left eigenvectors are 



FIGURE 11.15 
Trajectory for an overdamped 
single-degree-of-freedom system in the zl  , zz-plane 

From Eq. (1 1.38), the trajectory in the zl, z2-plane is given by 

~ 2 ( t )  A2 ~ l ( t )  -5.2361 zl(t) 
In- = - I n  = - ~ l ( t )  In- = 6.8541 1n- 

220 A1 zio -0.7639 zl0 ZIO 

where, multiplying Eq. (11.44) by yT and yT, in sequence, and using the first of the 
orthonormality relations (1 1.3 I), 

Hence, Eq. (t) becomes 

from which we conclude that the trajectory equation is 

(k:f18) 6'S541 
~2 (t) = 24.5367 ---- 

The trajectory in the 21, z2-plane is plotted in Fig. 11.15, where we obtained guidance 
concerning the direction of the arrowhead from Eq. (1 1.34). Clearly, the equilibrium point 
is an asymptotically stable node. 

As a matter of interest, we propose to plot the trajectory of Fig. 11.15 in the X I ,  xz- 
state plane. To this end, we use Eqs. (1 1.32) and (1 1.34) and write 



FIGURE 11.16 
Trajectory for an overdamped single-degree-of- 
freedom system in the xl , xz-plane 

and we observe that the state matches the initial condition x(0) = [6 161T. The trajectory 
is plotted in Fig. 11.16 using the components of x(t). 

11.3 CONSERVATIVE SYSTEMS. MOTIONS IN THE LARGE 

In Sec. 11.2, we concerned ourselves with motions in the neighborhood of equilibrium 
points. Such motions are sometimes referred to as motions in the small. By contrast, 
motions at some distance away from equilibrium points are called motions in the large. 
Large motions generally imply the use of the full nonlinear equations of motion. Non- 
linear differential equations do not admit closed-form solutions for the most part, so 
that one must be content with numerical solutions. But, numerical solutions have the 
disadvantage that they do not reveal readily the dynamic characteristics of the system, 
particularly for multi-degree-of-freedom systems andor nonconservative systems. The 
situation is considerably better in the case of single-degree-of-freedom conservative 
systems, in which case some general discussion of system behavior for large motions is 
possible. 

We consider a conservative single-degree-of-freedom system and express the equa- 
tion of motion in the form 

where f ( q )  is a generally nonlinear conservative force per unit mass. From kinematics, 
we can write the relation 

Multiplying Eq. (1 1 S O )  by dq and considering Eq. (1 1.51), we have 



640 NONLINEAR OSCILLATIONS 

in which c is a constant of integration. But, 

represents the kinetic energy per unit mass. Moreover, 

where V(q) represents the potential energy per unit mass. Hence, Eq. (11.52) can 
be recognized as the conservation of energy principle, in which the constant c can be 
identified as the total energy E per unit mass. Introducing the usual notation q = xl , q = 
x2, Eq. (1 1.52) can be rewritten as 

;x? + V (xl) = E = constant (1 1.55) 

If we introduce an axis E normal to xl and x2, then Eq. (11.55) can be interpreted as 
a three-dimensional surface symmetric with respect to the xl,  E-plane. For any given 
value of E, the equation E = constant represents a plane parallel to the xl , x2-state plane 
and intersecting the three-dimensional surface along a curve whose projection on the 
state plane is defined by 

as can be concluded from Eq. (1 1.55). To interpret Eq. (1 1.56) geometrically, we observe 
that any potential energy function V(xl) represents a curve in the xl , E-plane, as shown 
in Fig. 1 1.17a. Then, according to Eq. (1 1.56), for any point xl,  the difference Ei - V(xl) 
between the level line E = Ei and the potential energy at xl defines two values of xz in the 
state plane. By varying xl, we obtain a curve in the state plane corresponding to E = E, , 
where the curve can be identified as a trajectory for the single-degree-of-freedom system 
described by Eq. (1 1 .SO). Figure 11.17b shows four trajectories, two corresponding to 
El ,  one to Ez and one to E3, where the values were chosen so as to illustrate various 
types of motion. To determine the sense of the arrowheads, we differentiate Eq. (1 1.55) 
and obtain the slope of the trajectories in the form 

Observing that the slope dx2/dx1 is positive for x2 > 0 and d V/dnl < 0, we conclude 
from Figs. 11.17a and 11.17b that the sense indicated in Fig. 11.17b is the correct choice. 

To determine the location and nature of the equilibrium points, we consider Eq. 
(1 1.54) and write the state equations corresponding to Eq. (1 1.50) as follows: 

X1 = x2 

dV(xl) (1 1.58) 
i 2  = f (xl) = ---- 

dxi 
Hence, the equilibrium points, obtained by setting the right side of Eqs. (1 1.58) to zero, 
are given by 



FIGURE 11.17 
a. Plot of V(xl) versus xl with lines of constant energy, b. State-plane trajectories 
corresponding to the lines of constant energy 

As expected, all the equilibrium points lie on the nl -axis. Moreover, they occur at points 
for which the slope of the curve V ( x l )  versus xl is zero. In the case at hand, we conclude 
from Fig. 11.17~1 that there are three equilibrium points; they are denoted by e, and occur 
at xl,  = X I , ,  ( i  = 1,2,3). The nature of the equilibrium points depends on the nature 
of the trajectories, which in turn depends on the energy level E. For E < V ( x l e 3 ) ,  the 
plane E = constant does not intersect the three-dimensional surface, so that no motion 
is possible. For V ( x l e 3 )  < E < V ( x l e l ) ,  stable motion along a closed trajectory takes 
place in the clockwise sense around the equilibrium point e3, making e3 a center. For 
V ( x l e l )  < E < Ez = V(x le2) ,  stable motion in a clockwise sense can take place along 
one of two closed trajectories, one around center el and one around center e3, depending 
on how the motion was initiated. For E = E2 = V(x le2) ,  there is an equilibrium point 
e2 in the form of a saddle point, which is unstable. For E > E2, once again stable 
motion takes place along a closed trajectory in a clockwise sense, this time surrounding 
all three equilibrium points, two centers and one saddle point. Hence, the trajectory 
corresponding to E = E2 separates two different types of periodic motions, one around 
a single center, whether el or eg, and one around two centers and a saddle point. For 
this reason, this trajectory is referred to as a separatrix. We observe that small motions 



in the neighborhood of the centers el and eg remain small, whereas small motions in 
the neighborhood of the saddle point e2 tend to become large and eventually leave that 
small neighborhood. On the other hand, motions around the separatrix must be regarded 
as large. The conclusion is that Fig. 11.17b presents a complete picture of all possible 
motions of the system, including motions in the small and motions in the large. 

It is typical of conservative systems that the only equilibrium points possible are 
centers and saddle points, as they are the only ones consistent with constant energy. 
Moreover, a closed trajectory encloses an odd number of equilibrium points, with the 
number of centers exceeding the number of saddle points by one. Nodes and foci are 
consistent with nonconservative systems, whereby energy is either lost by the system, 
implying asymptotically stable nodes or foci, or energy is imparted to the system, such 
as in the case of unstable nodes or foci. 

From Fig. 11.17a, we can verify heuristically a theorem due to Lagrange stating 
that: An isolated equilibrium point corresponding to a minimum value of the potential 
energy is stable. We can also verify a theorem due to Liapunov that reads: Ifthe potential 
energy has no minimum at an equilibrium point, then the equilibrium point is unstable. 

Example 11.3. The differential equation of motion of a simple pendulum can be written 
in the form 

where g is the acceleration due to gravity and L the length of the pendulum. Derive 
the state equations of motion, identify the equilibrium points and determine the nature of 
the equilibrium points. Then, plot the trajectories corresponding to E = w2, 2w2, 3w2 and 
discuss the type of motion associated with the regions defined by 0 5 E 5 2w2 and E > 2w2, 
where E is the total energy per unit moment of inertia of the bob about the point of support. 

Introducing the notation 0 = x,, b = x2, the state equations are simply 

Equating the right side of Eqs. (b) to zero, we obtain the equilibrium equations 

so that the equilibrium points are given by 

Although mathematically there is an infinite number of equilibrium points, physically there 
are only two 

The equilibrium point el is the common one, in which the pendulum is at rest hanging 
down. On the other hand, the equilibrium point e2 is that in which the pendulum is at rest 
in the upright position. 



In the neighborhood of xl = 0, we have the approximation sinxl 2 xi, so that the 
coefficient matrix is 

yielding the eigenvalues 

Because both eigenvalues are pure imaginary, the equilibrium point el is a center, and 
hence merely stable. On the other hand, in the neighborhood of xi = T ,  the approximation 
is sinxl E -XI, so that the coefficient matrix is 

from which we conclude that the eigenvalues are 

Because both eigenvalues are real, one being positive and the other one negative, the equi- 
librium point e2 is a saddle point, and hence unstable. 

The trajectories for E = w2, 2w2, 3w2 are shown in Fig. 11.18. We note that the 
range -T I: xl 5 .ir covers all possible positions of the bob, as points such that xl > T and 
xl < -T simply cover the same physical positions. For E = w2, the trajectory is closed, 
indicating periodic motion. Indeed, for 0 < E < w2, all trajectories are closed. For small 
E, i.e., in the neighborhood of the equilibrium point el,  the trajectory is an ellipse and the 
motion is pure harmonic oscillation. As E increases, the motion ceases to be harmonic, but 
it remains periodic. For E = 3w2, the trajectory is open and the motion is nonuniformly 
rotary with, the bob going over the top. Of course, for E = 2w2 the trajectory represents a 
separatrix, separating different types of periodic motions, oscillatory for 0 < E < 2w2 and 
rotary for E > 2w2. 

1-3 
FIGURE 11.18 
Trajectories for a simple pendulum 
corresponding to different energy levels 



11.4 LIMIT CYCLES. THE VAN DER POL OSCILLATOR 

A question of particular interest in nonlinear systems is whether they exhibit closed 
trajectories, as such trajectories imply periodic motion. In Sec. 11.3, we encountered 
closed trajectories in conjunction with conservative systems, with the closed trajectories 
enclosing an odd number of equilibrium points. The equilibrium points in the case of 
conservative systems are centers and saddle points and the number of centers enclosed 
by a given trajectory exceeds the number of saddle points by one. 

Closed trajectories can occur also in nonconservative nonlinear systems, provided 
the net energy change at the completion of a full cycle is zero. This implies that the system 
dissipates energy over some parts of the cycle and acquires energy over the balance 
of the cycle. Closed trajectories exhibiting this type of characteristics are referred to 
as limit cycles of Poincare', or simply limit cycles. Limit cycles can be regarded as 
"equilibrium motions" in which the system performs periodic motions, as opposed to 
equilibrium points at which the system is at rest. One basic difference between limit 
cycles experienced by nonconservative systems and closed trajectories occurring in the 
case of conservative systems is that the amplitude of a given limit cycle depends on 
the system parameters alone and that of a mere closed trajectory depends on the energy 
imparted to the system initially. In the case of limit cycles we speak of orbital stability, 
as opposed to stability in the sense of Liapunov (Sec. 11.1) in the case of equilibrium 
points. It is very difficult in general to establish the existence of a limit cycle for a given 
system. The situation is considerably better when it is known in advance that the system 
does possess a limit cycle. 

A classical example of a system known to possess a limit cycle is the van der Pol 
oscillator, described by the differential equation 

It can be regarded as an oscillator with variable damping, as the term p(q2 - 1) represents 
an amplitude-dependent damping coefficient; such a system is both nonconservative and 
nonlinear. For Iq ( < 1, the coefficient is negative, which tends to increase the motion 
amplitude. On the other hand, for Iq( > 1, the coefficient is positive, which tends to 
reduce the amplitude. Clearly, for lql < 1 energy is imparted to the system, and for 
Iq/ > 1 energy is taken out of the system. Hence, a limit cycle can be expected and is 
indeed obtained. 

Following the usual approach, we let q = X I ,  q = xz and obtain the state equations 

Equating the right side of Eqs. (11.61) to zero, we conclude that there is only one 
equilibrium point, namely, the trivial one, x l  = 0, x2 = 0. To determine the nature of 
the equilibrium, we linearize about xl = 0, xz = 0 and obtain the coefficient matrix 



so that the eigenvalues are 

For p > 2 both roots X1 and Xz are real and positive, so that the origin is an unstable node. 
On the other hand, for p *. 2 roots XI and X2 are complex conjugates with positive real 
part, so that the origin is an unstable focus. Hence, regardless of the value of p, the origin 
is an unstable equilibrium point, so that any motion initiated in a small neighborhood of 
the origin will eventually leave this neighborhood and reach the limit cycle. 

To obtain the equation of the trajectories, we divide the second of Eqs. (1 1.61) by 
the first and write 

Equation (1 1.64) does not lend itself to closed-form solution. The equation was inte- 
grated numerically for p = 0.2 and p = 3, and trajectories corresponding to several sets 
of initial conditions are plotted in Figs. 11.19a and 11.19b, respectively. Clearly, the 
shape of the limit cycle depends on the parameter p. In fact, for p + 0 the limit cycle 
tends to resemble a circle. Because all trajectories approach the limit cycle, either from 
the inside or from the outside, the limit cycle is stable. We observe that a stable limit 
cycle encloses an unstable equilibrium point. 

Finally, we must point out that the van der Pol oscillator is a very good example 
of a nonlinear system for which linearization about the trivial equilibrium is totally 
inadequate. Indeed, a linearized analysis would have predicted instability, with the 

a. ,u = 0.2 b . p = 3  

FIGURE 11.19 
Trajectories for the van der Pol oscillator for the cases: a. p = 0.2 and b. p = 3 



motion increasing without bounds, thus ignoring entirely the existence of a limit cycle. 
We must also point out that the shape of the limit cycle depends on the parameter p 
alone, so that the initial conditions have no effect on the amplitude of motion after the 
system has reached the limit cycle. A MATLAB program for plotting trajectories in the 
state plane for the van der Pol oscillator is given in Sec. 11.12. 

11.5 THE FUNDAMENTAL PERTURBATION TECHNIQUE 

Many physical systems are described by differential equations consisting of two parts, 
one part containing linear terms with constant coefficients and a second part containing 
nonlinear terms and/or terms with time-dependent coefficients, where the second part 
is relatively small compared to the first. We refer to the small terns rendering the 
system nonlinear and/or possessing time-dependent coefficients as perturbations. We 
are interested in the important class of problems in which the linear part represents a 
harmonic oscillator, and we refer to such systems as quasi-harmonic. 

We consider the quasi-harmonic system described by the differential equation 

where f ( q  , q )  is a sufficiently small nonlinear function of the displacement q and velocity 
q that it can be regarded as a perturbation. To emphasize the fact that f (q, q )  represents 
a perturbation, it is convenient to rewrite Eq. (1 1.65) in the form 

in which E is a small parameter. For E = 0,  Eq. ( 1  1.66) reduces to the equation of a 
harmonic oscillator whose solution is well known. On the other hand, for e = 1, Eq. 
(1 1.66) reduces to Eq. ( 1  1.65) whose solution we seek. In essence, the introduction of 
the parameter E enables us to effect the transition from the known solution to the desired 
solution. 

It is generally assumed that Eq. (1 1.66) does not possess an exact solution, so that 
the interest lies in an approximate solution. Such a solution must depend on the small 
parameter E, in addition to the time t ,  and must reduce to the harmonic solution as E 

reduces to zero. Because E is a small quantity, we seek a solution of Eq. (1 1.66) in the 
form of the power series 

q (t  , E )  = qo(t) + ~ q i  ( t )  + ~ ~ ~ 2 ( t )  + . . . (1 1.67) 

where the functions q, (t) (i = 0 , 1 , 2 ,  . . . ) are independent of E. Expansion (1 1.67) 
pennits a solution of Eq. (1 1.66) to any desired degree of approximation, at least in 
theory. Indeed, qo(t)  is the solution of the equation of the harmonic oscillator, obtained 
by letting E = 0 in Eq. (1 1.66), and is referred to as the zero-order approximation, or 
the generating solution of Eq. (11.66). By retaining two terms on the right side of 
Eq. (1 1.67), we obtain the jirst-order-approximation qo(t)  + eql ( t ) ,  three terms yield 
the second-order approximation qo ( t )  + ~ q l  ( t )  + E~~~ ( t ) ,  etc. 



Next, we derive the differential equation for every level of approximation. To this 
end, we insert Eq. (1 1.67) into the left side of Eq. (1 1.66) and obtain simply 

-. 2 
q+w0q = q o + ~ q l + ~ 2 q 2 + .  .. +w2 o ( q o + ~ q l + E ~ ~ 2 + . . . )  

- .. 2 - q ~ + ~ o q o f  ~ ( q l + ~ ~ q l ) + E ~ ( q z + w ~ ~ 2 ) +  ... (1 1.68) 

Moreover, we expand f (9 ,  q )  in a power series in E about the generating solution (qo, 40) 
as follows: 

Inserting Eqs. (1 1.68) and (1 1.69) into Eq. (1 1.66), recognizing that the resulting equation 
must be satisfied for all values of E and recalling that the functions q, (i = 0,1,2, . . . ) 
are independent of E,  it follows that the coefficients of like powers of E on both sides 
must be equal to one another. This amounts to separating terms according to the order 
of magnitude as follows: 

0 O(E ) :  $o+w ;qO=~  
1 



The process of using expansion (1 1.69) to derive Eqs. (1 1.70) can be simplified a great 
deal when the function f (q,  q )  is given explicitly. Indeed, in such cases, it is significantly 
simpler to insert Eq. (1 1.67) directly into the explicit form of f (q,  q )  and separate orders 
of magnitude, as shown in Example 11.4. 

We observe that Eqs. (1 1.70) are all linear. Moreover, of equal importance is the 
fact that Eqs. (1 1.70) can be solved recursively. Indeed, the zero-order approximation 
equation, namely the first of Eqs. (1 1.70), is simply the equation of a harmonic oscillator 
whose solution is (Sec. 2.1) 

where A. and do are the amplitude and phase angle in the zero-order approximation, 
constants depending on the initial conditions. Then, inserting Eq. (1 1.71) into the second 
of Eqs. (1 1.70), the first-order perturbation equation becomes 

which represents the equation of a harmonic oscillator subjected to a known time- 
dependent excitation. The form of the excitation depends on the function f ,  but for 
the most part the excitation is likely to be a linear combination of trigonometric func- 
tions of frequencies equal to integer multiples of wo. Hence, its solution can be obtained 
with relative ease by the methods of Secs. 3.1 and 3.2, thus completing the first-order 
approximation solution qo + ~ q l .  The next step is to solve the third of Eqs. (1 1.70) 
for the second-order perturbation qz. To this end, we observe that the right side of this 
third equation depends on qo, qo, q1 and q l ,  by now all known functions of time. The 
solution for the second-order perturbation q2 essentially completes the second-order ap- 
proximation solution qo + ~ q l +  ~ ' ~ 2 .  The process continues in the same fashion, with 
the equation for the nth-order perturbation q, representing a harmonic oscillator with the 
right side depending on the preceding solutions qo, qO. 41, q l , .  . . , qn-l, qn-l. Hence, 
at least in theory, there is no obstacle to obtaining its solution. In practice, however, 
the process becomes increasingly laborious as the approximation order increases. For- 
tunately, for sufficiently small E, the significance of the higher-order terms decreases 
rapidly, so that it is seldom necessary to go beyond the second-order approximation. 

Equation (11.67) expresses the solution of Eq. (11.66) as a power series in the 
small parameter E and is referred to as a formal solution. As discussed in the preceding 
paragraph, the recursive solution of Eqs. (1 1.70) gives rise to increasingly higher-order 
approximation solutions of Eq. (11.66). Then, the formal solution of Eq. (11.65) is 
obtained by setting E = 1, which stipulates, of course, that the function f (q ,  q )  on the 
right side of Eq. (1 1.65) is itself small. 

Formal solutions need not converge, and in fact there is a real possibility that they 
diverge. Nevertheless, such solutions tend to be quite useful for numerical calculations. 
Indeed, such power series in E may give a good approximation with a limited number of 
terms. 

Example 11.4. Consider the case in which the parameter p in the van der Pol oscillator of 
Sec. 11.4 is small, p = E ,  and use Eqs. (1 1.70) to derive the perturbation equations through 
the third order. 



The van der Pol oscillator is described by the differential equation (1 1.60). Consistent 
with the formulation of this section, we rewrite Eq. (1 1.60) in the form 

Because, f (q ,  q )  is multiplied by E,  to derive the perturbation equations through the third 
order, it is only necessary to include in the expansion for f (q ,  q )  small terms in E through 
the second order. Hence, using Eq. (1 1.67) and retaining small terms in E through second 
order, we write 

Then, inserting Eqs. ( 1  1.67) and (b) into Eq. (a) and separating terms of different orders of 
magnitude, we obtain the desired perturbation equations 

3 . .. O(E ) . 43 f 93 = -qf90 - 2q042q0 - 2qoqlql + (1 - 9:)42 

11.6 SECULAR TERMS 

In seeking a perturbation solution to nonlinear differential equations, practical consider- 
ations dictate that we limit expansion (1 1.67) to the first several terms, as the equations 
for the higher-order perturbations become progressively more complicated and their so- 
lution more difficult to obtain. This practice can be easily justified when the parameter 
E is small compared 1, say of the order of 10-l. Indeed, in this case the equation for the 
first-order perturbation produces a correction to the zero-order solution of order lo-', 
the equation for the second-order perturbation yields a correction of order etc. But, 
retention of a limited number of terms is capable of creating a problem of a different 
kind in that it can produce terms increasing indefinitely with time, and hence a divergent 
solution. Such diverging terms are commonly referred to as secular terms, and they 
can appear in systems known to possess bounded solutions, such as stable conservative 
systems characterized by periodic solutions. Hence, a modification of the formal per- 
turbation solution designed to prevent the formation of secular terms for systems known 
to possess bounded solutions demands itself. Before discussing ways of generating 
bounded perturbation solutions, a closer examination of the nature of secular terms, and 
how they enter into solutions, is in order. 

A classical example of a nonlinear conservative system known to possess periodic 
solutions consists of a mass m attached to a stiffening, or hardening spring (Sec. 1.7). 
We consider a spring with a restoring force in the form of the sum of two terms, one 
proportional to the elongation and the other varying as the third power of the elongation. 
We are concerned with the case in which the cubic term is appreciably smaller than the 



linear term, so that the spring is nearly linear; the spring force can be expressed in the 
form 

where k is the slope of the force-elongation curve at q = 0 and E is a small parameter. It 
is not difficult to see that the system is quasi-harmonic. Indeed, dividing through by m ,  
the system differential equation can be shown to be 

q + w : ( q t ~ q ~ ) = O ,  &<<I  (1 1.74) 

where wg = 2/k7M2 can be identified as the natural frequency of the harmonic oscillator 
obtained by letting E = 0. Equation (1 1.74) is the well-known Dufing's equation. 

Following the pattern of Sec. 11.5, we assume a solution of Eq. (1 1.74) in the form 
of Eq. (1 1.67), separate orders of magnitude and obtain the following set of differential 
equations 

which can be solved recursively. Indeed, solving the first of Eqs. (1 1.75), we obtain the 
zero-order solution 

where Ao and $0 are constants representing the zero-order amplitude and phase angle, 
respectively; they are related to the initial conditions, as shown in Sec. 11.7. Substituting 
Eq. (1 1.76) into the second of Eqs. (1 1.75) and recalling from trigonometry that cos3 a! = 

(3 cos a+  cos 3a), we can write 

= - ~ W ~ A ~ C O S ( W ~ ~  - #o) - ~ w ~ A ~ c o s ~ ( w ~ ~  - 40) (1 1.77) 

We observe that the first term on the right side of Eq. (1 1.77) represents a harmonic 
excitation with the same frequency wo as the natural frequency of the harmonic oscillator 
on the left side, so that a resonance condition (Sec. 3.2) has been created. Hence, using 
results from Secs. 3.1 and 3.2, we obtain the solution 

Examining solution (1 1.78), we conclude that the first term increases indefinitely with 
time, so that the term is secular. 

The system described by Eq. (1 1.74), however, is known to admit only bounded 
solutions. In fact, the system is of the type studied in Sec. 11.2. Hence, letting q = 
xl , q = x2 and following the pattern of Sec. 11.2, we can write the conservation of 
energy statement in the form 

2 ;mx2 + V(xl) = E = constant (1 1.79) 



FIGURE 11.20 
a. Plot of V(x1)  versus x l  for Duffing's equation, 
b. Trajectories for Duffing's equation 

in which the first term represents the kinetic energy, 

is the potential energy and E is the total energy. It is not difficult to show that the 
only equilibrium point of the system is at the origin of the state plane, x l  = 0, x2 = 0, 
and it is a center. For any given value of E, a value depending on corresponding 
initial conditions, the equation E = constant represents a closed trajectory enclosing the 
center. The potential energy function is shown in Fig. 11.20a and several trajectories are 
displayed in Fig. 11.20b. Because the trajectories are closed, the motion of the system 
must be periodic, and hence bounded, so that the presence of secular terms in the solution 
demands an explanation. 

Although secular terms increase indefinitely with time, their presence in the context 
of a perturbation solution does not necessarily imply unbounded behavior. To explain 
this apparent paradox, we consider the expansion 

sin(w0 + ~ ) t  = sin wot c o s ~ t  + coswgt s i n ~ t  



If we assume that E is small and retain only the first few terms in the series for sin ~t and 
c o s ~ t ,  then the truncated series will increase indefinitely with time, making it difficult 
to conclude that the resulting expansion represents a bounded function. The function 
sin(wo + ~ ) t  is harmonic, but a similar argument can be used for periodic functions. 

Periodic solutions are very important in the study of nonlinear vibrating systems, 
and the presence of secular terms in a solution known to be periodic, a peculiarity of 
the perturbation technique used, must be prevented. Hence, the question arises as to 
how to produce periodic perturbation solutions by retaining only the first few terms 
in the expansion, which is the same as asking how to prevent the resonance induced 
by the perturbation process. The discussion in the preceding paragraph demonstrates 
that a perturbation approach whereby only the amplitude is altered is unlikely to prove 
satisfactory, so that suitable changes are necessary. To obtain some insights into the 
nature of the required changes, we note fromEqs. (1 1.79) and (1 1 .SO) that the trajectories 
of the linearized system, obtained by setting E = 0 in Eq. (1 1.80), are ellipses enclosing 
the origin. Moreover, from Eq. (1 1.74), we conclude that the motion of the system 
corresponding to any of these trajectories is harmonic and of period To = 27r/wo. For E # 
0, the trajectories are ellipses of higher order and the motion of the system corresponding 
to any of these trajectories, albeit periodic, is no longer harmonic and the period T is 
not equal to TO. In fact, the period differs from trajectory to trajectory and the period for 
any given trajectory depends on the small parameter E,  as well as on the associated total 
energy E; the latter in turn depends on the initial conditions. It follows that a perturbation 
method designed to produce periodic solutions to nonlinear problems, and in the process 
to prevent the formation of secular terms, must include an alteration ofboth the amplitude 
andperiod of oscillation. To this end, both the amplitude and the period of the solution 
must be regarded as unknowns, and the period must be determined by insisting that the 
response be periodic. We present such a perturbation technique in Sec. 11.7. 

11.7 LINDSTEDT'S METHOD 

As demonstrated in Sec. 11.6, in the case of quasi-harmonic nonlinear systems, the 
fundamental perturbation technique, whereby the system response is expanded in a power 
series in a small parameter E ,  tends to produce solutions containing secular terms even for 
systems known to possess periodic, and hence bounded, solutions. The reason for this 
erroneous result lies in the fact that, unlike linear harmonic systems characterized by a 
constant period of oscillation, regardless of the initial conditions, the period of nonlinear 
quasi-harmonic systems does depend on the initial conditions. Hence, to remedy the 
situation, we must treat the period as an unknown quantity and seek a perturbation 
solution for both the amplitude and the period at the same time, which amounts to 
expanding the period in a power series in E as well. Then, the perturbations in the 
period are determined by imposing a certain periodicity condition on the perturbation 
in the response corresponding to each order of approximation, which is the same as 
suppressing secular terms for every order. This is the essence of Lindstedt's method. 

We consider ageneric quasi-harmonic system described by the differential equation 



in which f ( q ,  q )  is a nonlinear function of q and 4. The response of the associated linear 
system, obtained by letting E = 0 in Eq. (1  1.82), is harmonic and of period To = 2n/wo.  
In the presence of the nonlinear term E f ( q ,  q ) ,  the response is periodic and of period 
T = 2 n / w ,  where w is an unknown fundamental frequency depending on E ,  w = w ( ~ ) .  
The implication is that the solution is a superposition of harmonic terms of frequencies 
equal to integer multiples of the fundamental frequency w, reminding of a Fourier series 
expansion of periodic functions. According to Lindstedt's method, we assume a solution 
of Eq. (1  1.82) in the form 

where q ( t )  is periodic with the period T = 2 ~ / w ,  in which w is the fundamental fre- 
quency. The period T, and hence the fundamental frequency w ,  is not known at this 
time. We assume that the fundamental frequency is given by 

in which the parameters wl, w2, . . . are yet to be determined; they are determined by 
insisting that the perturbations ql ( t ) ,  q2 ( t ) ,  . . . be periodic. 

Instead of working with an unknown period T, it is more convenient to change the 
time scale by replacing the independent variable t by 7,  where the period of oscillation 
in terms of the new variable 7 is equal to 27r. This amounts to the change of variables 

7 = w t ,  d l d t  = w d l d 7  ( 1  1.85) 

and we observe that 7 plays the role of a dimensionless time variable. Introducing Eqs. 
(1  1.85) in Eq. ( 1  1.82) and denoting differentiations with respect to 7 by primes, we can 
write 

w2q f f  + wiq = E f (q, w q f )  (11.86) 

Next, we consider Eqs. ( 1  1.83) and (1  1.84), use the analogy with Eq. (1  1.69) and expand 
f ( q ,  w q f )  as follows: 

Hence, inserting Eqs. ( 1  1.83), ( 1  1.84) and (1  1.87) into Eq. ( 1  1.86) and separating orders 
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of magnitude, we obtain the perturbation equations 

q; j+qo=o 

Equations (11.88) are to be solved recursively, as in Sec. 11.6. But, in contrast 
with the process used in Sec. 11.6, here we have the additional task of determining the 
corrections wl , w2, . . . required for the calculation of the fundamental frequency w. To 
this end, we require that every perturbation ql ( t ) ,  q2 ( t ) ,  . . . in the response be periodic 
and of period 27r, so that the periodicity conditions are 

The functions q, ( T )  can be  periodic only if there are n o  secular terms. But, as pointed 
out in Sec. 11.6, qi ( 7 )  are free of secular terms only in the absence of resonance, which 
amounts to requiring that the right side of every one of Eqs. (1  1.88), beginning with the 
second, does not contain harmonic terms in 7 of unit frequency. This is guaranteed if 
the corrections wl, w2, . . . are such that the coefficients of the trigonometric terms with 
unit frequency in ql ( t ) ,  q2 ( t ) ,  . . . are all equal to zero. 

Example 11.5. Obtain a periodic solution of Duffing's equation (Sec. 11.6) to a second- 
order approximation. 

Using the notation of Eq. (1 1.86), the small part of the restoring force is 

so that from Eqs. (1 1.88), the perturbation equations through second order are 

where we recall that qo, ql and q2 are functions of the dimensionless time T ;  the solutions 
ql and q2 are subject to the periodicity conditions (1 1.89). For simplicity, we consider the 



case in which the initial velocity is zero, which results in the conditions 

4; (0) = q; (0) = q; (0) = 0 (c) 

If the initial velocity is not zero, then the solution must be modified by adding a phase angle 
to r ,  a process that does not affect the nature of the solution. 

In view of the first of the initial conditions (c), the solution of the first of Eqs. (b) is 
simply 

Inserting solution (d) into the second of Eqs. (b) and recalling the trigonometric relation 
cos3 r =  COST + C O S ~ T ) ,  we obtain 

A0 2 q f  + q1 = -(8w, - 3woAo) cosr  - :A; cos3r 
4wo 

It is easy to see that the first term on the right side of Eq. (e) is likely to cause resonance, and 
hence to produce a secular term. To suppress this term, we invoke the periodicity condition, 
Eq. (1 1.89) corresponding to i = 1, which simply amounts to setting the coefficient of cos r 
in Eq. (e) to zero. This permits us to solve for wl with the result 

Then, if we consider the second of initial conditions (c), the particular solution of Eq. (e) is 
simply 

ql = &A;cos3r (g) 

Next, we insert Eqs. (f) and (g) into the third of Eqs. (b) and write 

But, from trigonometry, cos2 r cos 3 r  = (cos r + 2 cos 37 + cos ST), so that Eq. (h) reduces 
to 

A0 
4; + 42 = -- ( 2 5 6 ~ 2  + 15woA;) cos r  + &A: cos3r - &A; cos5r 

128w0 (i) 

Once again, to prevent the formation of secular terms, we must enforce the periodicity 
condition, Eq. (1 1.89) corresponding to i = 2. This amounts to equating the coefficient of 
COST in Eq. (i) to zero, which yields 

w2 = - ~ W O A ~  6) 
Then, the solution of Eq. (i) is simply 

q2 = -&A:COS~T+ & A i c o s 5 ~  (k) 

Hence, combining Eqs. (d), (g) and (k), the response to a second-order approximation is 

q(t) = ~ ~ ~ 0 s r + ~ $ ~ ~ c 0 ~ 3 r - ~ ~ ~ ~ ~ ( 2 1 c o s 3 r - c o s 5 ~ )  

Moreover, inserting Eqs. (f) and (j) into Eq. (1 1.84), the fundamental frequency to a second- 
order approximation is 



Both the periodic response q(t), Eq. (I), and the fundamental frequency w,  Eq. (m), 
depend on the initial displacement A0 in the zero-order approximation, which differs from 
the actual initial displacement A. Hence, it appears desirable to express q (t) and w in terms 
of A rather than in terms of Ao. To this end, we let t = 0 in Eq. (1) and write 

= A O + E ~ A ~ - ~ ~ -  226 A; 

Then, if we let 

Eq. (n) can be rewritten as 

from which we conclude that 

Al = - & A ~ ,  A2 = 2LA5 1024 

so that 

A. = A  - E & A ~  + E ~ ~ A '  1024 (1) 

Hence, inserting Eq. (r) into Eq. (I), ignoring third-order terms and recalling the first of Eqs. 
(1 1.85), the response to the second-order approximation can be shown to be 

q(t) = Acoswt - &&A3(coswt - cos3wt) 

Similarly, inserting Eq. (r) into Eq. (m) and ignoring third-order terms, the fundamental 
frequency to the second-order approximation is 

Equation (t) justifies an earlier statement that the period of oscillation of nonlinear conser- 
vative systems depends on the initial conditions, as well as on the system parameters, in 
contrast with the period of linear conservative systems, which is not affected by the initial 
conditions. 

11.8 FORCED OSCILLATION OF QUASI-HARMONIC SYSTEMS. 
JUMP PHENOMENON 

We consider a quasi-harmonic system consisting of a mass and a nonlinear spring sub- 
jected to an external harmonic force. We assume that the restoring force in the spring is 
the sum of a linear term and a cubic term and write the differential equation of motion 
in the form 

+ w2q = d-w2(aq  + pq3) + F cos Qt ] ,  E << 1 



in which w is the natural frequency for E = 0 ,  cu and P are given parameters, EF is the 
amplitude of the harmonic force and is the driving frequency. Equation (1 1.90) is 
recognized as Duffing's equation (Secs. 11.6 and 11.7) with a small harmonic excitation. 

Our interest lies in exploring the circumstances under which Eq. (1 1.90) admits a 
periodic solution of period T = 2571 a. As in Sec. 11.7, it is convenient to change the 
time scale so that the period of oscillation becomes 2n. To this end, we introduce the 
change of variables 

where 7 is the new time variable and $ is a phase angle yet to be determined. In terms 
of the new time variable, Eq. (1 1.90) becomes 

in which primes denote differentiations with respect to 7 .  To prevent the formation of 
secular terms, the solution of Eq. (1 1.92) must satisfy the periodicity condition 

Moreover, for convenience, we choose the initial condition 

q f  (0)  = 0 

In view of the fact that E is a small parameter, a perturbation solution of Eq. (1 1.92) 
is advised. TO this end, we expand q (7) and $ in the power series 

q(I-r) = ~ O ( I - ~ ) + E ~ I ( T ) + E ~ ~ ~ ( T ) + . . .  (1 1.95) 

and 

$ = $ o + E ~ I + E ~ $ ~ + . . .  (1 1.96) 

respectively, where q, (7) ( i  = 0,1,2 ,  . . . ) are subject to the periodicity conditions 

q z ( 7 + 2 n ) = q , ( r ) ,  i =0 ,1 ,2  ,... (1 1.97) 

as well as the initial conditions 

Inserting Eqs. (1 1.95) and (1 1.96) into Eq. (1 1.92) and equating the coefficients of like 
powers of E on both sides, we obtain the set of perturbation equations 

Equations ( 1  1.99) are to be solved recursively for qi ( r )  ( i  = 0 , 1 , 2 , .  . .), subject to the 
periodicity conditions (1 1.97) and initial conditions (1 1.98). 



In view of the initial condition, Eq. (1 1.98) corresponding to i = 0,  the solution of 
the first of Eqs. (1 1.99) is simply 

where A. is a constant amplitude. Solution (1 1.100) must satisfy the periodicity condi- 
tion, Eq. (1 1.97) corresponding to i = 0 ,  which is possible only if 

w = Q  (11.101) 

We assume that this is the case and replace Q by w  wherever it appears. Introduc- 
ing Eq. (11.100) in the second of Eqs. (11.99), dividing through by w2 and using the 
trigonometric relation cos3 7 = 4 (3 cos T + cos 37), we obtain 

To satisfy the periodicity condition, Eq. (1  1.97) corresponding to i = 1, which amounts 
to preventing resonance (Sec. 3.2), we must set the coefficients of sin r and cos T equal 
to zero. This can be accomplished in two ways, namely, 

From Eqs. (1 1.103), we conclude that for 4o = 0 the amplitude A. of the zero-order 
response qo and the amplitude F of the external force have the same sign, so that the 
zero-order response and the external force are in phase. Moreover, from Eqs. (1 1.104), 
we deduce that for q5o = T the amplitude of the zero-order response and the amplitude of 
the external force have opposite signs, so that the zero-order response and the external 
force are 180" out of phase. But, because a 180" out-of-phase response is equivalent 
to an in-phase response of negative amplitude, we conclude that Eqs. (1 1.104) do not 
yield any information that cannot be obtained from Eqs. (1 1.103). Hence, we will base 
further discussions on Eqs. (1 1.103), and we note that A. can be regarded as being fully 
determined by the second of these equations for any given value of F. 

Considering Eqs. (1 1.103), as well as the initial condition, Eq. (1 1.98) correspond- 
ing to i = 1, the solution of Eq. (1 1.102) becomes 

where the constant A1 is determined by requiring that the second-order perturbation 
q2 (T)  be periodic. Introducing Eqs. (1 1.100) and (1 1.105) in the third of Eqs. (1 1.99) 
and recalling from above that cos3 T = $ (3cosr + c o s 3 ~ )  and from Sec. 11.7 that 
cos2 7 cos 37 = + (COS T + 2 cos 37- + cos 57),  we obtain 



For qz(r) to be periodic, the coefficients of sin r and cos r must be zero, from which we 
conclude that 

Hence, inserting Eqs. (1 1.107) into Eq. (1 1.106) and considering the initial condition, 
Eq. (1 1.98) corresponding to i = 2, the solution of Eq. (1 1.106) is simply 

where A2 is obtained by requiring that qs(r) be periodic. 
Higher-order perturbations can be obtained by following the same pattern, but this 

is seldom necessary. Hence, using Eqs. (1 1. loo), (1 1.105) and (1 1.108) and recalling 
the first of Eqs. (11.91), we can express the second-order approximation solution of 
Eq. (1 1.90) in the form 

= Aocoswt + E (A1 coswt + &PA; cos3wt) 

= (Ao + EAI + E ~ A ~ )  C O S W ~  + &&PA; [AO + &&(48A1 + 2aAo +  PA;] cos 3wt 

We observe that the phase angle 4 is missing from Eq. (11.109). From the first of 
Eqs. (1 1.103) and (1 1 .l07), however, we conclude that to first-order approximation the 
phase angle is zero, 4 = $0 + ~ 4 1  = 0. It turns out that the phase angle is zero to 
every order of approximation, a result that can be attributed to the fact that the system 
is undamped. When the system is viscously damped the phase angle is not zero, as we 
shall see later in this section. 

Next, we return to Eqs. (1 1.103) and observe that the second of them represents a 
relation between the response amplitude and the excitation amplitude, with the driving 
frequency w playing the role of a parameter. From Sec. 3.1, however, we recall that for 
linear systems the frequency response G(iw) represents a relation between the response 
amplitude and the harmonic excitation amplitude. Hence, we can expect the second of 
Eqs. (1 1.103) to represent an analogous relation for nonlinear systems. This is indeed the 
case, and such an interpretation helps reveal a phenomenon typical of Duffing's equation, 
Eq. (1 1.90). To demonstrate this phenomenon, we introduce the notation 

where wo can be identified as the natural frequency of the corresponding linearized 
system, obtained by letting P = 0 in Eq. (1 1 .go). Using Eq. (1 1.110) to eliminate a! from 
the second of Eqs. (1 1.103) and recalling that E is small, so that second-order terms in E 



can be ignored, we obtain 

Then, regarding E/? as a given quantity, we can use Eq. (1 1.11 1) to plot A. versus w 
with E F  as a parameter and with w measured in units of wo. We note that for /? = 0 
the plot A. versus w has two branches, one above and one below the w-axis, where 
both branches approach the vertical line w = wo asymptotically (see Fig. 11.21); the 
plot is analogous to the frequency response plot for an undamped linear system. The 
vertical line w = wo in Fig. 11.21 corresponds to the free-vibration case of the linearized 
system, F  = 0, /? = 0. When E/? # 0, but still a small quantity, the case F = 0 no longer 
represents the vertical line w = wo but a parabola intersecting the w-axis at w = wo. The 
plots A. versus w corresponding to different values of E F  consist of two branches, one 
above the parabola and one between the w-axis and the lower half of the parabola, where 
both branches approach the parabola asymptotically, as shown in Fig. 11.21; the plots 
are for ED = 0.1. Hence, the nonlinearity of the spring causes the asymptote w = wo to 
bend into a parabola. Moreover, the plots A. versus w corresponding to different values 
of E F  also bend and approach the parabola asymptotically. In the case of a hardening 
spring the parabola bends to the right, as shown in Fig. 11.21. The analogy with the 
linear oscillator becomes more evident when we plot lAol versus w, which amounts to 
replacing A. in Fig. 11.21 by its magnitude IAol. In fact, the plot lAol versus w can be 
obtained from the plot A. versus w of Fig. 11.21 by folding the part below the w-axis 
about this axis. The resulting )Ao 1 versus w plot is displayed in the Fig. 11.22~~. The case 

I p=o 
FIGURE 11.21 
Frequency response plots for Duffing's equation with EP = 0.1 



-- 

Locus of 
tangency points 

of a softening spring simply corresponds to negative values of EP. Plots (AO I versus w 
for different values of E F  and for EP = -0.1 are shown in Fig. 11.22b. We observe that 
the curves bend to the left for a softening spring, EP < 0, as opposed to bending to the 
right for a hardening spring, ED > 0. 

In contrast with linear systems, the mass-nonlinear spring system exhibits no res- 
onance. To elaborate on this point, we consider again Fig. 11.22a and denote by T the 
point at which a vertical line is tangent to a given lAol versus w curve and by WT the 
corresponding frequency. From Fig. 11.22a we conclude that for a hardening spring 
such a tangency point can only exist on the right branch of the plot. A vertical line 
corresponding to any w such that w < WT intersects only the left branch of the plot and 
only at one point. Hence, for w < W T ,  Eq. (1 1.1 11) has only one real root A. and two 
complex roots. On the other hand, for w > w ~ ,  Eq. (1 1.1 11) has three distinct real roots, 
one on the left branch and two on the right branch. It follows that, in a certain frequency 

I 

0 0 . 5 ~ ~  o 1 . 5 ~ ~  

b. 
FIGURE 11.22 
Frequency response magnitude plots for Duffing's equation for the cases: 
a. ED = 0.1 and b. ED = -0.1 



range, the nonlinear theory predicts the existence of three distinct possibilities for the 
response amplitude corresponding to a given amplitude of the excitation force. The two 
roots on the right branch coalesce of w = w ~ .  As w increases from a relatively small 
value, the amplitude I A. I increases, but there is no finite value of w that renders I A. I in- 
finitely large. The same conclusion can be reached for a system with a softening spring. 
Hence, resonance is not possible for mass-nonlinear spring systems exhibiting cubic 
nonlinearity, in contrast with mass-linear spring systems, which experience resonance 
atw =wo. 

In the case in which the system described by Eq. (11.90) is viscously damped, 
Duffing's equation has the form 

+w2q = &[-2Cwq - w2(aq + pq3)  + F cos at], E << 1 (11.112) 

Following the same procedure as for undamped systems, we conclude that ql is periodic 
provided the relations 

are satisfied. It follows from Eqs. (1 1.1 13) that, to the zero-order approximation, the 
phase angle has the value 

4o = tan-' 2C (11.114) 
a + $A; 

so that the response is no longer in phase with the excitation. Moreover, because E is 
small, we can use Eqs. (1 1.1 10) and (1 1.1 13), ignore second-order terms in E compared 
to first-order terms and write 

Equation (1 1.115) can be used to plot lAol versus w,  which is shown in Fig. 11.23 for 
a damped system with a hardening spring with the values EF = 6, EP = 0.2. It is easy 
to see from Fig. 11.23 that, in the presence of damping, the amplitude magnitude lAo 1 
does not increase indefinitely with the driving frequency w. Although the plot ] A o \  
versus w is now continuous, in the sense that it no longer consists of two branches, the 
possibility of discontinuities in the response remains. Indeed, as the driving frequency 
w is increased from a relatively small value, the amplitude 1 A. 1 increases until it reaches 
point 1, at which point the tangent to the curve I A. I versus w is vertical and the amplitude 
experiences a sudden "jump" down to point 2 on the lower limb of the response curve. 
From that point on, it decreases with an increase in the driving frequency, approaching 
zero asymptotically. On the other hand, if the driving frequency w is decreased from 
a relatively large value, the amplitude ]Ao]  increases until it reaches point 3, at which 
point the tangent to the curve 1 A. 1 versus w is again vertical and the amplitude jumps 
up to point 4 on the upper limb, from which point it decreases with a decrease in the 
frequency. The portion of the response curve between 1 and 3 is never traversed and must 
be regarded as unstable. Whether the system traverses the arc between 4 and 1 or that 
between 2 and 3 depends on the limb on which the system moves just prior to entering 



FIGURE 11.23 
Frequency response magnitude plot demonstrating the jump phenomenon for 
Duffing's equation 

one of the two arcs, as the jump takes place after one of these two arcs is traversed. 
Whereas the jump from 3 up to 4 can take place also for undamped systems, the jump 
from 1 down to 2 has no counterpart in undamped systems. The jump phenomenon 
can also occur for damped systems with a softening spring, in which cases the jump in 
amplitude takes place in reverse directions. 

11.9 SUBHARMONICS AND COMBINATION HARMONICS 

The response of a linear oscillator to a harmonic force is harmonic and has the same 
frequency as the excitation. On the other hand, in Sec. 11.8, we demonstrated that a 
mass-nonlinear spring system of the type described by Duffing's equation and subjected 
to a harmonic force is capable of periodic response if the fundamental frequency of the 
response is equal to the driving frequency. 

The undamped Duffing equation possesses another periodic solution with the fun- 
damental frequency equal to one third of the driving frequency. To substantiate this 
statement, we consider the equation 

Equation (1 1.116) has the same form as Eq. (1 1.90), with the exception that the force 
amplitude is not necessarily small. Because the nonlinearity is due to the cubic term 
in q,  we wish to explore the possibility of a periodic solution of Eq. (1 1.116) with the 
fundamental frequency w = Q/3 .  Hence, letting w = Q / 3  in Eq. (1 1.1 16), assuming a 
solution of the form 

and equating coefficients of like powers of E on both sides of the resulting equation, we 



obtain the set of equations of increasing order of approximation 

Equations ( 1  1.118) are to be solved recursively, where the solutions qi ( t )  (i = 0,  1 , 2 ,  . . . ) 
are subject to the periodicity conditions 

and the initial conditions 

Taking into account the appropriate initial condition, the solution of the first of 
Eqs. (11 .118)  is simply 

where A. is a constant amplitude to be determined so as to ensure a periodic ql( t ) .  
Introducing solution ( 1  1.121) in the second of Eqs. ( 1  1.118) and using the trigonometric 
relation cosa cos b = 1 [cos(a + b )  + cos(a - b ) ] ,  we obtain 

TO ensure a periodic solution of Eq. ( 1  1.122),  we must prevent the formation of secular 
terms. To this end, we set the coefficient of cos Sat equal to zero, which yields the 
quadratic equation in A0 



having the roots 

Because A. is a real quantity by definition, a periodic solution of Eq. (11.122) with 
the fundamental frequency Q/3 is possible only if the expression under the radical is 
nonnegative, i.e., either positive or zero. To explore this possibility, we let w = Q/3 in 
Eq. (1 1.1 10) and obtain the relation 

where, as in Sec. 11.8, wo is the natural frequency of the associated linearized system, 
obtained by setting P = 0 in Eq. (1 1.1 16). In view of Eq. (1 1.125), the expression under 
the radical can be shown to be nonnegative provided 

Periodic oscillations with fundamental frequency equal to a fraction of the driving fre- 
quency are known as subharmonic oscillations. Hence, if inequality (1 1.126) is satisfied, 
the undamped Duffing equation, Eq. (11.1 16), admits a subharmonic solution with the 
fundamental frequency equal to Q/3. The subharmonic is said to be of order 3, and we 
note that the order of the subharmonic coincides with the power of the nonlinear term in 
the restoring force in the spring. 

When a linear harmonic oscillator is subjected to two harmonic forces with distinct 
frequencies, say Q1 and Q2, the response is a superposition of two harmonic components 
with frequencies Q1 and Qz. On the other hand, when a mass-nonlinear spring system 
is excited by a combination of two harmonic forces with distinct frequencies Q1 and Q2, 
the response is a superposition of harmonic components with frequencies in the form of 
integer multiples of S21 and Q2, as well as of harmonic components with frequencies equal 
to linear con~binations of Q1 and 02, where the type of harmonics obtained depends on 
the power of the nonlinear term. To substantiate this statement, we consider the slightly 
different form of Duffing's equation 

which differs from Eq. (1 1.1 16) only to the extent that a = 0 and Po = Pw2 = P w ~ .  Of 
course, now the excitation consists of the sum of two harmonic forces instead of one 
harmonic force. Assuming a solution in the form of Eq. (1 1.117) and separating orders 



of magnitude, we obtain the set of equations 

qo + w:qo = Fl cos Ql t + F2 cos 0 2 1  

which is to be solved recursively. For convenience, we require that the solutions 
qL (t) (i = 0, 1,2, . . .) satisfy the initial conditions (1 1.120). Because our interest is 
in demonstrating the existence of harmonic solutions with frequencies equal to integer 
multiples of Rl and Q2, as well as linear combinations of Q1 and Q2, it is possible to 
ignore the homogeneous solutions. 

The solution of the first of Eqs. (11.128) is simply 

in which 

so that Eq. (1 1.129) represents the steady-state response of a harmonic oscillator to 
a superposition of two harmonic forces. Inserting Eq. (11.129) into the second of 
Eqs. (1 1.128) and recalling the trigonometric relation cosa cos b = [cos(a + b) +cos(a - 
b)],  we can write 

in which 

H1 = - ~ P o G ~ ( G : + ~ G ; ) ,  Hz = - ? , 6 0 ~ 2 ( 2 ~ ; + ~ ; ) ,  H~ = - ; p O ~ : ~ 2  

It is evident from the nature of the excitation in Eq. (1 1.13 1) that the response ql (t), 
i.e., the solution of Eq. (1 1.131), consists of a linear combination of harmonic compo- 
nents with frequencies equal to Q1, Q2, 2Q1 f Q2, Q1 f 2'22, 3Ql and 3Q2. Hence, in 
contrast with linear systems, the response of the mass-nonlinear spring system described 
by Eq. (1 1.127) consists not only of harmonic components with frequencies R1 and Q2 
but also of harmonic components with the higher frequencies 3Q1 and 3Q2, as well as 
the frequencies 2'21 f Q2 and Q1 f 2Q2, where the latter are known as combination 
harmonics. Because the terms involving higher harmonics and combination harmon- 
ics appear only in the first-order perturbation ql (t) and not in the zero-order solution 
qo(t), they tend to be one order of magnitude smaller than the terms with frequencies 
equal to the driving frequencies Q1 and Q2. However, when one of the frequencies 



2Q1 f Q2, Q1 f 2Q2, 3Q1 and 3Q2 is close in value to wo higher amplitudes can be 
expected. 

It should be pointed out that the frequencies 2f21 f Q2, f 2Q2, 3Q1 and 3Q2 
are peculiar to Eq. (1 1.127), because the nonlinear term is cubic in q.  For systems with 
other than cubic nonlinearity, harmonic components in the response with different higher 
frequencies and combination frequencies are obtained. 

11.10 SYSTEMS WITH TIME-DEPENDENT COEFFICIENTS. 
MATHIEU'S EQUATION 

Under certain circumstances, the differential equation describing the vibration of a 
system contains time-dependent coefficients. Even when the system is linear, time- 
dependent coefficients tend to cause great difficulties, as the methods of solution com- 
monly used for systems with constant coefficient no longer work. The situation is con- 
siderably better when the terms involving the time-dependent coefficients are relatively 
small, because this opens the possibility for a perturbation solution. 

We consider a pendulum whose support is acted upon by a vertical force, and 
denote by 6 the angular displacement of the pendulum, by u the vertical displacement 
of the support and by F the vertical force, as shown in Fig. 11.24. The interest lies in 
the case in which the support executes harmonic motion of the form 

We derive the equations of motion by first regarding 0 and u as unknowns and then use 

FIGURE 11.24 
Pendulum with vertically 
moving support 



Eq. (1 1.133) to eliminate u. It is convenient to derive the equations of motion by means 
of Lagrange's equations, which have the general form 

where T is the kinetic energy, V is the potential energy and O and U are generalized 
nonconservative forces. With reference to Fig. 11.24, the kinetic energy can be shown 
to be 

1 2 2 1  1 T = -m(v, + vy) = -m[ (~Bcos8 )~  + (zi + ~ 6 s i n 8 ) ~ ]  = - m ( ~ ~ 4 ~ + 2 ~ z i 6 s i n @ + z i ~ )  
2 2 2 

(11.135) 

and the potential energy is 

V = mg Ay = mg[L(l - cos 0) + u] (1 1.136) 

Moreover, the virtual work of the nonconservative forces is 
- 
SW = 068 + USu = FSu (11.137) 

so that the generalized nonconservative forces are 

Next, we write 

Hence, inserting Eqs. (1 1.138) and (1 1.139) into Eqs. (1 1.134) and canceling appropriate 
terms, we obtain the explicit Lagrange's equations 

Inserting Eq. (11.133) into the first of Eqs. (1 1.140), we obtain a nonlinear dif- 
ferential equation with one time-dependent coefficient, which can be solved for 0(t), at 
least in theory. Then, introducing O ( t )  thus obtained and Eq. (11.133) in the second of 
Eqs. (1 1.140), we obtain the force F necessary for generating the harmonic motion u of 
the support. In practice, the problem is intractable for arbitrarily large Q(t). The situation 



is considerably better when the angular motion is confined to a small neighborhood of 
Q = 0. In this case, Eqs. (1 1.140) reduce to the linearized form 

The first of Eqs. (1 1.141) may appear nonlinear due to the product UQ, but it is not, because 
u is a known quantity. Indeed, introducing Eq. (1 1.133) in the first of Eqs. (1 1.141), we 
obtain 

Although Eq. (1 1.142) is linear, it is by no means a simple equation, because it has 
a coefficient varying harmonically with time. The equation is known in mathematical 
physics as Mathieu's equation, with the pendulum with a harmonically moving support 
representing merely one example of many systems described by the equation. Moreover, 
from the second of Eqs. (1 1.141), we obtain the force producing the harmonic motion 
of the support by writing simply 

2 F = m(g - Aw coswt) (11.143) 

The interest lies not so much in the response of the harmonically excited pendulum 
described by Mathieu's equation, Eq. (1 1.142), as in the stability of the system. Of course, 
if the system is unstable, the angle Q will not remain for long in the small neighborhood of 
Q = 0, so that Eq. (1 1.142) will soon cease to be valid. When the support is fixed, A = 0, 
Eq. (1 1.142) reduces to that of a simple harmonic oscillator, whose motion is known to 
be stable in the neighborhood of 8 = 0. On the other hand, for A # 0 it is possible to 
render the position Q = 0 unstable by exciting the support. By contrast, for A = 0, the 
upright position, 8 = T ,  is known to be unstable. Under certain circumstances, the same 
upright position can be stabilized by harmonic excitation of the support. To induce the 
behavior just described, the excitation force F need not be very large. In view of this, 
there is some advantage in assuming that the excitation is relatively small, as this permits 
a perturbation solution. To this end, it is convenient to introduce the notation 

Moreover, it is customary to let w = 2rad/s, so that Eq. (1 1.142) reduces to the standard 
form of Mathieu's equation 

where in the case at hand, e << 1. Equation (1 1.145) represents a quasi-harmonic system. 
The stability characteristics of Eq. (1 1.145) can be studied conveniently by means of the 
parameter plane 6, E .  The plane is divided into regions of stability and instability by the 
so-called boundary curves, or transition curves. These transition curves, separating the 
stability regions from the instability regions, are such that a point belonging to any of 
these curves is characterized by a periodic solution of Eq. (1 1.145). But, from Sec. 11.7, 



we can obtain periodic solutions of a quasi-harmonic system by means of Lindstedt's 
method. To this end, we assume a solution of Eq. (1 1.145) in the form 

Moreover, we assume that 

with the implication that 6 differs from an integer squared by a small quantity. Inserting 
Eqs. (1 1.146) and (1  1.147) into Eq. (1 1.145) and equating coefficients of like powers of 
E,  we obtain the sets of equations 

one set for every n. Equations (1 1.148) must be solved recursively for the various values 
of n (n = 0,1 ,2 ,  . . . ). From the first of Eqs. (1 1.148), the zero-order approximation is 
given by 

The transition curves are obtained by introducing solutions Bo = cosnt and 80 = sinnt 
(n = 0,1 ,2 ,  . . . ) in Eqs. (1 1.148) and insisting that the solutions 8, (t) (i = 1,2, . . . ) be 
periodic. Equations ( 1  1.148) yield an infinite number of solution pairs, one pair for every 
value of n,  with the exception of the case n = 0 for which there is only one solution. 

Considering first the case n = 0,  in which case Oo = 1, the second of Eqs. (1 1.148) 
reduces to 

For 81 to be periodic, 61 must be equal to zero, in which case the solution of Eq. (1 1.150) 
is simply 

In view of Eq. (1  1.15 I) ,  the third of Eqs. (1 1.148) becomes 

in which we used the trigonometric relation cos2 2t = (1 + cos 4t). For 82 to be periodic, 
the constant term on the right side of Eq. (11.152) must be equal to zero, which yields 
62 = - 112. Hence, corresponding to n = 0 there is only one transition curve, namely, 

which, to a second-order approximation, is a parabola passing through the origin of the 
parameter plane S, E. 



Next, we consider the case n = 1, in which case, from Eqs. (1 1.149), there are two 
zero-order solutions, O0 = cost and Oo = sin t. Corresponding to do = cost, the second 
of Eqs. (1 1.148) becomes 

where we used the relation 2 cos 2t cos t = cos 3t + cost. To prevent resonance, and 
hence the formation of secular terms in 01, we must set S1 = -1, from which it follows 
that the solution of Eq. (1 1.154) is 

01 = i cos 3t (11.155) 

Inserting do ,  el and S1 into the third of Eqs. (1 1.148) corresponding to n = 1 and 
considering the relation 2 cos 2t cos 3t = cos 5t + cos t, we obtain 

d2+02 = - ~ ( - 1 + 2 ~ 0 ~ 2 t ) c 0 ~ 3 t  -&,cost 

Using the same argument as with 01, for 6'2 to be periodic, the coefficient of cost must 
be zero, which yields S2 = -118. Hence, using Eq. (11.147), the transition curve corre- 
sponding to Oo = cost is 

1 2  S =  ~ - E - ~ E  +... (1 1.157) 

Corresponding to do = sin t, the second of Eqs. (1 1.148) becomes 

+01 = -(a1 +2cos2t)sint = -(S1 - 1)sint -sin3t (11.158) 

where we used the relation 2 cos 2t sin t = sin 3t - sin t. The solution of the Eq. (1 1.158) 
is periodic provided S1 = 1, and has the form 

Inserting Eq. (1 1.159) into the third of Eqs. (1 1.148) corresponding to n = 1 and using 
the relation 2 cos 2t sin 3t = sin 5t + sin t, we obtain 

so that, for O2 to be periodic, we must have S2 = -118. Hence, the transition curve 
corresponding to Oo = sint is 

S =  ~ + E - A E ~ +  ... (11.161) 

Following the same pattern, it can be shown that the transition curve corresponding 
ton = 2 and do = cos2t is 

2 S = ~ + & E  +... (11.162) 

and that corresponding to n = 2 and Oo = sin2t is 

s = ~ - & E ~ +  ... (11.163) 

Transition curves for n = 3,4 . .  . can be obtained in a similar fashion. 



FIGURE 11.25 
Stability and instability regions for a pendulum with harmonically moving 
support 

The transition curves defined by Eqs. (1  1.153), (1 1.157), (1  1.161), ( 1  1.162) and 
( 1  1.163) can be used to define regions of stability and instability in the parameter plane 
6, E. They are shown in Fig. 11.25, with the shaded areas defining the regions of instabil- 
ity. The region terminating at 6 = 1, e = 0 is known as the principal instability region, 
and is appreciably wider than the regions terminating at 6 = n2,  e = 0 ( n  = 2 , 3 ,  . . .), 
as the latter become progressively narrower as n increases. Although we treated E as a 
positive quantity, no such restriction was actually placed on E ,  and the results are equally 
valid for negative values of e. In fact, the transition curves of Fig. 11.25 have been 
plotted for both positive and negative values of E. As a matter of interest, it should be 
mentioned that Fig. 11.25 is commonly known as a Strutt diagram. 

We observe from Fig. 11.25 that stability is possible also for negative values of 6, 
which corresponds to the upright equilibrium position, B = 180". Although this region 
is small, for the right choice of parameters, the pendulum can be stabilized in the upright 
position by moving the support harmonically. Perhaps more important is the fact that 
the harmonic motion of the support can destabilize the equilibrium position 0 = 0. 

11.11 NUMERICAL INTEGRATION OF THE EQUATIONS 
OF MOTION. THE RUNGE-KUTTA METHODS 

In Chs. 5-7, we discussed techniques for deriving the response of linear systems with 
constant coefficients to initial excitations and external forces. Of course, the fact that the 
principle of superposition holds for such systems makes the derivation of the response 
almost routine. The situation is entirely different in the case of nonlinear systems, for 
which the principle of superposition does not hold. In fact, for the most part, analytical 
solutions for the response of nonlinear systems do not exist. For this reason, in the earlier 
part of this chapter, we confined ourselves to a qualitative determination of the stability 
characteristics in the neighborhood of equilibrium points. Then, later in this chapter, we 



considered a perturbation approach to the response of weakly nonlinear systems, i.e., 
systems for which the nonlinearity is sufficiently small that it can be regarded as a higher- 
order effect. In this section, we finally address the response of nonlinear systems for 
which the nonlinearity is not necessarily small. Evaluation of the response of arbitrary 
nonlinear systems almost invariably involves some kind of numerical integration, which 
requires that we convert the time into a discrete variable, not unlike the discrete-time 
process used in Chs. 4, 5 and 7 to derive the response of linear systems. Moreover, we 
recall that for the most part we obtained the response using first-order state equations. 
Hence, it should come as no surprise that numerical integration for nonlinear systems as 
well is carried out most conveniently in terms of first-order state equations. 

Numerical integration provides only an approximate solution whose accuracy de- 
pends on the order of approximation, among other things. We consider here solutions by 
the Runge-Kutta methods, a family of algorithms with members characterized by differ- 
ent orders of approximation, where the order is related to the number of terms retained 
in a truncated Taylor series expansion of the nonlinear force. Derivation of higher-order 
Runge-Kutta algorithms is very tedious, and serves no useful purpose. To develop a 
feel for the approach, we derive the second-order Runge-Kutta method and merely list 
the equations for the widely used fourth-order Runge-Kutta method, as well as for an 
efficient modified version known as the Runge-Kutta-Fehlberg method. To introduce the 
ideas, we consider a first-order nonlinear system described by the differential equation 

where f is a nonlinear function of x ( t )  and t .  Actually, in most application f does not 
involve the time t explicitly, but only implicitly through x ( t )  . The solution of Eq. (1 1.164) 
can be expanded in the Taylor series 

in which T is a small time increment and the superscript (i) denotes the ith derivative 
with respect to time (i = 1 ,2 ,  . . . ) . For numerical computation, we must limit the 
number of terms in series (1  1.165), which amounts to using a finite series to approximate 
x ( t  + T ) .  Assuming that the solution x(t) has N + 1 continuous derivatives, we can 
rewrite Eq. (1 1.165) in terms of an Nth-degree Taylor polynomial about t as follows: 

for some I such that t < < t + T ,  where the last term is known as the remainder. 
But, in view of Eq. (1  1.164), the various derivatives of x ( t )  with respect to time can be 
expressed as 

Moreover, the interest lies in a discrete-time version of Eq. (1  1.166). To this end, we 
consider the discrete times t = tk, t + T = tk+l = tk + T  (k = 0, 1,2,  . . . ), where T  is 



known as the step size, and introduce the notation 

Then, inserting Eqs. (1 1.167) and (1 1.168) into Eq. (1 1.166), we have 

where tk < Jk < tk+l. 
An approximate solution of Eq. (1 1.164) is obtained by ignoring the remainder in 

Eq. (1 1.169), i.e., the term involving J k .  Hence, introducing the notation 

we can write the Nth-order Taylor series in the discrete-time form 

in which x (0)  is the initial value of x ( t ) .  The method for computing the numerical 
solution of Eq. (11.164) by means of Eqs. (1 1.171) is called the Taylor method of order 
N .  By making the order N sufficiently large, or the step size T for a given N sufficiently 
small, the truncation error can be made as small as desirable. The Taylor methods form 
the basis for the Runge-Kutta methods. 

The Taylor methods have a serious drawback in that they require derivatives of 
f ( x ,  t ) ,  which tends to make the process very tedious, thus limiting their appeal. The 
Runge-Kutta methods remove the need for derivatives of f while retaining the desirable 
error characteristics of the Taylor methods. To derive the Runge-Kutta methods, it is 
necessary to rewrite Eqs. (11.171) in a more suitable form. To this end, we consider 
Eq. (1 1.164) and write 



so that, letting x ( t )  = x(tk) = x(k) ,  f  ( x ,  t )  = f [x ( tk) ,  tk] = f ( k )  in Eqs. ( 1  1.172) and 
inserting the results in Eqs. (1 1.171), we obtain 

k = 0 , 1 , 2  ,... (11.173) 

More often than not f  does not depend explicitly on time, in which case Eqs. (11.173) 
reduce to 

We illustrate the derivation of the Runge-Kutta methods from the Taylor methods by 
means of the second-order Runge-Kutta method. To this end, we assume an approxima- 
tion of the form 

x(k+1) =x(k)+clg l (k )+~2g2(k) ,  k  =0 ,1 ,2 ,  ... (11.175) 

where cl and c2 are constants and 

gi ( k )  = T f  ( k ) ,  g2(k) = T f  [x (k )  + agi ( k ) ]  (1 1.176) 

It should be pointed out that x  ( k )  + ng1 ( k )  merely represents the argument of the function 
f in the expression for g2(k), in which n is a constant. The constants cl , c2 and n are 
determined by insisting that Eqs. (1 1.174) and (1 1.175) agree through terms of second 
order in T .  Using Eqs. (1 1.176), we can write the Taylor series expansion 

gz(k) = T f  [x (k )  + agl (k )]  = T f [x(k)  + atT f  (k )]  



so that, using the first of Eqs. (11.176) and Eq. (11.177), Eqs. (11.175) become 

Equating terms through second order in T in Eqs. (1 1.174) and (1 1.178), we conclude 
that the constants el , cz and a must satisfy 

c1+c2 = 1, c za= i (1 1.179) 

Because there are two equations and three unknowns, Eqs. (1 1.179) do not have a unique 
solution. This implies that one of the unknowns can be chosen arbitrarily, provided the 
choice c2 = 0 is excluded, for obvious reasons. One satisfactory choice is 

Hence, inserting Eqs. (1 1.180) into Eqs. (1 1.175) and (1 1.176), we obtain a computa- 
tional algorithm defining the second-order Runge-Kutta method, often referred to as the 
RK2 method, in the form 

where 

gl ( k )  = Tf ( k ) ,  gz ( k )  = T f [x ( k )  + gl ( k ) ] ,  k = 0 ,1 ,2 ,  . . . (11.182) 

Other choices are possible, but the choice given by Eqs. (1 1.180) has the advantage that 
it yields a symmetric form for the algorithm. We observe that gl (k) and g2(k) are to be 
evaluated in sequence, as the computation of g2 ( k )  depends on gl ( k )  . 

Following the same pattern, we can derive higher-order Runge-Kutta approxi- 
mations. The derivations become increasingly complex, however, without providing 
additional insights. In view of this, we omit the derivations and merely list the results. 
The most widely used is the fourth-order Runge-Kutta method, commonly known as the 
RK4 method, defined by the algorithm 

where 

The method is easy to implement and has good accuracy, provided the step size T is 
sufficiently small. One way of ensuring that is to solve the problem twice, once using 
the step size T and the other using the step size T/2 .  If the results do not agree within 
the desired accuracy level, the computations must be repeated with T / 2  and T / 4 .  This 
process is not particularly efficient, as it requires a large amount of computation. 



The Runge-Kutta-Fehlberg method, denoted by RKF45, resolves the above prob- 
lem in an efficient manner by determining an optimal step size for a given accuracy. 
It requires two different approximations at each step, an RK4 approximation and an 
RK5 approximation. The RKF45 algorithm forms the basis for the MATLAB function 
'ode45'. 

Under certain circumstances, solutions obtained by the MATLAB function 'ode45' 
are not sufficiently accurate, which can be attributed to a relatively large step size. In this 
regard, it should be pointed out that the step size is determined optimally by the routine, 
and cannot be changed. Inaccurate solutions can occur when the 'ode45' routine is used 
for stzffsystems, in which the solution can change on a time scale that is very short relative 
to the interval of integration, but the solution of interest changes on a much longer time 
scale. In such cases, a MATLAB function capable of handling stiff problems, such as 
'ode23s1, may produce more accurate solutions. Stiffness is a qualitative property that 
more often than not cannot be ascertained before choosing an algorithm. In view of the 
interactive nature of MATLAB, the question of stiffness need not be addressed directly, 
as it is relatively easy to try different integration routines and make a choice as to the 
one to use based on the smoothness of the solution. 

The Runge-Kutta methods are one-step methods, in the sense that information 
from step k alone is used to compute x (k + 1). Such methods are said to be self-starting. 

The above developments are based on a single first-order scalar equation, Eq. 
(1 1.164). In vibrations, however, even a single-degree-of-freedom system requires two 
first-order equations. We recall from Sec. 4.8 that a single second-order differential 
equation can be replaced by two first-order state equations. Similarly, the vibration 
of an n-degree-of-freedom system can be described by 2n first-order state equations. 
Hence, for vibration problems, we must replace the single first-order scalar equation 
used to introduce the Runge-Kutta methods by a set of 2n first-order equations, which 
can be done with relative ease using vector notation. Indeed, using the analogy with 
Eq. (1 1.164), the vibration of an n-degree-of-freedom nonlinear system can be described 
by the vector equation 

where x(t) is the 2n-dimensiqnal state vector and f is a 2n-dimensional excitation vector 
depending on the state vector x(t). Then, by analogy with Eqs. (1 1.183) and (1 1.184), 
the fourth-order Runge-Kutta (RK4) method is defined by the algorithm 

where 

are 2n-dimensional vectors. The RK4 method involves four computations of the vector 
f for each integration step, which represents a large amount of computation. The method 
is extremely accurate, however, and it requires fewer steps for a desired accuracy level 
than other methods. Moreover, the method is very stable. These advantages make RK4 
a favorite for the numerical integration of nonlinear differential equations. 



As can be concluded from Eqs. (1 1.173), when the excitation depends explicitly 
on time, f = f [ x ( t ) ,  t ]  the computation of the response by the Runge-Kutta methods 
is likely to be very complex. Discussions of the second-order and fourth-order Runge- 
Kutta methods, as well as of the Runge-Kutta-Fehlberg method, are presented in Ref. 
13. 

Example 11.6. The motion of a mass-nonlinear spring system is described by the differ- 
ential equation 

Obtain the response to initial conditions by the fourth-order Runge-Kutta method using 
the sampling period T  = 0.1 s for the two cases: 1) q(0)  = 0.8 cm, q(0)  = 0 and 2) 
q(0)  = 1.2 cm, q(0)  = 0.  Plot q ( t )  versus t  for the two cases over the time interval 
0  < t < 5 s and draw conclusions concerning the period. 

In the first place, we transform Eq. (a) to state form. To this end, we introduce the 
notation 

and replace the scalar equation (a) by the vector state equations 

in which the state vector and excitation vector are 

The vector form of the fourth-order Runge-Kutta method is given by Eqs. (1 1.186) 
and (1 1.187), which can be written by components as follows: 

and 

gl l (k )  = T f i [ ~ i ( k ) , x z ( k ) l =  Txz(k) ,  

812(k) = Tf2[xi(k) ,x2(k)]  = -4T[xl(k)+x:(k)] ,  

821(k) = T f i [ x l ( k ) +  fg11(k) ,  x2(k)+ fg12(k)J = T[x2(k)+ fgI2(k)] ,  

g22(k) = Tf21.q ( k )  + f 811 (k ) ,  x2(k) + $g12(k)J 

= -4T{x1(k)+ f g i l ( k ) + [ x ~ ( k ) +  igl1(k)l3) ,  

831(k) = T f i [ x l ( k ) +  fg21(k), x2(k)+ $g22(k)] = T [ ~ ~ ( k ) + f g ~ ~ ( k ) ] ,  

832(k) = Tf2[xi  (k )  + 4821 ( k ) ,  x2(k) + f g22(k)] 

= - 4T{xl ( k )  + 4g21 ( k )  + [ X I  ( k )  + f g2l (k)13}, 

841 ( k )  = T f  i  [ X I  ( k )  + 83 1 ( k ) ,  x2 ( k )  + 832 ( k ) ]  = T  [x2 ( k )  $. ( k ) ] ,  
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/ q(t) / Case 2 

FIGURE 11.26 
Response of a mass-nonlinear spring system computed by the fourth-order Runge-Kutta method 

respectively. Equations (0 are subject to the initial conditions: (1) xi (0) = 0.8 cm, x2 (0) = 0 
and 2) xl(0) = 1.2 cm, x2 (0) = 0. The response is shown in Fig. 1 1.26, and it is clear that 
the period depends on the motion amplitude, which in turn depends on the initial conditions. 

11.12 TRAJECTORIES FOR THE VAN DER POL OSCILLATOR BY 
MATLAB 

For the most part, the solution of nonlinear ordinary differential equations must be ob- 
tained numerically, as discussed in Sec. 11.11. To this end, the Runge-Kutta-Fehlberg 
algorithm, and in particular the MATLAB routine 'ode45', appears as a suitable candi- 
date. Based on this routine, a MATLAB program for plotting trajectories in the state 
plane for the van der Pol oscillator has been written. As it turns out, the trajectories 
obtained using 'ode45' are not particularly smooth, an indication that the system may 
be relatively stiff (Sec. 11.1 I), with the implication that the step size may be too large. 
Because the step size is determined automatically by the routine, and cannot be changed, 
a different routine is advised. Indeed, the MATLAB routine 'ode23sf, designed to handle 
stiff systems, and hence using a smaller step size, yields smoother trajectories, making 



the choice of routines obvious. The program 'vanderpol.mf, using the MATLAB routine 
'ode23s1, reads as follows: 

% The program 'vanderpol.mf plots trajectories for the van der Pol oscillator with 
% mu=0.5 for various initial conditions 

clear 
clf 

xO=[-3 -3 3 3 0 01; % initial displacements 
v0=[4 3 -4 -3 0.5 11; % initial velocities 

axes ('position', [0.3 0.3 0.4 0.41) 

for k=l: size(x0, 2), 
[t, x]=ode23s ('vderpol', 10, 201, [xO(k) vO(k)]); %integration using MATLAB 
% function 

plot (x(:, l),x(:, 2)) 
hold on 

end 

title ('Trajectories for the van der Pol Oscillator') 
ylabel ('xP2(t)') 
xlabel ('x-l(t)') 
axis ([-5 5 -4 41) 

For the program to work, it is necessary to provide the equation of the system under 
consideration. This is done through the following program entitled 'vderpol', which 
contains the van der Pol equation with p = 0.5: 

% The program 'vderpolf provides the equation to be integrated in the program 
% 'vanderpo1.m' 

function xp=vderpol (t,x) 
xp=[x(2); -x(1)-0.5*(x(1).~2-1).*x(2)]; 

11.13 SUMMARY 

Nonlinear systems differ from linear systems in a very important respect, namely, they do 
not satisfy the conditions imposed by the superposition principle. As a result, except for 
certain cases, the techniques for solving the differential equations of motion developed 
for linear systems do not work for nonlinear systems. It is possible to conclude that a 
system is nonlinear when at least one of the dependent variables and their derivatives 
appears in the differential equations of motion to a power different from one. Because 
for the most part linear analysis does not apply to nonlinear systems, new concepts and 
methods of approach are required. 

An important concept in dynamics is that of equilibrium points, defined as points 
in the state space having constant value. The implication is that the displacements are 
constant and the velocities are zero at equilibrium points, which further implies that the 



accelerations and the excitations are all zero there. Whereas linear systems have only 
one equilibrium point, nonlinear systems have one or more, depending on the nature of 
the nonlinearity. On occasions, particularly in preliminary design, the interest lies more 
in the stability of motion in the neighborhood of equilibrium points than in the complete 
system response. Under the small-motions assumption, such stability statements can 
be made by linearizing the equations of motion about a certain equilibrium point and 
reaching conclusions concerning the stability of motion in the neighborhood of that point 
by solving the eigenvalue problem for the linearized system and examilling the nature 
of the associated eigenvalues. 

For conservative single-degree-of-freedom systems, there exists a motion integral 
in the form of the total energy, which can be used to plot trajectories in the state plane away 
from equilibrium points. These are closed trajectories corresponding to given energy 
levels, and representing periodic motions. For nonconservative systems, trajectories can 
be obtained through numerical integration, but in general the trajectories are not closed. 
Closed trajectories can occur in nonconservative systems also with nonlinear damping 
such that energy is dissipated over part of the trajectory and gained over the remaining 
part in a way that the net energy change over the full period is equal to zero. Such closed 
trajectories represent equilibrium motions, in the sense that trajectories on both sides of 
the closed trajectory tend to it (or away from it), and are called limit cycles; they enclose 
an equilibrium point. A typical example of a system exhibiting a limit cycle is the van 
der Pol oscillator. 

For certain systems, the differential equation of motion consists of a linear part 
and a nonlinear part, where the latter is so much smaller than the former that it can be 
regarded as a perturbation on the linear system. In such cases, an analytical solution 
can be obtained by a perturbation approach whereby the nonlinear part is identified by a 
small parameter E and the solution is expanded in a power series in E. Then, a separation 
of the terms multiplying like powers of E gives rise to a set of linear equations that 
can be solved in sequence. The perturbation solution just described can contain secular 
terms, i.e., terms increasing indefinitely with time, even for systems known to possess 
periodic solutions. To prevent the formation of secular terms, the solution for every 
order of approximation must be forced to be periodic. This can be done by assuming 
that the period, or rather the fundamental frequency, which is not known a priori, can 
also be expanded in a power series in E .  Then, the perturbations of increasing order in 
the fundamental frequency can be determined by insisting that the perturbation solutions 
be periodic. This is the essence of Lindstedt's method. 

The equation of motion of a harmonic oscillator with a small cubic nonlinearity is 
known as Duffing's equation. Unlike a harmonic oscillator, a system described by Duff- 
ing's equation subjected to a small harmonic excitation does not experience resonance. 
Indeed, the vertical asymptote at resonance in the frequency response magnitude plot for 
a harmonic oscillator bends into a parabola pointing to the right for a hardening spring 
and to the left for a softening spring. Moreover, conforming to the bent asymptote, the 
two branches of the frequency response plot also bend, approaching the parabola from 
both sides, with the response following one branch or the other, depending on the starting 
value of the driving frequency. If in addition the system possesses small damping, then 
the frequency response plots bend in a similar fashion relative to the plots for the linear 



system. Now, however, the plots are continuous and consist of three parts, an upper 
limb, a lower limb and a section connecting the two. As the driving frequency varies, 
the response can jump from one limb to another, but the in-between section is never 
traversed. When the harmonic excitation is not small, Duffing's equation admits subhar- 
monic solutions. Moreover, when the excitation is a linear combination of two harmonic 
forces, the response is the sum of harmonic components with frequencies equal to the 
two driving frequencies, as well as of harmonic components with frequencies equal to 
certain combinations of the two driving frequencies. 

Linear systems with time-dependent coefficients are considerably more difficult 
to handle than those with constant coefficients. Although such systems do not really 
belong in this chapter, when the time-dependent terms are relatively small, solutions 
can be obtained by the same perturbation techniques ordinarily used for systems with 
small nonlinearities. A typical example is that of a pendulum whose support is acted 
upon by a small harmonic force. Under certain circumstances, the equation of motion 
reduces to Mathieu's equation, a well-known equation in mathematical physics. A 
perturbation solution demonstrates that the harmonic motion of the support can render 
a stable equilibrium position of the pendulum unstable, and vice versa. 

The situation is dramatically different when the interest lies in large motions, and 
the nonlinearities are not small. In such cases, solutions must be obtained numerically, 
which involves some degree of approximation. In this text, we consider solutions by 
the Runge-Kutta methods, a family of algorithms characterized by different orders of 
approximation. In particular, we consider efficient modifications of these methods known 
as Runge-Kutta-Fehlberg methods. In general, to establish convergence with a given step 
size, it is necessary to compare the solution obtained by means of a method of a given 
order with that obtained using a method one order higher. In the Runge-Kutta-Fehlberg 
methods, the comparison requires only a fraction of the computational effort required by 
a full solution by the higher-order method. Note that numerical integration of nonlinear 
equations is generally carried out in the state space. To this end, computer programs 
based on the MATLAB functions 'ode45' and'ode23sf, which in turn are based on Runge- 
Kutta-Fehlberg methods, are quite effective. The function 'ode45' uses a larger step size 
and is suitable for nonstiff problems, and the function 'ode23sf uses a smaller step size 
and is to be used for stiff problems. The computer program 'vanderpol.m', (Sec. 11.12), 
which plots trajectories far the van der Pol equation, is based on 'ode23sf. 

PROBLEMS 

11.1. The differential equation of a viscously damped pendulum undergoing large angular dis- 
placements can be written in the form 

B(t) + 2(w0(t) + w2 s in~( t )  = o 
where ( is the viscous damping factor and w the natural frequency of small undamped 
oscillation. Derive the corresponding state equations and determine the equilibrium pomts. 
Then, derive the linearized equations about each of the equilibriumpoints, solve the associated 
eigenvalue problem for w = 1 radls in the two cases < = 0.1 and < = 2, use the eigenvalues ta 
determine the nature of the stability in the neighborhood of the equilibrium points and state 
in each case whether the linearized system possesses significant or critical behavior. 



11.2. The motion of an undamped single-degree-of-freedom system with a nonlinear spring is 
described by the differential equation 

Derive the corresponding state equations and determine the equilibrium points. Then, derive 
the linearized equations about each of the equilibrium points, solve the associated eigenvalue 
problem, use the eigenvalues to determine the nature of the stability in the neighborhood 
of the equilibrium points and state in each case whether the linearized system possesses 
significant or critical behavior. 

11.3. The differential equation of motion for a bead of mass m sliding freely along a smooth 
circular hoop of radius R rotating about a vertical axis with the constant angular velocity 
!2 was derived in Problem 1.2 by means of Newton's second law and in Problem 6.12 by 
means of Lagrange's equation. Derive the corresponding state equations and determine the 
equilibrium points for the two cases: 1) R a 2  > g and 2) RQ' < g, where g is the acceleration 
due to gravity. Then, derive the linearized equations about each of the equilibrium points, 
solve the associated eigenvalue problem, use the eigenvalues to determine the nature of the 
stability in the neighborhood of the equilibrium points and state in each case whether the 
linearized system possesses significant or critical behavior. 

11.4. Consider the damped pendulum of Problem 11.1, let w = I radls and plot trajectories in the 
neighborhood of each of the equilibrium points for both cases, C = 0.1 and < = 2. Do the 
trajectories confirm the conclusions concerning the nature of the equilibrium points reached 
in Problem 11.1 ? 

11.5. Consider the undamped system of Problem 11.2 and plot trajectories in the neighborhood of 
each of the equilibrium points. Do the trajectories confirm the conclusions concerning the 
nature of the equilibrium points reached in Problem 11.2? 

11.6. Consider the bead on arotating hoop of Problem 1 1.3 and plot trajectories in the neighborhood 
of the equilibrium points for both cases, R a 2  < g and RQ' > g. Do the trajectories confirm 
the conclusions concerning the nature of the equilibrium points reached in Problem 11.3? 

11.7. Use the approach of Sec. 11.3 to generate an integral of the equation of motion for the system 
of Problem 11.2. Then, use the integral to plot a sufficient number of trajectories so as to 
illustrate the nature of the motion in the neighborhood of each of the equilibrium points, as 
well as to illustrate the motion in the large. 

11.8. Use the approach of Sec. 11.3 to generate an integral of the equation of motion for the system 
of Problem 11.3. Then, use the integral to plot a sufficient number of trajectories so as to 
illustrate the nature of the motion in the neighborhood of each of the equilibrium points, 
as well as to illustrate the motion in the large. Consider the two cases RQ' = 0.25g and 
RCi2 = 2g. 

11.9. Consider the system of equations 

i 1  =x2+xl (1  -xt-x;), i2 = -XI +xz(1 -xf -x;) 
use the coordinate transformation xl = r cos 0, x2 = r sin 0 and derive the equation of the 
trajectories in tenns of the polar coordinates r and 0. Integrate the equation, express r as a 
function of B and verify that r = 1 is a limit cycle of the system. Determine whether r = 1 
is a stable or an unstable limit cycle and establish the stability of the equilibrium point at the 
origin. Plot a sufficient number of trajectories to verify your conclusions. 

11.10. Consider the damped linear oscillator 



and obtain a perturbation solution of the form (1 1.67). Include in the solution terms through 
second order in E, compare the result with Eq. (2.32) and draw conclusions. Note that, before 
a companson can be made, Eq. (2.32) must be expanded in a power series in C under the 
assumption that < is small. 

11.11. Consider the quasi-harmonic system described by the differential equation 

and use Lindstedt's method to obtain a periodic solution approximate to the second order. 
Let the initial conditions by q(0) = Ao, q(0)  = 0. 

11.12. Consider the van der Pol equation 

and obtain a periodic solution approximate to the first order by means of Lindstedt's method. 
Note that the amplitude is not arbitrary but determined by the periodicity condition. Let 
E = 0.2, plot the solution in the state plane and draw conclusions as to the meaning of the 
plot. 

11.13. The differential equation describing the behavior of a van der Pol oscillator subjected to a 
harmonic excitation can be written in the form 

Use the method of Sec. 11.8 to obtain a periodic solution with period 27r/ Q approximate to 
the first order. 

11.14. Equation (11.1 12) is known as Duffing's equation with small damping. Use the method of 
Sec. 11.8 to obtain a periodic solution with period 27r/ C2 approximate to the first order, and 
in the process verify relations (1 1.1 13), (1 1.1 14) and (1 1.1 15). Use (1 1.1 15) to plot the 
response for the parameters EC = 0.1, ED = -0.2 and EF = 4. 

11.15. Obtain a subharmonic solution of the differential equation 

i i ( t )  + u 2 q ( t )  = - E W ~ [ Q ~ ( ~ )  - pqZ( t ) ]  + F cos at, E << I 

11.16. Use the method of Sec. 11.10 to verify Eqs. (1 1.162) and (11.163). 
11.17. The behavior of a pendulum undergoing large motions is described by the nonlinear differ- 

ential equation 

~ ( t )  + 4sinQ(t)  = 0 

Obtain a fourth-order Runge-Kutta solution for the initial conditions Q(0) = 71.13, ~ ( 0 )  = 0. 
Plot Q( t )  versus t over the time interval 0 < t .c 37r. 

11.18. Write a MATLAB program for solving Problem 11.9. Use the state equations in terms of 
rectangular coordinates. 

11.19. Write a MATLAB program for plotting trajectories for the system of Problem 11.1 1 for 
E = 0.1. 

11.20. Write a MATLAB program for plotting trajectories for the system of Problem 11.12. 
11.21. Write a MATLAB program for plotting trajectories for the system of Problem 11.17. Plot 

trajectories for two cases, first using the MATLAB routine 'ode45' and then using 'ode23s1, 
compare results and draw conclusions concerning the suitability of the two routines. 



CHAPTER 

RANDOM VIBRATIONS 

In our preceding study of vibrations, it was possible to distinguish between three types 
of excitation functions, namely, harmonic, periodic, and nonperiodic, where the latter is 
also known as transient. The common characteristic of these functions is that their values 
can be determined for any future time t .  Such functions are said to be deterministic, 
and typical examples are shown in Fig. 12.la, b, and c. The response of systems to 
deterministic excitations is also deterministic. For linear systems, there is no difficulty 
in expressing the response to any arbitrary determinisitc excitation in some closed form, 
such as the convolution integral, although the integral may not always be easy to evaluate. 
The theory of nonlinear systems is not nearly as well developed, and the response to 
arbitrary excitations cannot be obtained even in the form of a convolution integral. 
Nevertheless, even for nonlinear systems, the response can be obtained in terms of time 
by means of numerical integration. 

There are many physical phenomena, however, that do not lend themselves to 
explicit time description. Examples of such phenomena are jet engine noise, the height 
of waves in a rough sea, the intensity of an earthquake, etc. The implication is that 
the value at some future time of the variables describing these phenomena cannot be 
predicted. If the intensity of earth tremors is measured as a function of time, then 
the record of one tremor will be different from that of another one. The reasons for 
the difference are many and varied, and they may have little or nothing to do with the 
measuring instrument. The main reason may be that there are simply too many factors 
affecting the outcome. Phenomena whose outcome at a future instant of time cannot 
be predicted are classified as nondeterministic, and referred to as random. A typical 
random function is shown in Fig. 12.ld. 
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c. d. 
FIGURE 12.1 
a. Harmonic excitation, b. Periodic excitation, c. Nonperiodic excitation, d. Random excitation 

The response of a system to a random excitation is also a random phenomenon. 
Because of the complexity involved, the description of random phenomena as functions 
of time does not appear particularly meaningful, and new methods of analysis must be 
adopted. Many random phenomena exhibit a certain pattern, in the sense that the data 
can be described in terms of certain averages. This characteristic of random phenomena 
is called statistical regularity. If the excitation exhibits statistical regularity, so does 
the response. In such cases it is more feasible to describe the excitation and response 
in terms of probabilities of occurrence than to seek a deterministic description. In this 
chapter we develop the tools for the statistical approach to vibration analysis, and then 
use these tools to derive the response of linear systems to random excitations. 

12.1 ENSEMBLE AVERAGES. STATIONARY RANDOM PROCESSES 

The interest lies in determining the force exerted by the landing gear on an aircraft taxiing 
on aroughrunway subsequent tolanding. To this end, we measure the displacement of the 
landing gear axle of a certain aircraft taxiing on the same runway a large number of times 
and denote the corresponding displacement time histories by xl ( t ) ,  x2 ( t ) ,  . . . , x, (1 ) .  Be- 
cause the aircraft does not follow the same path on the runway every time it lands, the 
payload varies from flight to flight and because of many other factors too difficult to 
identify, the time histories differ from one another, as shown in Fig. 12.2. It is clear 
from Fig. 12.2 that such time histories cannot be expressed explicitly in terms of known 
functions of time. As a result, it is impossible to use any of these functions to predict the 
displacement of the axle at some future time. Such displacements are said to represent 
a nondeterministic phenomenon, or a random phenomenon. An individual time history 



FIGURE 12.2 
Displacement time histories of a landing gear axle 

describing a random phenomenon, say xk ( t ) ,  is called a sample function and the variable 
xk ( t )  itself is referred to as a random variable. The entire collection of all possible time 
histories, known as an ensemble, represents a random process, or a stochastic process. 
Random phenomena are quite common in the physical world, and the question arises 
as to whether it is possible to treat them mathematically. The answer to this question 
depends on the nature of the random phenomenon under consideration, and in particular 
on whether the phenomenon exhibits certain regularity, as discussed shortly. 

The displacement of the landing gear axle discussed in the preceding paragraph 
plays the role of one of the excitations on the aircraft. Because the excitation represents 
a random process, rather than a deterministic function of time, the question arises as 
to how to calculate the response. The most direct approach would be to calculate the 
response to every sample function in the ensemble numerically, as if they were ordinary 
functions of time. Such an approach, however, would not be very efficient, and very 
likely not meaningful, as there may be numerous sample functions in the excitation 



random process, and there is some question as to how to interpret the response to all 
these functions. Hence, a more suitable way of describing the excitation and response 
in the case of random processes is highly desirable. This line of thought leads us to the 
conclusion that we must abandon the time description of random processes and replace 
it by a description in terms of certain averages, where the latter are sometimes referred 
to as statistics. When the averages tend to recognizable limits as the number of sample 
functions becomes very large the random process is said to exhibit statistical regularity. 
Throughout this text, we assume that this is indeed the case. 

We consider the random process consisting of n sample functions x k ( t )  (k = 
1,2, . . . , n )  depicted in Fig. 12.2 and compute average values over the entire collection 
of sample functions, where such quantities are referred to as ensemble averages. The 
mean value of the random process at a given time t = tl is obtained by simply summing 
up the values xk ( t l )  of all the individual sample functions in the ensemble corresponding 
to the time tl and dividing the result by the number n of sample functions. The impli- 
cation is that every sample function is assigned equal weight. Hence, the mean value 
corresponding to the arbitrary time tl can be written mathematically as 

Another type of ensemble average is the autocorrelationfunction, which is obtained by 
summing up the products of the sample functions corresponding to the two times t = tl 
and t = tl + T (see Fig. 12.2) and dividing the result by the number of sample functions; 
its mathematical expression is 

By considering three or more times, such as t l ,  tl + T ,  tl +a ,  etc., it is possible to 
calculate higher-order averages than the autocorrelation function. Such averages are 
seldom needed, however. 

In general, the mean value p, ( t l )  and the autocorrelation function R, (tl , tl + T )  

depend on the time t l ,  in which case the random process is said to be nonstationary. 
In the special case in which pX ( t l )  and R, (tl , tl + T )  do not depend on tl the random 
process is said to be weakly stationary. Hence, for a weakly stationary random process 
the mean value is constant, p,(tl) = p, = constant, and the autocorrelation function 
depends on the time shift T alone, R, (tl , tl + T )  = R, (7). If all possible ensemble 
averages are independent of t l ,  the random process is said to be strongly stationary. In 
many practical applications, strong stationarity can be assumed if weak stationarity is 
established. This will be shown to be the case for a large class of random processes, 
namely, Gaussian random processes (Sec. 12.4). In view of this, we will not insist on 
distinguishing between weak and strong stationarity, and refer to random processes as 
simply stationary. 



12.2 TIME AVERAGES. ERGODIC RANDOM PROCESSES 

In general, ensemble averages, such as the mean value, Eq. (12.1) and autocorrelation 
function, Eq. (12.2), require a large number of sample functions, so that the computation 
of ensemble averages can create difficulties. Indeed, in the first place, it is necessary 
to collect a great deal of data to generate the sample functions. Then, it is necessary to 
process this data. However, under certain circumstances, it is possible to avoid these 
difficulties by calculating the mean value and autocorrelation function by means of a 
single representative sample function and averaging over the time t ,  instead of averaging 
over the ensemble. Such averages are called time averages, or temporal averages, as 
opposed to ensemble averages. Concentrating on a given sample function xk(t)  from a 
random process, we define the temporal mean value as 

and the temporal autocorrelation function as 

If the random process under consideration is stationary and if the temporal mean value 
p, ( k )  and the temporal autocorrelation function R, ( k ,  r )  are the same, irrespective of 
which time history from the entire process is used to calculate these averages, then 
the process is said to be ergodic. It follows that, for ergodic processes the temporal 
mean value and autocorrelation function calculated over a representative sample function 
must by necessity be equal to the ensemble mean value and autocorrelation function, 
respectively, so that 

p, ( k )  = px = constant, R, ( k ,  r )  = R, (7) (12.5) 

As with the stationarity property, we can distinguish between weakly ergodic processes, 
for which the mean value and autocorrelation function are the same regardless of the 
sample function used, and strongly ergodic processes, for which all possible statistics 
are the same. Here too, there is no distinction between weakly and strongly ergodic 
processes for Gaussian random processes (see Sec. 12.4), so that weak ergodicity can 
be assumed to imply strong ergodicity, or simply ergodicity. It should be pointed that 
an ergodic process is by necessity stationary, but a stationary process is not necessarily 
ergodic. 

The ergodicity property permits the use of a single sample function to calculate 
averages for a given random process, thus obviating the need to use the entire ensemble. 
Because the chosen sample function can be regarded as being representative of the whole 
random process, in subsequent discussions we will drop the subscript k identifying a 
particular time history. Many stationary random processes describing the behavior of 
physical systems are ergodic, so that our study will concentrate on ergodic processes. 
If a given process is not ergodic but merely stationary, then we use ensemble averages 
instead of temporal averages. 

It should perhaps be pointed out that, although we defined the temporal mean 
value and autocorrelation function in conjunction with a sample function describing 



FIGURE 12.3 
Periodic function 

an ergodic random process, such averages apply to all functions of time, including 
deterministic functions. In fact, to illustrate the calculation of averages, we will use 
primarily deterministic functions. 

Example 12.1. Calculate the temporal mean value and autocorrelation function for the 
function depicted in Fig. 12.3 and plot the autocorrelation function. 

Because the function is periodic, averages calculated over a long time interval ap- 
proach those calculated by considering one period alone. Concentrating on the period 
- T / 2  < t < T / 2 ,  the function can be described by 

~ T - Z I -  Z-1 

FIGURE 12.4 
a. Functions f ( t )  and f (t  + T) for the cases: a. 0 < T < T / 2  and b. T / 2  < T < T  



FIGURE 12.5 
Autocorrelation function for the periodic function of Fig. 12.3 

Hence, using Eq. (12.3), the mean values is simply 

To calculate the autocorrelation function, we distinguish between the time shifts 
0 < r < T/2 and T/2 < r < T, as shown in Figs. 12.4a and b, respectively. Using Eq. 
(12.4), and considering Fig. 12.4a, we obtain for 0 < T < T/2 

where the limits of integration are defined by the overlapping portions of x (t) and x(t + r )  
(note shaded area in Fig. 12.4a). Similarly, from Fig. 12.4b, we obtain for T/2 < T < T 

The expressions for any other time shifts can be deduced from those above. Indeed, 
from F~gs. 12.4a and b, it is not difficult to conclude that the autocorrelation function R, (7) 

must be periodic in r with period T. Hence, from Eqs. (c) and (d), and the fact that R, ( r )  
is periodic, we obtained the autocorrelation function plotted in Fig. 12.5. 

12.3 MEAN SQUARE VALUES AND STANDARD DEVIATION 

The mean square value of a random variable x ( t )  is defined as 

The positive square root of the mean square value is known as the root mean square 
value, or the rms value. Note that definition (12.6) applies to any arbitrary function x ( t ) ,  
although our interest lies in sample functions from an ergodic random process. 



For an ergodic process, the mean value px is constant. In vibrations, px can be 
regarded as the static component of n ( t )  and x ( t )  - pI as the dynamic component. In 
many applications, the interest lies in the mean square value of the dynamic component. 
This quantity is simply the mean square value about the mean, and is known as the 
variance; its expression is 

The positive square root of the variance is known as the standard deviation. Expanding 
Eq. (12.7), we obtain 

( t )dt  -2p, lim - S T I 2  x ( t )d t  +p: (12.8) 
T+w T -T/2 

and, in view of definitions (12.3) and (12.6), Eq. (12.8) reduces to 

2 2 2  
gx = $Jx -P, (12.9) 

or the variance is equal to the mean square value minus the square of the mean value. 

Example 12.2. Calculate the mean square value, the variance and the standard deviation 
for the function of Example 12.1. 

Comparing Eqs. (12.4) and (12.6), we conclude that $: = RR, (0), or the mean square 
value is equal to the autocorrelation function evaluated at T = 0. Hence, from Eq. (c) of 
Example 12.1, we simply obtain the mean square value 

A~ 
$:= R,(o)= - 

6 
(a) 

Introducing the above Eq. (a) and Eq. (b) of Example 12.1 into Eq. (12.9), we obtain the 
variance 

so that the standard deviation is 

ox = GA 

12.4 PROBABILITY DENSITY FUNCTIONS 

We have indicated in Sec. 12.2 that averages describing a given ergodic random process 
can be calculated by using a single representative sample function from the ensemble. 
Information concerning the properties of the random variable in the amplitude domain 
can be gained by means of probability density functions. To introduce the concept, we 
consider the time history x ( t )  depicted in Fig. 12.6a and denote by At l ,  At2, . . . the time 
intervals during which the amplitude x ( t )  is smaller than a given value x. Denoting by 
Prob[x ( t )  < x] the probability that x ( t )  is smaller than x, we observe that Prob[x ( t )  < x ]  
is equal to the probability that t lies in one of the time intervals A t l ,  At2,  . . . . Considering 
a given large time interval T such that 0 < t < T and assuming that t has an equal chance 
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a. b. 
FIGURE 12.6 
a. Time intervals for which x ( t )  i x,  b. Probability distribution function 

of taking any value from 0 to T, we obtain an estimate of the desired probability in the 
form 

1 
Prob[x(t) < x] = lim - Ati 

T+cc T 

Letting x vary, we obtain the function 

which is known as the probability distribution function associated with the random 
variable x(t). The function P(x) is plotted in Fig. 12.6b as a function of x. The 
probability distribution function is a monotonically increasing function possessing the 
properties 

Next, we consider the probability that the amplitude of the random variable is 
smaller than the value x + Ax and denote that probability by P(x + Ax). Clearly, the 
probability that x (t) takes values between x and x + Ax is P (x + Ax) - P (x). This 
enables us to introduce the probability density function, defined as 

P(x+Ax)-P(x)  dP(x) 
p(x) = lim -- - 

AX+O Ax dx 

Geometrically, p(x) represents the slope of the probability distribution function P(x). 
Typical functions P(x) and p(x) are shown in Figs. 12.7a and b, respectively. From 
Eq. (12.13) and Figs. 12.7a and b, we conclude that the area under the curve p(x) 
versus x corresponding to the amplitude increment Ax is equal to the change in P(x) 
corresponding to the same increment. From Eq. (12.13), it is clear that the probability 
that x (t) lies between the values xl and x2 is 

X2 

Prob(xl c x c x2) = ll p(x)dx (12.14) 

which is equivalent to saying that the probability in question is equal to the area under 
the curve p(x) versus x bounded by the vertical lines through x = XI and x = x2. The 



b. x + ~  
FIGURE 12.7 
a. Probability distribution function, b. Probability density function 

function p ( x )  has the properties 

where < is a mere dummy variable of integration. 
As an illustration, we consider first the function x ( t )  depicted in Fig. 12.8a. The 

fact that the function is deterministic does not detract from the usefulness of the example. 
From Fig. 12.8a, we conclude that the probability that x ( t )  takes values smaller than 
-A is zero. Similarly, the probability that x ( t )  takes values smaller than A is equal 
to unity, because the event is a certainty. Due to the nature of the function x ( t ) ,  the 
probability increases linearly from zero at x = -A to unity at x = A. The plot P ( x )  
versus x is shown in Fig. 12.8b. Using Eq. (12.13), it is possible to plot p ( x )  versus x ,  as 
shown in Fig. 12.8~.  The probability density function p(x )  is known as the rectangular 
distribution, or uniform distribution, for obvious reasons. 

The probability distribution associated with a random variable such as that shown 
inFig. 12.9~1 is of particular interest in our study. According to the central limit theorem,' 
if the random variable is the sum of a large number of independent random variables, 

'See, for example, W. Feller, Probability Theory and Its Applications, vol. 1,  John Wiley & Sons, Inc., New 
York, 1950, p. 202. 



C. 
FIGURE 12.8 
a. T ~ m e  h~story, b. Probab~lity dismbution function, c. Probability 
density functlon 

none of which contributes significantly to the sum, then under very general conditions 
the distribution approaches the normal, or Gaussian distribution. This is true even when 
the individual distributions of the independent random variables may not be specified, 
may all be different and may not be Gaussian. The normal distribution is described by 
the expressions , 

The functions P(x) versus x and p(x) versus x given by Eqs. (12.16) are plotted in Figs. 
12.9b and c, respectively. Figure 1 2 . 9 ~  represents the so-called "standardized" normal 
distribution, in the sense that its mean value is zero and its standard deviation is unity. 
Normal distributions that are not standardized will be discussed later in this chapter. The 
probability distribution function P(x) is also known as the errorfinction, and is given 
in tabulated form in many mathematical handbooks, although the definition may vary 
slightly from table to table. 



FIGURE 12.9 
a. Random function, b. Normal, or Gaussian 
probability distribution function, c. Normal, or 
Gaussian probability density function 

Another probability distribution of interest is the Rayleigh distribution, obtained 
when the random variable is restricted to positive values only. The Rayleigh distribution 
is defined by 

The functions P ( x )  versus x  and p ( x )  versus x  are plotted in Figs. 12.10a and b, respec- 
tively. The Rayleigh distribution discussed here can also be regarded as standardized. 

On occasions, the random variable x  is given as a function of another random 
variable y ,  x  = x ( y ) ,  where y  has the known probability density function p ( y )  , and the 
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b. 
FIGURE 12.10 
a. Rayleigh probability distribution function, 
b. Rayleigh probability density function 

interest lies in determining the probability density function p(x), which necessitates a 
certain transformation of variables. To derive the required transformation, we consider 
the random variable x ( y )  depicted in Fig. 12.11 and draw horizontal lines corresponding 
to x = xo and x = xo + Axo. The intersections of these lines with the curve x(y)  
versus y define the increments of y bounded by yl and y l +  Ayl ,  yz and yz + Ay2, 
etc. But the probability that x (y )  lies in the interval bounded by xo and xo + Axo must 
be equal to the probability that y lies in any one of the increments bounded by y, and 

xo 
xo+ho 

Y 

Y~+AYI YZ+AYZ Y ~ + A Y ~  Y4+ Y4  Y ~ + A Y ~  

FIGURE 12.11 
Random variable x ( y )  versus y 



yi + Ayi (i = 1 ,2 , .  . .), SO that 

For a sufficiently small increment Axo, Eq. (12.18) implies that 

where, because p(xo) and p ( y , )  are positive quantities, the absolute values I Ay,  1 must be 
used to account for the fact that a negative increment Ay, may correspond to a positive 
increment Axo, as is the case with Ay2, Ay4,  etc. Letting xo vary, dropping the no 
longer needed subscript 0 and taking the limit as Ax + 0, we obtain the probability 
density function p ( x )  in the form 

where y, are all the values of y corresponding to x ( y )  = x .  It is clear from Fig. 12.1 1 
that there can be many values y = y, corresponding to a given value x ( y )  = x .  

As an illustration, we consider a sine wave of given amplitude A and frequency 
w but random phase angle 4. For a fixed value to of the time t ,  the sine wave can be 
regarded as a random function of 4 and represented as follows: 

The function x (4) is plotted in Fig. 12.12. Assuming that 4 has a uniform probability 
density function, as defined by Fig. 12.8c, and considering only the interval 0 < 4 < 27r, 
we can write 

But from Fig. 12.12 we see that there are two values of q5 in the interval 0 < 4 < 27r for 
each value of x .  Moreover, because the magnitude of the slope at one point is equal to 

Arj&-"[ @ 

0 $1 42 

I- 2n -+ 
FIGURE 12.12 
Sine wave wlth random phase angle 4 
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FIGURE 12.13 
Probability density function for a sine wave with a random 
phase angle 

that at the other point, we have 

Inserting Eq. (12.21) into ( 1  1.23), and considering the fact that n cannot exceed A in 
magnitude, we obtain 

1 0, 1x1 > A 

The probability density function p ( x )  is plotted in Fig. 12.13 for A = 3.  

12.5 DESCRIPTION OF RANDOM DATA IN TERMS OF 
PROBABILITY DENSITY FUNCTIONS 

If a sample time history x ( t )  from a stationary random process is given, it is often 
convenient to reduce it to a probability density function p ( x ) .  This is done by converting 
the function x ( t )  into a voltage signal and feeding it into an analog amplitude probability 
density analyzer.2 Then, having the probability density function p ( x ) ,  various averages 
can be calculated. 

Next, we consider a real single-valued continuous function g ( x )  of the random 
variable x ( t ) .  Then, by definition, the mathematical expectation of g (x ) ,  or the expected 
value of g ( x ) ,  is given by 

2 ~ e e  J. S. Bendat and A. G.  Piersol, Random Data: Analysis and Measurement Procedures, sec. 8.2, 
Interscience-Wiley, New York, 1971. 



In the special case in which g ( x )  = x ,  we obtain the mean value, or expected value, of 
x in the form 

Note that this definition involves integration with respect to x ,  whereas definition (12.3) 
involves integration with respect to t .  When g ( x )  = x2,  definition (12.25) yields 

which is called the mean square value of x .  As in Sec. 12.3, its square root is known as 
the root mean square value, or rms value. 

Following the same pattern, the variance of x is 

Considering Eqs. (12.26) and (12.27), as well as the fact that J-:p(x)dx = 1, Eq. 
(12.28) yields 

As in Sec. 12.3, the square root of the variance is known as the standard deviation. 
The above results can be given a geometric interpretation. To this end, we consider 

Fig. 12.14 showing the plot p(x )  versus x and recall that the area under the curve is 
equal to unity. Then, if p(x)dx = d A  is a differential element of area, as indicated in 
Fig. 12.14, i is simply the centroidal distance of the total area under the curve. It also 
follows that the variance a: is equal to the centroidal moment of the area and the standard 
deviation ox plays the role of the radius of gyration. Moreover, Eq. (12.29) represents 
the "parallel axis theorem," according to which the centroidal moment of the area is 

FIGURE 12.14 
Probability density function showing the centroidal distance i and 
the standard deviation a, 



FIGURE 12.15 
Normal probability density functions for a, = 1 and ox = 2 

equal to the moment of the area about point 0 minus the total area times the centroidal 
distance squared. 

The normal probability density function can be expressed in terms of the mean 
value 2 and standard deviation ax in the form 

From Eq. (12.30), we conclude that for small a ; ~  the curve p(x) versus x has a sharp 
peak at x = 2 ,  whereas for large ax the curve tends to flatten and spread out. Plots of 
p(x) versus x are shown in Fig. 12.15 for a, = I and ax = 2. 

Example 12.3. Calculate the mean value and mean square value of the function x ( t )  of 
Example 12.1 by using the probability density function of x(t). 

Using the analogy with the function of Fig. 12.8a, it can be shown that the function 
of Example 12.1 has the probability density function (see Prob. 12.10) 

-[AS(x)+l], O s x  i A 

0 everywhere else 

where Six) is the Dirac delta function. 
Inserting Eq. (a) into Eq. (12.26), we obtain the mean value 

Moreover, introducing Eq. (a) into Eq. (12.27), we anive at the mean square value 

Note that the mean value and mean square value obtained here agree with those obtained 
in Example 12.2 by means of time averages, which is to be expected. 



12.6 PROPERTIES OF AUTOCORRELATION FUNCTIONS 

The autocorrelation function provides information concerning the dependence of the 
value of a random variable at one time on the value of the variable at another time. We 
recall from Sec. 12.2 that the definition of the autocorrelation function is 

Next, we consider 

R,(-7) = lim - ST" x( t )x ( t  - 7)dt  
T+CC T -TI2 

(T/2)-T 

= lim - x(X)x(r+X)dh (12.32) 
T+W T (-T/2)-T 

where we made the substitution t - = A, dt = dX. Because both limits of integration in 
the last integral are shifted in the same direction and by the same amount 7,  the interval 
of integration remains equal to T. It is easy to see that, as T + oo, the shift in the 
location of the interval of integration becomes inconsequential, so that 

R,(-7) = lim - S T I 2  x ( t )x ( t  + r )d t  
T+CC T -TI2 

Comparing Eqs. (12.31) and (12.33), we conclude that 

or the autocorrelation is an even function of T .  

Another property of the autocorrelation function can be revealed by considering 

TI2  
lim [x(t)&x(t+r)12dr 

T+CC T -T /2  

T I 2  
= lim - ' 1  [ x 2 ( t ) ~ 2 ~ ( f ) x ( f + . r ) + x 2 ( t + ~ ) ] d t  

T*w T -T/2 

= lim - 

= 2 R, (0)  f 2 R, ( T )  0 

ST" 
(12.35) 

The above inequality is true because the first integral cannot be negative. From inequality 
(12.35), it follows that 

which implies that the the maximum value of the autocorrelation function is obtained 
for 7 = 0. From definition (12.6) we conclude that R,(O) is equal to the mean square 
value of the random variable x ( t ) ,  namely, 



Hence, the maximum value of the autocorrelation filnction is equal to the mean square 
value. Note that if x ( t )  is periodic, then R, ( T )  is also periodic, and the maximum value 
of R, (7) is obtained not only at T = 0 but also for values of T equal to integer multiples 
of the period. An illustration of this fact can be seen in Fig. 12.5. 

12.7 RESPONSE TO ARBITRARY EXCITATIONS BY FOURIER 
TRANSFORMS 

In Sec. 4.4, we derived the response to arbitrary excitations in the time domain by 
means of the convolution integral. Another approach to the derivation of the response 
to arbitrary excitations is by mean of the Fourier transformation, which is a frequency 
domain technique. In the case of deterministic problems, time domain solutions tend 
to have an edge over frequency domain solutions. In the case of stochastic problems, 
however, it is advisable to work in the frequency domain. In this section, we introduce 
the Fourier transforms in the context of the response to arbitrary excitations, but our real 
interest in the approach is to apply it to stochastic problems. Indeed, Fourier transforms 
are indispensable to the characterization of the response to random excitations, as can 
be concluded from the remainder of this chapter. 

In Sec. 3.9, we demonstrated that a periodic function of period T, such as that 
shown in Fig. 3.25, can be represented by a Fourier series, namely, an infinite series of 
harmonic functions of frequencies pwo ( p  = 0, f 1, f 2,  . . .), where wo = 2x1 T is the 
fundamental frequency. Letting the period T approach infinity, the function becomes 
nonperiodic. In the process, the discrete frequencies pwo draw closer and closer together 
until they become continuous, at which time the Fourier series becomes aFourier integral. 
To substantiate the preceding statement, we represent a periodic function, such as that 
illustrated in Fig. 3.25,by the Fourier series in its complex form 

where the coefficients C p  are given by 

provided the integrals exist. The Fourier expansion, Eqs. (12.38) and (12.39), provides 
the information concerning the frequency composition of the periodic function f ( t ) .  
Introducing the notation pwo = w,, ( p  + l)wo - pwo = wo = 27r/ T = Aw,, Eqs. (12.38) 
and (12.39) can be rewritten as 

Letting the period increase without bounds, T + oo, dropping the subscript p, so that 
the discrete variable wp simply becomes the continuous variable w, and taking the limit, 
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we can replace the summation in Eq. (12.40) by integration and obtain 

1 0 °  1 O0 

f ( t )  = lim - ( T C , ) ~ ' ~ P ~ A W ,  = - ~ ( w ) e ' " " d w  (12.42) 
' 7 ~  3m 

T -  oo too "" p=-oo & , I  J -  

. n 

W 

F(w)  = lim (TC,) = f (t)e-'wtdt (12.43) 

Equation (12.42) implies that any arbitrary function f ( t )  can be described by an inte- 
gral representing contributions of harmonic components having a continuous frequency 
spectrum ranging from -oo to +oo. The quantity F(w)dw can be regarded as the 
contribution to the function f ( t )  of the harmonics in the frequency interval from w to 
w +dw. 

Equation (12.42) is the Fourier integral representation of an arbitrary function 
f ( t ) ,  such as that shown in Fig. 12.16. Moreover, the function F(w)  in Eq. (12.43) is 
known as the Fourier transform of f ( t ) ,  so that the integrals 

1 O0 

f ( t )  = - 1 ~ ( w ) e " " ' d w  
277 -a 

represent simply a Fourier transform pair, where f ( t )  is known as the inverse Fourier 
transform of F(w) .  By analogy with the Fourier series expansion of a periodic function, 
Eqs. (12.38) and (12.39), the Fourier transform pair, Eqs. (12.44) and (12.45), also 
provides the information concerning the frequency composition off  ( t ) ,  where this time 
f ( t )  is nonperiodic. 

The representation of f ( t )  by an integral is possible provided the integral (12.44) 
exists. The existence is ensured if f ( t )  satisfies Dirichlet's conditions3 in the domain 
-oo < t < oo and if the integral I-", If ( t )  Idt is convergent. If the integral ( f ( t )  Idt 
is not convergent, then the Fourier transform F(w)  need not exist. This is indeed the 
case for f ( t )  = sinat, for which the integral (f  ( t ) ( d t  does not converge. 

From Sec. 3.9, we conclude that if Eq. (12.38) represents an excitation function 
of the form f ( t )  = F ( t ) / k ,  where F ( t )  is the applied force and k the spring constant, 
according to Eq. (3.2), then the response of the system can be written in the form 

3 ~ h e  function f ( t )  is said to satisfy Dirichlet's conditions in the interval ( a ,  b) if 1 )  f ( t )  has only a finite 
number of maxima and minima in (a,b) and 2) f ( t )  has only a finite number of finite discontinuities in ( a ,  b), 
and no infinite discontinuities. 



FIGURE 12.16 
Arbitrary function 

where G p  is the frequency response associated with the frequency pwo. Following a 
procedure similar to that used for f ( t ) ,  we conclude that the response of the system to 
an arbitrary excitation of the type shown in Fig. 12.16 can also be written in the form of 
a Fourier transform pair, as follows: 

00 

x ( t )  = 1 / x (w)eiwtdw 
27r -, 

where the Fourier transform of the response is 

which is simply the product of the frequency response and the Fourier transform of the 
excitation. Note that, for consistency of notation, we dropped i from the argument of G. 

To obtain the system response as a function of time, it is necessary to evaluate the 
definite integral in Eq. (12.48), which can lead to contour integrations in the complex 
plane, a delicate task at best. However, in a manner reminiscent of the discrete-time ap- 
proach introduced in Sec. 4.9, Fourier transforms can be evaluated numerically by means 
of discrete Fourier transforms. Then, the computational effort can be reduced signifi- 
cantly by means of the fast Fourier transform, an efficient algorithm for the computer 
evaluation of discrete Fourier  transform^.^ 

Example 12.4. Calculate the response x(t) of an undamped single-degree-of-freedom 
system to the excitation f (t) in the form of the rectangular pulse shown in Fig. 12.17a 
using an approach based on the Fourier transform. Plot the frequency spectra associated 
with f ( t )  and x ( t ) .  

4 ~ .  D. Brigham, The Fast Fourier Transform, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974. 
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FIGURE 12.17 
a. Excitation in the form of a rectangular pulse, b. Fourier transform 
of the rectangular pulse, c. Response frequency spectrum 

Recalling that f ( t )  = F ( t ) / k ,  the function f ( t )  depicted in Fig. 12.17a can be 
defined by 

F0 - T < t < T  

0 everywhere else 

and we note that f ( t )  has only two finite discontinuities and no infinite discontinuities, so 
that f ( t )  satisfies Dirichlet's conditions. Hence, it is possible to write a Fourier transform 
for f ( t )  as follows: 



For an undamped system, C = 0, the frequency response, Eq. (3.20), reduces to 

so that, inserting Eqs. (b) and (c) into Eq. (12.49), we obtain 

Hence, the response x(t) can be written in the form of the inverse Fourier transform 

Before attempting the evaluation of the above integral, it is convenient to consider the 
following partial fractions expansion: 

1 1 --- I - 1 

w[l - (w/w,)~] w 2(w - w,) 2(w + w,) 
(f) 

so that Eq. (e) becomes 

To evaluate the integral involved in (g), it is necessary to perform contour integrations 
in the complex plane. As this exceeds the scope of this text, we present here pertinent results 
only, namely, 

From Eq. (g) we note that X takes the values t + T and t - T. Hence, we must distinguish 
between the time domains defined by t + T < 0 and t - T < 0, t + T > 0 and t - T < 0 
a n d t + T  > O a n d t - T  >O,whicharethesameasthedomainst < -T, -T < t  < T and 
t > T ,  respectively. Inserting the integrals (h) with proper X into (g), we obtain 



Note that essentially the same problem was solved in Example 4.4 by means of the convo- 
lution integral in the time domain, except that in Example 4.4 the system was damped and 
the rectangular pulse started at t = 0. 

The frequency spectrum associated with f (t) is given by Eq. (b). Recalling that 
(elwT - e-""T)/2i = sinw T, Eq. (b) becomes 

2Fo sinwT 
F(w) = - --- 

k w (i) 

Figure 12.17b shows the plot F(w) versus w. Moreover, the frequency spectrum associated 
with x(t) is given by Eq. (d). In a similar manner, the equation can be reduced to 

Figure 12 .17~ shows the plot X(w) versus w. Note that Figs. 12.17b and c represent 
continuous frequency spectra, as opposed to Figs. 3.26a and b, which represent discrete 
frequency spectra. 

Comparing the method of solution of this example to that of Example 4.4, it is easy 
to see that the use of the convolution integral provides a simpler approach to the problem of 
obtaining the response x ( t )  than the Fourier transform approach. This is particularly true in 
view of the fact that the question of contour integrations in the complex plane has not really 
been addressed in this example. In random vibrations, however, the time-domain response 
plays no particular role and the interest lies primarily in frequency-domain analyses for 
which Fourier transforms are indispensable. The preceding statement refers to spectral 
analysis, a basic tool in the treatment of random vibrations. 

12.8 POWER SPECTRAL DENSITY FUNCTIONS 

The autocorrelation function provides information concerning properties of a random 
variable in the time domain. On the other hand, the power spectral density function 
provides similar information in the frequency domain. Although for ergodic random 
processes the power spectral density function furnishes essentially no information not 
provided by the autocorrelation function, in certain applications the first form is more 
convenient than the second. 

We consider the representative sample function f (t)  from an ergodic random 
process and write the autocorrelation function of the process in the form 

Then, we define the power spectral density function Sf (w) as the Fourier transform of 
R f ( r ) ,  namely, 

00 

sf (w) = I_ R (r)e-iwidT (12.51) 

which implies that the autocorrelation function can be obtained in the form of the inverse 
Fourier transform 



The conditions for the existence of the power spectral density function Sf (w) are that 
the function R (7) satisfy Dirichlet's conditions and that the integral 1 R (r)  J d r  
be convergent (see Sec. 12.7). Various analysts define Sf (w) as the quantity given by 
Eq. (12.51) divided by 27r. As will be seen shortly, this latter definition has certain 
advantages. However, in this case Sf (w) would no longer be the Fourier transform of 
R f (7). 

Next, we explore the physical significance of the function Sf (w). To this end, we 
let 7 = 0 in Eqs. (12.50) and (12.52), and write the mean square value of f (t) in the two 
forms 

Assuming that f (t) describes a voltage, the mean square value of f (t) represents the 
mean power dissipated in a 1-ohm resistor. In view of this, Eq. (12.53) can be interpreted 
as stating that the integral of Sf (w)/27r with respect to w over the entire range of frequen- 
cies, -oo < w < oo, gives the total mean power of f (t). Hence, it follows that Sf (w) 
(divided by 27r) is the power spectral density function, or the power density spectrum of 
f (t). The function Sf (w) is also known as the mean square spectral density. As can 
be inferred from the name, the power spectral density function represents a continuous 
spectrum, so that in terms of electrical terminology the average power dissipated in a 
1-ohm resistor by the frequency components of a voltage lying in an infinitesimal band 
between w and w + dw is proportional to Sf (w)dw (again divided by the factor 27r). 
If for a given random process the mean square spectral density Sf (w) is known, per- 
haps obtained through measurement, then Eq. (12.53) can be used to evaluate the mean 
square value of an ergodic random process. The function Sf (w) has certain properties 
that can be used to render the evaluation of averages easier. These properties will now 
be discussed. 

In view of its physical interpretation, we must conclude that Sf(w) is always 
nonnegative, i.e., it is either positive or zero, Sf(w) > 0. We have shown in Sec. 12.6 
that R (7) is an even function of 7, Rf (7) = R (-7). From Eq. (12.51), it follows that 

~ ~ ( a ) e " ~ d a  = Sf (-W) (12.54) 

where a is a dummy variable of integration, so that the power spectral density Sf (w) is 
an evenfunction of w. Because Rf(r)  is an even function of T, Eq. (12.51) leads to 

But the autocorrelation Rf (T) is a real function, so that from the last integral in Eq. 
(12.55) it follows that Sf(w) is a real function. As a result of Sf(w) being an even, real 



function of w, Eq. (12.52) can be reduced to 

Equations (12.55) and (12.56) are called the Wiener-Khintchine equations, and except 
for a factor of 2 they represent what is known as a Fourier cosine transform pair. It 
follows from Eq. (12.56) that 

which provides a convenient formula for the calculation of the mean square value of a 
stationary random process if the power spectral density is given. The advantage of Eqs. 
(12.56) and (12.57) over Eqs. (12.52) and (12.53), respectively, is that Eqs. (12.56) and 
(12.57) contain no negative frequencies. 

12.9 NARROWBAND AND WIDEBAND RANDOM PROCESSES 

The mean square spectral density provides a measure of the representation of given 
frequencies in a random process. For convenience, we present our discussion in terms 
of ergodic random processes. Random processes are often identified by the shape of the 
power density spectra. In particular, we distinguish between narrowband and wideband 
random processes. The terminology used is not precise, and it provides only a qualitative 
description of a given process. A narrowband process is characterized by a sharply 
peaked power density spectrum Sf (w), in the senses that Sf (w) has significant values 
only in a short band of frequencies centered around the frequency corresponding to the 
peak. A sample time history representative of a narrowband process contains only a 
narrow range of frequencies. In the case of a wideband process, on the other hand, the 
power density spectrum Sf (w) has significant values over a wide band of frequencies 
whose width is of the same order of magnitude as the center frequency of the band. 
A sample time history representative of a wideband process contains a wide range of 
frequencies. At the two extremes we find a power density spectrum consisting of two 
symmetrically placed delta functions, corresponding to a sinusoidal sample function, 
and a uniform power density spectrum, corresponding to a sample function in which all 
the frequencies are equally represented. The first, of course, is a deterministic function, 
but it can be regarded as random if the phase angle is randomly distributed (see Sec. 
12.4). The second is known as white noise by analogy with white light, which has a 
flat spectrum over the visible range. If the frequency band is infinite, then we speak of 
ideal white noise. This concept represents a physical impossibility because it implies 
an infinite mean square value, and hence infinite power. A judicious use of the concept, 
however, can lead to meaningful results. For comparison purposes, it may prove of 
interest to plot some sample functions and the autocorrelation functions, probability 
density functions and power density spectra corresponding to these sample functions. 

Figure 12.18 shows plots of possible time histories. Figure 12.18a shows the simple 
sinusoidal function f ( t )  = A sin(wot + $), whereas Figs. 12.18b, c and d show time 
histories corresponding to a narrowband random process, a wideband random process 



FIGURE 12.18 
a. Sinusoidal function, b. Narrowband random process, c. Wideband random process, d. Ideal white 
noise 

and an ideal white noise, respectively. Note that Fig. 12.18b has the appearance of 
a sinusoidal function with randomly varying amplitude. Figures 12.18~ and d look 
somewhat similar because both time histories contain a wide range of frequencies. Figure 
12.19 shows plots of corresponding probability density functions. Figure 12.19a depicts 

c. d. 
FIGURE 12.19 
Probability density function for: a. Sinusoidal function, b. Narrowband process, c Wideband 
process and d. Ideal whlte noise 



the probability density function for a sinusoidal wave. This function was obtained in 
Sec. 12.4 by regarding the phase angle as random, and was plotted in Fig. 12.13. It is not 
possible to give analytical expressions for the probability density functions associated 
with a narrowband process, a wideband process and an ideal white noise. However, they 
all approach the Gaussian distribution, as shown in Figs. 12.19b, c and d, respectively. 

Plots of the autoconelation function corresponding to a sinusoidal wave, a nar- 
rowband process, a wideband process and an ideal white noise are shown in Figs. 
12.20a, b, c and d, respectively. The autocorrelation function for the sinusoidal wave 
f ( t )  = A sin(wot + Q) can be calculated as follows: 

T / 2  
Rf (7) = lim A' 1 sin(wot + Q) sin[wa (t + i )  + $]dr 

T-w T -T /2  

- A2 
- - cos W o 7  

2 

which is a cosine function with the same frequency as the sine wave but with zero phase 
angle. The autocorrelation function for the narrowband process appears as a cosine 
function of decaying amplitude, and that of a wideband process appears sharply peaked 
and decaying rapidly to zero. In the limit, as the width of the frequency band increases 
indefinitely, the autocorrelation function reduces to that for the ideal white noise, having 

= = &  lp $?&-----: I oy=so T 
,o 

c. d. 
FIGURE 12.20 
Autocorrelation function for a Sinosoidal function, b Narrowband process, c Wideband process and 
d Ideal white noise 



c. d. 
FIGURE 12.21 
Power spectral density for: a. Sinusoidal function, b. Narrowband process, c. Wideband process and d. 
Ideal white noise 

the form 

where S(T) is the Dirac delta function. This can be verified by substituting Eq. (12.59) 
into Eq. (12.51). 

Figure 12.21~1 shows a plot of the power density spectrum for the sine wave. It can 
be verified that its mathematical expression is 

The power spectral densities for the narrowband and wideband process are shown in 
Figs. 12.21b and c, respectively, which justifies the terminology used to describe these 
processes. Figure 12.21d depicts the power density spectrum for the ideal white noise, 
indicating that all frequencies are equally represented. 

A more realistic random process than the ideal white noise is the band-limited white 
noise. The corresponding power density spectrum, shown in Fig. 12.22, is flat over the 
band of frequencies w l  < w .c wz (and -wz; < w < -wl), where wl and wz; are known 
as the lower cutoff and upper cutoff frequencies, respectively. The band-limited white 
noise can serve at times as a reasonable approximation for the power density spectrum 
of a wideband process. The associated autocorrelation function can be obtained from 
Eq. (12.56) in the form 



FIGURE 12.22 
Band-limited white noise 

The autocorrelation function is shown in Fig. 12.23a. As a matter of interest, we observe 
that, by letting wl = 0 and w2 -+ oo, the band-limited white noise approaches the ideal 
white noise. In this case, Fig. 12.23b approaches a Dirac delta function in the form of a 
triangle with the base equal to 2 7 ~ 1 ~ 2  and the height equal to Sowzl7~. The area of the 
triangle is equal to So, thus verifying Eq. (12.59). 

Stationary and Gaussian narrowband processes lend themselves to further char- 
acterization. Before we can show this, it is necessary to develop an expression for the 
power spectral density of a derived process. In particular, the interest lies in an expression 
for the power spectral density Sf (w) of a stationary process f (t) under the assumption 
that the power spectral density Sf (w) of the stationary process f (t) is known. To this 
end, we recall Eq. (12.2) and recognize that the autocorrelation function for a stationary 
process does not depend on the time tl, so that replacing tl by the arbitrary time t the 
ensemble autocorrelation function can be written in the form 

Differentiating Eq. (12.62) with respect to T ,  we obtain 

But, 

so that 

For stationary processes, however, the value of the sum is independent of time, so that 
we can also write 



FIGURE 12.23 
Autocorrelation function for: a. Band-limited white noise and b. Ideal white noise 

Using the above procedure once more, it is not difficult to show that 



where R f ( 7 )  is the autocorrelation function of the derived process f ( t ) .  From Eq. 
(12.52), however, we can write 

Moreover, 

where S f ( w )  is the power spectral density of f .  Hence, inserting Eqs. (12.68) and 
(12.69) into Eq. (12.67), we conclude that 

or, the power spectral density of the derived process f can be obtained by merely mul- 
tiplying the known power spectral density of f by w2. 

For a stationary process with zero mean value, if we let T = 0 and use Eqs. (12.27), 
(12.29), (12.53) and (12.62), we obtain 

00 

D ? = R ~ ( O ) = E [ ~ ~ ] = ~ /  257 -, si(w)dw (12.71) 

where a f  is the standard deviation. Similarly, letting T = 0 in Eq. (12.69) and using Eq. 
(12.70), we can write 

Next, we return to the characterization of a narrowband process. To this end, we 
consider a sample function f ( t )  representative of an ensemble such as that shown in Fig. 
12.24. The function appears as a sinusoid with slowly varying random amplitude and 
random phase. The interest lies in characterizing the expected frequency and amplitude. 

Peaks 

FIGURE 12.24 
Sample function from a narrowband process 



To characterize the expected frequency, we define the expected number of crossings with 
positive slope per unit time at the level f = a as follows: 

where N& (T) represents the number of crossing with positive slope in the time interval 
T. Note that crossings with positive slope at f = 0 are marked by crosses in Fig. 12.24. 
It can be shown5 that for a stationary process 

where p(a, f )  is the intersection of the joint probability density function p( f ,  f )  and 
the plane f = a (see Sec. 12.12). Equation (12.74) is valid for any arbitrary stationary 
process. If the process is Gaussian, then the joint probability density function has the 
form 

1 
p ( f , f )  = - 

1 f 2  

27rfff f f f  exp [-5 (? + $1 
where the standard deviations of and of can be obtained from the power spectral density 
S f ( w )  by means of Eqs. (12.71) and (12.72), and we note that Eq. (12.75) reflects the 
fact that f and f are uncorrelated. Inserting Eq. (12.75) with f = a into Eq. (12.74) 
and carrying out the integration, we obtain 

Then, the average frequency, or expectedfvequency, wo is defined as the expectednumber 
of zero crossings with positive slope per unit time multiplied by 27~, so that letting a = 0 
in Eq. (12.76) and considering Eqs. (12.71) and (12.72), we can write the expected 
frequency 

112 

(12.77) 

It can also be shown6 that the probability density function of the envelope for a 
narrowband stationary Gaussian random process is 

a -a2/20: p(a)  = -e (12.78) 
a: 

'see S. H. Crandall and W. D. Mark, Random Vibration in Mechanical Systems, Academic Press, Inc., New 
York, 1963, p. 47. 

6 ~ e e  S. H. Crandall and W. D. Mark, op. cit. pp. 48-53. 



which can be identified as the Rayleigh distribution. The probability density function of 
the peaks is also given by the Rayleigh distribution of Eq. (12.78). 

12.10 RESPONSE OF' LINEAR SYSTEMS TO STATIONARY 
RANDOM EXCITATIONS 

In Chap. 4, we showed that the response x ( t )  of a linear system to the arbitrary excitation 
f ( t )  can be written in the form of the convolution integral 

x ( t )=  f(X)g(t-X)dX I' (12.79) 

where g( t )  is the impulse response and X merely a dummy variable. The function f ( t )  
is defined only for t > 0 and is zero for t < 0. Likewise, Eq. (12.79) defines the response 
x ( t )  only for t > 0. Random variables, however, are not restricted to positive times, so 
that we wish to modify Eq. (12.79) to accommodate functions f ( t )  of negative argument. 
To this end, using the same argument as that used in Sec. 4.4 to derive the convolution 
integral, Eq. (12.79), it is easy to see that the lower limit of the convolution integral can 
be merely extended to -00, so that 

x ( t ) =  f(X)g(t-X)dX L (12.80) 

However, from the definition of the impulse response (see Sec. 4. I ) ,  g(t  - A) is zero for 
t < A. Because the variable of integration in (12.80) is X and not t ,  a slight change in 
perspective permits us to restate the above by saying that g(t - A) is zero for X > t .  It 
follows that the upper limit of the integral in (12.80) can be changed to any value larger 
than t without affecting the value of the integral. Choosing the upper limit as infinity, 
for convenience, we can write the convolution integral in the form 

00 

x ( t )  = f (A)g(t - X)dX S_, (12.81) 

Using the change of variable t - X = 7 ,  dX = - d r ,  with an appropriate change in 
the integration limits, it is easy to demonstrate that the convolution integral remains 
symmetric in f ( t )  and g ( t ) ,  or 

00 00 

~ ( t )  = f (A)g(t - X)dX = g(X) f ( t  - X)dX S_, S_, (12.82) 

Next, we denote the Fourier transform of x( t )  by X(w),  so that using Eq. (12.81), 
as well as the substitution t - X = a, dt = da, we can write 

00 00 

x ( t ) e i w t d t  = f (A) [I  g(t  - X)eCiY'dt 
-00 -00 

But, 



is the Fourier transform of the excitation and 

is the Fourier transform of the impulse response, so that Eq. (12.83) yields 

X (w)  = G (w) F (w)  (12.86) 

Comparing Eq. (12.86) with Eq. (12.49), we conclude that the frequency response G ( w )  
can be identiJiedas the Fourier transform of the impulse response. Equations (12.82) and 
(12.86) state that the convolution o f f  ( t )  and g ( t )  and the product G(w)  F(w) represent 
a Fourier transform pair. This statement is known as the time-domain convolution 
theorem. 

The above relations are valid for any arbitrary excitation f ( t ) .  Our interest lies 
in the case in which the excitation is a stationary random process. Then, the response 
random process also is stationary. We are interested in calculating first- and second- 
order statistics for the response random process, given the corresponding statistics for 
the excitation random process. Averaging the second form of the convolution integral, 
Eq. (12.82), over the ensemble, we can write the mean value of the response random 
process as 

(12.87) 

Assuming that the order of the ensemble averaging and integration operations are inter- 
changeable, Eq. (12.87) can be written as 

But for stationary random processes, the mean value of the process is constant, E [  f ( t  - 
A)] = E [  f ( t ) ]  = constant, so that 

(12.89) 

Letting w = 0 in Eq. (12.85) and changing the dummy variable from a to A, we obtain 

so that Eq. (12.89) reduces to 

E [ x ( t ) ]  = G(O)E[ f ( t ) ]  = constant (12.91) 

which implies that the mean value of the response to an excitation in the form of a 
stationary random process is constant and proportional to the mean value of the excitation 
process. It follows that ifthe excitation mean value is zero, then the response mean value 
is also zero. 

Next, we evaluate the autocorrelation function of the response random process. To 
this end, it is convenient to introduce two new dummy variables, X I  and X2, and write 



the convolution integrals 

Using Eqs. (12.92) to form the response autocorrelation function R, ( r )  and assuming 
once again that the order of ensemble averaging and integration is interchangeable, we 
can write 

Because the excitation random process is stationary, we have 

= R f ( r + X l  -A21 (12.94) 

where R (r + X I  - X 2 )  is the autocorrelation function of the excitation process. Hence, 
the response autocorrelation function, Eq. (12.93), reduces to 

We note that Eq. (12.95) does not depend on t ,  which implies that the value of the response 
autocorrelation function is also insensitive to a translation in time, thus corroborating the 
statement made earlier that iffor a linear system the excitation is a stationary random 
process, then the response is also a stationary random process. 

Quite often information concerning the response random process can be obtained 
more readily by calculating first the response power spectral density instead of the re- 
sponse autocorrelation function, particularly if the excitation random process is given 
in terms of the power spectral density. To demonstrate this, we use Eq. (12.95) and ex- 
press the response mean square spectral density as the Fourier transform of the response 
autocorrelation function in the form 

00 

sx (w)  = l_ R, ( r ) e L w T d r  

= lI e-lw' [Sou loo g(Xl)g(A2) R (7 + X I  - X2)dhldA2 d i  (12.96) 
-00 -00 I 

But R (T + XI - X 2 )  can be expressed as the inverse Fourier transform 



so that, inserting Eq. (12.97) into Eq. (12.96), considering Eq. (12.85), interchanging 
the order of integration and rearranging, we obtain 

where use has been made of the fact that G(-w) = G(w)  is the complex conjugate of 
the frequency response G(w) .  Comparing the first integral in Eq. (12.96) with the last 
in Eq. (12.98), and recognizing that the response autocorrelation function R, (7) must 
be equal to the inverse Fourier transform of the response mean square spectral density 
S, (w) ,  we conclude that 

and 

constitute a Fourier transform pair. Equation (12.99) represents a simple algebraic ex- 
pression relating the power spectral densities of the excitation and response random 
processes, whereas Eq. (12.100) gives the response autocorrelation function in the form 
of an inverse Fourier transform involving the excitation power spectral density. From 
Eq. (12.99), we conclude that in the case of a lightly damped single-degree-of-freedom 
system, for which the frequency response has a sharp peak at w = w, (1 - 2c2)'I2, where 
5 is the damping factor and w, the frequency of undamped oscillation, if the excitation 
power spectral density function represents a wideband random process, then the response 
power spectral density function is a narrowband random process. 

The mean square value of the response random process can be obtained by letting 
r = 0 in Eq. (12.100). The result is simply 

Examining Eqs. (12.99), (12.100) and (12.101), it appears that if the system is linear 
and the excitation random process is stationary, then the response mean square spectral 



density, autocorrelation function and mean square value can all be calculated from the 
mean square spectral density Sf (w)  of the excitation random process and the magnitude 
1 G(w)  1 of the frequency response. 

It should be pointed out that if the excitation random process is Gaussian and 
the system is lineal; then the response random process is also Gaussian. But, from 
Eq. (12.30), the Gaussian probability density function depends on the mean value and 
standard deviation alone, where, from Eq. (12.29), the standard deviation depends on 
the mean value and mean square value. It follows that, for Gaussian random processes, 
the response probability distribution is completely defined by the response mean value 
and mean square value. 

It is not difficult to show that the above relations and conclusions concerning 
response random processes remain valid if the excitation random process is not merely 
stationary but ergodic. The only difference is that for ergodic random processes the 
averages are time averages, calculated by using a single representative sample function 
from the entire process, instead of ensemble averages over the collection of sample 
functions. 

12.11 RESPONSE OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS 
TO RANDOM EXCITATIONS 

We consider a mass-damper-spring system traveling with the uniform velocity v on a 
rough road, so that its support is imparted a vertical motion, as shown in Fig. 12.25. 
If the road roughness is described by the random variable y(s) ,  in which s = vt ,  we 
conclude that the differential equation of motion for the mass m is (see Sec. 3.5) 

( t )  + 2iwn.i (t) $. w;x ( t )  = w; f ( t )  (12.102) 

FIGURE 12.25 
Mass-damper-spring system traveling on a rough road 



where 

is an equivalent displacement excitation, in which < is the damping factor and w, the 
undamped frequency of oscillation. We assume that the random process associated with 
f (t) is ergodic and Gaussian, so that the response x(t) is also an ergodic and Gaussian 
process. Hence, both the excitation and response random processes are fully described 
by the mean value and mean square value. 

For a stationary process the mean value is constant. Because a constant component 
of the excitation merely leads to a constant component of the response, a problem that 
can be treated separately, we can assume without loss of generality that this constant is 
zero, 

It follows immediately that the response mean value is also zero. 

E [x (t)] = 0 (12.105) 

Next, we calculate various basic statistics describing the response random process, 
such as the autocorrelation function, the power spectral density function and the mean 
square value. This requires certain statistics describing the excitation random process. 
We consider two related cases, namely, the ideal white noise and the band-limited white 
noise. In Sec. 12.9, we indicated that the autocorrelation function corresponding to the 
ideal white noise power spectral density Sf (w) = So is 

where S(T) is the Dirac delta function. Moreover, from Eq. (4.13), we conclude that the 
impulse response of the single-degree-of-freedom system described by Eq. (12.102) has 
the form 

where the unit step functionm(t) ensures that g(t) = 0 for t < 0. Hence, introducing Eqs. 
(12.106) and (12.107) into Eq. (12.95), we obtain the response autocorrelation function 

In our evaluation of R, (r), we assume that T > 0. The value of R, (-7): can be obtained 
by using the fact that the autocorrelation is an even function of T. Due to the nature of 



the delta function, if we integrate with respect to Xz, we obtain 

4 
- - %e-cun7 (sin Wdr Lrn e-2cun*1 sin wdhl coswdXldXl 

4 

But the value of the integrals in Eq. (12.109) can be found in standard integral  table^,^ 
so that Eq. (12.109) reduces to 

R,(r) = *e-cwnT c 
4c (1 - <2)1/2  

sin wdr , 7 > 0 I (12.1 10) 

FIGURE 12.26 
Response autocorrelation function for a lightly damped single-degree-of-freedom system 

'see, for example, B. 0. Pierce and R. M. Foster, A Short Table of Integrals, nos. 430 and 435, Ginn and 
Company, Boston, 1956. 



Using the fact that R, (-7) = R, ( r ) ,  we can write directly 

The autocorrelation function is plotted in Fig. 12.26 for the case of light damping. It 
is easy to see that the response autocorrelation function is that of a narrowband process 
(see Sec. 12.9). , 

The response power density spectrum is relatively easy to obtain. We recall that 
the frequency response for the system in question was obtained in Sec. 3.1. Hence, 
inserting S f  (w)  = So and Eq. (3.20) into Eq. (12.99), we obtain simply 

The response power spectral density S,(w) is plotted in Fig. 12.27. Once again we 
conclude that the plot S,(w) versus w is typical of a narrowband process. Because, 
according to Eqs. (12.99) and (12. loo),  R, ( 7 )  and S, (w)  represent a Fourier transform 
pair, no essentially new information can be derived from S, (w)  that cannot be derived 
from R, ( r ) ,  or from R, (7) that cannot be derived from S, (w)  . 

The mean square value can be obtained by letting r = 0 in Eq. (12.110) and writing 
simp1 y 

2 sown R, (0 )  = E [ X  ( t ) ]  = -- 
4C 

It can also be obtained by inserting Eq. (12.112) into (12.101) and writing 

2 dw 
R,(O) = E [ x  ( t ) ]  = - 

[ I -  ( w / w , ) ~ ] ~  + ( ~ < w / w , ) ~  

The integration in Eq. (12.1 14) can be performed by converting the real variable w into 
a complex variable and the real line integral into a contour integral in the complex plane, 
where the latter can be evaluated by the residue theorem. Following this procedure, it 

0 
W 

FIGURE 12.27 
Response power spectral density for a damped single-degree-of-freedom system 



FIGURE 12.28 
Response power spectral density corresponding to a band-limited 
white noise excitation power spectral density 

can be shown8 that Eq. (12.1 14) yields the same mean square value as that given by Eq. 
(12.1 13). 

Because the random process is Gaussian with zero mean value, the mean square 
value, Eq. (12.113), is sufficient to determine the shape of the response probability 
density function, thus making it possible to evaluate the probability that the response 
x ( t )  might exceed a given displacement. The mean square value also determines the 
probability density function of the Rayleigh distribution for the envelope and peaks of 
the response (see Fig. 12.24). 

When the excitation power spectral density has the form of a band-limited white 
noise with lower and upper cutoff frequencies wl and w2, respectively, the response power 
spectral density has the form depicted in Fig. 12.28. Then, if the system is lightly damped 
and the excitation frequency band wl < w < w2 includes the system natural frequency 
w, as well as its bandwidth Aw = 25w, (see Sec. 3.2) and if the excitation bandwidth 
is large compared to the system bandwidth, the response mean square value, which is 
equal to the area under the curve S, (w)  versus w divided by 27r, can be approximated by 
Sow,/4C. Hence, under these circumstances, the ideal white noise assumption leads to 
meaningful results. 

Returning to Eq. (12.1 12), we observe that, whereas the excitation power spectral 
density Sf (w)  is flat, the response power spectral density S, (w)  is not, and in fact is 
sharply peaked in the vicinity of w = w, for light damping. Moreover, the response 
spectrum has the value So for relatively small frequencies, and vanishes for very large 
frequencies, as can be seen from Fig. 12.28. This behavior can be attributed entirely 
to ( G ( w )  1, which prescribes the amount of energy transmitted by the system at various 
frequencies. Hence, the linear system considered acts like a linearjlter. For very light 
damping, the system can be regarded as a narrowbandjfter. 

8 ~ e e  L. Meirovitch, Analytical Methods & Vibrations, The Macmillan Co., New York, 1967, pp. 503-505 



12.12 JOINT PROBABILITY DISTRIBUTION OF TWO RANDOM 
VARIABLES 

The preceding discussion was confined to properties of a single random process. Yet in 
many instances it is necessary to describe certain joint properties of two or more random 
processes. For example, these random processes may consist of the vibration of two 
or more distinct points in a structure. The statistics discussed in Secs. 12.1-12.9 can 
be calculated independently for the various random processes involved, but in addition 
there may be important information contained in certain joint statistics. In this section 
we confine ourselves to two random variables, and in Sec. 12.13 we discuss random 
processes. 

There are three basic types of statistical functions describing joint properties of 
sample time histories representative of two random processes, namely, joint probabil- 
ity density functions, cross-correlation functions and cross-spectral density functions. 
These functions provide information concerning joint properties of two processes in the 
amplitude domain, time domain and frequency domain, respectively. 

We consider the two random variables x ( t )  and y( t ) ,  and define the joint, or 
second-ordel; probability distribution function P ( x ,  y )  associated with the probability 
that x ( t )  I x and y( t )  5 y as follows: 

The above joint probability distribution function can be described in terms of a joint 
probability density&nction p (x ,  y )  according to 

where the function p(x ,  y) is given by the surface shown in Fig. 12.29. Note that 5' 
and v in Eq. (12.1 16) are mere dummy variables. The probability that xl < x 5 x2 and 
yl < y _( y2 is given by 

and is represented by the shaded volume in Fig. 12.29. 
The joint probability density function p(x ,  y) possesses the property 

P ( X ,  Y )  ? 0 (12.118) 

which implies that the joint probability is a nonnegative number. Moreover, the prob- 
ability that both x and y are any real numbers is unity because the event is a certainty. 
This is expressed by 

First-order probabilities can be obtained from second-order joint probabilities. 
Indeed, the probability that x lies within the open interval xl < x < xz regardless of the 



FIGURE 12.29 
Joint probability density function 

value of y is 

(1 2.120) 

where 
00 

is the first-order probability density of x alone. Similarly, 
00 

Y ( Y )  = La P(X. Y)dX (12.122) 

is the first-order probability density of y alone. The two random variables x and y are 
said to be statistically independent if 

Next, we define the mathematical expectation of a real continuous function g ( x  , y)  
of the random variables x ( t )  and y ( t )  in the form 

The mean values of x ( t )  and y ( t )  alone are simply 



In the case in which g(x ,  y )  = ( x  - i ) ( y  - j ) ,  Eq. (12.124) defines the covariance 
between x and y in the form 

Recalling Eq. (12.28), we conclude that Cx = E [ ( x  - i)'] = a: represents the variance 
of x, whereas Cy = E [ ( y  - j)'] = ,: is the variance of y. The square roots of the 
variances, namely, 0, and q,, are the standard deviations of x and y, respectively. 

A relation between the covariance Cxy and the standard deviations ax and ay can 
be revealed by considering the integral 

00 x - 2  2 Y - Y  LmLm ( ~ ~ 7 )  P ( X ,  y)dxdy 

where the inequality is valid because the first integral cannot be negative. It follows that 

or the product of the standard deviations of x and y  is larger than or equal to the magnitude 
of the covariance between x and y. The normalized quantity 

is known as the correlation coeficient. Its value lies between -1 and +I, as can be 
concluded from inequality (12.127). 

When the covariance CAY is equal to zero the random variables x and y are said to 
be uncorrelated. Statistically independent random variables are also uncourelated, but 
uncorrelated random variables are not necessarily statistically independent, although 
they can be. To show this, we introduce p(x ,  y )  = p ( x ) p ( y )  into Eq. (12.126) and obtain 

00 00 

= [_*P(x)dx La yP(Y)dY - E [ x l E [ y l =  0 (12.130) 

On the other hand, in the general case in which p(x, y)  # p ( x ) p ( y )  the fact that the 
covariance is zero merely implies that 



However, in the very important case in which p (x ,  y )  represents the joint normal, or 
Gaussian, probability density fuizction, uncorrelated random variables are also sta- 
tistically independent. Indeed, the joint normal probability density function has the 
expression 

so that when the correlation coefficient pxy is zero, Eq. (12.132) reduces to the product 
of the individual normal probability density functions 

1 1 
exp -- 

~ / ~ ; F O X  [ ] (12.133) 

thus satisfying Eq. (12.123), with the implication that the random variables x and y are 
statistically independent. Note that this result is valid forjoint normal probability density 
functions alone, and is not valid for arbitrary joint probability density functions. 

12.13 JOINT PROPERTIES OF STATIONARY RANDOM PROCESSES 

We consider two arbitrary random processes xk ( t )  and yk ( t )  (k = 1,2,  . . . ) of the type 
discussed in Sec. 12.1. The time histories xk( t )  and yk(t)  ( k  = 1,2,  . . .) resemble those 
depicted in Fig. 12.2. The object is to calculate certain ensemble averages. In particular, 
we calculate the mean values at the arbitrary fixed time tl as follows: 

For arbitrary random processes, the mean values at different times, say t l  # t2, are 
different, so that 

Next, we calculate the covariancefinctions at the arbitrary fixed times tl and tl + r 
as follows: 

The values of the covariance functions depend in general on the times tl and tl + r. 



To provide a more detailed description of the random processes, higher-order 
statistics should be calculated, which involves the values of the time histories evaluated 
at three or more times, such as t l ,  tl + 7 ,  tr+ c, etc. For reasons to be explained shortly, 
this is not always necessary. 

In the special case in which the mean values p, ( t l )  and py ( t l )  and the covariance 
functions C, (tl , tl + T ) ,  C y  (tl , tl + 7 )  and CAY (tl , tl + r )  do not depend on tl , the random 
processes xk ( t )  and yk ( t )  (k = 1,2, . . . ) are said to be weakly stationary. Otherwise they 
are nonstationary. Hence, for weakly stationary random processes the mean values 
are constant, pX(tl) = ,u, = constant and py ( t l )  = py = constant, and the covariance 
functions depend on the time shift r alone, C, ( t l ,  tl + r )  = C, ( r ) ,  C y  (tl , tl + r )  = C y  (7) 

and CXy ( t l ,  ti + 7 )  = Cxy ( T ) .  If all possible statistics are independent of t l ,  then the 
random processes xk ( t )  and yk(t)  ( k  = 1,2, . . . ) are said to be strongly stationary. For 
normal, or Gaussian, random processes, however, higher-order averages can be derived 
from the mean values and covariance functions alone. It follows that for Gaussian 
random processes weakstationarity implies also strong stationarity. Because our interest 
lies primarily in normal random processes, there is no need to calculate higher-order 
statistics, and random processes will be referred to as merely stationary if the mean 
values and covariance functions are insensitive to a translation in the time t l .  The 
remainder of this section is devoted exclusively to stationary random processes. 

Ensemble averages can be calculated conveniently in terms of probability density 
functions. To this end, we introduce the notation xl = xk ( t ) ,  x2 = xk (t  + T ) ,  y I = 
yk ( t ) ,  y2 = yk (t + r ) ,  where xl and x2 represent random variables from the station- 
ary random process xk(t) and yl and y2 represent random variables from the station- 
ary random process yk(t)  (k = 1 ,2 , .  . .). Then, the joint probability density functions 
p ( x l ,  x2) ,  p (y l ,  y2) and p(x l ,  y2) are independent oft .  In view of this, the mean values 
can be written as 

and the correlation functions have the expressions 

R, (r) = E[x1x2] = 

Ry(r)  = E[y1y21= Srn Srn Y I Y ~ P ( Y I .  ~ 2 ) d ~ l d Y 2  
-00 -00 

Rxy (7) = E[x1~21= 

where R x ( r )  and Ry (7) represent autocorrelation functions and R,,, (r) is a cross- 



correlation function. Moreover, the covariance functions can be written as 

FromEqs. (12.139), we conclude that the covariance functions are identical to the correla- 
tion functions only when the mean values are zero. When the covariance function CXy (7) 

is equal to zero for all 7,  the stationary random processes xk( t )  and yk( t )  ( k  = 1,2,  . . . ) 
are said to be uncorrelated. From the last of Eqs. (12.139), we conclude that this can 
happen only if the cross-correlation function Rxy (7) is equal to zero for all r and, in 
addition, either p, or py is equal to zero. 

Next, we denote X I =  xk(t - T ) ,  x2 = xk( t ) ,  yl = yk(t - r )  and y2 = yk(t). Then, 
because for stationary random processes p ( x l ,  x2) ,  p(y  I ,  y2) and p ( x l ,  y2) are indepen- 
dent of a translation in the time t ,  it follows that the autocorrelation functions are even 
functions of T ,  that is, 

whereas the cross-correlation function merely satisfies 

Using the same approach as that used in Sec. 12.7, it can be shown that 

In contrast, however, RXy ( T )  does not necessarily have a maximum at T = 0. Bounds on 
the cross-correlation function can be established by considering 

where the inequality is valid because the first integral in Eq. (12.143) cannot be negative. 
Note that the dependence on the time shift r appears only when the variables with 
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different subscripts are involved. It follows from Eq. (12.143) that 

l\/loreover, considering the integral 

which is also nonnegative, it can be shown that 

From the above, we conclude that the correlation properties of the two stationary 
random processes xk(t) and yk( t )  (k = 1 , 2 ,  . . . ) can be described by the correlation 
functions R x ( r ) ,  R y ( ~ ) ,  Rxy ( T )  and Ryx(7 ) .  Moreover, in view of Eqs. (12.140) and 
(12.141), these functions need be calculated only for values of T larger than or equal to 
zero. 

At this point, it is possible to introduce power spectral densities and cross-spectral 
densities associated with the two random processes xk ( t )  and yk ( t )  (k = 1 , 2 ,  . . . ). We 
defer the discussion to the next section, however, when these concepts are discussed in 
the context of ergodic random processes. 

12.14 JOINT PROPERTIES OF ERGODIC RANDOM PROCESSES 

We consider the two stationary random processes xk( t )  and yk(t) (k = 1 , 2 , .  . .) of Sec. 
12.13, but instead of calculating ensemble averages, we select two arbitrary time histories 
xk ( t )  and yk ( t )  from these processes and calculate time averages. In general, the averages 
calculated by using these sample functions will be different for different xk ( t )  and yk ( t ) ,  
so that we identify these averages by the index k.  

The temporal mean values can be written in the form 

whereas the temporal covariance fu~zctions have the expressions 

1 T I 2  
C x y ( 7 , k )  = lim - 

t-m T l T / 2  
[xk(t) - ~ x ( k ) l [ ~ k ( t  - ~ y ( k ) l d t  

If the temporal mean values and covariance finctions calculated by using the sample 
functions xk ( t )  and yk ( t )  are equal to the ensemble mean values and covariance functions, 
regardless of the pair of sample functions used, then the stationary random processes 
xk ( t )  and yk ( t )  (k = 1 , 2 ,  . . . ) are said to be weakly ergodic. If all ensemble averages can 
be deduced from temporal averages, then the stationary random processes are said to be 
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strongly ergodic. Because Gaussian processes are fully described by first- and second- 
order statistics alone, no distinction need be made for such processes, and we refer to 
them as merely ergodic. Again, ergodicity implies stationarity, but stationarity does not 
imply ergodicity. Hence, the processes xk ( t )  and yk ( t )  (k = 1,2,  . . . ) are ergodic if 

p,(k) = px = constant, py ( k )  = py = constant (12.149) 

and 

The covariance functions are related to the correlation functions R, ( T ) ,  R,  ( r )  and 
Rxy (TI by 

in which the correlation functions have the expressions 

T I 2  

x ( t ) x ( t  + r ) d t ,  R,(T) = lim i/ y( t )g( t  +r )dr ,  
T + m  T -T /2  

T I 2  
(12.152) 

R x y ( r ) = l i m  l/ x ( t ) y ( r+r)d t  
T * m  T -T /2  

where the index identifying the sample functions xk ( t )  and yk(t) has been omitted be- 
cause the correlation functions are the same for any pair of sample functions. In view of 
the fact that ergodicity implies stationarity, Eqs. (12.140) and (12.141) and inequalities 
(12.142), (12.144) and (12.146) continue to be valid. 

Next, we assume that the autocorrelation functions R, (r)  and Ry (r) and the cross- 
correlation function R,, (7) exist and define the power spectral density functions as the 
Fourier transforms 

W 00 

R , ( ~ ) e - ~ ~ ~ d r ,  Sy(w)  = l_ R, ( r ) e - l w T d ~  (12.153) 

and the cross-spectral density function as the Fourier transform 

Then, if the power spectral and cross-spectral density functions are given for the two 
processes, the autocorrelation and cross-correlation functions can be obtained from the 
inverse Fourier transforms 

1 O0 
W 

R, (r) = - / S, (w)eiYTdw, R, (r)  = I / sy (w)eiWTdw, 
27r -, 27r -, 

00 
(12.155) 

Rxy (7) = / s,, (w)eiwTdw 
27r -, 

Using Eqs. (12.140), it can be shown that the power spectral density functions are 
even functions of w , 
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whereas using Eq. (12.141) it follows that 

from which we conclude that if S,, (w)  and Syn (w)  are given for w > 0 ,  then Eq. ( 1 2 . 1 h )  
can be used to obtain S,, (w) and S,, (w) for w < 0, respectively. In view of Eqs. (12.156), 
Eqs. (12.153) reduce to 

00 

S, (w)  = 2 /" R, (i) c o s w ~ d r ,  S,(w) = 2 Ry  (7) cos W T ~ T  I" (12.158) 
0 

and the first two of Eqs. (12.155) become 

Equations (12.158) and (12.159) are known as the Wiener-Khintchine equations. Note 
that S, ( w )  and S, (w)  are nonnegative on physical grounds, and they are real because 
R, (7) and R, (7) are real. 

12.15 RESPONSE CROSS-CORRELATION FUNCTIONS FOR 
LINEAR SYSTEMS 

We consider two linear systems defined in the time domain by the impulse responses 
gr ( t )  and g, ( t )  and in the frequency domain by the frequency responses G ,  (w)  and 
G ,  (w) ,  where the latter are the Fourier transforms of the former, namely, 

00 

g, (t)e-iw'dt, G ,  (w)  = 1" g, (t)ePiw'dt (12.160) 

The relations between the excitations Nr ( t )  and N, ( t )  and the corresponding responses 
q,(t) and qs ( t )  are given in the form of the block diagrams of Fig. 12.30a, whereas 
those between the transformed excitations Nr (w)  and N, (w)  and the corresponding 
transformed response r ] ,  (w)  and ?/;. ( w )  are given in the form of the block diagrams of 
Fig. 12.30b, where N, (w)  is the Fourier transform of Nr ( t ) ,  etc. 

a. b. 
FIGURE 12.30 
Block diagrams relatlng responses to excitations a. in the time domain and b. in the frequency domain 



Assuming that the excitation and response processes are ergodic, the cross-correla- 
tion function between the response processes 17, ( t )  and 7,  ( t )  can be written in the form 

f T I 2  

But, for linear systems the relation between the excitation and response can be expressed 
in terms of the convolution integral, Eq. (12.82). Hence, we can write 

00 00 

v r ( t ) =  g r ( A r ) N r ( t - X r ) d A r , ~ h ( t ) =  g,(hs)Ns(t-As)dhs (12.162) 1, S_,  
where A, and A, are corresponding dummy variables. lnserting Eqs. (12.162) into Eq. 
(12.161) and changing the order of integration, we obtain 

1 T i 2  
Rn, qs (T)  = lim 

T + m  lTI2 [l: gr ( X r ) N r  (t - Xr)dXr gs(Xs)Ns (t + 7 -  Xs)dXs dt I 

Because the excitation processes are ergodic, and hence stationary, we recognize that 

T I 2  
l i r n A /  N , ( t - h r ) N s ( t + r - h s ) d t  

T-00 T -TI2 

is the cross-correlation function between the excitation processes. Hence, Eq. (12.163) 
can be written in the form 

00 

R,, (r)  = loo S ~ ~ ( A ~ ) ~ S ( A , ) R N ~ N ,  (T + ~r - ~ s ) d h r d h s  (12.165) 
-00 0 0  

which represents a time-domain expression relating the cross-correlation function be- 
tween the response processes to the cross-correlation function between the excitation 
processes. Note the analogy between Eq. (12.165) and Eq. (12.95), where the latter is an 
expression relating the autocorrelation function of a single response to the autocorrelation 
function of a single excitation. 

The interest lies in an expression analogous to Eq. (12.165), but in the frequency 
domain instead of in the time domain. To this end, we take the Fourier transform of 
both sides of Eq. (12.165). But, the Fourier transform of Rn7, (7) is the cross-spectral 
density function associated with the response processes 77, ( t )  and rl, ( t ) ,  or 

00 

Sqrqs (w) = RqrT,, (7)e-zW7d7 S_,  
= [",e-'"' [Irn SFY g r ( X ) g S ( h ) R i v r , v S ( ~  + hr - h s ) d A r d h  d r  

-00 -00 I 
(12.166) 
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Moreover, RN,N, (T + A,. - As)  can be expressed as the inverse Fourier transform 

where SNrNS(w)  is the cross-spectral density function associated with the excitation 
processes N,.(t) and Ns(t ) .  Inserting Eq. (12.167) into Eq. (12.166), considering Eqs. 
(12.160), changing the integration order and rearranging, we obtain 

where G,. (w)  = G,. (-w) is the complex conjugate of G, (w).  Comparing the first integral 
inEq. (12.166) with the last one in Eq. (12.168), and recognizing that the cross-correlation 
function R,, ,, (7) between the response processes 7, ( t )  and rl, ( t )  must be equal to the 
inverse Fourier transform of the cross-spectral density function S,,,, (w)  associated with 
these response processes, we must conclude that 

and 

represent a Fourier transform pair. The algebraic expression (12.169) relates the cross- 
spectral density functions associated with the excitation and response processes in the 
frequency domain. Note the analogy between Eq. (12.169) and Eq. (12.99). 

For any two time histories N, ( t )  and Ns ( t )  corresponding to two stationary random 
signals, the cross-spectral density function SNrN, (w)  can be obtained by means of an 
analog cross-spectral density analyzer.9 

'see Bendat and Piersol, op. cit., sec. 8.5. 



12.16 RESPONSE OF MULTI-DEGREE-OF-FREEDOM SYSTEMS TO 
RANDOM EXCITATIONS 

We showed in Sec. 7.1 that the equations of motion of a damped n-degree-of-freedom 
system can be written in the matrix form 

where M, C and K are n x n symmetric inertia, damping and stiffness matrices, re- 
spectively. The n-dimensional vector q(t) contains the generalized coordinates q, (t), 
whereas the n-dimensional vector Q(t) contains the associated generalized forces Q, (t) 
(i = 1,2, . . . , n). The interest lies in the case in which the excitations Q, (t) represent 
ergodic random processes, from which it follows that the responses qi (t) are also ergodic 
random processes. 

The general response of a damped multi-degree-of-freedom system to external 
excitations cannot be obtained readily, even when the excitation is deterministic. The 
difficulty lies in the fact that classical modal analysis cannot generally be used to uncouple 
the system of equations (12.1711, and one must formulate the problem in the state space 
(Sec. 7.16). However, as shown in Sec. 7.15, in the special case in which the damping 
matrix is a linear combination of the inertia and stiffness matrices, the modal matrix 
associated with the undamped linear system can be used as a linear transformation 
uncoupling the system of equations. For simplicity, we confine ourselves to the case 
in which the classical modal matrix U = [ul u2. . . u,] associated with the undamped 
system can be used as a transformation matrix uncoupling the set (12.171). Following 
the procedure of Sec. 7.15, we write the solution of Eq. (12.171) in the form 

where the components rl, (t) (r = 1,2, . . . , n) of the vector ~ ( t )  are generalized coordi- 
nates consisting of linear combinations of the random variables qi (t) (i = 1,2, . . . , n). 
Inserting Eq. (12.172) into Eq. (12.171), premultiplying the result by UT,  using the 
orthonormality relations (see Eqs. (7.202)) 

in which I is the identity matrix and '2 = diag[wt w; . . . wz] is the diagonal matrix of 
the eigenvalues, as well as assuming that 

where E = diag[C1 (2 . . . (,I, we obtain the set of independent equations for the natural 
coordinates 

where Cr is a damping factor associated with the rth mode, w, is the rth frequency of 
the undamped system and 
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is a generalized random force, in which u, represents the rth modal vector of the un- 
damped system. Note that N,(t) actually has units L M ' / ~ ,  where L denotes length and 
M denotes mass. 

Our first objective is to calculate the cross-correlation function between two re- 
sponse processes. To this end, we introduce the Fourier transforms of q ( t )  and Nr ( t ) ,  
respectively, in the form 

Then, transforming both sides of Eqs. (12.175), we obtain 

Equations (12.178) can be solved for 7, (w) with the result 

where 

is the frequency response associated with the rth natural mode. Note the analogy between 
Eqs. (12.179) and Eq. (12.86). 

Next, we calculate the cross-correlation function RqL4, ( T )  between the two com- 
ponents q, ( t )  and q, ( t )  ( i ,  j = 1,2,  . . . , n )  of the response process. There are n2 such 
cross-correlation functions, which can be readily arranged in an n x n matrix. Hence, 
using Eq. (12.172), we introduce the response correlation matrix in the form 

Rq (7) = [Rqtq5 (7)l 

= lim - ST" q(t)qT ( t  + r )d t  
T+w T - T / 2  

where 
T I 2  

R,(T) = lim / v ( t ) v T ( t  + ~ ) d t  
T-CC T -T /2  

is the modal response correlation matrix. Our objective is to express the response 
correlation matrix in terms of quantities defining the excitation random process. To this 



end, we use Eq. (12.170) and rewrite the modal response correlation matrix as 

in which G(w)  = diag[Gl (w)  G2(w)  . . . G,  (w)]  is the diagonal matrix of the modal 
frequency responses, Eqs. (12.180), G(w)  is the complex conjugate of G ( w )  and SN ( w )  = 
[SN, N, (w)]  is the n x n modal excitation spectral density matrix. It follows immediately 
from Eq. (12.18 1 )  that the response correlation matrix is 

where the modal excitation spectral density matrix represents the Fourier transform of 
the modal excitations correlation matrix RN ( r ) ,  or 

00 

SN(W)  = I_ RN(w)eKZYTdr (12.185) 

At this point, we turn our attention to the characterization of the spectral density 
matrix in terms of actual forces, instead of modal forces. To this end, we begin by writing 
the modal excitation correlation matrix in the form 

T I 2  
RN (r)  = lim 1 [ N(t)NT ( r  + r ) d t  

T+CC T -T /2  

in which, from Eqs. (12.176), the modal force vector is 

Inserting Eq. (12.187) into Eq. (12.186), we have 

T I 2  
RN (7) = lim - [ W 1 c i T Q ( r ) Q T ( t  + r ) U n - ' d t  

T j m  T -T /2  

where 

is the actual force correlation matrix. Hence, introducing Eq. (12.188) in Eq. (12.185), 
we can write 

SN (w)  = Q-' u [L ~ ~ ( r ) e - " ~ d r  ~ ~ 2 - l  = fiP1uT S Q ( W ) U Q - ~  (12.190) 

in which 

I 
00 

Sp(w)  = l_ ~ ~ ( r ) e - ' ~ ' d r  (12.191) 

is the desired excitation spectral density matrix expressed in terms of actual forces. 
For stationary random processes, the entries of SQ (w)  can be obtained by means of an 



analog cross-spectral density analyzer.'' Then, inserting Eq. (12.190) into Eq. (12.184), 
we obtain the response correlation matrix 

1 00 

R q ( r )  = ZnU [l_ G ( ~ ) Q - ' U T S ~ ( ~ ) U R - ~ G ( ~ ) ~ ' ~ ' ~ ~  U T  (12.192) 

where SQ (w)  is given by Eq. (12.191). 

I 
Finally, we derive the autocorrelation function associated with the response random 

process q, ( t ) .  To this end, we denote the ith row of the modal matrix U as follows: 

Then, the response autocorrelation function associated with qi ( t )  is simply 

which for r = 0 reduces to the mean square value 

Example 12.5. Consider the system shown in Fig. 12.31, where the force Ql ( t )  can be 
regarded as an ergodic random process with zero mean and with ideal white noise power 
spectral density, SQ,  (w) = So, and obtain the mean square values associated with the re- 
sponses ql ( t )  and q2 ( t )  . 

FIGURE 12.31 
Proportionally damped two-degree-of-freedom system 

'Osee Bendat and Piersol, op. cit., sec. 8.5. 



The mean square values associated with ql ( t )  and q2 ( t )  will be obtained by the modal 
analysis outlined in this section. The differential equations of motion associated with the 
system can be shown to be 

mqt + 2 ~ 9 1 -  ~ 9 2  + 2kql - kq2 = Q1 ( t )  

2m92 - c9l+ 2 ~ 9 2  - kql + 2kq2 = 0 

from which we conclude that damping is of the proportional type. Hence, the classical 
modal matrix does uncouple the equations of motion. To obtain the modal matrix, we must 
solve the eigenvalue problem associated with the undamped free vibration of the system, 
which has the form 

The solution of the eigenvalue problem (b) consists of the modal matrix 

and the matrix of the natural frequencies squared 

both normalized so as to satisfy Eqs. (12.173). 
The excitation spectral matrix associated with the actual coordinates ql ( t )  and q2(t) 

is 

Moreover, the frequency response functions associated with the coordinates ql ( t )  and 772(t) 
have the form 

where w; and w; are obtained from Eq. (d) and 2C1wl and 2C2w2 from 

where the matrix ~ E Q - I  is diagonal because the damping matrix C is proportional to the 
stiffness matrix K. 

The response mean square values are given by Eqs. (12.195), in which, from Eqs. 
(12.193) and (c), 
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Equations (12.195) involve the terms 

U ~ G ( ~ ) Q - ' S ~ ( W ) U Q - ~ G ( W ) ( U ~ ) ~  

- 
o . l l l l s o  -- 

k2 
( I G ~ I ~ + ~ I G Z + G I ~ ~ + I G ~ I ~ )  

u ;G(w)Q~ ' s~  (w)uQ-'G(w)(u;)~ 

so = -[0.20741~1/~ - 0 . 0 5 5 6 ( ~ 1 ~ 2   GIG^) +0.01491~21~] 
k2 

Hence, using Eqs. (12.195), we can write the mean square values 

Equations Cj) give the mean square values Rq, (0) ( i  = 1,2) in terms of integrals 
involving the frequency response functions GI (w) and G2 (w) and their complex conjugates. 
The integrals are as follows: 

=S 
" {[I - (w/w1)~1[1- ( w / w ~ ) ~ I  + (251w/wi)(2<2wl~z))dw 

-00 - ( w / ~ l ) ~ I ~  + (2C1w/w1)21(r1 - ( w / ~ 2 ) ~ 1 ~  + (2C2~Iw2)~l 

The first integral can be evaluated using results from Sec. 12.1 1, but the second integral is 
likely to cause a great deal of difficulties. Because no new knowledge is gained from the 
evaluation of the integrals, we do not pursue the subject any further. 

12.17 RESPONSE OF DISTRIBUTED-PARAMETER SYSTEMS TO 
RANDOM EXCITATIONS 

The response of distributed-parameter systems to random excitations can also be conve- 
niently obtained by means of modal analysis. In fact, the procedure is entirely analogous 
to that for discrete systems, and it can be best illustrated by considering a specific ex- 
ample. In particular, we choose a beam in bending (Sec. 8.10). For convenience, we 
assume that the beam is uniform. If in addition the beam is subject to viscous damping, 
the boundary-value problem is described by the differential equation 

where f (x, t )  is an ergodic distributed random excitation and y (x, t )  is the ergodic ran- 
dom response. Note that the second term on the left side of Eq. (12.196) represents a 
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uniformly distributed damping force. Moreover, the vibration y (x ,  t )  is subject to four 
boundary conditions, two at each end. We assume that the solution of the eigenvalue 
problem associated with the undamped system consists of the natural frequencies w, and 
natural modes Yr ( x )  (r  = 1 , 2 .  . . ), and that the solution is known; the modes are orthog- 
onal and we assume that they have been normalized so as to satisfy the orthonormality 
relations 

where Srs is the Kronecker delta. In addition, the damping is such that 

Then, letting the solution of Eq. (12.196) have the form 

and using the standard modal analysis, we obtain the independent set of ordinary differ- 
ential equations 

where 

are generalized random forces. As for the discrete systems of Sec. 12.16, the forces 
Nr ( t )  actually have units L M ' / ~ .  

Equations (12.200) for the distributed system possess precisely the same structure 
as Eqs. (12.175) for the discrete system. Hence, the remaining part of the analysis 
resembles entirely that of Sec. 12.16. Indeed, using Eq. (12.201) and a similar equation 
for N, ( t  + T ) ,  we can write 

I 

RNrN, (7) = lim - ' 1 N, ( f ) N s  ( t  + 7 ) d t  
T-oo T -T /2  
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where x and x' are dummy variables denoting different points of the domain 0 < x < L ,  
and 

Rfx  f x , ( ~ , ~ ' , ~ )  = lim - 

is the distributed cross-correlation function between the distributed forces f ( x ,  t )  and 
f (x' ,  t ) .  Note that R fx,  ( x ,  x' , T )  has units of distributed force squared. Fourier trans- 
forming Eq. (12.202), we obtain the cross-spectral density function 

where 
00 

Sfx fx ,  ( x ,  X I ,  W )  = RfT fx, ( x , ~ ' ,  7)e-1W7d7 (12.205) 

is the distributed cross-spectral density function between the excitation processes f ( x ,  t )  
and f (x' ,  t ) .  

The cross-correlation function between the response at x and x' can be written in 
the form 

where Rvrvs ( T )  is the cross-correlation function between the generalized responses rl, ( t )  
and ~ ( t )  and resembles the (r, s )  entry of Rq(r ) ,  Eq. (12.182). However, R,, (7) is 
related to the cross-spectral density function SNTN, (w)  between the generalized excita- 
tions N,(t) and Ns( t )  by the (r, s )  entry of RN(T) ,  Eq. (12.188), so that, inserting that 
entry into Eq. (12.206), we obtain 

where SNrN, (w) is given by Eq. (12.204). Note that in Eq. (12.204) x and x' play the 
role of dummy variables of integration, whereas in Eq. (12.207) x and x' identify the 
points between which the cross-correlation function is evaluated. 



For x = x l ,  the response cross-correlation function reduces to the autocorrelation 
function 

Then letting T = 0 in Eq. (12.208), we obtain the mean square value of the response at 
point x in the form 

The square root of Ry ( x ,  0 )  is the standard deviation associated with the probability 
density function of y ( x ,  t ) .  Hence, assuming that Sfx f l ,  ( x ,  x', W )  is given, Eq. (12.209) 
can be used in conjunction with Eq. (12.204) to calculate the standard deviation. 

If the excitation process is Gaussian with zero mean, then so is the response process. 
In this case, the standard deviation 4- determines fully the probability density 
function associated with the vibration y ( x ,  t ) .  

The above formulation calls for an infinite number of natural modes Y, ( x )  (r = 
1,2, . . .). Of course, in practice only a finite number of modes need and should be 
included, as Eq. (12.196) ceases to be valid for higher modes (see Sec. 8.3). It was 
implicit in the above discussion that a closed-form solution of the eigenvalue problem of 
the system is available. A similar approach can be used also when only an approximate 
solution of the eigenvalue problem can be obtained. In such a case, the classical Rayleigh- 
Ritz method, or the finite element method, leads to a formulation resembling in structure 
that of a multi-degree-of-freedom system (see Prob. 12.24). 

12.18 SUMMARY 

Complex phenomena described by variables whose value at some future time cannot 
be predicted are known as nondeterministic, or random. Examples of these are rocket 
engine noise, earthquake intensity, etc. Yet many of these phenomena exhibit such a 
large degree of statistical regularity that their behavior can be described in terms of 
certain averages. In vibrations, there is a great deal of interest in the manner in which 
systems respond to random excitations. 

If the ground displacement at a given location is measured during a number of 
earthquakes, the collection of records, or time histories, is referred to as an ensemble. 
An individual time history from the ensemble is called a sample function, the dependent 
variable itself, the ground displacement in the case at hand, is known as a random variable 
and the ensemble represents a random process. A random process is characterized by 
means of certain averages over the ensemble. If the averages tend to be recognizable 
limits as the number of sample functions increases, the process is said to exhibit statistical 
regularity. The most frequently used averages are the mean value and the autocorrelation 
function. In general, the mean value depends on the time tl for which it was computed, 
and the autocorrelation function depends on tl and a time shift T .  In the special case 
in which the mean value does not depend on t l ,  i.e., the mean value is constant, and 
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the autocorrelation function depends on T alone the process is said to be stationary. 
More often than not, averages computed over the time variable using a single typical 
sample function, and known as the temporal averages, are more convenient than ensemble 
averages. If the temporal averages are equal to the corresponding ensemble averages, 
the random process is said to be ergodic. In this text, ergodicity is assumed for the 
most part. When the shift T is taken to be equal to zero the autocorrelation function 
reduces to the mean square value; its positive square root is the root mean square value. 
For ergodic processes, as for stationary processes, the mean value is constant, so that 
it can be regarded as the static part of the random variable. Consistent with this, the 
difference between the random variable and its mean value represents the dynamic part. 
The quantity obtained by computing the mean square value using the dynamic part alone, 
instead of all of the random variable, is known as the variance, and the square root of 
the variance is the standard deviation. 

In view of the fact that the response to random excitations cannot be given explicitly 
in terms of time, one must be content with other ways of describing it. One way is 
through the probability that the response will remain below a certain value. For a 
given random variable, this probability can be expressed by means of the probability 
distribution function. Of wider use is the probability density function, which represents 
the derivative of the probability distribution function. Indeed, the probability density 
function can be used to compute such statistics as the mean value, mean square value and 
the standard deviation. A probability density function widely used in random vibrations 
is the normal, or Gaussian one; it represents a bell-shaped curve with the area under the 
curve equal to unity, as is the case with all probability density functions. The Gaussian 
probability density function has the advantage that it is defined uniquely by two statistics 
alone, the mean value and the standard deviation. The mean value represents the distance 
between the origin of the reference axes and the curve symmetry axis and the standard 
deviation determines the peak value of the curve. 

In random vibrations, it is more convenient to derive the response in the frequency 
domain, rather than in the time domain, which can be done by means of Fourier transform 
techniques. However, unlike the case of deterministic processes, in the case of Gaussian 
random processes the interest lies in the response mean value and mean square value, 
rather than in the response itself. Of course, it is a simple matter to compute the response 
standard deviation from the mean value and mean square value, thus defining uniquely 
the response probability density. The response mean value is simply the product of 
the excitation mean value and the frequency response evaluated at w = 0. To obtain 
the response mean square value, we first note that the autocorrelation function and the 
mean square spectral density represent a Fourier transform pair. Hence, the first step is to 
obtain the excitation mean square spectral density by Fourier transforming the excitation 
autocorrelation function. But, the response mean square spectral density is equal to the 
product of the magnitude of the frequency response squared and the excitation mean 
square spectral density. Then, the response autocorrelation function can be obtained 
by inverse Fourier transforming the response mean square spectral density. However, in 
general the mean square value is equal to the autocorrelation function evaluated at T = 0. 
Hence, to obtain the response man square value, it is not really necessary to evaluate 
the inverse Fourier transform of the response mean square spectral density. Indeed, it 



is only necessary to integrate it. Of course, having the response mean square value, as 
well as the response mean value, it is a simple matter to compute the standard deviation, 
thus defining uniquely the response probability density function. 

The preceding discussion was concerned with single-degree-of-freedom systems, 
but applies equally well to multi-degree-of-freedom systems and to distributed-parameter 
systems. In this regard, it must be recognized that the intrinsic characteristics of a 
system are not affected by the nature of the excitations. Hence, the same modal analysis 
presented in Chs. 7 and 8 can be used to decouple and ultimately to compute the mean 
square values corresponding to the discrete displacements for a multi-degree-of-freedom 
system, or the mean square value corresponding to the displacement of a typical point 
of a distributed-parameter system. 

PROBLEMS 

12.1. Calculate and plot the temporal autocorrelation function for the sinusoid x (t) = A sin 2.rrtl T. 
12.2. Calculate the temporal mean value and autocorrelation function for the periodic function 

shown in Fig. 12.32. Plot the autocorrelation function. 

FIGURE 12.32 
Periodic function 

12.3. Calculate and plot the temporal autocorrelation function for the periodic function shown in 
Fig. 12.8a. 

12.4. The function x(t) = A1 sin2.rrtl T I is known as a rectified sinusoid. Its period is T/2, as 
opposed to T for the ordinary sinusoid, as can be seen from Fig. 12.33. Calculate the mean 
value and the autocorrelation function for the rectified sinusoid. 

FIGURE 12.33 
Rectified sinusoid 
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12.5. Calculate and plot the autocorrelation function for the pulse-width-modulated wave shown 
in Fig. 12.34. 

FIGURE 12.34 
Pulse-width-modulated wave 

12.6. Calculate the mean square value for the function of Prob. 12.1. 
12.7. Calculate the mean square value, the variance and the standard deviation for the function of 

Prob. 12.2. 
12.8. Calculate the mean square value for the function of Prob. 12.3. 
12.9. Calculate the mean value, the mean square value, the variance and the standard deviation for 

the rectified sinusoid of Prob. 12.4. 
12.10. Use definition (12.10) and obtain the probability distribution P (x) for the function of Example 

12.1. Then use Eq. (12.13) andderive the probability density function p(x). Plot P(x) versus 
x and p(x) versus x. 

12.11. Assume that the time t is uniformly distributed, and use Eq. (12.20) to verify the probability 
density function shown in Fig. 1 2 . 8 ~  

12.12. Consider a rectified sinusoid with the constant amplitude A and constant frequency w but 
random phase angle 4.  For a fixed value to of time, the rectified sinusoid can be regarded as 
a function of the random variable 4 given by x(+) = A 1 sin(wto + 4) I. Let 4 have a uniform 
probability density function p(4), and calculate the probability density function p(x) by the 
method of Sec. 12.4. 

12.13. Calculate the mean square value for the function shown in Fig. 12.8a by using Eq. (12.27). 
12.14. Calculate the mean value and the mean square value for the rectified sinusoid by using the 

probability density function p(x) derived in Prob. 12.12. 
12.15. Calculate the power spectral density for the function of Example 12.2. 
12.16. Consider an ergodic random process with zero power spectral density at w = 0, and show 

that the autocorrelation function Rf (T) must satisfy JFm Rf(.r)dr = 0. 
12.17. Verify that the mathematical expression for the power density spectrum of the sine wave 

f ( t )  = A s i n 2 ~ t I T  is Sf(w) = ( n ~ ~ / 2 ) [ 6 ( w + 2 ~ / ~ ) + 6 ( w  -27r/T)], w h e r e 6 ( w + 2 ~ / ~ )  
and (S(w - 27r/ T) are ~ i r a c  delta functions acting at w = - 2 ~ 1  T and w = 2x1 T, respec- 
tively. 



12.18. A damped single-degree-of-freedom system is excited by a random process whose power 
density spectrum is as shown in Fig. 12.35. Let C = 0.05 and w, = w0/2, and plot the 
response power density spectrum. 

FIGURE 12.35 
Excitation power density spectrum 

12.19. Prove inequality (12.146). 
12.20. Calculate the cross-correlation function between the functions of Prob. 12.1 and 12.2. 
12.21. Let x ( t )  be the response of a linear system to the excitation f ( t )  and show that Sf,(w) = 

G(w)Sf  (w),  where S f ,  (w)  is the cross-spectral density function between the excitation and 
response, G(w) is the frequency response and S f ( w )  is the excitation power spectral density 
function. [Hint: Begin by writing the cross-correlation function between the excitation and 
response in the fornl 

Rj,(7) = lim 1 IT" f ( t )x ( t  + r ) d t  
T+CX T -T/2  

and recall that the response is related to the excitation by the convolution integral, Eq. ( 1  2.82)]. 
12.22. Consider the system shown in Fig. 12.36, and derive the equations of motion. Let c = 

0.02&, and derive general equations for the cross-correlation function between ql ( t )  and 
q2(t) by observing that the modal matrix uncouples the equations of motion. Obtain the 
response mean square values for ql ( t )  and q2(t).  The excitation Ql  ( t )  can be assumed to be 
an ergodic random process possessing an ideal white noise power density spectrum, whereas 
Q2(t> = 0. 

FIGURE 12.36 
Damped two-degree-of-freedom system 



12.23. Consider a uniform bar in bending simply supported at both ends and subjected to the exci- 
tation f (x, t) = F(t)S(x - L/2)  where F(t) is an ergodic random process with ideal white 
noise power spectral density, and S(x - L/2 )  a spatial Dirac delta function. Use the method of 
Sec. 12.17, and derive expressions for the cross-correlation function between the responses at 
the points x = L/4  and x' = 3L/4 and for the mean square value of the response at x = L/4 .  

12.24. Formulate the response problem of a continuous system to random excitation by means of an 
approximate method whereby the formulation is reduced to that of a multi-degree-of-freedom 
discrete system. 



APPENDIX 

FOURIER SERIES 

In many problems of engineering analysis it is necessary to work with periodic functions, 
i.e., with functions that repeat themselves every given interval, where the interval is 
known as the period. Periodic functions satisfy a relation of the type 

where T represents the period. Some of the simplest and most commonly encoun- 
tered periodic functions are the trigonometric functions. Indeed, the functions sinnt 
and cosnt (n = 1,2, . . . ), being harmonic, are periodic by definition; their period is 
27rln. Clearly, trigonometric functions are special cases of periodic functions. Because 
trigonometric functions are relatively easy to work with, and possess the orthogonality 
property, a most important and useful property, they are more desirable than arbitrary 
periodic functions. Owing to these facts, it is advantageous at times to expand arbitrary 
periodic functions in series of trigonometric functions, where the expansions are known 
as Fourier series. 

A.l ORTHOGONAL SETS OF FUNCTIONS 

We consider a set of functions I), (t) (r = 1,2, . . . ) defined over the interval 0 5 t 5 T. 
Then, if for any two distinct functions T,/I, (t) and I), (t), 

the set $, (t) is said to be orthogonal in the interval 0 5 t 5 T, or more generally in any 
interval of length T. If the functions $, (t) are such that, in addition to satisfying Eq. 
752 
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(A.2), they satisfy 

then the set is referred to as orthonormal. Hence, for an orthonormal set of functions we 
have 

where 6,., is the Kronecker delta, defined as being equal to unity for r = s and equal to 
zero for r # s. It is easy to verify that the set of functions 

1 sint cost sin2t cos2t sin3t ------ 
&'&'.J;;' .J;;' & '  .J;;'"' 

constitutes an orthonormal set. Indeed, we can write 

2.rr 1 cosrt 1 sinrt 2T 
dt  = --- I =o. 

Moreover, for r # s, we have 

2" sinrt cosst 
[sin(r + s)t + sin(r - s)t]dt 

and for r = s, we obtain 

2a sinrt cosrt 2 11 

sin2rtdt = - i c o s 2 r t l o  = 0, 
4r T 

so that the set (A.5) satisfies Eqs. (A.2); hence, it is orthogonal. On the other hand, 
because 

(A.9) 

the set (A.5) is not only orthogonal but orthonormal. 
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If for a set of constants c, (r = 1,2, .  . .), not all equal to zero, there exists a 
homogeneous linear relation 

C cr$r(t) = 0 (A. 10) 
r=l 

for all t, then the set of functions $, (t) (r = 1,2, . . . ) is said to be linearly dependent. If 
no relation of the type (A. 10) exists, then the set is said to be linearly independent. The 
set (A.5) can be shown to be linearly independent. Indeed, if we write the series 

1 sint cost sin2t cos2t cos p t  
co- +c1-+c2- +c3- a & & &  +c4- 

& 
+ . . . + C Z ~ -  = O  (A.ll) 

f i  
multiply the series by any of the functions in (AS), say cos2t/& and integrate with 
respect to t over the interval 0 5 t 5 27r, we obtain cq = 0. The procedure can be repeated 
for all constants, with the conclusion that Eq. (A. 11) can hold only if all the coefficients 
are zero, co = cl = c2 = . . . = czp = 0. Because this contradicts the stipulation that not 
all constants be zero, we must conclude that the set is linearly independent. Note that 
an orthogonal set is by definition linearly independent. 

A.2 TRIGONOMETRIC SERIES 

An orthonormal set of functions +, (t) (r = 1,2, . . . ) is said to be complete if any piece- 
wise continuous function f (t) can be approximated in the mean to any desired degree 
of accuracy by the series C:=l c,$,(t) by choosing the integer n large enough. In view 
of this, because the set (AS) is complete in the interval 0 5 t 5 27~ every function f ( t )  
which is continuous in that interval can be represented by the Fourier series 

00 

f (t) = ~ a o + ~ ( a r c o s r t + b r s i n r t )  (A. 12) 
r=l 

where the constants a, (r = 0,1 ,2 , .  . .) and br (r = 1,2 , .  . .) are known as Fourier 
coeficients. 

To establish the exact composition of the trigonometric representation of a given 
periodic function, it is necessary to calculate the Fourier coefficients. To this end, we 
list the following results derived in Sec. A.l 

cosrtcosstdt = 0 ,  sinrtsinstdt =0 ,  r , s  = 1,2, ... ; r # s  (A.13) 

and 

L2" cosrt sinst d t  = sinrt cosst d t  = 0, r, s = 1,2, . . . L2" (A. 14) 

where Eqs. (A.14) are valid whether r and s are distinct or not. On the other hand, when 
r = s, the integrals in Eqs. (A.13) are not zero but have the values 
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and 

(A. 16) 

Moreover, we can write 

2n, r = 0  
cosrt dt = 

0, r = 1 , 2 ,  

and 

12" sinrtdt = 0, r = 1,2 , .  . . 

(A. 17) 

(A. 18) 

Next, we multiply Eq. (A. 12) by cos st, integrate over the interval 0 5 t < 2n, interchange 
the order of integration and summation and obtain 

For s = 0, Eq. (A.19) in conjunction with Eqs. (A.17) and (A.18) yields 

(A. 19) 

so that ;ao can be identified as the average value of f (t). If s # 0, we conclude that 
only one term survives from the series in Eq. (A.19), namely, that corresponding to 
the integral Jb2" cos r t cos st  dt with r = s . Indeed, considering Eqs. (A. 13)-(A. 15), we 
conclude that Eq. (A. 19) reduces to 

2" 

f (t)cosrt dt, r = l , 2 ,  ... (A.21) 

Similarly, multiplying series (A.12) by sinst, integrating over the interval 0 5 t 5 2n, 
and considering Eqs. (A. 13), (A. 14), (A. 16) and (A. IS), we obtain 

thus determining the series (A.12) uniquely. 
When f (t) is an evenfunction, i.e., when f (t) = f (-t), the coefficients b, (r = 

1,2, . . .) vanish and the series is known as a Fourier cosine series. On the other hand, 
when f (t) is an odd function, i.e., when f (t) = - f (-t), the coefficients a, (r = 

0,1,2,  . . . ) vanish and the series is called a Fourier sine series. This can be more con- 
veniently demonstrated by considering the interval -n 5 t < n instead of 0 5 t < 2n. 

If the function f (t) is only piecewise continuous in a given interval, then a Fourier 
series representation using a finite number of terms approaches f (t) in every interval that 
does not contain discontinuities. In the immediate neighborhood of a jump discontinuity, 



FIGURE A . l  
Periodic function 

convergence is not uniform and, as the number of terms increases, the finite series 
approximation contains increasingly high-frequency oscillations which move closer and 
closer to the discontinuity point. However, the total oscillation of the approximating 
curve does not approach the jump of f ( t ) ,  a fact known as the Gibbs phenomenon. 

As an illustration, we consider the periodic function f ( t )  shown in Fig. A. 1, where 
the function repeats itself every 27r. The function is recognized as being an odd function 
of t ,  which by definition implies that its average value is zero, so that f ( t )  can be 
represented by a Fourier sine series of the form 

00 

f ( t )  = ~ b , s i n r t  (A.23) 
r=l 

The proof that a, = 0 (r  = 0,1,2,  . . .) is left as an exercise to the reader. The function 
f ( t )  can be described mathematically by 1 

so that the coefficients become 

Hence, the series becomes 

2A 00 (-I) '+' 
f ( t ) =  -C-- T Y sin r t 

r=l 

Fourier series are infinite series and on occasions they must be approximated by 
finite ones, as intimated earlier. This is done by replacing the upper limit in the series by a 
finite integer n,  a process known as truncation. Figure A.2 shows the series representation 
for n = 1,2, . . . ,6. It is clear that the approximation improves with increasing n. Of 
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FIGURE A.2 
Fourier series representation of the periomc function of Fig. A.l showing the Gibbs pheneomenon 

course, if the accuracy of Fig. A.2 is not satisfactory, then additional terms must be 
included to bring the series representation to the desired level of accuracy. As n + CO, 

the series approaches f (t), except at the discontinuity points t = f T ,  f 3n, . . . , where 
we encounter the Gibbs phenomenon, as can be concluded from Fig. A.2. 

A.3 COMPLEX FORM OF FOURIER SERIES 

The Fourier series can also be expressed in terms of exponential functions. Indeed, the 
trigonometric functions are related to exponential functions as follows: 

+-zrt ezrt - +-zrt  

cosrt = , s inr t=  (A.27) 
2 2i 

Inserting Eqs. (A.27) into Eq. (A.12), we obtain 

Introducing the notation 



where C, is the complex conjugate of C,, Eq. (A.28) reduces to 

f ( t )  = x creir" (A.30) 

.in which, using Eqs. (A.21) and (A.22), the coefficients C, have the form 

Equations (A.30) and (A.3 1) constitute the complex form, or exponentialform, of Fourier 
series. 



APPENDIX 

LAPLACE TRANSFORMATION 

The Laplace transformation is an important tool in the study of the response of linear 
systems with constant coefficients, particularly when the excitation is in the form of 
discontinuous functions, for which other techniques tend to experience difficulties. This 
introduction to the Laplace transformation method is modest in scope, and its main 
purpose is to provide a rudimentary knowledge of the method and a certain degree of 
familiarity with the terminology. 

The idea behind the Laplace transformation method is to transform a relatively 
complicated problem into a simpler one, solve the simpler problem and then perform an 
inverse transformation to obtain the solution to the original problem. The most common 
use of the method is to solve initial-value problems, namely, problems in which the 
system behavior is defined by ordinary differential equations, to be satisfied for all 
positive times, and by a given set of initial conditions. In such cases, the transformed 
problem involves algebraic expressions alone, with the initial conditions being taken 
into account automatically. 

B.l DEFINITION OF THE LAPLACE TRANSFORMATION 

We consider a function f ( t )  defined for all values of time larger than zero, t > 0, and 
define the (one-sided) Laplace transformation of f ( t )  by the integral 

where ePst is known as the kernel of the transformation and s represents a subsidiary 
variable. The variable s is in general a complex quantity, and the associated complex 
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plane is called the s-plane, and at times the Laplace plane. Because transformation (B. 1) 
is defined in terms of an integral, it is said to be an integral transformation, commonly 
referred to as an integral transform. 

The function f (t)"must be such that the integral in Eq. (B.l) exists, which places 
on f (t) the restriction 

where C is a constant, Condition (B.2) implies that f (t) must not increase with time 
more rapidly than the exponential function Cent. Another restriction on f (t) is that it 
must be piecewise continuous. Most functions describing physical phenomena satisfy 
these conditions. 

B.2 TRANSFORMATION OF DERIVATIVES 

Because our interest lies in using the Laplace transformation method to solve differential 
equations, it necessary to transform derivatives of functions. Considering the transform 
of df (t)/dt, and integrating by parts, we obtain 

where f (0) is the initial value of f (t), namely, the value of f  (t) at t = 0. 
Following the same pattern, the transform of d2 f (t)/dt2 can be shown to be 

where f (0) is the value of df(t)/dt at t = 0. 

B.3 TRANSFORMATION OF ORDINARY DIFFERENTIAL 
EQUATIONS 

The differential equation of motion of a viscously damped single-degree-of-freedom 
system was shown in Sec. 3.1 to be 

Introducing the notation Lx (t) = X (s), L f ( t )  = F (s), transforming both sides of Eq. 
(B.5) and considering Eqs. (B.3) and (B.4), we obtain the algebraic equation 

m [ s 2 ~ ( s )  --SX(O) -i(O)]+c[sX(s) - ~ ( 0 ) ] +  kx(s) = F(S) (B .6) 

where x (0) and i (0) are the initial displacement and velocity, respectively. Recalling 
from Ch. 2 that clm = 2<w,, klm = w i  and solving Eq. (B.6) for the transformed 



response X(s), we can write 

To obtain the actual response x(t), we must evaluate the inverse Laplace transformation 
of X(s). It is clear from Eq. (B.7) that the Laplace transformation method yields both 
the particular and the homogeneous solution simultaneously, with the implication that 
the method takes the initial conditions into account automatically. 

B.4 THE LNVERSE LAPLACE TRANSFORMATION 

As can be concluded from Eq. (B.7), the transformed response X (s) is a function of the 
subsidiary variable s.  To obtain the time-dependent response x(t), we must evaluate the 
inverse Laplace transform of X (s). The operation is denoted symbolically by 

The rigorous definition (not given here) of the inverse transform (B.8) involves the 
evaluation of a line integral in the s-plane. In many cases, the integral can be replaced 
by a closed contour integral, which in turn can be evaluated by the residue theorem 
of complex algebra. By far the simplest way to evaluate inverse transformations is 
to decompose the function X(s) into a sum of simple functions with known inverse 
transformations. This is the essence of the method of partial fractions, to be described in 
Sec. B.6. To expedite the inversion process, a table of commonly encountered Laplace 
transform pairs can be found in Sec. B.8. 

B.5 SHIFTING THEOREMS 

A frequently encountered function has the form 

f l  (t) = f @)eat 03.9) 

where a is a real or complex number. The Laplace transform of f i  ( t )  is given by 
00 

F, (s) = [ f (t)ea'le-"dt 

from which it follows that 

L[ f  (t)eat] = F ( s  -a) (B.ll)  

Equation (B.ll) states that the effect of multiplying a function f  ( t )  by eat in the time 
domain is to shift the Laplace transform F(s) of f (t) by the amount a in the s-domain. 
Because the s-domain is the complex plane, the statement embodied by Eq. (B.ll)  is 
called the complex shifting theorem. 



Next, we consider the Laplace transform 

a n d l e t 7 = t P a ,  d l ~ . = d t ,  so that 

where we multiplied the integrand by the unit step function initiated at t = a,  ~ ( t  -a), 
in recognition of the fact that f (t -a )  must be set equal to zero for t < a,  because f (7) 
is zero for T < 0. Multiplying Eq. (B.13) through by ePas, we obtain 

from which it follows that 

Equation (B.15) represents the shifting theorem in the real domain. 

B.6 METHOD OF PARTIAL FRACTIONS 

We consider the case in which X (s) can be written as the ratio 

where both A(s) and B(s) are polynomials in s. Generally B(s) is a polynomial of 
higher degree than A (s). Denoting by s = ak (k = 1,2, . . . , n )  the roots of B (s), the 
polynomial can be written as the product 

where n is the product symbol. The roots s = ak are known as simple poles of X(s). 
The partial fractions expansion of Eq. (B. 16) has the form 

where the coefficients ck are given by the formula 

With a view to the inversion of X(s), we write 



from which it follows that 

Equations (B.20) and (B.21) constitute a Laplace transform pair. In view of Eqs. (B.19) 
and (B.21), the inverse transform of X ( s ) ,  Eq. (B.18), becomes 

Quite often, however, it is simpler to consider Eq. (B.18) and write A ( s )  in the 
form 

Comparing the coefficients of SJ- '  ( j  = 1,2,  . . . , n )  on both sides of Eq. (B.23), we de- 
rive a set of algebraic equations that can be solved for the coefficients ck (k = 1,2 ,  . . . , n ) ,  
as demonstrated in Example B. 1. 

Next, we consider the case in which B(s )  has a multiple root of order k, which 
implies that X ( s )  has a pole of order k, in addition to the simple poles considered above. 
Hence, B(s)  can be written as 

In this case, the partial fractions expansion has the form 

A (s) - c11 + c12 clk X ( s )  = - - +...+- 
B ( s )  ( s  - ~ 1 ) ~  ( s  - al)k- l  s -a1 

c2 Cn 
C3 +...+- +-+- (B.25) 

#-a2 s-a3 s -an 

It is not difficult to verify that the coefficients ell, cl2, . . . , elk are given by the formula 

1 dr-l 
clr = - -  [ ( s  -a l )kX(s ) ] l  , r = 1 ,2 , .  . . , k (B.26) 

(r  - I ) !  dsr-I s=al 

To carry out the inverse Laplace transformation of the terms due to the higher-order pole, 
we observe that 

(r  - I)!  ~ t r - 1  = - (B.27) 
sr 

so that, using the complex shifting theorem, Eq. (B.l I ) ,  we can write 

1 tr-1 
C-1- - - e a l t  (B.28) 

( S  - al)' (r  - I)! 



Hence, the inverse Laplace transform of X ( s ) ,  Eq. (B.25), is  

+ c2eazt + ~ ~ e ~ 3 ~  + . . . + cneant (B .29) 

Finally, using Eqs. (B.22) and (B.26), it can be  shown that Eq. (B.29) can be  written in 
the compact form 

Example B.1. Evaluate the inverse Laplace transform of 

Assuming that < < 1, the roots of B(s) are 

so that the poles of X(s) are simple. Using the approach implied by Eq. (B.23), we write 

Then, equating the numerator in Eqs. (a) and (c), we conclude that 

A(s) = c~[s+<w,  +i(l - < 2 ) 1 ' 2 w n ] + ~ 2 [ ~ + C ~ n  - i ( l  - < 2 ) 1 / 2 ~ n ]  

= (c~+~2)~+~1[<w,+i(l-<~)~/~w~]+~2[~w,-i(l-<~)~/~w~] 

= s + 2<wn (dl 

Equating the coefficients of SJ-' ( j  = 1,2)  in the second and third lines of Eq. (d), we 
obtain two equations in cl and c2, as follows: 

c1+c2 = 1 
(el 

ci [Cw, + i ( l  - <2)1/2wn~ + c2[<wn - i (1 - <2)1/2wn] = 2[wn 

The solution of Eqs. (e) is simply 

Hence, 



so that, considering Eq. (B.21), we obtain the inverse Laplace transformation 

From Eqs. (B.7) and (a), we conclude that Eq. (h) represents the response of a damped 
single-degree-of-freedom system to an initial unit displacement, x(0) = 1. 

Example B.2. Evaluate the inverse Laplace transform of 

4 x 1  w3 X (s) = --- = 
B(s) s2(s2 + w2) 

We observe that X(s) has a pole of order 2 at s = 0, k = 2, and two simple poles at 
s = i i w .  Hence, using formula (B.30), we obtain 

e ~ w t  - e - ~ w ~  

= wt - = wt - sinwt 
2i (b) 

B.7 THE CONVOLUTION INTEGRAL. BOREL'S THEOREM 

We consider two functions f l ( t )  and f2( t ) ,  both defined for t > 0. Moreover, we 
assume that fl ( t )  and ,fi(t) possess Laplace transforms Fl ( s )  and F2(s),  respectively, 
and consider the integral 

The function x ( t )  defined by Eq. (B.3 I) ,  sometimes denoted by x ( t )  = fi ( t )  * f2 ( t ) ,  is 
called the convolution of the functions fl and f2 over the interval 0 < t < a. The upper 
limits of the integrals in Eq. (B.31) are interchangeable because f2(t - 7 )  = 0 for T t ,  
which is the same as t - T < 0. Transforming both sides of Eq. (B.31), we obtain 



where the lower limit of the second integral was changed without affecting the result 
because fi ( t  - r )  = 0 for t i i. Next, we introduce the transformation t - T = X in the 
last integral, observe that to t = r corresponds X = 0 and write 

00 

= L m e - s 7 f i ( ~ ) d r /  e - ' * f 2 ( X ) d X = F ~ ( s ) F ~ ( s )  (B.33) 
0 

From Eqs. (B.31) and (B.33), it follows that 

The second integral in Eq. (B.34) is valid because it does not matter in which function 
the time is shifted. The integrals are known as convolution integrals. This enables us to 
state Borel's theorem, or convolution theorem: The inverse Laplace transformation of 
the product of two transforms is equal to the convolution of their inverse transforms. 

We recall that in Sec. 4.4 we derived a special case of the convolution integral 
without reference to Laplace transforms, in which one of the functions in the convolution 
was the impulse response and the other was the applied force. 



B.8 TABLE OF LAPLACE TRANSFORM PAIRS 

f ( t )  F ( s )  
6 ( t )  (Dirac delta function) 1 

~ ( t )  (unit step function) 

tepWt  

cos wt 

sin wt 

cosh wt 

1 -- coswt 

w 
wt - sinwt 

s2(s2 + w2) 

w(s2 - w2)  
wt cos wt 

(s2 + w2)2 

wt sinwt 



APPENDIX 

LINEAR ALGEBRA 

Linear algebra is concerned with three types of mathematical concepts, namely, matrices, 
vector spaces and algebraic forms. Problems in mechanics, and particularly vibration 
problems, involve all three concepts. Vibration problems involve algebraic forms, which 
can be conveniently formulated in terms of matrices. The concept of vector spaces is 
quite helpful in providing a deeper understanding of linear transformations and their 
properties. 

Our particular interest in linear algebra lies in the fact that it permits us to formulate 
problems associated with the vibration of multi-degree-of-freedom systems in a compact 
form, it enables us to draw general conclusions concerning the dynamical characteristics 
of such systems and is indispensable to the solution of the differential equations describ- 
ing the vibration of these systems. The discussion of linear algebra presented here is 
relatively modest in nature, and its main purpose is to introduce fundamental concepts 
of particular interest in vibrations. 

C.l MATRICES 

C.l . l  Definitions 

Many problems in vibrations can be formulated in terms of rectangular arrays of scalars 
of the form 

a12 . . . a l n  

A =  . . . . . . . . . . . . . . . . .  (C.1) 

am1 am2 ... amn 



where A  is called an m x n matrix because it contains m rows and n columns. It is 
also customary to say that the dimensions of A  are m x n.  Each element1 a,, (i  = 
1,2, . . . , m;  j = 1,2, . . . , n )  of the matrix A represents a scalar. For the most part, the 
scalars represent real numbers, although in general they can be complex. The position 
of element aZJ in matrix A  is in the ith row and jth column, so that i is referred to as the 
row index and j as the column index. 

In the special case in which m = n,  matrix A  reduces to a square matrix of order 
n. The elements a,, in a square matrix A  are called the main diagonal elements of A. 
The remaining elements are referred to as the off-diagonal elements of A. If all the 
off-diagonal elements of A  are zero, then A is said to be a diagonal matrix. If A is a 
diagonal matrix and all its diagonal elements are equal to unity, a,, = 1, then the matrix 
is called a unit matrix, or identity matrix, and denoted by I. Introducing the Kronecker 
delta symbol S,, , defined as being equal to unity if i = j and equal to zero if i # j, a 
diagonal matrix can be written in the form [alJ S,,]. Similarly, the identity matrix can be 
written in terms of the Kronecker delta as [S,,]. 

A matrix with all its rows and columns interchanged is known as the transpose of 
A  and denoted by A ~ ,  SO that 

Clearly, if A  is an m x n matrix, then is an n x m matrix. 
When all the elements of a matrix A are such that alJ = aJ , ,  with the implication 

that the matrix is equal to its transpose, A = A ~ ,  the matrix A is said to be symmetric. 
When the elements of A  are such that a,, = -a,, for i # j and a,, = 0, the matrix is said 
to be skew symmetric. Hence, A is a skew symmetric if A = - A ~ .  Clearly, symmetric 
and skew symmetric matrices must be square. 

A matrix consisting of one column and n rows is called a column matrix and 
denoted by 

The transpose of the column matrix x is the row matrix xT. They are also known as a 
column vector and a row vector, respectively. 

A matrix with all its elements equal to zero is called a null matrix and denoted 
by 0, 0, or oT, depending on whether it is a rectangular, a column, or a row matrix, 
respectively. 

'1n discussing computational algorithms, matrix elements are often referred to as entries. 



C.1.2 Matrix algebra 

Having defined various types of matrices, we are now in a position to present some basic 
matrix operations. Two matrices A  and B  are said to be equal if and only if they have 
the same number of rows and columns, and aij = bij for all pairs of subscripts i and j. 
Hence, considering two m x n matrices, the statement 

implies that 

Addition and subtraction of matrices can be performed if and only if the matrices 
have the same number of rows and columns. If A, B  and C  are three m x n matrices, 
then the statement 

implies that, for every pair of subscripts i and j, 

Matrix addition, or subtraction, is commutative and associative, namely, 

and 

( A + B ) + C = A + ( B + C )  (C.9) 

respectively. 
The product of a matrix and a scalar implies that every element of the matrix in 

question is multiplied by the same scalar. Hence, if A  is any arbitrary m x n matrix and 
s an arbitrary scalar, then the statement 

implies that, for every pair of subscripts i and j, 

cij=saij ,  i = 1 , 2  ,..., m; j = 1 , 2  ,..., n (C. 11) 

The product of two matrices is generally not a commutative process. Hence, 
the relative position of the matrices is important, and indeed it must be specified. For 
example, the product A  B  can be described by the statement that A  is postmultiplied by 
B, or that B  is premultiplied by A. It is also customary to describe the product by the 
statement that A  is multiplied on the right by B ,  or that B  is multiplied on the left by A. 
For a product of two matrices to be possible the number of columns of the first matrix 
must be equal to the number of rows of the second matrix. If A  is an m x n matrix and 
B  an n x p matrix, then the product of the two matrices is defined as 



where C is an m x p matrix whose elements are given by 
n 

C I ,  =al ibiJ  +aZ2bzJ +. . .+a in& = E a ~ k b k ,  (C. 13) 
k= 1 

in which k is a dummy index. We note that the element cIJ is obtained by multiplying 
the elements in the ith row of A by the corresponding elements in the jth column of B 
and summing the products. It must be pointed out that the product BA is not defined, 
except in the special case in which the number of columns of B is equal to the number 
of rows of A, p = m. Still, even if p = m, and the product exists, BA is not equal to 
AB. In this case AB is an m x m matrix and BA is an n x n matrix. In fact, the matrix 
product in general is not commutative, even when both matrices are square. 

As an illustration, we evaluate the following matrix product: 

-3 40 = [  6 
16 15 

In the above example, it is clear that the product is not commutative because the number 
of columns of the second matrix is 2, whereas the number of rows of the matrix is 
3. Hence, when the position of the matrices is reversed the matrix product cannot be 
defined. As an illustration of the case in which both matrix products can be defined and 
the process is still not commutative, we consider the simple example 

Although there may be cases when a particular matrix product is commutative, these 
are exceptions and not the rule. One notable exception is the case in which one of the 
matrices in the product is the unit matrix, as in this case 

where A must clearly be a square matrix of the same order as I. 



The matrix product satisfies associative laws. Indeed, consideri~lg the m x n matrix 
A, the n x p matrix B and the p x q matrix C, it can be shown that 

were D is an m x q matrix whose elements are given by 

The matrix product satisfies distributive laws. If A and B are m x n matrices, C 
is a p x m matrix and D is an n x q matrix, then it is easy to show that 

The matrix product 

A B = O  

does not imply that either A or B, or both A and B, are null matrices. The above statement 
can be easily verified by considering the example 

From the above discussion, we conclude that matrix algebra differs from ordinary 
algebra on two major counts: (1) matrix products are not commutative and (2) the fact 
that the product of two matrices is equal to a null matrix cannot be construed to mean that 
either multiplicand (or both) is a null matrix. Both these rules hold in ordinary algebra. 

C.1.3 Determinant of a square matrix 

The determinant of the square matrix A, denoted by det A or by I AJ is defined as 

1 an1 an2 ... an, I 
where IAJ is said to be of order n.  Unlike the matrix A, representing a given array 
of numbers, the determinant /A( represents a number with a unique value that can be 
evaluated by following certain rules for the expansion of a determinant. Although de- 
terminants have very interesting properties, we do not study them in detail but confine 
ourselves to certain pertinent aspects only. 

We denote by I M,, I the minor determinant corresponding to the element a,, where 
1 M,, I is obtained by taking the determinant of A with the rth row and sth column struck 
out. Hence, 1 M,, I is of order n - 1. The signed minor determinant corresponding to the 
element a,, is called the cofactor of a,, and is given by 
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With this definition in mind, the value of the determinant can be obtained by expanding 
the determinant in terms of cofactors by the rth row as follows: 

IAI = Cars1Ar31 (c. 22) 

or by the sth column in the form 

where the value of I A 1 is the same regardless of whether the determinant is expanded by 
a row or a column, any row or column. The expansions by cofactors are called Laplace 
expansions. The cofactors I A,, I are determinants of order n - 1, and if n > 2 they can be 
further expanded in terms of their own cofactors. The procedure can be continued until 
the minor determinants are of order 2, in which case their cofactors are simply scalars. 
As an illustration, we calculate the value of a determinant of order 3 by expanding by 
the first row, as follows: 

From Eqs. (C.22) and (C.23) we conclude that 

or the determinant of a matrix is equal to the determinant of the transposed matrix. It 
is easy to verify that the determinant of a diagonal matrix is equal to the product of the 
diagonal elements. In particular, the determinant of the identity matrix is equal to 1. 

If the value of det A is equal to zero, then matrix A is said to be singular, otherwise 
it is said to be nonsingular. Clearly, det A = 0 if all the elements in one row or column 
are zero. It is easy to verify that the value of a determinant does not change if one row, or 
one column, is added to or subtracted from another. Hence, if a determinant possesses 
two identical rows, or two identical columns, its value is zero. Moreover, if a main 
diagonal element of a diagonal matrix is zero, then the determinant of the matrix is zero. 

By definition, the adjoint [A,,] of the matrix A is the transposed matrix of the 
cofactors of A, namely, 

adj A = [Aji] = [(-1)"~ I M ~ ~  / l T  (C.26) 
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C.1.4 Inverse of a matrix 

If A and B are n x n matrices such that 

A B = B A = I  

then B is said to be the inverse of A and denoted by 

B = A-I 

To obtain the inverse A-l ,  provided the matrix A is given, we consider the product 

a12 . . .  aln 

A adj A = . . . . . . . . . . . . . . .  
anl anz ... ann 

But a typical element of the matrix on the right side of Eq. (C.29) has the value 

On the other hand, if i # k the determinant possesses two identical rows. This is because 
the determinant corresponding to i # k is obtained from the matrix A by replacing the 
ith row by the kth row and keeping the kth row intact. Hence, if i # k the value of the 
element is zero. 

Considering the above, Eq. (C.29) can be written in the form 

Premultiplying both sides of Eq. (C.31) by A-I and dividing the result by IA 1, we obtain 

- 
adj A 

A-1 - - 
det A 

so that the inverse of a matrix A is obtained by dividing its adjoint matrix by its deter- 
minant. 

If det A is equal to zero, then the elements of A-' approach infinity (or are in- 
determinate at best), in which case the inverse A - ~  is said not to exist, and the matrix 
A is said to be singular. Hence, for the inverse of a matrix to exist its determinant 
must be different from zero, which is equivalent to the statement that the matrix must be 
nonsingular. 
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As the order of the matrix A increases, formula (C.32) for the calculation of A-I 

ceases to be practical, because the computation of IAl requires a rapidly increasing 
number of multiplications, so that other methods must be used. We present later a 
more efficient method of obtaining the inverse of a matrix, namely, the method based on 
Gaussian elimination in conjunction with back substitution. 

C.1.5 Transpose, inverse and determinant of a product of matrices 

If A is an m x n matrix and B an n x p matrix, according to Eq. (C.13), C = AB is an 
m x p matrix with its elements given by 

Next, we consider the product B ~ A ~ .  Because to any element a,k in A corresponds the 
element ak, in A ~ ,  and to any element bk, in B corresponds the element bJk  in B ~ ,  we 
have 

n 

from which we conclude that 

or the transpose of aproduct of matrices is equal to the product of the transposed matrices 
in reversed order. This statement can be generalized to a product of several matrices. 
Hence, if 

then 

We consider again the product 

but this time A and B are square matrices of order n. Then, premultiplying Eq. (C.38) 
by B-'A-' and postmultiplying the result by C-',  we obtain simply 

or the inverse of a product of matrices is equal to the product of the inverse matrices in 
reversed order. Equation (C.39) can be generalized by considering the product (C.36) 
in which all matrices A, ( i  = 1,2, . . . , s )  are square matrices of order n. Following the 
same procedure as that used to obtain Eq. (C.39), it is easy to show that 



We state here without proof2 that the determinant of a product of two matrices 
is equal to the product of the determinants of the matrices in question. The statement 
can be extended to the determinant of the product of any number of matrices. Hence, 
considering the product of matrices ((2.36) in which A, (i = 1,2, . . . , s) are all square 
matrices, we have 

In view of Eqs. (C.27), (C.28) and (C.41), we conclude that the value of d e t ( ~ - l )  is 
equal to the reciprocal of the value of det A. 

C.1-6 Partitioned matrices 

At times it proves convenient to partition a matrix into submatrices and regard the subma- 
trices as the elements of the matrix. As an example, a 3 x 4 matrix A can be partitioned 
as follows: 

- - 

where 

a13 .a14 ::: 1' A12=[a23  (I24 ] (c.43) 

A21 = [ a31 a32 1 ,  A22 = [ a33 a34 ] 
are submatrices of A. Then if a second 4 x 4 matrix B is partitioned in the form 

I 
bii b12 1 b13 b14 I b l  2 2  I23 2 4  1 = [ Bll I 1 2  ] 

B =  - _ - - - - - - - - - - - - - _  - - - - - - - - - ((2.44) 
I 

b31 b32 I b33 '334 B2l I B22 

641 b42 I b43 644 

where 

2 ~ o r  the proof, see B. Noble and J. W. Daniel, Applzed LinearAlgebra, 2nd ed., Prentice-Hall, Inc., Englewood 
Cliffs, NJ, 1977, p. 203 
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the matrix produce AB can be treated as if the submatrices were ordinary elements, 
namely, 

I t A12 I B12 

AB = [ t!: - - i2i ] [ :i: - - i2i ] 
I 

AiiBii  +A12B21 I A11B12 +A12B22 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  I (C.46) 

I 
A21 Bii + A22B21 I A21 B12 + A22B22 

Note that All Bll +A12B21 and A l l  B12 + A12B22 are 2 x 2 matrices, whereas AzlBI1  + 
BZ1 and A21 B12 + B22 are 1 x 2 matrices, so that the product A B is a 3 x 4 matrix, 

as is to be expected. 
If the off-diagonal submatrices of a square matrix are null matrices, then the matrix 

is said to be block-diagonal. In this case the determinant of the matrix is equal to the 
product of the determinants of the submatrices on the main diagonal. Considering the 
matrix (C.44), with B12 and B21 being identically equal to zero, we have 

det B = det B11 det B p  (C.47) 

C.2 VECTOR SPACES 

C.2.1 Definitions 

Let V be a set of objects called vectors and R any jield with its elements consisting of 
a set of scalars possessing certain algebraic properties. Then, if V and R are such that 
two operations, namely, vector addition and scalar multiplication, are defined for V and 
R, the set of vectors together with the two operations are called a vector space V over a 
jield R. A vector space is also referred to as a linear space. 

We have considerable interest in vector spaces of n-tuples, i.e., the vectors in the 
space possess n components from a field R. For two such vectors 

and a scalar c in R, the addition and multiplication are defined as follows: 

u+v= (C.49) 

un + vn 

The vector space of n-tuples over R is denoted by v ( ~ ) ( R ) ;  it consists of all column 
vectors with n components. The first three vector spaces lend themselves to geometric 



interpretation. Indeed, the one-dimensional space v(') is a line, the two-dimensional 
space v ( ~ )  is a plane and v ( ~ )  is the usual three-dimensional space. There is no difficulty 
in conceiving of vector spaces with the number of components larger than three, al- 
though such spaces are more abstract and defy physical interpretation. Still the physical 
interpretation of the vector space is not really necessary, so that no distinction need be 
made between the cases 1 5 n 5 3 and n > 3. Consistent with this, for the most part we 
will omit the superscript (n)  from the vector space notation. 

C.2.2 Linear dependence 

Vector spaces are very useful in vibrations, as the response of multi-degree-of-freedom 
systems can be conveniently represented in a vector space. We consider a vector space 
V over R and let u l ,  uz,  . . . , u,  and c l ,  c2, . . . , C ,  be n vectors in V and n scalars in 
R, respectively. Then, the vector u given by 

is called a linear combination of u l ,  u2, . . . , u,  with coeficients c l ,  c2, . . . , c,. The 
totality of linear combinations of u l ,  u2, . . . , u,  obtained by letting c l ,  c2, . . . , c, 
vary over R is a vector space. The space of all linear combinations of u l ,  u2, . . . , u, 
is said to be spanned by u l ,  uz ,  . . . , u,. If the relation 

can be satisfied only for the trivial case, namely, when all the coefficients cl , c2, . . . , c, 
are identically zero, then the vectors ul , u2, . . . , u,  are said to be linearly independent. 
If at least one of the coefficients c l ,  cz, . . . , c, is different from zero, the vectors 
u l ,  u2, . . . , U ,  are said to be linearly dependent, implying that one vector is a linear 
combination of the remaining vectors. 

C.2.3 Bases and dimension of vector spaces 

A vector space V over R is said to be$nite dimensional if there exists a finite set of vectors 
ul, u2, . . . , u, which span V ,  with the implication that every vector in V is a linear 
combination of ul , U I ,  . . . , u,. For example, the space v(,) (R) is finite dimensional 
because it can be spanned by a set of n vectors, where n is a finite integer. 

Let V be a vector space over R. A set of vectors u l ,  u2, . . . , U ,  which span V is 
called a generating system for V .  If u l ,  u2, . . . , u,  are linearly independent and span 
V, then the generating system is called a basis for V .  If V is a finite-dimensional vector 
space, any two bases for V contain the same number of vectors. 

If V is a finite-dimensional vector space over R, then the dimension of V is defined 
as the number of vectors in any basis for V .  This integer is denoted by dim V .  In 
particular, the vector space v(,) ( R )  has dimension n,  because a basis for v(,)(R) contains 
n linearly independent vectors. 
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Let u  be an arbitrary n-dimensional vector with components u l ,  u2, . . . , u,, 
where u is in v @ ) ( R ) ,  and introduce a set of n-dimensional vectors given by 

Then, the vector u can be written in terms of the vectors e,  (i = 1,2, . . . , n) as follows: 
n 

u = u l e l  $ u z e z + . . . + u n e n  = ~ u , e ,  (C.53) 
i=l 

Hence, v ( ~ ) ( R )  is spanned by the set of vectors e,  (i = 1,2, . . . , n). Clearly, the set e,  
is a generating system for v @ ) ( R )  and is generally referred to as the standard basis for 
V c n )  ( R ) .  

C.3 LINEAR TRANSFORMATIONS 

C.3.1 The concept of linear transformations 

We consider a vector x  in v @ ) ( R )  and write it in the form 

where x, are scalars belonging to R  and e, are the standard unit vectors (i = 1,2,  . . . , n). 
The scalars x, are called the coordinates of the vector x  with respect to the basis e l ,  e2, 
. . . , en .  Equation (C.54) is entirely analogous to the equation 

expressing a three-dimensional vector x  in terms of the components xl , x2, x3, where 
i, j, k are unit vectdrs along rectangular axes. Next, we consider an n x n matrix A and 
write 

The resulting vector x' is another vector in V ( n )  (R), so that Eq. (C.56) can be regarded as 
representing a linear transformation on the vector space v ( ~ ) ( R )  which maps the vector 
x  into a vector x' . 

Equation (C.54) expresses the vector x in terms of the standard basis. In many 
applications, the interest lies in expressing x  in terms of any arbitrary basis pl , p2, . . . , pn 
for v ( ~ ) ( R )  as follows: 

n 

x = Y l P l +  ~ 2 P 2 + . . . +  ynpn = ~ y , p ,  = Py (C.57) 
r=l 

where 

P = [ P I  P2 . . . PnI ((2.58) 



is an n x n matrix of the basis vectors and 

is an n-dimensional vector whose components yi are the coordinates of x with respect to 
the basis pl , pz, . . . , p,. By the definition of a basis, the vectors pl , p2, . . . , p, are linearly 
independent, so that the matrix P is nonsingular. Similarly, denoting by y ; ,  y ; ,  . . . , y; 
the coordinates of x' with respect to the basis pl , p2, . . . , p,, we can write 

x' = Py' (C. 60) 

where 

Inserting Eqs. (C.57) and (C.60) into Eq. (C.56), we can write 

Py' = APy (C. 62) 

so that, premultiplying both sides of Eq. (C.62) by P-', we obtain 

where 

Note that P-' exists by virtue of the fact that P is nonsingular. The matrix B represents 
the same linear transformation as A, but in a different coordinate system. Two matrices A 
and B related by an equation of the type (C.64) are said to be similar and the relationship 
(C.64) itself is known as a similarity transformation 

Next, we define the eigenvalue problem for the n x n matrix A as follows: 

which can be stated in words as the problem of determining the values of the parameter 
A such that Eq. (C.65) admits nontrivial solutions x. The interest lies in expressing Eq. 
(C.65) in terms of a different set of coordinates. To this end, we introduce transformation 
(C.57) in Eq. (C.65), premultiply by P-I and rewrite the eigenvalue problem in the form 

in which B is given by Eq. (C.64). At this point, we consider the characteristic deter- 
minant associated with B, recall Eq. (C.64) and write 

det (B - X I )  = det (P-'AP - XP-' P) 



= det (P-'(A - XI) P) 

= det P-ldet (A - X1)det P (C.67) 

But 

det P-ldet P = det (P-' P) = det I = 1 (C.68) 

so that 

det(B - XI) = det ( A  - XI) (C.69) 

Equation (C.69) states that matrices A and B possess the same characteristic determinant, 
and hence the same characteristic equation. It follows that similar matrices possess the 
same eigenvalues. 

One similarity transformation of particular interest is the orthogonal transforma- 
tion. A matrix P is said to be orthonormal if it satisfies 

from which it follows that an orthonormal matrix also satisfies 

Introducing Eq. ((2.71) into Eq. (C.64), we obtain 

Equation (C.72) represents an orthogonal transformation. One orthogonal transforma- 
tion of particular interest in vibrations is the one in which A is symmetric and the 
resulting matrix B is diagonal. Many computational algorithms for the eigenvalue prob- 
lem of a real symmetric matrix A are based on the use of orthogonal transformations to 
diagonalize the matrix A. 

C.3.2 Solution of algebraic equations. Matrix inversion 

A basic problem in linear algebra is the solution of sets of nonhomogeneous algebraic 
equations. Of particular interest here is the case in which the number of equations is 
equal to the number of unknowns. Hence, we consider the system of equations 

Equations (C.73) can be written in the compact matrix form 

where A = [a,,] is the n x n coefficient matrix, x = [xl x2 . . . xnlT the n-vector of 
unknowns and b = [bl b2 . . . b,lT the n-vector of nonholnogeneous terms. We assume 



that Eq. ((2.74) has a unique solution, which implies that the matrix A is nonsingular, 
and write the solution simply as I 

where the inverse A-' is given by Eq. (C.32). 
Equation (C.75) gives the impression that the matter of solving linear algebraic 

equations of the type (C.73) is closed, and for small n this is indeed the case. But, from 
Eq. (C.26), we observe that the computation of adj A  involves the computation of n2 de- 
terminants of order n - 1, a task requiring a rapidly increasing effort. As an illustration, 
the computation of a relatively moderate 10 x 10 determinant requires 3,628,800 multi- 
plications. Hence, as n increases, the use of Eq. (C.32) becomes impractical, so that a 
different approach demands itself. A very efficient approach to the solution of algebraic 
equations of the type (C.73) does indeed exist and it consists of Gaussian elimination 
in conjunction with back substitution. Of course, the approach amounts to an efficient 
inversion of a matrix. 

The Gaussian elimination is basically a procedure for solving sets of linear al- 
gebraic equations through elementary operations. The net effect of these elementary 
operations is to carry out a linear transformation on Eq. (C.74), which amounts to pre- 
multiplying Eq. (C.74) by the n x n matrix P ,  so that 

The transformation matrix P is such that P A  is an upper triangular matrix U, i.e., a 
matrix with all the entries below the main diagonal equal to zero. Hence, introducing 
the notation 

where U is an upper triangular matrix, Eq. (C.76) can be rewritten as 

Ux=c (C.78) 

The question remains as to how to generate the transformation matrix P  required 
for the computation of U and c. The process involves n - 1 steps, which implies that P 
is the product of n - 1 matrices. To demonstrate the process, we introduce the notation 

premultiply Eq. (C.74) by an n x n transformation matrix PI and obtain 

(1) (0) where the coefficient matrix Al and the vector a,+l are obtained from A. and a,+l, 
respectively, by writing 
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in which the transformation matrix PI has the form 

where 

Inserting Eqs. (C.82) and (C.83) into Eqs. (C.81), we can write the matrix A1 and vector 
a:il in the general form 

In a similar fashion, premultiplication of Eq. (C.80) by P2 yields 

in which 

where 

in which 



(2)  Moreover, the matrix A2 and vector an+l have the general form 

The process continues in the same fashion and ends after n - 1 steps with the result 

By induction, Eqs. (C.90) yield 

in which we replaced A. by A and by b, according to Eqs. (C.77). Then, comparing 
Eqs. (C.77) and (C.91), we cotlclude that the transformation matrix has the form of the 
continuous matrix product 

which indicates that the transformation matrix P can be generated in n - 1 steps. This 
is merely of academic interest, however, as P is never computed explicitly, because U 
and c are determined by means of Eqs. (C.81), (C.86) . . . (C.90) and not through Eqs. 
(C.77). 

With U and c obtained from Eqs. (C.90), Eq. (C.78) can be solved with ease by 
back substitution. Indeed, the bottom equation involves x, alone, and can be solved with 
the result 

Then, having x,, the (n  - 1) th equation can be solved to obtain 

Next, upon substitution of x,-1 and x, into the (n - 2)th equation, we are able to solve 
for xn-2. The procedure continues by solving in sequence for xn-3,. . . , x3, x2 and 
terminates with 

c1 - U 1 2 X 2  - u13x3 - " ' - uI,x, 
X 1  = (C.95) 

u11 

From the second of Eqs. (C.75) and Eq. (C.78), the solution of Eq. (C.74) is simply 



so that implicit in back substitution is the calculation of the inverse of the triangular 
matrix U .  Comparing Eq. (C.96) with Eq. (C.75), we conclude that the inverse of A is 

But, unlike the process given by Eq. (C.32), Eq. (C.97) represents a very attractive 
algorithm for computing the inverse of an n x n matrix for large n, because the inverse 
of a triangular matrix is a relatively simple task. In this regard, we observe that, even 
when the process given by Eq. (C.32) is used to compute U - l ,  the determinant of the 
triangular matrix U is merely equal to the product of the diagonal entries of U .  

Example C.1. Solve the algebraic equations 

by Gaussian elimination with back substitution. 
Equations (a) can be arranged in the matrix form (C.74), in which 

2 -1 
A = A o =  [ -  0 -2 3 ' 1 ,  b = a y ) = [ i : ]  -5 (b) 

Using Eqs. (C.82) and (C.83), the transformation matrix Pi is 

PI = [ 015 :: ] (c) 
0 0 1  

Hence, using Eqs. (C.81), we obtain 

0 0 2 -1 2 -1 
A l = P l A o =  [Oi5 1 0 ] [ - 3 -"=[(I 2.5 -!] 

0 1 0 -2 0 -2 
(4 

1 0 0  

0 1 

Next, we use Eqs. (C.87) and (C.88) and write 

0 0 
P2 = (el 

0 0.8 1 

so that, using Eqs. (C.90), we obtain 

U = A2= P2A1= 
0 0 0.4 

(f 
0 - 1 - 1 

a ~  [ 1 :] [ 6 I = [  6 ] 
0 0.8 1 -5 -0.2 



At this point, we begin the back substitution with Eq. (C.93) and write 

Then, Eq. (C.94) yields 

Finally, from Eq. (C.95), we have 

which completes the solution. 
As a matter of interest, we carry out the solution by first obtaining A-' using Eq. 

(C.97). To this end, we first compute 

and 

0 0 0 0 0 0 
P = P  2p1 = [k 0 0.8 1 0 ] [ 0 ! 5  0 0 1  1 0 ] = [ 0 1 5  1 (k) 

0.4 0.8 1 

so that 

0.5 0.2 1 1 0 0  1 1  1 
A - ' = U - ' P = [ ;  0.4 0 2.5 2 ] [ 0 . 5  0.4 0.8 1 0 ] [ 1  1 

1 2 2 2.5 2 1  
(1) 

Hence, the solution is 

1 1  0.5 
2 ]["I=[ 2 ] (m) 

1 2 2.5 -5 -0.5 

which is the same as that given by Eqs. (g)-(i). 
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Absorber, vibration, 240-243 
Accelerometer(s), 133 
Adjointeigenvalueproblem(s), 347,357,535, 

629 
Adjoint eigenvectors, 347 
Adjoint of a matrix, 773 
Admissible functions, 425, 497, 501, 502, 

506,5 17 
Algebraic eigenvalue problem, 2 17,303,502 

standard form, 323,346 
in the state space, 346,533, 624 

Amplitude(s), 49, 82, 91, 397 
Angular momentum, 5,12,17 

conservation of, 5,312 
Antinode(s), in wave propagation, 448) 
Antisymmetric modes, 3 15 
Aperiodic decay, 61, 62, 89 
Arbitrary excitations (see also Nonperiodic 

excitations), 5 1 
response to, 168-174 

Arrival time, of wave, 453 
Assembly, in the finite element method, 557, 

568,577 
Assumed-modes method, 523-529 

response by, 526 
Asymptotic stability, 58, 61, 622, 624 
Autocorrelation function(s), 57, 688 

properties of, 702-703 
of random processes, 688, 73 1 
temporal, 689,734 

Average frequency of random process, 7 17 
Average value of periodic functions (see also 

Mean value), 143,755 
Axial vibration of rods (see Strings, or rods, 

or shafts) 

Back substitution, 359,782,784 
Band-limited white noise, 713, 726 

Banded matrix, 553, 557 
Bandwidth, 117 
Basis, vector, 778 

coordinates of, 779 
standard, 779 

Beams (see Bending vibration) 
Beat frequency, 236 
Beat phenomenon, 233-238 
Beer, E P., 31, 32, 385, 787 
Bendat, J.S., 699,737,741,787 
Bending vibration: 

by the assumed-modes method, 523- 
529 

boundary conditions, 385-387 
geometric, 385,386 
natural, 386, 387 

boundary-value problem, 383-389,411- 
412 

by the extended Hamilton's princi- 
ple, 387-389, 412-414 

by the collocation method, 533-539 
eigenvalueproblem, 391-392,398-403, 

417,422-423 
by the finite element method, 574-581 
by the Galerkin method, 530-533 
by Myklestad's method, 484-493 
natural modes, or eigenfunctions, 393, 

394,395,396,398,401,402 
Rayleigh's quotient, 428 
response by modal analysis, 433,438- 

443 
Biorthogonality, 348 
Biorthonormality relations, 348, 535 
Block diagram, 53, 179 
Borel's theorem (see Convolution integral) 
Boundary conditions: 

for beams, 385-387 
dynamic (see natural below) 

789 



depending on eigenvalues, 414-415,417 
essential (see geometric below) 
geometric, 380, 385, 386 
natural, 380,386 
nonhomogeneous, 443 
for strings, orrods, or shafts, 377,379- 

3 80 
Boundary, or transition, curves for Math- 

leu's equation, 538 
Boundary-value problem: 

for beams, 383-389 
with lumpedmass at boundary, 408- 

414 
for strings, or rods, or shafts, 375-383 

withlumpedmass at boundary, 409- 
41 1 

Bounded solution, in nonlinear systems, 649, 
65 1 

Bngham, E. O., 705 
Burden, R. L., 787 

Cam and follower, 141 
Center of mass, 12 
Center, as equilibrium, or singular point, 633 
Central limit theorem, 694 
Characteristic determinant, 218, 303,780 
Characteristic equation (see also Frequency 

equation), 56, 60, 81, 88, 303, 
629 

discrete systems, 218 
distributed systems, 393 

Characteristic polynomial, 218,303 
Characteristic-value problem (see also Eigen- 

value problem), 217,303 
Characteristic values (see also Eigenvalues), 

218,303 
Characteristic vectors (see also Eigenvec- 

tors), 219,304 
Cholesky decomposition, 323,359 
Closed trajectories, 641, 644 
Clough, R.W., 549,788 
Coefficient of viscous damping, 26, 87 
Coefficient(s): 

damping, 215,282,296 
mass, 214,282, 502, 524 
stiffness, 214,282,286,501, 525 

Cofactor(s), 772 
Collocation method, 535-539 
Combination harmonics, 666 

Comparison functions, 495, 497, 502, 506, 
517,529 

Complete set of functions, 503, 754 
Complex damping, 139 
Complex form of Fourier series, 758 
Complex stiffness, 139 
Complex vector: 

representing harmonic function, 50 
representing harmonic motion, 77 

Compound pendulum, 17 
Configuration: 

space, 209, 618,621 
of a system, 209,215,220 
vector, 209 

Conjugate beam method, 35 
Conservation of angular momentum, 5 
Conservation of energy principle, 9, 640 
Conservation of linear momentum, 3 
Conservative force(s), 7,269 
Conservative system(s), 9, 83, 215 

motions in the large, 639-643 
Consistent mass matrix, 578 
Constant coefficients, system with, 56 
Constant solution, 295, 621 
Constrained vector, 3 19 
Constraint: 

equation, 264 
force, 265 
matrix, 3 13 

Continuous frequency spectrum, 53 
Continuous-time systems, 189, 190 
Convergence of Ritz eigenvalues, 505 
Convolution of functions, 766 
Convolution integral, 57, 168-174, 187,245 

geometric interpretation, 170- 171 
by Laplace transform, 765-766 

Convolution sum, 189- 198 
response using MATLAB, 201-202 

Convolution theorem, time domain, 719 
Coordinate transformation, 225-229,264,327 
Coordinate(s): 

generalized, 263-265, 294 
global, 555 
local, 555 
modal, 231,299 
natural, 209,229-233,299 
normal, 299 
principal, 209,229,231 

Correlation coefficient@), 729 
Correlation function(s), 73 1 



properties of, 732-733 
temporal, 734 

Correlation matrix, of response, 739 
modal, 739 

Coulomb damping, 98- 101 
Coupling, 225-229,297-301 

elastic, or static, 228, 298 
inertial, or dynamic, 228, 298 

Courant, R., 787 
Covariance function(s): 

of random processes, 729,730 
temporal, 733 

Crandall, S. H., 717,787 
Critical behavior, 625 
Critical damping, 89,92 
Critical frequencies, or speeds, in whirling 

of shafts, 127 
Cross-correlation function(s): 

between random processes, 732,736 
distributed, 745 
for response of linear systems, 735- 

737 
temporal, 734 

Cross-spectral density function@), 737 
analyzer, 737,741 
distributed, 745 

Crossings with positive slope, 717 
Cutoff frequency (ies): 

lower, 713,726 
upper, 7 13,726 

D' Alembert's principle, 267-268 
generalized, 268 
Lagrange's version of, 268 

Damper, viscous, 25 
equivalent, 29 

Damping: 
coefficients, 215,282,296 
Coulomb, 98-101 
critical, 89 
dry (see Coulomb above) 
hysteretic (see structural below) 
matrix, 215, 283,296 - 
proportional, 340-342,532 
structural, 137-141 
viscous, coefficient of (see also Vis- 

cous damping), 25 
Daniel, J. W., 776,787 
Dashpot (see Damper, viscous) 

Decaying oscillation (see also Oscillatory 
decay), 61 

Degenerate systems, 303 
Degree(s) of freedom (defined), 48,263-265 
Delta, Kronecker, 282,769 

discrete-time, 190 
Delta function (see Dirac delta function) 
Determinant: 

characteristic, 218,303, 780 
Laplace expansion, 773 
of a square matrix, 772 

minor, 772 
Deterministic excitation, 52 
Differential eigenvalue problem (see Eigen- 

value problem (differential)) 
Dirac delta function, 158 

spatial, 442, 533 
Dirichlet's conditions, 704 
Discrete Fourier transform, 705 
Discrete frequency spectrum, 51, 146 
Discrete parameter(s), 27 
Discrete-time impulse response, 19 1 
Discrete-time Kronecker delta, 190 
Discrete-time response, 189-203,357 

by the convolution sum, 189-198 
using MATLAB, 201-202 

by the transition matrix, 138-201 
using MATLAB, 202-203 

Discrete-time systems, 189-201, 355-358, 
363 

Discrete-t~me transition matrix, 199, 357 
Discrete-time unit impulse, 190 

response to, 192 
Discrete-time variable, 189 
Displacement(s): 

configuration, 220 
generalized, 274 
nodal, 554 
vector, 214 
virtual, 265 

generalized, 267 
Dissipation function, Rayleigh's, 294, 297 
Divergent oscillation, 62 
Double pendulum, 7 1,256 
Driving frequency, 110 
Dry friction, 98-101 
Duffing's equation, 650 

harmonically excited, 656, 663 
viscously damped, 662 



Eccentric masses (see Unbalanced masses, 
rotating) 

Eccentricity, 120 
Effective force, 268 
Eigenfunctions, 393 

Ritz, 503 
Eigenvalue(s), 21 8, 303, 393 

denumerable, 393 
equal (see repeated below) 
matrix of, 310 
multiple (see repeated below) 
Ritz, 503 
repeated, 3 10 
zero, 305 

Eigenvalue problem (algebraic), 217, 301- 
309,502,624,629,780 

adjoint, 347, 535, 629 
for discretized systems: 

by the finite element method, 559 
by the lumped-parameter method, 

470 
by the Rayleigh-Ritz method, 502 

geometric interpretation, 325-331 
solution by: 

characteristic determinant method, 
303,305 

Jacobi method, 329, 359 
power method, 359 
QR method, 359 

standard form, 323, 346 
symmetric matrix, 323-325 

in the state space, 346,533,624 
Eigenvalue problem (differential), 389-403 

for beams: 
cantilever, 399-401 
with lumped mass at boundary, 419, 

422-423 
pinned-pinned, 398-399 
spring supported-pinned, 391-392, 

40 1-403 
for strings, or rods, or shafts: 

by the finite element method, 559- 
563 

fixed-fixed, 389-391, 394-396 
fixed-spring supported, 396-399 
with lumped mass at boundary, 414, 

420-422 
strong form, 423 
variational approach, 423-43 1 
weak form, 424-425,427 

Eigenvectors, 219,304 
adjoint, 347 
biorthogonality, 348 
left, 347 
normalized, 219,324 
orthogonality, 229, 230, 324 
orthonormal, 324 
right, 347 

Elastic axis, 42 
Elastic coupling, 228,296 
Elastic modes, 314 
Elastic potential energy, 24,290-292 
Element: 

mass matrix, 552 
for beams, 577 
for strings, or rods, or shafts, 557, 

567 
nodal displacements vector, 555, 566, 

575 
stiffness matrix, 552 

for beams, 577 
for strings, or rods, or shafts, 557- 

567 
Embedding property (of matrices), 504 
Energy: 

conservation of, 9, 640 
dissipation of, 26, 137-141 
elastic potential, (see Elastic potential 

energy) 
integral, 9 
kinetic, 6,26, 269,274,292,294,381 
potential, 8, 24, 270, 274, 290-292, 

294 
(see also elastic potential above) 

strain (see Elastic potential energy) 
total, 9,26 

Energy method, Rayleigh's, 497,503 
Enhanced Rayleigh-Ritz method, 516-525 
Ensemble, 687 
Ensemble averages, 686, 688 

autocorrelation function, 688 
mean value, 688 

Equation(s) of motion, 44-48 
for automobile, 46-47 
about equilibrium, 45 
of Lagrange, 273-276,294 
linearized, 59,296,624 
of Newton, 21 1-215,281-285 
for washing machine, 44 

Equilibrium conditions, 266 
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Equilibrium equation(s), 58,296, 621 
Equilibrium motions, 644 
Equilibrium point(s), 57-65, 620 

asymptotically stable, 58,61,62, 622, 
633 

center, 633 
isolated, 642 
linearized equation(s) about, 59 
node, 630 
at the origin, (see trivial below) 
saddle point, 631 
spiral point, or focus, 633 
stable, 59,61, 62,622, 624,633 
static, 81 
trivial, 58, 281, 622 
unstable, 59, 61, 62, 622, 625, 631, 

633 
vibration about, 57-65,622 

Equilibrium position(s) (see Equilibrium point(s)) 
Equivalent damper(s), 29 
E'quivalent damping coefficient, 29 
Ehuivalent frequency response for structural 

damping, 140 
magnitude, 140 1 phase angle, 140 

Equivalent mass, 39 
ivalent spring constant: 

for a beam, 3 1 
for a rod, 29 
for a shaft, 3 1 
for springs in parallel, 27,28 

torsional, 29 
for springs in series, 28, 29 

torsional, 29 
godic random process(es), 689,734 

1 excitation: 
I autocorrelation funct~on, 720 
I mean value, 7 19 

joint properties, 733-735 
I response: 

autocorrelation function, 720 
mean square spectral density, 720 

I 

mean square value, 721 
mean value, 7 19 

' strongly, 689, 734 
weakly, 689,733 

Error function, 695 
~krors, in the finite element method, 581- 

I 583 
E~clidean norm, or length, 622 

Euler-Bernoulli beam, 384 
Even function(s), 143,755 
Excitation(s): 

arbitrary, 51 
determinisitc, 52 
frequency, 1 10 

fundamental, 51 
harmonic, 48 

amplitude, 49 
frequency, 49 
phase angle, 49 
period, 49 

initial, 48 
mean value, 719,722 
nondeterminisitc (see random below) 
nonperiodic, 5 1, 157 
periodic, 51, 142 
random, 52,57 
random process: 

autocorrelation function, 720,723 
mean value, 715,722,723 
power spectral density of, 721,723 

steady-state, 50, 51, 103, 142 
transient, 48, 157 

Expansion theorem: 
for beams, 408 

with lumped mass at boundary, 419 
for discrete systems, 319, 320 
state space, 349 
for strings, or rods, or shafts, 405-406 

with lumped mass at boundary, 416- 
417 

Expectation, mathematical (see Expectedvalue) 
Expected frequency of random process, 717 
Expected value (see also Average value; Mean 

value), 695,728 
Exponential form: 

of Fourier series, 144,703,757 
of harmonic function, 50 

Extended Hamilton's principle, 268-273 
for beams, 387-389 

with lumped mass at boundary, 412- 
414 

for strings, or rods, or shafts, 380-383 
with lumped mass at boundary, 410- 

41 1 

Faires, J. D., 787 
Fast Fourier treansform, 705 
Feller, W., 694 
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Field,for lumped methods, 474,486 
Field transfer matrix, 477,488 
Filter: 

linear, 726 
narrowband, 726 

Finite element method: 
assembly, 557-558,568,577 
eigenvalue problem, 559-563 

by MATLAB, 608-61 1 
element mass matrices, 552,557,567, 

577 
element nodal displacement vectors, 555, 

566,575 
element nodal force vectors, 606 
element stiffness matrices, 552, 557, 

567,577 
errors in the eigenvalues, 604-608 
frames, 597-604 
global coordinate, 554, 555 
global mass matrix, 552,557,568,606 
global nodal force vector, 606 
global stiffness matrix, 552,557,568, 

607 
internal nodes, 565 
interpolation functions, 55 1 

Hermite cubic(s), 575 
linear, 552,553,555 
quadratic, 564 

local coordinates, 554,555 
modal vectors, 559 
natural frequencies, 559 
nodal displacements, 554 
nodal points, 554 
as a Rayleigh-Ritz method, 550-554 
system equations of motion, 607 
system nodal displacements vector, 606 
system response, 604-608 
trusses, 583-597 

Finite element(s), 55 1 
mesh, 552 

First-order approximation, in perturbation 
solutions, 646,648 

Fix, G.J., 582, 787 
Flexibility influence coefficients, 285, 468, 

469 
Flexibility influence function, 285,468,469 
Flexibility matrix, 287,469 
Focus, or focal point, or spiral point: 

stable, 633 
unstable, 633 

Force@): 
conservative, 7 
of constraint, 265 
damping, 26 
effective, 268 
friction, dry, 98 
generalized, 267, 294 

nonconservative, 294 
inertia, 268 
modal, 244,350 
nodal, 606 
nonconservative, 8, 26, 269, 274 
restoring, 24 
spring, 23,24 
vector, 214 

Force wave, 454 
Formal perturbation solution, 648,649 
Forsythe, G.E., 787 
Foster, R.M., 724 
Fourier coefficients, 142,754 

complex, 144 
Fourier integral, 703-708 
Fourier series: 

complex, or exponential form, 144,703, 
757 

fundamental frequency, 142 
harmonics, 142 
trigonometric form, 142,754 

cosine, 143,755 
sine, 144, 755 

Fourier transform, 57,704 
discrete, 705 
fast, 705 
response by, 703-708 

Frames, finite element modeling, 597-604 
assembly, 598 
system mass matrix, 599 
system nodal displacements vector, 599 
system stiffness matrix, 599 

Free-body diagram, 3 
Free vibration, 81, 87, 215-223, 301-309, 

346,389-403 
Frequency (ies), 49 

average (see expected below) 
of damped vibration, 90 
excitation, or driving, 110 
expected, 7 17 
fundamental, 51, 142, 303, 333 

in periodic solution, 653 
natural, 82, 218, 393, 
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nonlinear systems: 
of combination harmonics, 666 
of subharmonic oscillation, 665 

of undamped oscillation, 1 10 
Frequency equation: 

discrete systems, 218, 303 
distributed systems, 393 
for Holzer's method, 478 
for Myklestad's method, 489 

Frequency response, 56, 113, 145,239,336 
relation to impulse response, 719 
magnitude, 56, 1 13, 115, 145 
matrix, 336 
phase angle, 56, 113, 117, 145 
plots, 112, 114-120, 240 

by MATLAB, 149-150,252 
Frequency spectrum, 5 1, 146 

continuous, 33 
discrete, 5 1,146 

Friction, dry, 98-101 
Friction, internal, 137 
Function@): 

admissible, 425, 497, 501, 502, 506, 
517 

bounded, 649 
complete set of, 503,754 
compmson, 495,497,501, 502,506, 

517,529 
Dirac delta, 158 

spabal, 442,533 
error, 695 
even, 143,755 
harmonic, 48 
impedance, 1 13 
interpolation, 55 1 
linearly dependent, 754 
linearly independent, 754 
negative definite (semidefinite), 292- 

293 
odd, 143,755 
orthogonal, 752 
orthonormal, 753 
periodic, 5 1 
positive definite (semidefinite), 292- 

293 
quasi-comparison, 5 18 
roof, 552 
step, 164 
test, 424, 529 
transfer, 179, 336 

trial, 424, 499 
unit impulse, 158 
unit ramp, 165 
unit step, 162 
weighting, 424, 529 

Fundamental frequency, 51, 142, 303, 333, 
395 

in periodic solutions, 653 
Fundamental harmonic, 395 

Galerkin's method, 529-539 
Gaussian, or normal distribution, 695,729 
Gaussian elimination, 359,782 
Gaussian random process, 717,722,723 

linear system response to, 722 
Generalized: 

coordinates, 263-265,294 
displacements, 274 

virtual, 267,294 
forces, 267,294 
harmonic forces, 338 
impedance, 179 
momenta, 619 
nonconservative forces, 294 
principle of d'Alembert, 268 
velocities, 61 8 
virtual displacements, 267,294 

Generating solution, 646 
Geometric boundary conditions, 380, 385, 

386 
Gibbs phenomenon, 756 
Givens' method, 359 
Global: 

coordinates, 555 
mass matnx, 552 

for beams, 577 
for strings, or rods, or shafts, 557, 

567 
stiffness matrix, 552 

for beams, 577 
for strings, or shafts, 557,567 

Group property, 353 

Hagedorn, P., 533 
Half-bandwidth, of matrix, 558 
Half-power points, 117 
Half-sine pulse, 175 
Hamilton's equations, 619 
Hamilton's principle, 270 

extended, 269, 273 



for beams, 387-389 
for strings, or rods, or shafts, 380- 

383 
Hardening spring, see Stiffening spring 
Harmonic(s), 142 

fundamental, 395 
higher, 395 

Harmonic excitation, 48 
response to, 110, 336-337 

geometric interpretation, 113 
Harmonic force(s), 1 10 

generalized, 338 
Harmonic motion of base, or support, 128- 

131,667 
Harmonic oscillation, 62, 82, 89 

amplitude, 82 
frequency, natural, 82 
period, 83 
phase angle, 82 

Harmonic oscillator, 81-87 
response at resonance, 119 

Harmonic response, geometric interpretation, 
113-1 14 

Helical spring, 23 
Hermite cubics, 575 
Hessenberg form, 359 
Higher-degree interpolation functions, 563- 

574 
Holzer's method, torsional vibration, 473- 

484 
Householder's method, 359 
Huebner, K. H., 787 
Hurty, W. C., 787 
Hysteresis phenomenon, in structural damp- 

ing, 138 

Identity, or unit, matrix, 310 
Impedance: 

function, 113 
generalized, 175 
matrix, 238, 336 

Impulse response, 57, 158-162 
discrete-time, 192 
by Laplace transform, 180 
relation to frequency response, 719 
relation to step response, 163 
relation to transfer function, 180 

Incident wave, 453 
Inconsistent mass matrix, in the finite ele- 

ment method, 578, 581 

Inertia axis, 42 
Inertia coefficients (see Mass coefficients) 
Inertia force, 268 
Inertia matrix (see Mass matrix) 
Inertial coupling, 228, 298 
Influence coefficients: 

flexibility, 285,469 
stiffness, 286,469 
strain energy in terms of, 290 

Influence function(s), 469 
Initial conditions for perturbation solutions, 

657,664 
Initial coordinates, modal, 321 
Initial displacement(s), 81 

for distributed systems, 378 
Initial excitations, 48 

response to, 224-225, 320-322 
by MATLAB, 101-102,250-25 1 

(see also Response to initial excita- 
tions) 

Initial-value problem, 378 
Initial velocity(ies), 81 

for distributed systems, 378 
Instability, 59,62,622,625 
Integral of motion, 3, 9 
Internal node@), in the finite element method, 

565 
Interpolation functions, 55 1 

Hermite cubics, 535 
linear, 552, 553, 555, 
quadratic, 564 

Inverse iteration, 359 
Inverse Laplace transformation, 179, 761, 

766 
Inverted pendulum, 78 
Isolated singular point, 642 

Jacobi method, 329 
Johnston, E. R. Jr., 31, 32, 325,787 
Joint probability density function(s), 727 
Joint probability distribution, 727-730 
Joint properties of random processes: 

ergodic, 733-735 
stationary, 730-733 

Jump phenomenon, 662 

Kinetic energy, 6,269,274 
for discrete systems, 292, 294 
for distributed systems, 381 
in terms of mass matrix, 292, 297 



of particle, 6 
reference, 429,496,55 1 
of rigid bodies, 22,26 

of rotation, 22 
of translation, 22, 26 

Kronecker delta, 282, 769 
discrete-time. 190 

Lagrange's equations, 273-276,294-297 
linearized about equilibrium, 294-297 

matrix form, 296 
for nonconservative systems, 275,294, 

466 
with damping, 294 

Lagrange's theorem, 642 
Lagrange's version of d'Alembert's princi- 

ple, 268 
Lagrangian, 270, 619 
Laplace domain, 179 
Laplace plane, 179 
Laplace transformation(s), 178,759 

Borel's theorem, (see convolution in- 
tegral below) 

convolution integral, 766 
inverse, 179,761,766 
partial fractions, method of, 762-765 
response of single-degree-of-freedom 

systems by, 177-184 
shifting theorems, 761-762 

complex, 761 
real, 762 

table of, 767 
Least squares fit, 95 
Left eigenvectors, 347 
Liapunov's theorem, 642 
Liapunov stability definitions, 622 
Limit cycle(s), 644-646 

stable, 645 
Lindstedt's method, 652-656 
Linear combination: 

of excitations, 54 
offunctions, 550 
of responses, 54 
of vectors, 338, 349,778 

Linear filter, 726 
Linear interpolation functions, 552,553,555 
Linear momentum, 2 

conservation of, 3 
Linear range, for nonlinear springs, 24 
Linear space(s) (see Vector space(s)) 

Linear system(s), 54 
time-invariant, 56 
time-varying, 56 
with constant coefficients, 56 
with time-dependent coefficients, 56 

Linear transformation(s), 297-301,3 13,779, 
782 

Linearized equations, 59,296 
Lagrange's, 294-297 

matrix form, 296 
state, 624 

Linearly dependent functions, 754 
Linearly dependent vectors, 778 
Linearly Independent functions, 754 
Linearly Independent vectors, 778 
Local coordinates, 555 
Logarithmic decrement, 95 
Longitudinal vibration (see Rods in axial vi- 

bration) 
Loop(s), in wave propagation, 448 
Lumped parameter(s), 27,466 

(see also Discrete parameter(s)) 
Lumped-parameter method: 

using influence coefficients, 468-473 
Holzer's, 473-484 
Myklestad's, 484-493 

Magnitude of the modal frequency response, 
341 

Malcolm, M. A,, 787 
Mark, W. D., 717,787 
Martin, H. C., 549,788 
Mass: 

center, 12 
coefficients, 214, 282,283, 502,594 
matrix, 214,215,283,296 

banded, 553,557 
consistent, 578 
element, 552 
global, 552 
inconsistent, 578, 581 

Mathews, J. H., 727 
Mathieu's equation, 667-672 

boundary curves, 669 
principal instability region, 672 
transition curves (see boundary curves 

above) 
MATLAB programs: 

eigenvalue problem, finlte element method, 
608-61 1 



eigenvalue problem, Rayleigh-Ritz method, 
539-541 

eigenvalue problem solution: 
conservative systems, 360 
nonconservative systems, 361 

frequency response plots, 149- 150,252 
response by convolution sum, 201-202, 

252-254 
response by discrete-time transition ma- 

trix, 202-203, 363 
response to initial excitations, 101-102, 

250-25 1, 361-362 
trajectories for van der Pol's oscillator, 

679-680 
Matrix(ces) (general): 

adjoint, 773 
addition, 770 
banded, 553,557 
block-diagonal, 777 
column, 769 
determinant of, 772 

minor, 772 
diagonal, 769 
dimensions of, 769 
Hessenberg form, 359 
identity (see unit below) 
inverse, 734,775,785 
negative definite (semidefinite), 293 
nonsingular, 773,774 
null, 769 
orthogonal, 299 
orthonormal, 299 
partitioned, 776 
positive definite (semidefinite), 293 
product, 770,775,777 

commutative, 77 1 
rectangular, 768 
row, 769 
similar, 780 
singular, 312,773,774 
skew symmetric, 769 
square, 769 
subtraction, 770 
symmetric, 769 
transpose of, 769,775 
unit, 3 10, 769 
upper triangular, 782 

Matrix(ces) (special): 
constraint, 3 13 
damping, 215,283,296 

of eigenvalues, 3 10 
flexibility, 287, 292,469 
impedance, 238,336 
inertia (see mass below) 
mass, or inertia, 214, 215, 283, 296 

banded, 553 
consistent, 578 
element, 552 
global, 552 
inconsistent, 578, 581 

modal, 224,299,305,310 
of natural frequencies squared, 3 10 
rotation, 327 
state transition, 187, 352 
stiffness, 214,215,283,287,292,297, 

469 
banded, 553 
element, 552 
global, 552 

transformation, 226, 296 
transition, 187, 352 
weighting, 230,309 

Matrix iteration: 
Jacobi's method, 329, 359 
power method, 359 
QR method, 359 

Maximum potential energy, 429,496,55 1 
Maxwell's reciprocity theorem, 292,469 
Mean square spectral density, 709 

of excitation, 721 
of response, 721 

Mean square value, 53,57,691,700,721 
of random variable, 700 
of response, 721 
temporal, 689,703 

Mean value, 53,57,688,700 
of excitation, 719 
of random process(es), 688,730,731 
of random variable(s), 700 
of response, 7 19 
temporal, 689,733 

Meirovitch, L., 138, 187, 190, 133, 323, 
326, 329, 352, 359, 361, 384, 
427, 444, 500, 504, 518, 533, 
619,678,726,787 

Mesh, finite element, 552 
Minimizing sequence, for the Rayleigh-Ritz 

method, 392 
Minor determinant, 772 
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Modalanalysis, 231,244,299,320-322,337- 
345 

discrete system(s), 320-322, 337-345 
distributed system(s), 431-439 
state space, 346-352 

Modal coordinates, 231, 299, 321,351 
initial, 321 

Modal equations, 231, 299, 321, 338, 340, 
350,738,744 

Modal excitations, 350 
Modal forces, 244, 350 
Modal frequency responses, 341 

magnitude, 341 
phase angle, 341 

Modal matrix, 229,299, 305, 310, 338 
Modal vectors, 21 9,299, 304 

orthogonal, 230, 309 
Mode(s): 

antisymmetric, 315 
constra~ned, 315 
elastic, 3 14 
natural, 208,218-223, 299, 304, 310 
normal, 219,304,310 
orthogonal, 230, 309 
orthonormal, 3 10 
rigid-body, 305, 3 12 
symetric, 3 15 

Modeling, or model of: 
aircraft, 43 
automobile, 40,42,46 
missile, 40 
system with rotating eccentric mass, 

45 
washing machine, 40,44 

Moller, C. B., 787 
Moment-area method, 32 
Moment of momentum (see Angular mo- 

mentum) 
Momentum(a): 

angular, 5, 12, 17 
generalrzed, 619 
linear, 2 
moment of (see angular above) 

Motion integral, 3 , 9  
Motions in the large, 639-643 
Motion of base, or support: 

harmonic, 128,667 
random, 723 

Murdoch, D. C., 787 

Myklestad's method, bending vibration, 484- 
493 

Narrowband filter, 726 
Narrowband random process, 7 10-7 18 
Natural boundary conditions, 380, 386 
Natural coordinates, 209, 229-233 
Natural frequency (ies): 

discrete systems, 82, 218, 303 
distributed systems, 393 
zero, 305, 312 

Natural modes: 
discrete systems, 208, 215-223, 299, 

304 
distributed systems, 393 

Natural motions, 220, 304, 394 
Negative definite (semidefimte) function, 292- 

293 
Negative definite (semidefinite) matnx, 293 
Newton's equations of motion, 21 1-215,281- 

285 
Newton's laws, 2-4 

first law, 2 
second law, 2,211,282 
third law, 3 

Noble, B., 776,787 
Nodal displacement(s), in the finite element 

method, 554, 555 
vector, 555 

for element, 555 
for system, 557 

Nodal forces, 606 
Node(s), or nodal point(s), in the finite ele- 

ment method, 554 
internal, 565 

Node(s), as equilibrium points, 630 
asymptotically stable, 630 
stable, 630 
unstable, 630 

Node(s), in standing waves, 448 
Node(s), in vibrations, 221, 395 
Nonconservative: 

forces, 8,26.269,274 
generalized, 294 

virtual work, 274, 294,297 
for distribution systems, 381-388 

work, 9 
Nondeterministic excitation (see also Ran- 

dom excitation), 57 
Nondeterministic phenomena, 686 



Nonlinear spring, 24 
linear range, 24 
softening, 24 
stiffening, 24 

Nonlinearsystem(s), 54,295,617,619,639, 
644,646,673 

Nonperiodic excitations, 5 1 
response to, 243-250 

Nonstationary random process, 688 
Nom, Euclidean, 622 
Normal coordinates, 299 
Normal, or Gaussian, distribution, 695 
Normal modes, 219,304 
Normalization, 219, 299, 304, 393 
Null solution, 622 

Odd function(s), 143,755 
Orbital stability, 644 
Ordinary point (see Regular point) 
Orthogonal functions, 752 
Orthogonal matrix, 299 
Orthogonal modal vectors, 230,339 
Orthogonal transformation, 299, 327, 781 
Orthogonal vectors, 3 16 
Orthogonality of modes, 208,229-233,309- 

310 
Orthogonality property: 

discrete systems, 230, 309 
distributed systems, 403-408 

Orthogonality relations, or conditions: 
for bemas, 407 

with lumped mass at boundary, 418 
for discrete systems, 309 
for strings, or rods, or shafts, 404 

with lumped mass at boundary, 416 
Orthonormal functions, 752 
Orthonormal matrix, 299,781 
Orthonormal modes, 3 10 
Orthonormal transformation, 78 1 
Orthonormal vectors, 3 16 
Orthonormality relations, or cond~tions: 

for beams, 408 
with lumped mass at boundary, 418 

for discrete systems, 310, 338 
for strings, or rods, or shafts, 405 

with lumped mass at boundary, 416 
Oscillatory decay, 89 
Overall transfer matrix, 477,489 
Overdamping, 89, 92 
Overtones, 395 

Parameter(s): 
discrete, 27 
distributed, 29, 374 
lumped, 27 

Partial fractions expansion, 18 1, 182 
Pendulum: 

compound, 17 
double, 7 1,250 
with harmonically moving support, 667 
inverted, 78 
simple, 3, 10, 84 

Period, 49, 83 
amplitude-dependent, 679 

Periodic excitation(s), 141 
response to, 145 

Periodic functions, 51, 752 
Periodic solution, 652 
Periodicity conditions, 654, 657, 664 
Perturbation(s), 622, 646 

equations, 649, 654,657 
Perturbation method: 

fundamental technique, 646-649 
Lindstedt's, 652-656 

Phase angle(s), 49, 82,91, 394 
of the modal frequency response, 341 
random, 698 

Phase space, 6 19 
Pierce, B. O., 724 
Piersol, A. G., 699, 737,741,787 
Pipes, L. A, 93,454 
Poles: 

of higher degree, 763 
simple, 762 

Polynomial, characteristic, 218, 303 
Positive definite (semidefinite): 

function, 292-293 
matrix, 293 
stiffness matrix, 293, 310 
system, 293,310 

Potential energy, 8,24,270,274 
for discrete systems: 

in terms of flexibility coefficients, 
29 1 

in terms of flexibility matrix, 292 
in terms of stiffness coefficients, 291 
in terms of stiffness matrix, 292, 

297 
for distributed systems, 381, 387 
elastic, 290 
maximum, 429,496,55 1 



of a spring, 24,290 
Power density spectrum (see Power spectral 

density function(s)) 
Power spectral density function(s), 57, 708- 

710,734 
of excitation, 721 
of response, 721 

PrincipaI coordinates, 209, 229,23 1 
Principle, Rayleigh's, 334, 427, 429-431, 

493-499 
Principle of conservation of energy, 9,640 
Principle of d'Alembert, 267-268 

generalized, 268 
Lagrange version of, 268 

Principle of superposition, 53-57 
Principle of virtual work, 265-267 
Probability density function(s), 692 

joint, 717 
normal, or Gaussian, 701,717 

Probability density function of envelope, 717, 
726 

Probability density function of peaks, 726 
Probability distribution function(s), 57, 693 

joint, 727 
normal, or Gaussian, 695 
Rayleigh, 696 
rectangular (see uniform below) 
uniform, 694 

Proof mass, 132 
Proportional damping, systems with, 340- 

342,532 
Pulse: 

half-sine, 175 
rectangular, 164-165, 177,252-254 
sawtooth, 183, 194 

response to, 183-184, 194-198 
trapezoidal, 167,205 
triangular, 177,205 

QR method, 359 
Quadratic form (see also Quadratic func- 

tion), 325 
Quadratic function(s): 

negative definite, 292 
negative semidefinite, 293 
positive definite, 292 
positive semidefinite, 293 
sign-variable, 293 

Quadratic interpolation functions, 524 
Quality factor, 117 

Quasi-comparison functions, 5 18 
Quasi-harmonic system, 646,650, 652 

forced oscillation, 656-673 

Ramp function, unit, 165 
Ramp response, 165-168 

relation to step response, 166 
relation to transfer function, 181 

Random excitation(s), 57 
distributed systems response to, 743- 

746 
multi-degree-of-freedom response to, 

738-743 
single-degree-of-freedom system response 

to, 722-726 
Random phase angle, 698 
Random, or nondeterministic, phenomenon, 

686,687 
Random process(es), 687 

ergodic, 689 
strongly, 689 
weakly, 689 

Gaussian, 688 
narrowband, 7 10 
nonstationary, 688 
normal (see Gaussian above) 
stationary, 688,689 

strongly, 688 
weakly, 688 

wideband, 7 10 
Random variable(s), 687 

statistically independent, 729 
uncorrelated, 729 

Rayleigh (Lord), 787 
Rayleigh's dissipation function, 294, 297 
Rayleigh's energy method, 497, 503 
Rayleigh's principle, 334,427,493-499 

estimation of lowest eigenvalue by, 429- 
43 1 

Rayleigh's probability distribution, 696,718 
Rayleigh's quotient: 

for beams, 428 
for discrete systems, 331-336 
energy form of, 429,497, 501,551 
maximum value of, 334 
minimum value of, 333,427,493 
stationarity of, 333,426-427,500 
for strings, or rods, or shafts, 425,497, 

554 1 



as an upper bound for lowest eigen- 
value, 333,427 

weighted average form of, 495 
Raylelgh-Ritz method, 499-5 16 

convergence of, 505 
enhanced, 516-523 
by MATLAB, 539-541 

Reciprocating masses (see Rotating unbal- 
anced masses) 

Reciprocity theorem, Maxwell's, 298,469 
Rectangular pulse, 164 

response to, 164-165 
by MATLAB, 252-254 

Reference kinetic energy, 429,496, 551 
Reflected wave, 453 
Region, spherical, 622 
Regular point, 620 
Representative point, 618 
Residual($), 529 
Resonance condition, 119 
Response: 

correlation matrix, 739 
discrete-time, 357 
frequency (see Frequency response) 
general, 184-1 86 
by Lapace transformation, 177- 186 
mean square value, 721,725,741,746 
mean value, 719,725 
to rectangular pulse, 164- 165 

by MATLAB, 252-254 
at resonance, 119 
to sawtooth pulse, 183-184 
by the state transition matrix, 186-188 
steady-state, 56, 11 1, 339 
to trapezoidal pulse, 167 
to unit impulse (see Impulse response) 
to unit ramp function (see Ramp re- 

sponse) 
to unit step function (see Step response) 

Response to arbitrary excitations, (see also 
Response to nonperiodic excita- 
tions), 168-174 

by Fourier transforms, 703-708 
Response to harmonic excitations, 336-337, 

338-340 
beams, 440-441 
discrete systems, 238-240, 336-337 
single-degree-of-freedom systems, 110- 

141 
Response to initial excitations: 

discrete systems, 224-225, 320-322 
by MATLAB, 101-102,250-25 1 

beams, 433-434 
with boundary mass, 436,438-439 

single-degree-of-freedom systems, 8 1- 
93 

strings, orrods, or shafts, 43 1-433,436- 
438 

with boundary mass, 434-436 
Response of Laplace transformation, 177- 

184 
Response using MATLAB: 

by convolution sum, 201-202,252-254 
frequency responseplots, 145-150,232 
to initialexcitations, 101-102,250-25 1 
by transition matrix, 202-203, 363 

Response by modal analysis: (classical): 
discrete systems, 320-322, 337-345 

Response to nonperiodic, or arbitrary exci- 
tations, 168-174 

beams, 441-443 
discrete systems, 189-201, 243-250 

by MATLAB, 201-203,252-254 
Response to periodic excitations, 141-148 
Response to random excitations, 7 18-722 

distributed systems, 743-746 
multi-degree-of -freedom systems, 738- 

743 
single-degree-of-freedom systems, 722- 

726 
Response spectrum (see Shock spectrum) 
Restoring force, 24 
Right eigenvectors, 347 
Rigid-bodies, 14-23 

angular momentum, 16 
general planar motion, 18 

kinetic energy, 22 
pure rotation, 16 

kinetic energy, 22 
pure translation, 15 

kinetic energy, 21 
Rigid-body mode(s), 305, 312 
Rigid-body motlon(s), 310-316 
Ritz eigenfunctions, 503 
Ritz eigenvalues, 503 
Ritz eigenvectors, 503 
Rods in axial vibration (see Axial vibration 

of rods) 
Roof function(s), 552 
Root-locus plots, 88 



Root mean square, or rms, value, 691 
of a random variable, 69 1,700 

Roots (see Eigenvalue(s)) 
Rotating shafts, whirling of, 122-127 
Rotating unbalanced masse(s), 45, 120-122 
Rotation matrix, 327 
Runge-Kutta methods, 672-679 
Runge-Kutta-Fehlberg method, 673,677,678 

Saddle point, 53 1 
Sample function, 687 
Sampling period, 189, 356 
Sampling property, 160 
Sampling times, 189 
Sawtooth pulse, 183, 199 

response to, 183-184, 199-201 
Second-order approximation, in perturbation 

solutions, 646, 648 
Secular terms, 649-652 
Seismic mass, 132 
Seismometer(s), 135 
Semdefinite systems, 310, 325 
Separation theorem, for Ritz eigenvalues, 

505 
Separation of variables, 302, 389-390 
Separatrix(ces), 641 
Series discretization, 499 
Sgn (function), 98 
Shafts (see Strings, or rods, or shafts) 
Shock spectrum, 174-177 
Sign of (function), 98 
Significant behavior, 625 
Signum function, 98 
Sign-variable function, 293 
Similar matrices, 780 
Simlarity transformation, 780 
Simple pendulum, 3, 10, 84 
Simple poles, 762 
Singular point (see Equilibrium point) 
Singular stiffness matrix, 312 
Small motions assumption, 59,281,293 
Softening spring, 24 
Spatial Dirac delta function, 442, 533 
Sphere, in the state space, 622 
Spring(s): 

constant, or stiffness, 24 
torsional, 27,29 

equivalent, 27-39 
helical, 23 
linear, 24 

potential energy, 24 
nonlinear, 24 

hardening (see stiffening below) 
potential energy, 25 
linear range, 24 
softening, 24 
stiffening, 24 

in parallel, 27 
torsional, 29 

in series, 28 
torsional, 29 

Wilberforce, 237 
Stability: 

asymptotic, 58,61, 62, 622, 624 
infinitesimal, 623 
Liapunov, 622,644 
mere, 59,61,62,622,624 
orbital, 644 
Poincar6 (see orbital above) 

Stable equilibrium, 59, 61, 62, 622, 624 
Standard deviation, 692,700 

of response, 746 
Standard unit vectors, 3 18 
State equations, 186, 346, 620 

linearized, 624 
State space, 346,620 

eigenvalue problem, 346,533 
expansion theorem, 349 
modal analysis, 346-352 . 

State transition matrix, 187, 352 
as inverse Laplace transform, 188 

State variables, 186. 620 
State vector, 186, 346, 620 
Static equilibrium position, 45, 58 
Station, for lumped methods, 474,488 

transfer matrix, 476,487 
vector, 476,487,488 

Stationary random process(es), 688 
excitation: 

autocorrelation function, 720 
mean square spectral density, 722 
mean value, 7 19 

joint properties function, 730-733 
response: 

autocorrelation function, 720 
mean square spectral density, 720 
mean square value, 721 
mean value, 73 1 

strongly, 688, 73 1 
weakly, 688,586 



Stationary value of Rayleigh's quotient, 427, 
500 

Statistical independence, 728 
Statistical regularity, 53, 688 
Steady-state excitation(s), 50, 51, 110, 148 
Steady-state response, 56, 11 1, 339 
Step function, 164 

unit, 162 
relation to unit impulse, 162 

Step response, 162- 165 
relation to impulse response, 163 
by Laplace transform, 180 
relation to ramp response, 166 

Stiffening spring, 24, 643 
Stiffness: 

coefficients, 214,282, 501,594 
complex, in structural damping, 139 
influence coeffic~ents, 286 

properties of, 290-294 
matrix, 214,215,283,287,296,469 

banded, 553 
element, 552 
global, 552 
positive semidefinite, 302 

spring, 24 
Stochastic process (see Random process) 
Strain energy, 290 
Strang, G., 11 1, 582,787,788,638,639 
Stnngs, or rods, or shafts: 

boundaq-value problem, 375-383 
by the extended Hamilton's pnnci- 

ple, 380-383 
by Newton's second law, 375-380 

eigenvalueproblem, 389-391,394-399 
by the fimte element method, 554-563 
by Holzer's method, 473-484 
lumped-parameter approximation, 465- 

473 
natural modes, 393 
by theRayleigh-Ritzmethod, 501-502, 

506-523 
Rayleigh's quotient, 429,497,501,554 
wave motion, 447-456 

Strong form of eigenvalue problem, 423 
Structural damping, 137- 141 

complex damping, 139 
complex stiffness, 139 
equivalent frequency response for, 140 

magnitude, 140 
phase angle, 140 

factor, 139 
Strutt diagram, 672 
Subharmonic oscillations, 665 
Superposition integral, 57, 149 
Superposition principle, 53-57 
Support, or base motion: 

harmonic, 87,667 
random, 722 

Symmetric modes, 315 
Synchronous motion, 216,301,389 
Synchronous whirl, 125 
S y stem(s): 

conservative, 9, 83,215 
with constraints, 264 
discrete, or lumped-parameter, 374 
distributed-parameter, or continuous, 

374 
linear, 54 
nonlinear, 54 
of particles: 

angular momentum, 12, 13 
equations of motion, 12, 13 
mass center, 12 

positive definite (semidefinite), 293,310 
timei-invariant, 54 
time-varying, 54 
undamped, 8 1-87 
unrestrained, 3 11 
viscously damped, 87-93, 345-355 

System with force at boundary: 
modes solution, 443-447 
traveling waves solution, 449-456 

System function (see Transfer function) 
System impedance, 1 13 

generalized, 175 
System with lumped mass at boundary, 408- 

423 
Systems of particles, 10-14 
System(s) with rotating unbalanced, or ec- 

centric mass(es), 24, 120-122 

Taylor, R. I., 788 
Taylor's methods, 674 
Temporal, or time, averages, 689 

autocorrelation function, 689 
mean square value, 689 
mean value, 689,733 
root mean square, or rms, value, 691 
standard deviation, 692 
variance, 692 



Test function(s), 424,529 
Thornton, E. A., 787 
Time averages (see Temporal averages) 
Time-dependent coefficients, systems with, 

56,667-672 
Topp, L. J., 549,788 
Torsional damping, coefficient of viscous, 

27 
Torsional spring constant, 27 
Torsional springs in parallel, 29 
Torsional springs in series, 29 
Torsional vibration (see also Strings, or rods, 

or shdts), 380 
Holzer's method, 473-484 

Total energy, 9, 26 
Trajectory(ies), 6 19 

closed, 641,644 
Transfer function(s), 179, 336 

relation to impulse response, 180 
relation to ramp response, 18 1 
relation to step response, 180 

Transfer matrix: 
field, 477,488 
overall, 477,489 
station, 476,487 

Transformation(s): 
of coordinate, 226,264 
integral: 

Fourier (see Fourier transform) 
Laplace (see Laplace transform) 

linear, 297-301, 313,779,782 
matrix, 226, 298 
orthogonal, 299,327,781 
orthonormal, 222,78 1 
similarity, 780 

Transient excitations, 48 
Transition matrix, 187, 352 

discrete-time, 199, 357 
Transmissibility, 13 1 
Trapezoidal pulse, 167,205 
Trial functions, 424,499, 550 

linear, 552 
Triangular pulse, 177,205 
Trigonometric form, Fourier series, 142,754 
Trivial equilibrium position, 58,281 
Trivial solution, 622 
Truncation, 504,756 
Trusses, finite element modeling, 583-597 

assembly, 588 
system displacement vector, 588 

system mass matrix, 588 
system stiffness matrix, 588 

Turner, M. J., 549,787 

Unbalanced masses, rotating, 45, 120-122 
Uncorrelated random variables, 729 
Undamped single-degree-of-freedom systems, 

81-87 
Underdamping, 89,91 
Unit impulse, 158 

hscrete-time, 198 
relation to unit step function, 162 

Unit matrix, 3 10,769 
Unit ramp function, 165 

relation to unit step function, 166 
Unit sample, 190 
Unit step function, 162 

relation to unit impulse, 162 
relation to unit ramp function, 166 

Unit vector(s), 219, 317 
complex, 50 
standard, 3 18 

Unrestrained systems (see also Semidefinite 
systems), 31 1 

Unstable equilibrium, 59, 61, 62, 622, 624, 
635 

Unstrained spring position (see Static equi- 
librium) 

Upper bound for lowest eigenvalue, 333 

Value(s), characteristic, 218, 303 
Van der Pol's oscillator, 644-646 

trajectories by MATLAB, 679-680 
Variance, 692 
Variational approach to the eigenvalue prob- 

lem, 423-431 
Vector(s> (general): 

addition, 777 
basis, 778 
biothogonal sets, 348 
column, 769 
linear combination of, 332,349, 778 
linearly dependent, 778 
linearly independent, 778 
multiplication, 777 
orthogonal set, 316 
orthonormal set, 316 
row, 769 
unit, 219, 317 

standard, 3 18 



Vector(s) (special): 
characteristic, 219, 304 
displacement, 214 
force, 214 
modal, 219,299,304 
state, 186, 346, 620 

Vector space(s), 777 
basis for, 778 

standard, 779 
dimension of, 778 
generating system for, 778 
spanned, 778 

Vibration absorber, 240-243 
Vibration isolation, 13 1- 132 
Vibration measuring instruments, 132- 137 

accelerometers, 133 
seismometers, 135 

Virtual displacements, 265 
generalized, 267,294 

Virtual work, 265, 294 
conservative, 270,293 
nonconservative, 274,294,297 

for kstributed systems, 381, 388 
principle of, 265-267 

Viscous damper, 25 
Viscous damping: 

arbitrary, 345-355 
coefficient of, 26,87 
critical, 89, 92 
equivalent, 29, 139 
factor, 88, 110 
forces, 294 

generalized, 294 
overdamped case, 89, 92 

proportional, 340-342 
underdamped case, 89,91 

Viscously damped single-degree-of-freedom 
systems, 87-93 

Washing machine, model of, 39,44 
Wave(s) : 

frequency, 448 
incident, 453 
number, 448 
period, 448 
propagation velocity, 447 
reflected, 453 
standing, or stationary, 448 
traveling, 447 

Wave equation, 447-449 

solution by Laplace transformation, 450- 
456 

Wavelength, 448 
Weak form of the eigenvalue problem, 424- 

425,427 
Weighted residuals method: 

collocation, 533-539 
Galerkin's, 529-533 

Weighting function(s), 424,529 
Weighting matrix, 230, 309 
Whirling, of rotating shafts, 122-127 
White noise, 7 10 

band-limited, 71 3, 726 
ideal, 710 
response to, 723-726 

Wideband random process, 7 10-7 18 
Wiener-Khintchine equations, 710,735 
Wilberforce spring, 237 
Work, 6 

nonconservative, 9 
virtual, 265, 294 

Zero crossings, 717 
Zero mode(s), (see Rigid-body mode(s)) 
Zero natural frequency, 305, 312 
Zero-order approximation, in perturbation 

solutions, 646,648 
Zienkiewicz, 0. C., 788 
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