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PREFACE TO THE SECOND EDITION xix 

Preface to the Second Edition 

In the seven years since the first edition of this book appeared some significant 
developments have taken place in the area of materials modeling in general 
and in composite materials and structures in particular. Foremost among these 
developments have been the smart materials and structures, functionally graded 
materials (FGMs), and nanoscience and technology each topic deserves to be 
treated in a separate monograph. While the author's expertise and contributions 
in these areas are limited, it is felt that the reader should be made aware of 
the developments in the analysis of smart and FGM structures. The subject of 
nanoscience and technology, of course, is outside the scope of the present study. 
Also, the first edition of this book did not contain any material on the theory and 
analysis of laminated shells. It should be an integral part of any study on laminated 
composite structures. 

The focus for the present edition of this book remains the same - the education of 
the individual who is interested in gaining a good understanding of the mechanics 
theories and associated finite element models of laminated composite structures. 
Very little material has been deleted. New material has been added in most 
chapters along with some rearrangement of topics to improve the clarity of the 
overall presentation. In particular, the material from the first three chapters is 
condensed into a single chapter (Chapter 1) in this second edition to make room for 
the new material. Thus Chapter 1 contains certain mathematical preliminaries, a 
study of the equations of anisotropic elasticity, and an introduction to the principle 
of virtual displacements and classical variational methods (the Ritz and Galerkin 
methods). Chapters 2 through 7 correspond to Chapters 4 through 9, respectively, 
from the first edition, and they have been revised to include smart structures and 
functionally graded materials. A completely new chapter, Chapter 8, on theory 
and analysis of laminated shells is added to overcome the glaring omission in the 
first edition of this book. Chapters 9 and 10 (corresponding to Chapters 10 and 
13 in the first edition) are devoted to linear and nonlinear finite element analysis, 
respectively, of laminated plates and shells. These chapters are extensively revised to 
include more details on the derivation of tangent stiffness matrices and finite element 
models of shells with numerical examples. Chapters 11 and 12 in the present edition 
correspond to Chapters 11 and 12 of the first edition, which underwent significant 
revisions to include laminated shells. The problem sets essentially remained the 
same with the addition of a few problems here and there. 

The acknowledgments and sincere thanks and feelings expressed in the preface 
to the first edition still hold but they are not repeated here. It is a pleasure to 
acknowledge the help of my colleagues, especially Dr. Zhen-Qiang Cheng, for their 
help with the proofreading of the manuscript. Thanks are also due to Mr. Roman 
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Arciniega for providing the numerical results of some examples on shells included in 
Chapter 9. 

J. N. Reddy 
College Station, Texas 
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Preface to the First Edition 

The dramatic increase in the use of composite materials in all types of engineering 
structures (e.g., aerospace, automotive, and underwater structures, as well as in 
medical prosthetic devices, electronic circuit boards, and sports equipment) and the 
number of journals and research papers published in the last two decades attest to 
the fact that there has been a major effort to develop composite material systems, 
and to analyze and design structural components made from composite materials. 

The subject of composite materials is truly an interdisciplinary area where 
chemists, material scientists, chemical engineers, mechanical engineers, and 
structural engineers contribute to the overall product. The number of students 
taking courses in composite materials and structures has steadily increased in recent 
years, and the students are drawn to these courses from a variety of disciplines. The 
courses offered at universities and the books published on composite materials are 
of three types: material science, mechanics, and design. The present book belongs 
to the mechanics category. 

The motivation for the present book has come from many years of the author's 
research and teaching in laminated composite structures and from the fact there 
does not exist a book that contains a detailed coverage of various laminate theories, 
analytical solutions, and finite element models. The book is largely based on the 
author's original work on refined theories of laminated composite plates and shells, 
and analytical and finite element solutions he and his collaborators have developed 
over the last two decades. 

Some mathematical preliminaries, equations of anisotropic elasticity, and virtual 
work principles and variational methods are reviewed in Chapters 1 through 3. A 
reader who has had a course in elasticity or energy and variational principles of 
mechanics may skip these chapters and go directly to Chapter 4, where certain 
terminology common to composite materials is introduced, followed by a discussion 
of the constitutive equations of a lamina and transformation of stresses and strains. 
Readers who have had a basic course in composites may skip Chapter 4 also. 

The major journey of the book begins with Chapter 5, where a complete 
derivation of the equations of motion of the classical and first-order shear 
deformation laminated plate theories is presented, and laminate stiffness 
characteristics of selected laminates are discussed. Chapter 6 includes applications 
of the classical and first-order shear deformation theories to laminated beams 
and plate strips in cylindrical bending. Here analytical solutions are developed 
for bending, buckling, natural vibration, and transient response of simple beam 
and plate structures. Chapter 7 deals with the analysis of specially orthotropic 
rectangular laminates using the classical laminated plate theory (CLPT). Here, 
the parametric effects of material anisotropy, lamination scheme, and plate aspect 
ratio on bending deflections and stresses, buckling loads, vibration frequencies, and 
transient response are discussed. 
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Analytical solutions for bending, buckling, natural vibration, and transient 
response of rectangular laminates based on the Navier and Levy solution approaches 
are presented in Chapters 8 and 9 for the classical and first-order shear deformation 
plate theories (FSDT), respectively. The Rayleigh-Ritz solutions are also discussed 
for laminates that do not admit the Navier solutions. Chapter 10 deals with finite 
element analysis of composite laminates. One-dimensional (for beams and plate 
strips) as well as two-dimensional (plates) finite element models based on CLPT 
and FSDT are discussed and numerical examples are presented. 

Chapters 11 and 12 are devoted to higher-order (third-order) laminate theories 
and layerwise theories, respectively. Analytical as well as finite element models are 
discussed. The material included in these chapters is up to date at the time of this 
writing. Finally, Chapter 13 is concerned about the geometrically nonlinear analysis 
of composite laminates. Displacement finite element models of laminated plates with 
the von Ka,rman nonlinearity are derived, and numerical results are presented for 
some typical problems. 

The book is suitable as a reference for engineers and scientists working in industry 
and academia, and it can be used as a textbook in a graduate course on theory 
and/or analysis of composite laminates. It can also be used for a course on stress 
analysis of laminated composite plates. An introductory course on mechanics of 
composite materials may prove to be helpful but not necessary because a review of 
the basics is included in the first four chapters of this book. The first course may 
cover Chapters 1 through 8 or 9, and a second course may cover Chapters 8 through 
13. 

The author wishes to thank all his former doctoral students for their research 
collaboration on the subject. In particular, Chapters 7 through 13 contain results of 
the research conducted by Drs. Ahmed Khdeir, Stephen Engelstad, Asghar Nosier, 
and Donald Robbins, Jr. on the development of theories, analytical solutions, and 
finite element analysis of equivalent single-layer and layerwise theories of composite 
laminates. The research of the author in composite materials was influenced by many 
researchers. The author wishes to thank Professor Charles W. Bert of the University 
of Oklahoma, Professor Robert M. Jones of the Virginia Polytechnic Institute and 
State University, Professor A. V. Krishna Murty of the Indian Institute of Science, 
and Dr. Nicholas J. Pagano of Wright-Patterson Air Force Base. It is also the 
author's pleasure to acknowledge the help of Mr. Praveen Grama, Mr. Dakshina 
Moorthy, and Mr. Govind Rengarajan for their help with the proofreading of the 
manuscript. The author is indebted to Dr. Filis Kokkinos for his dedication and 
innovative and creative production of the final artwork in this book. Indeed, without 
his imagination and hundreds of hours of effort the artwork would not have looked 
as beautiful, professional, and technical as it does. 

The author gratefully acknowledges the support of his research in composite 
materials in the last two decades by the Office of Naval Research (ONR), the Air 
Force Office of Scientific Research (AFOSR), the U.S. Army Research Office (ARO), 
the National Aeronautics and Space Administration (NASA Lewis and NASA 
Langley), the U.S. National Science Foundation (NSF), and the Oscar S. Wyatt 
Chair in the Department of Mechanical Engineering at Texas A&M University. 
Without this support, it would not have been possible to contribute to the subject 
of this book. The author is also grateful to Professor G. P. Peterson, a colleague 
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and friend, for his encouragement and support of the author's professional activities 
at Texas A&M University. 

The writing of this book took thousands of hours over the last ten years. Most 
of these hours came from evenings and holidays that could have been devoted to 
family matters. While no words of gratitude can replace the time lost with family, 
it should be recorded that the author is grateful to his wife Aruna for her care, 
devotion, and love, and to his daughter Anita and son Anil for their understanding 
and support. 

During the long period of writing this book, the author has lost his father, 
brother, brother in-law, father in-law, and a friend (Hans Eggers) - all suddenly. 
While death is imminent, the suddenness makes it more difficult to accept. This 
book is dedicated to the memory of these individuals. 

All that is not given is lost 

J. N. Reddy 
College Station, Texas 
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Equations of Anisotropic Elasticity, 
Virtual "Work Principles, and 

Variational Methods 

1.1 Fiber-Reinforced Composite Materials 
Composite materials consist of two or more materials which together produce 
desirable properties that cannot be achieved with any of the constituents alone. 
Fiber-reinforced composite materials, for example, contain high strength and high 
modulus fibers in a matrix material. Reinforced steel bars embedded in concrete 
provide an example of fiber-reinforced composites. In these composites, fibers 
are the principal load-carrying members, and the matrix material keeps the fibers 
together, acts as a load-transfer medium between fibers, and protects fibers from 
being exposed to the environment (e.g., moisture, humidity, etc.). 

It is known that fibers are stiffer and stronger than the same material 
in bulk form, whereas matrix materials have their usual bulk-form properties. 
Geometrically, fibers have near crystal-sized diameter and a very high length-to
diameter ratio. Short fibers, called whiskers, paradoxically exhibit better structural 
properties than long fibers. To gain a full understanding of the behavior of fibers, 
matrix materials, agents that are used to enhance bonding between fibers and 
matrix, and other properties of fiber-reinforced materials, it is necessary to know 
certain aspects of material science. Since the present study is entirely devoted to 
mechanics aspects and analysis methods of fiber-reinforced composite materials, no 
attempt is made here to present basic material science aspects, such as the molecular 
structure or inter-atomic forces those hold the matter together. However, an abstract 
understanding of the material behavior is useful. 

Materials are studied at various levels: atomic level, nano-level, single-crystal 
level, a group of crystals, and so on. For the purpose of gaining some insight into 
the material behavior, we consider a basic unit of material as one that has properties, 
such as the modulus, strength, thermal coefficient of expansion, electrical resistance, 
etc., whose magnitudes depend on the direction. The directional dependence of 
properties is a result of the inter-atomic bonds, which are "stronger" in one direction 
than in other directions. Materials are "processed" such that the basic units are 
aligned so that the desired property is maximized in a given direction. Fibers provide 
an example of such materials. When a property is maximized in one direction, it 
may be achieved at the expense of the same property in other directions and other 
properties in the same direction. When materials are processed such that the basic 
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units are randomly oriented, the resulting material tends to have the same value of 
the property, in an average statistical sense, in all directions. Such materials are 
called isotropic materials. A matrix material, which is made in bulk form, provides 
an example of isotropic materials. Material scientists are continuously striving to 
develop better materials for specific applications. The fibers and matrix materials 
used in composites are either metallic or non-metallic. The fiber materials in use 
are common metals like aluminum, copper, iron, nickel, steel, and titanium, and 
organic materials like glass, boron, and graphite materials. 

Fiber-reinforced composite materials for structural applications are often made 
in the form of a thin layer, called lamina. A lamina is a macro unit of material whose 
material properties are determined through appropriate laboratory tests. Structural 
elements, such as bars, beams or plates are then formed by stacking the layers to 
achieve desired strength and stiffness. Fiber orientation in each lamina and stacking 
sequence of the layers can be chosen to achieve desired strength and stiffness for a 
specific application. It is the purpose of the present study to develop equations 
that describe appropriate kinematics of deformation, govern force equilibrium, and 
represent the material response of laminated structural elements. 

Analysis of structural elements made of laminated composite materials involves 
several steps. As shown in Figure 1.1.1, the analysis requires a knowledge 
of anisotropic elasticity, structural theories (i.e., kinematics of deformation) of 
laminates, analytical or computational methods to determine solutions of the 
governing equations, and failure theories to predict modes of failures and to 
determine failure loads. A detailed study of the theoretical formulations and 
solutions of governing equations of laminated composite plate structures constitutes 
the objective of the present book. 

Analysis of Laminated 

Composite Structures 

Anisotropic Elasticity 
Equations 

Structural Theories 

Analytical and Computational 
Methods 

Damage / Failure Theories 

Figure 1.1.1: Basic blocks in the analysis of composite materials. 
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Following this general introduction, a review of vectors and tensors, integral 
relations, equations governing a deformable anisotropic medium, and virtual work 
principles and variational methods is presented, as they are needed in the sequel. 
Readers familiar with these topics can skip the remaining portion of this chapter 
and go directly to Chapter 2. 

1.2 Mathematical Preliminaries 
1.2.1 General Comments 

The quantities used to express physical laws can be classified into two classes, 
according to the information needed to specify them completely: scalars and 
nonscalars. The scalars are given by a single number. Nonscalar quantities 
require not only a magnitude specified, but also additional information, such as 
direction. Time, temperature, volume, and mass density provide examples of scalars. 
Displacement, temperature gradient, force, moment, and acceleration are examples 
of nonscalars. 

The term vector is used to imply a nonscalar that has magnitude and "direction" 
and obeys the parallelogram law of vector addition and rules of scalar multiplication. 
Vector in modern mathematical analysis is an abstraction of the elementary notion 
of a physical vector, and it is "an element from a linear vector space." While the 
definition of a vector in abstract analysis does not require the vector to have a 
magnitude, in nearly all cases of practical interest the vector is endowed with a 
magnitude. In this book, we need only vectors with magnitude. Some nonscalar 
quantities require the specification of magnitude and two directions. For example, 
the specification of stress requires not only a force, but also an area upon which 
the force acts. A stress is a second-order tensor. Sometimes a vector is referred 
to as a tensor of order one, and a tensor of order 2 is also called a dyad. First
and second-order tensors (i.e., vectors and dyads) will be of primary interest in the 
present study (see [1-8] for additional details). We also encounter third-order and 
fourth-order tensors in the discussion of constitutive equations. A brief discussion 
of vectors and tensors is presented next. 

1.2.2 Vectors and Tensors 

In the analytical description of physical phenomena, a coordinate system in the 
chosen frame of reference is introduced, and various physical quantities involved 
in the description are expressed in terms of measurements made in that system. 
The description thus depends upon the chosen coordinate system and may appear 
different in another type of coordinate system. The laws of nature, however, should 
be independent of the choice of a coordinate system, and we may seek to represent 
the law in a manner independent of a particular coordinate system. A way of 
doing this is provided by vector and tensor notation. When vector notation is 
used, a particular coordinate system need not be introduced. Consequently, use 
of vector notation in formulating natural laws leaves them invariant to coordinate 
transformations. 
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Vectors 

Often a specific coordinate system is chosen to express governing equations of a 
problem to facilitate their solution. Then the vector and tensor quantities are 
expressed in terms of their components in that coordinate system. For example, a 
vector A in a three-dimensional space may be expressed in terms of its components 
(al,a2,a3) and basis vectors (el,e2,e3) (ei are not necessarily unit vectors) as 

(1.2.1) 

When the basis vectors of a coordinate system are constants, i.e., with fixed lengths 
and directions, the coordinate system is called a Cartesian coordinate system. The 
general Cartesian system is oblique. When the Cartesian system is orthogonal, it is 
called rectangular Cartesian. The Cartesian coordinates are denoted by 

(1.2.2) 

The familiar rectangular Cartesian coordinate system is shown in Figure 1.2.1. We 
shall always use a right-hand coordinate system. When the basis vectors are of unit 
lengths and mutually orthogonal, they are called orthonormal. In many situations 
an orthonormal basis simplifies calculations. We denote an orthonormal Cartesian 
basis by 

(el,e2,e3) or (ex,ey,ez ) 

For an orthonormal basis the vectors A and B can be written as 

A = AIel + A2e2 + A3e3 

B = Blel + B2e2 + B3e3 

(1.2.3) 

where ei (i = 1,2,3) is the orthonormal basis, and Ai and Bi are the corresponding 
physical components (i.e., the components have the same physical dimensions as the 
vector). 

Figure 1.2.1: A rectangular Cartesian coordinate system, (Xl, X2, X3) 

(el' e2, e3) = (ex, ey, ez ) are the unit basis vectors. 
(X, y, z); 
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Summation Convention 

It is convenient to abbreviate a summation of terms by understanding that a 
repeated index means summation over all values of that index. For example, the 
component form of vector A 

where (e1,e2,e3) are basis vectors (not necessarily unit), can be expressed in the 
form 

3 

A = Lajej = ajej 
j=l 

(1.2.4) 

The repeated index is a dummy index in the sense that any other symbol that is not 
already used in that expression can be employed: 

The range of summation is always known in the context of the discussion. For 
example, in the present context the range of j, k and m is 1 to 3 because we are 
discussing vectors in a three-dimensional space. 

In an orthonormal basis the scalar product (also called the "dot product") and 
vector product (also called the "cross product") can be expressed in the index form 
using the Kronecker delta symbol Oij and the alternating symbol (or permutation 
symbol) Eijk: 

where 

A . B = (Ai€i) . (Bj€j) = AiBjOij = AiBi 

A x B = (Ai€i) x (Bj€j) = AiBjEijk€k 

if i = j 
if i i- j 

if i, j, k are in cyclic order 
and not repeated (i i- j i- k) 

if i, j, k are not in cyclic order 
and not repeated (i i- j i- k) 

if any of i, j, k are repeated 

(1.2.5a) 

(1.2.5b) 

(1.2.6) 

(1.2.7) 

Further, the Kronecker delta and the permutation symbol are related by the identity, 
known as the E-O identity, 

(1.2.8) 

Differentiation of vector functions with respect to the coordinates is a common 
occurrence in mechanics. Most of the operations involve the "del operator," denoted 
by \7. In a rectangular Cartesian system it has the form 

(1.2.9) 
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or, in the summation convention, we have 

(1.2.10) 

It is important to note that the del operator has some of the properties of a vector 
but it does not have them all, because it is an operator. For instance \7 . A is a 
scalar, called the divergence of A, 

(1.2.11) 

whereas A . \7 

(1.2.12) 

is a scalar differential operator. Thus the del operator does not commute in this 
sense. The operation \7¢(x) is called the gradient of a scalar function ¢ whereas 
\7 x A(x) is called the curl of a vector function A. 

We have the following relations between the rectangular Cartesian coordinates 
(x, y, z) and cylindrical coordinates (r, e, z) (see Figure 1.2.2): 

x = r cos e, y = r sin e, z = z 

er = cos e ex + sin e ey , ee = - sin e ex + cos e ey , ez = ez 

Ber . e A e A A Bee eA. e A A Be = - sm ex + cos ey = ee, Be = - cos ex - SIn ey = -er 

(1.2.13) 

(1.2.14) 

(1.2.15) 

and all other derivatives of the base vectors are zero. For more on vector calculus, 
see Reddy and Rasmussen [5] and Reddy [6], among other references. 

z 

A--+---"7"'"-~ Y 

x 

Figure 1.2.2: Cylindrical coordinate system. 
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Tensors 

To introduce the concept of a second-order tensor, also called a dyad, we consider 
the equilibrium of an element of a continuum acted upon by forces. The surface 
force acting on a small element of area in a continuous medium depends not only on 
the magnitude of the area but also upon the orientation of the area. It is customary 
to denote the direction of a plane area by means of a unit vector drawn normal to 
that plane. To fix the direction of the normal, we assign a sense of travel along the 
contour of the boundary of the plane area in question. The direction of the normal is 
taken by convention as that in which a right-handed screw advances as it is rotated 
according to the sense of travel along the boundary curve or contour. Let the unit 
normal vector be given by il. Then the area A can be denoted by A = Ail. 

If we denote by ~F(n) the force on a small area n~S located at the position r 
(see Figure 1.2.3a), the stress vector can be defined as follows: 

( A) .6.F(il) 
t n = lim 

,0.5-->0 ~S 
(1.2.16) 

We see that the stress vector is a point function of the unit normal n which denotes 
the orientation of the surface ~S. The component of t that is in the direction of 
il is called the normal stress. The component of t that is normal to n is called a 
shear stress. Because of Newton's third law for action and reaction, we see that 
t( -il) = -t(il). Note that t(il) is, in general, not in the direction of n. 

It is useful to establish a relationship between t and n. To do this we now set 
up an infinitesimal tetrahedron in Cartesian coordinates as shown in Figure 1.2.3b. 
If -tl, -t2, -t3, and t denote the stress vectors in the outward directions on the 
faces of the infinitesimal tetrahedron whose areas are ~SI, ~S2, ~S3, and ~S, 
respectively, we have by Newton's second law for the mass inside the tetrahedron, 

(1.2.17) 

where ~ V is the volume of the tetrahedron, p the density, f the body force per unit 
mass, and a the acceleration. Since the total vector area of a closed surface is zero 

L~ ___ ~~F(n) 

(a) (b) 

Figure 1.2.3: (a) Force on an area element. (b) Tetrahedral element in Cartesian 
coordinates. 
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(see Problem 1.3), 
(1.2.18) 

it follows that 

(1.2.19) 

The volume of the element L\ V can be expressed as 

(1.2.20) 

where L\h is the perpendicular distance from the origin to the slant face. 
Substitution of Eqs. (1.2.19) and (1.2.20) in (1.2.17) and dividing throughout by 

L\S reduces it to 

(1.2.21) 

In the limit when the tetrahedron shrinks to a point, L\h ----) 0, we are left with 

(1.2.22) 

It is now convenient to display the above equation as 

(1.2.23) 

The terms in the parenthesis are to be treated as a dyadic, called stress dyadic or 
stress tensor 7J (we will not use the "double arrow" notation for tensors after this 
discussion) : 

(1.2.24) 

Thus, we have 
(
') ,+-> t n =n·(T (1.2.25) 

and the dependence of t on n has been explicitly displayed. 
It is useful to resolve the stress vectors tI, t2, and t3 into their orthogonal 

components. We have 

(1.2.26) 

for i = 1,2,3. Hence, the stress dyadic can be expressed in summation notation as 

(1.2.27) 

The component (Tij represents the stress (force per unit area) on an area 
perpendicular to the ith coordinate and in the jth coordinate direction (see Figure 
1.2.4). The stress vector t represents the vectorial stress on an area perpendicular 

to the direction n. Equation (1.2.25) is known as the Cauchy stress formula, and 7J 
is termed the Cauchy stress tensor. 
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, , , , , 

x,)t\---
t1 

033 

Figure 1.2.4: Notation used for the stress components in Cartesian rectangular 
coordinates. 

One of the properties of a dyadic is defined by the dot product with a vector. For 
example, dot products of a second-order tensor <» with a vector A from the right 
and left are given, respectively, by 

<» . A = (<Pij€i€j) . (Ak€k) = <Pij Aj€i 

A· <» = (Akek)' (<Pijeiej) = <PijAiej 

Thus the dot operation with a vector produces another vector. The two operations in 
general produce different vectors. The transpose of a second-order tensor is defined 
as the result obtained by the interchange of the two basis vectors: 

(1.2.28) 

It is clear that we have 

(1.2.29) 

We can display all of the components <Pij of a dyad <» by letting the j index run 
to the right and the i index run downward: 

<» = <P11 €l €l + <P12€1 €2 + <P13€1 €3 

+ <P21 €2€1 + <P22€2€2 + <P23€2€3 

+ <P31 e3€1 + <P32€3€2 + <P33€3€3 (1.2.30) 

This form is called the nonion form. Equation (1.2.30) illustrates that a dyad 
in three-dimensional space, or what we shall call a second-order tensor, has nine 
independent components in general, each component associated with a certain dyad 
pair. The components are thus said to be ordered. When the ordering is understood, 
the explicit writing of the dyads can be suppressed and the dyad is written as an 
array: 

[

<Pll 
[<p] = <P21 

<P:n 

(1.2.31) 
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This representation is simpler than Eq. (1.2.30), but it is taken to mean the same. 
A unit second order tensor I is defined by 

(1.2.32) 

In the general scheme that is developed, vectors are called first-order tensors and 
dyads are called second-order tensors. Scalars are called zeroth-order tensors. The 
generalization to third-order tensors thus leads, or is derived from, triadics, or three 
vectors standing side by side. It follows that higher order tensors are developed from 
polyads. An nth-order tensor can be expressed in a short form using the summation 
convention: 

<[> = A.. ·k" eeeken ... 'f'lJ c.. l J ~ (1.2.33) 

Here we have selected a rectangular Cartesian basis to represent the tensor. 
Tensors are sometimes defined by the transformation law for its components. For 

example, a vector A has components Ai with respect to the rectangular Cartesian 
basis (el' e2, e3); its components referred to another rectangular Cartesian basis 
(e~,e~,e~) are A~j' The two sets of components are related according to 

(1.2.34) 

where iij are called the direction cosines. Similarly, the components of a second
order tensor <[> transform according to the rule 

(1.2.35) 

If the components do not satisfy the above transformation law, then it is not a 
tensor. 

The double-dot product between tensors of second order and higher order is 
encountered in mechanics. The double-dot product between two second-order 
tensors <[> and \(I is defined as 

Integral Relations 

<[> : \(I = (¢ijeiej) : (1/Jmnemen) 

= ¢ij1/Jmn(ej . em)(ei' en) 

= ¢ij1/JmnOjm Oin 

= ¢nm1/Jmn 

= ¢ij1/Jji (1.2.36) 

Relations between volume integrals and surface integrals of the gradient (V') of a 
scalar or a vector and divergence (V'.) of a vector are needed in the later chapters. 
We record them here for future reference and use. 

Let 0 denote a region in space surrounded by the surface r, and let ds be a 
differential element of the surface whose unit outward normal is denoted by n. Let 
dv be a differential volume element. Let 1/J be a scalar function and A be a vector 
function defined over the region O. Then the following integral identities hold (see 
Figure 1.2.5): 
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n 

Figure 1.2.5: A solid body with a surface normal vector n. 

Gradient Theorem 

r V?jJ dv = i nljJ ds (vector form) .1n Jr (l.2.37a) 

r ~?jJ dv = i ni?jJ ds (component form) .1n UXi r 
(l.2.37b) 

Divergence Theorem 

r V· A dv = ir n . A ds .1n !r (vector form) (l.2.38a) 

(component form) (l.2.38b) 

In the above integral relations, .fr denotes the integral on the closed boundary r of 
the domain 0, and the component forms refer to the usual rectangular Cartesian 
coordinate system. Equations (l.2.37) and (l.2.38) are valid in two as well as three 
dimensions. The integral relations in Eqs. (l.2.37) and (l.2.38) can be expressed 
concisely in the single statement 

(1.2.39) 

where * denotes an appropriate operation, i.e., gradient, divergence or curl 
operation, and F is a scalar or vector function. 

Some additional integral relations can be derived from Eqs. (l.2.37) and (l.2.38). 
Let A = Vip in Eq. (l.2.38a), where ip is a scalar function, and obtain 

r V. (Vip) dv = r V2ip dv = in. (Vip) ds (vector form) 
.1n .1n Jr (l.2.40a) 
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or, in component form 

(1.2.40b) 

The quantity ft . \7 r.p is called the normal derivative of r.p on the surface r, and is 
denoted by 

ar.p A n (. . 1" ) an = n· v r.p mvanant lorm 

ar.p . 
= ni~ (rectangular CartesIan component form) 

UXi 

ar.p ar.p ar.p 
= nx ax + ny ay + n z az (1.2.41) 

The integral relations presented in this section are useful in developing the so-called 
weak forms of differential equations in connection with the Ritz method and finite 
element formulations of boundary value problems. 

1.3 Equations of Anisotropic Elasticity 
1.3.1 Introduction 

The objective of this section is to review the governing equations of a linear 
anisotropic elastic body. The equations governing the motion of a solid body can 
be classified into four basic categories: 

(1) Kinematics (strain-displacement equations) 
(2) Kinetics (conservation of momenta) 
(3) Thermodynamics (first and second laws of thermodynamics) 
(4) Constitutive equations (stress-strain relations) 

Kinematics is a study of the geometric changes or deformation in a body, without the 
consideration of forces causing the deformation. Kinetics is the study of the static 
or dynamic equilibrium of forces and moments acting on a body. This leads to 
equations of motion as well as the symmetry of stress tensor in the absence of body 
moments. The thermodynamic principles are concerned with the conservation of 
energy and relations among heat, mechanical work, and thermodynamic properties 
of the body. The constitutive equations describe thermomechanical behavior of 
the material of the body, and they relate the dependent variables introduced in 
the kinetic description to those in the kinematic and thermodynamic descriptions. 
These equations are supplemented by appropriate boundary and initial conditions 
of the problem. 

In the following sections, an overview of the governing equations of an anisotropic 
elastic body is presented. The strain-displacement relations. equations of motion, 
and the constitutive equations for an isothermal state (i.e., no change in the 
temperature of the body) are presented first. Subsequently, the thermodynamic 
principles are considered only to determine the temperature distribution in a solid 
body and to account for the effect of non-uniform temperature distribution on the 
strains. 

A solid body B is a set of material particles which can be identified as having 
one-to-one correspondence with the points of a region n of Euclidean point space R3. 
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The particles of B are identified by their time-dependent positions relative to the 
selected frame of reference. The simultaneous position of all material points of l3 at 
a fixed time is called a configuration of the structure. The analytical description of 
configurations at various times of a material body acted on by various loads results 
in a set of governing equations. 

Consider a deformable body l3 of known geometry, constitution, and loading. 
Under given geometric restrictions and loading, the body will undergo motion and/or 
deformation (i.e., geometric changes within the body). If the applied loads are time 
dependent, the deformation of the body will be a function of time, i.e., the geometry 
of the body will change continuously with time. If the loads are applied slowly so that 
the deformation is only dependent on the loads, the body will take a definitive shape 
at the end of each load application. Whether the deformation is time dependent or 
not, the forces acting on the body will be in equilibrium at all times. 

Suppose that the body l3 under consideration at time t = 0 occupies a 
configuration Co, in which a particle X of the body l3 occupies a position X. Note 
that X is the name of the particle that occupies the location X in the reference 
configuration. At time t > 0, the body assumes a new configuration C and the 
particle X occupies the new position x. 

There are two commonly used descriptions of motion and deformation in 
continuum mechanics. In the referential or Lagrangian description, the motion 
of a body B is referred to a reference configuration CR. Thus, in the Lagrangian 
description the current coordinates (Xl, X2, X3) are expressed in terms of the reference 
coordinates (Xl, X2, X 3) and time t as 

(1.3.1) 

Often, the reference configuration CR is chosen to be the unstressed state of the body, 
i.e., CR == Co. The coordinates (XI,X2,X3) are called the material coordinates. 

In the spatial or Eulerian description of a body l3, the motion is referred to the 
current configuration C occupied by the body B. The spatial description focuses 
attention on a given region of space instead of on a given body of matter, and is 
the description most used in fluid mechanics, whereas in the Lagrangian description 
the coordinate system X is fixed on a given body of matter in its undeformed 
configuration, and its position x at any time is referred to the material coordinates 
Xi. Thus, during a motion of a body B, a representative particle X occupies a 
succession of points which together form a curve in Euclidean space. This curve is 
called the path of X and is given parametrically by Eq. (1.3.1). 

1.3.2 Strain-Displacement Equations 

The phrase deformation of a body refers to relative displacements and changes in 
the geometry experienced by the body. Referred to a rectangular Cartesian frame 
of reference (Xl, X 2, X 3), every particle X in the body corresponds to a set of 
coordinates X = (Xl, X 2, X3). When the body is deformed under the action 
of external forces, the particle X moves to a new position x = (Xl, X2) X3). The 
displacement of the particle X is given by 

u = x - X or Ui = Xi - Xi (1.3.2) 
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If the displacement of every particle in the body is known. we can construct the 
current (deformed) configuration C from the reference (or undeformed) configuration 
Co. In the Lagrangian description, the displacements are expressed in terms of the 
material coordinates Xi, and we have 

(1.3.3) 

A rigid-body motion is one in which all material particles of the body undergo the 
same linear and angular displacements. A deformable body is one in which the 
material particles can move relative to each other. The deformation (i.e., relative 
motion of material particles) of a deformable body can be determined only by 
considering the change of distance between any two arbitrary but infinitesimally 
close points of the body. 

Consider two neighboring material particles P and Q which occupy the positions 
P : (Xl, X 2, X 3) and Q : (Xl + dXI , X2 + dX2, X3 + dX3), respectively, in the 
undeformed configuration CO of the body B. The particles are separated by the 
infinitesimal distance dS = J dXidXi (sum on i) in Co, and dX is the vector 
connecting the position of P to the position of Q. These two particles move to 
new places P and Q, respectively, in the deformed body (see Figure 1.3.1). Suppose 
that the positions of P and Q are (Xl, X2, X3) and (Xl + dXI, X2 + dX2, X3 + dX3), 
respectively. The two particles are now separated by the distance ds = J dXidxi in 
the deformed configuration C, and dx is the vector connecting P to Q. The vector 
dx can be interpreted as the position occupied by the deformed material vector dX. 
When the material vector dX is small but finite, the line vector dx in general does 
not coincide exactly with the deformed position of dX, which lies along a curve in 
the deformed body. The deformation (or strains) in a body can be measured in 
a number of ways. Here we use the standard strain measure of solid mechanics, 
namely the Green-Lagrange strain E, which is defined such that it gives the change 

X3,X3 

Co 
Particle X 
(occupying 
position X) 

/cX2,X2 

u C=Cl 

Co (time t = 0) 

Figure 1.3.1: Kinematics of deformation of a continuous medium. 
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in the square of the length of the material vector dX 

2dX· E· dX == (ds)2 - (dS)2 = dx· dx - dX· dX (1.3.4a) 

and in rectangular Cartesian component form we have 

(1.3.4b) 

In Eq. (1.3.4b) and in the equations that follow, the summation convention on 
repeated indices is used, and the range of summation is 1 to 3. 

In order to express the strains in terms of the displacements, we use Eq. (1.3.2) 
and write 

(1.3.5) 

Since x is a function of X, its total differential is given by [using the chain rule of 
differentiation and Eq. (1.3.5)] 

dx == dX + dX· 'Vu = dX· (I + 'Vu) (1.3.6) 

where 'V denotes the gradient operator with respect to the material coordinates, X. 
Now the strain tensor or its components from Eqs. (1.3.4a,b) can be expressed in 
terms of the displacement vector or its components with the help of Eq. (1.3.6): 

2dX . E . dX = dx . dx - dX . dX 

= [dX· (I + 'Vu)] . [dX· (I + 'Vu)] - dX . dX 

= dX . (I + 'Vu) . (I + 'Vuf . dX - dX . dX 

= dX· [(I + 'Vu) . (I + 'Vuf - I] . dX (1.3.7) 

Thus the Green (or Green-Lagrange) strain tensor E is given m terms of the 
displacement gradients as 

E = ~ [(I + 'Vu) . (I + 'Vu)T - I] 

1 [ T T] = 2 'Vu + (\7u) + \7u . (\7u) (1.3.8) 

Note that the Green-Lagrange strain tensor is symmetric, E = ET (Eij = Eji). The 
strain components defined in Eq. (1.3.8) are called finite strain components because 
no assumption concerning the smallness (compared to unity) of the strains is made. 

The rectangular Cartesian component form is given by 

(1.3.9) 
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Explicit form of the six Cartesian components of strain are given by 

aUl 1 
E11 = -- +-aX1 2 

aU2 1 
E22 = -- +-aX2 2 

aU3 1 
E33 = -- +-aX3 2 

(1.3.10) 

If the displacement gradients are so small, IVul < < 1, that their squares and 
products are negligible compared to IVul. Then the Green-Lagrange strain tensor 
reduces to the infinitesimal strain tensor, E ~ E: 

Eij = ~ (aUi + aUj) 
2 aXj aXi 

(1.3.11) 

The explicit form of the infinitesimal strain components (1.3.11) is given by (Tij 

denote the engineering shear strains) 

aUl aU2 aU3 aUl aU2 
c 11 = -;::;--, c 22 = -;::;--, c 33 = -;::;--, 1'12 == 2c 12 = -;::;-- + -;::;--

UXI UX2 UX3 UX2 UXI 

aUl aU3 aU2 aU3 
1'13 == 2c13 = -;::;-- + -;::;--, 1'23 == 2c23 = - + -

uX3 UXI aX3 aX2 
(1.3.12) 

Example 1.3.1: 

(a) A square block is deformed as shown by dotted lines in Figure 1.3.2a. Assuming that the body 
is very thin and the strains (due to the Poisson effect) associated with the thickness direction are 
negligible, we wish to determine the two-dimensional strains. 

A material particle which occupied position (Xl, X 2 , X 3 ) in the un deformed body takes the 
position (XI,X2,X3) in the deformed body. The current coordinates of the material particle can be 
expressed in terms of its original position as 

The displacements are 

UI=XI-XI=~X2' U2=X2-X2=0, U3=X3- X 3=0 
a 

(1.3.13) 

(1.3.14) 

Then the Green-Lagrangian strains can be computed using Eq. (1.3.10). The only nonzero strain 
component is (e = 0.2cm and a = lOcm) 

e 
El2 = 2a = 0.01 em/em (1.3.15) 
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X2,X2 
X2,X2 

T c:> a 

1 XbXl XbXl 

-I+-a~ 

(a) 

X2,X2 X2,X2 

---+t e l+-

T c:> a 

1 Xl,X1 XbXl 

J--a~ 

(b) 

Figure 1.3.2: Undeformed and deformed configurations of a solid square block. 
(a) Pure shear deformation. (b) Pure extensional deformation. 

(b) Consider a square block, deformed as shown by dotted lines in Figure 1.3.2b. The current 
coordinates of the material particle occupying position (X1 ,X2 ,X3 ) in the undeformed body can 
be expressed as 

(1.3.16) 

The displacements are 

(1.3.17) 

The only nonzero Lagrangian strain is 

e 1 (e)2 Ell = - + - - = (0.02 + 0.0002) cm/cm 
a 2 a 

(1.3.18) 

The strain is nonlinear. The nonlinear part of the strain is 0.02 percent. 

This completes the kinematic description. In the coming chapters, we use only 
the linear strains and the von Karman nonlinear strains derived from Eq. (1.3.10). 
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1.3.3 Strain Compatibility Equations 

By definition, the components of the strain tensor can be computed from a 
differentiable displacement field using Eq. (1.3.8) or Eq. (1.3.11). However, if 
the six components of strain tensor are given and if we are required to find the three 
displacement components, the strains given should be such that a unique solution 
to the six differential equations relating the strains and displacements exists. The 
existence of a unique solution is guaranteed if the infinitesimal strain components 
satisfy the following six compatibility conditions: 

(1.3.19) 

for any i,j,m,n = 1,2,3. For the two-dimensional case, Eq. (1.3.19) reduces to the 
following single compatibility equation 

a2
C;l + a 2

E;2 _ 2 a2El2 = 0 
aX2 aXl aXlaX2 

(1.3.20) 

It should be noted that the strain compatibility equations are satisfied automatically 
when the strains are computed from a displacement field. Thus, one needs to verify 
the compatibility conditions only when the strains are computed from stresses that 
are in equilibrium. 

1.3.4 Stress Measures 

Stress at a point was introduced in Section 1.2 as a measure of force per unit area. 
Equation (1.2.16) indicates that the stress vector at a point depends on the force 
vector (its direction and magnitude) and the surface area. The surface area in turn 
depends on the orientation of the plane used to slice the body. It was shown that 
the state of stress at a point inside a body can be expressed in terms of stress vectors 
on three mutually perpendicular planes, say planes perpendicular to the rectangular 
coordinate axes by Cauchy's formula in Eq. (1.2.25). 

In the above discussion, stress vector t at a point in a deformed body is measured 
as the force per unit area in the deformed body. The area element .68 in the deformed 
body corresponds to an area element /::).5 in the reference configuration, in much the 
same way x is the position of a material particle X in the deformed body whose 
position in the reference configuration was X. Thus the Cauchy stress tensor (J" is 
defined to be the current force per unit deformed area: 

df = t da = da . (J", where da = da il (1.3.21) 

where Cauchy's formula, t = (J" • il, is used. 
Expressing df in terms of a stress times the initial undeformed area dA requires 

a new stress tensor P, 

df = dA· P, where dA = dA N (1.3.22) 

where N is the unit normal to the undeformed area dA. The stress tensor P is 
called the first Fiola-Kirchhoff stress tensor, and it gives the current force per unit 
undeformed area. The first Piola-Kirchhoff stress tensor is not symmetric. 
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The second Piola-Kirchhoff stress tensor S is introduced as follows. First, we 
introduce the deformation gradient tensor F 

(
a )T dx = F· dX = dX· FT where F = o~ == (\7ox)T (1.3.23) 

and \70 is the gradient operator with respect to X. We also have 

ax 
where F-T = ax == \7X (1.3.24) 

and \7 is the gradient operator with respect to x. Analogous to the transformation 
between X and x, we can transform the force df on the deformed elemental area da 
to the force dF on the undeformed elemental area dA (not to be confused between 
the force dF and deformation gradient tensor F) 

dF = F- 1 . df = F- 1 . (dA . P) = dA . P . F-T == dA . S (1.3.25) 

Thus, the second Piola-Kirchhoff stress tensor gives the transformed current force 
per unit undeformed area. The second Piola-Kirchhoff stress tensor is symmetric 
whenever the Cauchy stress tensor is symmetric. 

1.3.5 Equations of Motion 

The principle of conservation of linear momentum states that the rate of change of 
the total linear momentmll of a given continuous medium equals the vector sum of 
all the external forces acting on the body B, which initially occupied a configuration 
Co, provided Newton's third law of action and reaction governs the internal forces. 
The principle leads to the following equations of motion: 

(vector form) (1.3.26a) 

(Cartesian component form) (1.3.26b) 

where p is the density in the deformed configuration and f is the body force vector 
(measured per unit volume). The equations of equilibrium are obtained by setting 
the time derivative term to zero: 

\7 . (J + f = 0 (vector form) 

O(Jji + Ii = 0 (Cartesian component form) 
OXj 

(1.3.27a) 

(1.3.27b) 

For kinematically infinitesimal deformations, i.e., l\7ul « 1, we do not 
distinguish between x and X, between (J and S and between E and E, and we 
use the first symbol of each pair. In much of this book we deal with kinematically 
infinitesimal deformations (i.e., linearized elasticity). 

The strain-displacement relations and the equations of motion in any coordinate 
system can be obtained from the vector forms in Eqs. (1.3.8), (1.3.11), (1.3.26a) and 
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(1.3.27a) by expressing 0', f, U, and \7 in the chosen coordinate system. The vector 
forms of equations are invariant, i.e., independent of the choice of the coordinate 
system. 

The principle of conservation of angular momentum, in the absence of any 
distributed body couples, leads to the symmetry of the stress tensor: 

Thus there are only six independent components of the Cauchy stress tensor. Since 
the Cauchy stress tensor is a second-order tensor and symmetric, we may write it 
with a "double arrow" notation as 

(1.3.28a) 

This notation is meaningful and descriptive of the nature of the tensor; the notation 
indicates that the quantity is a dyad (i.e., having two base vectors) and it is 
symmetric: 

(1.3.28b) 

Note that the equations of motion or equilibrium contain three equations relating 
six stress components and therefore cannot be solved for all six components uniquely. 
Additional equations are required. These include the strain-displacement relations 
discussed in Section 1.3.2 and constitutive relations or stress-strain relations to be 
discussed in the next section. 

Example 1.3.2: 

Consider the following stress field in a body that is in equilibrium: 

and all other components of stress are zero. We wish to determine if the stress field satisfies the 
equations of equilibrium in the presence of body forces, h = 0, 12 = -C1, and 13 = O. We assume 
that the body experienced only a small deformation. We have 

Thus, the first two equations of equilibrium are identically satisfied for any choice of constants, C1, 

C2, C3, and C4. The third equation of equilibrium is trivially satisfied. 

Example 1.3.3: 

Consider the cantilevered beam under an end load (see Figure 1.3.3). The bending moment about 
the X2-axis at any distance Xl is given by ltf2 = P(L - Xl). Then the stress component 0"11 can be 
calculated using the flexure stress formula from elementary strength of materials: 

(1.3.29) 
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where I22 is area moment of inertia about the x2-axis. Assuming a two-dimensional state of 
stress (with respect to the Xl and X3 coordinates) in the beam, we wish to determine the stress 
components 0"13 and 0"33 in the absence of body forces. Since the stress components 0"12,0"22, and 
0"23 are assumed to be zero, the first equation of equilibrium yields 

Integration with respect to X3 gives 

(1.3.30) 

where f is a function of Xl only. The second equation of equilibrium is trivially satisfied. The third 
equation of equilibrium gives 

Integration with respect to X3 yields 

(1.3.31) 

The functions f and g can be determined using the boundary conditions of the beam. Note 
that 0"13 and 0"33 must be zero on the top and bottom surfaces of the beam (i.e., at X3 = ±h/2). 
Vanishing of CT33 at X3 = ±h/2 gives 

which imply that 

df h 
~-~ +g=O, 

dX12 

df h 
~-(~~)+g=O 

dX1 2 

~!!L = 0 g = 0, or f = C2 and g = 0 
dX1 ' 

Vanishing of CT13 at X3 = ±h/2 gives 
C1 h2 

C2 = ~-8-

Thus the two-dimensional state of stress is given by 

(1.3.32) 

Figure 1.3.3: A cantilevered beam (i.e., fixed at one end and no support at the 
other end) under an end load. 
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Since the stress field is derived from stress equilibrium equations, it is necessary to see if the 
strain compatibility condition in Eq. (1.3.20) is satisfied. Suppose that the strains Ell, E13, and 
E33 are related to the stress components CTll, CT13, and CT33 by the relations (see the next section for 
details) 

Then 

Ell = S11 CTll + S13CT33 + SI5CT13 

E33 = S13 CTll + S33 CT33 + S35 CT l:3 

E13 = S15 CTll + S35 CT33 + S55 CT 13 

Substituting these strain components into the compatibility equation [see Eq. (1.3.20)]' 

we obtain 
p P 

-S15 -1 + 0 + 2S15 -1 l' 0 
22 22 

(1.3.33) 

(1.3.34) 

Thus the strains are compatible only if S15 = 0, which is the case when the material is isotropic or 
orthotropic with respect to the problem coordinates. 

1.3.6 Generalized Hooke's Law 

The kinematic relations and the mechanical and thermodynamic principles are 
applicable to any continuum irrespective of its physical constitution. Here we 
consider equations characterizing the individual material and its reaction to applied 
loads. These equations are called the constitutive equations. 

Materials for which the constitutive behavior is only a function of the current 
state of deformation are known as elastic. In the special case in which the work 
done by the stresses during a deformation is dependent only on the initial state and 
the current configuration, the material is called hyperelastic. 

A material body is said to be homogeneous if the material properties are the same 
throughout the body (i.e., independent of position). In a heterogeneous body, the 
material properties are a function of position. For example, a structure composed of 
several uniform thickness layers of different materials stacked on top of each other 
and bonded to each other is heterogeneous through the thickness. An anisotropic 
body is one that has different values of a material property in different directions 
at a point; i.e., material properties are direction-dependent. An isotropic body is 
one for which every material property in all directions at a point is the same. An 
isotropic or anisotropic material can be nonhomogeneous or homogeneous. 
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A material body is said to be ideally elastic when, under isothermal conditions, 
the body recovers its original form completely upon removal of the forces causing 
deformation, and there is a one-to-one relationship between the state of stress and 
the state of strain in the current configuration. The constitutive equations described 
here do not include creep at constant stress and stress relaxation at constant 
strain. Thus, the material coefficients that specify the constitutive relationship 
between the stress and strain components are assumed to be constant during the 
deformation. This does not automatically imply that we neglect temperature effects 
on deformation. We account for the thermal expansion of the material, which can 
produce strains or stresses as large as those produced by the applied mechanical 
forces. Here, we discuss the constitutive equations of linear elasticity (i.e., relations 
between stress and strain are linear) for the case of infinitesimal deformation (i.e., 
lV'ul « 1). Hence, we will not distinguish between various measures of stress and 
strain, and use S ~ a for the stress tensor and E ~ G for strain tensor in the material 
description used in solid mechanics. The linear constitutive model for infinitesimal 
deformation is referred to as the generalized Hooke's law. Suppose that the reference 
configuration has a (residual) stress state of an. Then if the stress components are 
assumed to be linear functions of the components of strain, then the most general 
form of the linear constitutive equations for infinitesimal deformations is 

(1.3.35) 

where C is the fourth-order tensor of material parameters and is termed stiffness 
tensor. There are, in general, 34 = 81 scalar components of a fourth-order tensor. 
The number of independent components of C are considerably less because of the 
symmetry of a, symmetry of G, and symmetry of C, as discussed next [6]. 

In the absence of body couples, the principle of conservation of angular 
momentum requires the stress tensor to be symmetric, aij = aji. Then it follows 
from Eq. (1.3.35) that Cijk€ must be symmetric in the first two subscripts. Hence 
the number of independent material stiffness components reduces to 6(3)2 = 54. 
Since the strain tensor is symmetric (by its definition), Gij = Cji, then CijkJI must 
be symmetric in the last two subscripts as well, further reducing the number of 
independent material stiffness components to 6 x 6 = 36. 

If we also assume that the material is hyperelastic, i.e., there exists a strain 
energy density function Uo (Gij) such that 

we have 
[PUo 

---- = Cijk€ 
8cij 8ckf 

(1.3.36) 

Since the order of differentiation is arbitrary, 82UO/Ocij8ck£ = 82Uo/8Gke8cij, it 
follows that Cijkf = Ck£ij. This reduces the Humber of independent material stiffness 
components to 21. To show this we express Eq. (1.3.35) in an alternate form using 
single subscript notation for stresses and strains and two subscript notation for the 
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material stiffness coefficients: 

0"1 = 0"11, 0"2 = 0"22, 0"3 = 0"33, 0"4 = 0"23 , 0"5 = 0"13, 0"6 = 0"12 

101 = 10 11, 102 = 1022, 103 = 1033, 104 = 21023, 105 = 21013, 106 = 210 12 

11 ~ 1 22 ~ 2 33 ~ 3 23 ~ 4 13 ~ 5 12 ~ 6. 

(1.3.37a) 

(1.3.37b) 

It should be cautioned that the single subscript notation used for stresses and strains 
and the two-subscript components Cij render them non-tensor components (i.e., O"i, 

Ei, and Cij do not transform like the components of a vector or tensor). The single 
subscript notation for stresses and strains is called the engineering notation or the 
Voigt-Kelvin notation. Equation (1.3.35) now takes the form 

(1.3.38a) 

where summation on repeated subscripts is implied (now from 1 to 6). In matrix 
notation, Eq. (1.3.38a) can be written as 

0"1 C11 C 12 C 13 C 14 C 15 C16 10 1 0"0 
1 

0"2 C 21 C22 C23 C 24 C25 C26 102 O"g 

0"3 C31 C32 C 33 C 34 C35 C36 103 
+ 

O"R (1.3.38b) 
0"4 C 41 C 42 C 43 C 44 C 45 C46 104 0"2 

0"5 C 51 C 52 C 53 C 54 C 55 C 56 105 0"0 
5 

0"6 C 61 C62 C 63 C 64 C 65 C66 106 0"0 
6 

Now the coefficients C ij must be symmetric (Cij = C ji ) by virtue of the assumption 
that the material is hyperelastic. Hence, we have 6+5+4+3+2+1 = 21 independent 
stiffness coefficients for the most general elastic material. 

We assume that the stress-strain relations (1.3.38a,b) are invertible. Thus, the 
components of strain are related to the components of stress by 

(1.3.39a) 

where 8ij are the material compliance parameters with [8] = [C]-1 (the compliance 
tensor is the inverse of the stiffness tensor: S = C-1). In matrix form Eq. (1.3.39a) 
becomes 

10 1 8 11 8 12 8 13 8 14 8 15 8 16 0"1 E~ 
102 8 21 822 8 23 8 24 8 25 826 0"2 109 

103 8 31 832 8 33 8 34 8 35 8 36 0"3 
+ 

109 (1.3.39b) 
104 841 842 8 43 844 845 846 0"4 E~ 
105 8 51 8 52 8 53 8 54 8 55 8 56 0"5 EO 

5 

106 8 61 862 8 63 8 64 8 65 8 66 0"6 EO 
6 

In the following discussion we assume that the reference configuration is stress 
free, O"? = 0 and strain free E? = o. 
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Material Symmetry 

Further reduction in the number of independent stiffness (or compliance) parameters 
comes from the so-called material symmetry. Suppose that (Xl, X2, X3) denote the 
coordinate system with respect to which Eqs. (1.3.38a,b) and (1.3.39a,b) are defined. 
We shall call them material coordinate system. The coordinate system (x, y, z) 
used to write the equations of motion and strain-displacement equations will be 
called the problem coordinates to distinguish them from the material coordinate 
system. Note that the phrase "material coordinates" used in connection with the 
material description should not be confused with the present term. In the remaining 
discussion, we will use the material description for everything, but we may use one 
material coordinate system, say (x, y, z), to describe the kinematics as well as stress 
state in the body and another material coordinate system (Xl, X2, X3) to describe 
the stress-strain behavior. Both are fixed in the body, and the two systems are 
oriented with respect to each other. When elastic material parameters at a point 
have the same values for every pair of coordinate systems that are mirror images of 
each other in a certain plane, that plane is called a material plane of symmetry (e.g., 
symmetry of internal structure due to crystallographic form, regular arrangement 
of fibers or molecules, etc.). We note that the symmetry under discussion is a 
directional property and not a positional property. Thus, a material may have 
certain elastic symmetry at every point of a material body the properties may vary 
from point to point. Positional dependence of material properties is what we called 
the inhomogeneity of the material. 

In the following we discuss various planes of symmetry and forms of associated 
stress-strain relations. Note that use of the tensor components of stress and strain 
is necessary because the transformation laws of the form (1.2.35) are valid only for 
the tensor components. The fourth-order tensor, for example, transforms according 
to the formula 

(1.3.40) 

where £ij are the direction cosines associated with the coordinate systems (Xl, X2, X3) 

and (x~,x~,x3)' and C;jkl and Cpqrs are the components of the fourth-order tensor 
C in the primed and unprimed coordinate systems, respectively. 

Monoclinic Materials 

When the elastic coefficients at a point have the same value for every pair of 
coordinate systems which are the mirror images of each other with respect to a 
plane, the material is called a monoclinic material. For example, let (Xl, X2, X3) and 
(x~, x;, x3) be two coordinate systems, with the Xl, x2-plane parallel to the plane of 
symmetry. Choose x3-axis such that x3 = -X3 (never mind about the left-handed 
coordinate system as it does not affect the discussion) so that one system is the 
mirror image of the other. The definitions and sign conventions of the stress and 
strain components show that 

or, in single-subscript notation 
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while all their independent stress and strain components remain unchanged in value 
by the change from one coordinate system to the other. U sing the stress-strain 
relations of the form in Eq. (1.3.38b), we can write 

ai = C11c~ + C12c; + C13c~ + C14c~ + C15c; + C16c~ 
al = C11cI + Cl2c2 + Cl3c3 - Cl4c4 - Cl5c5 + Cl6c6 

But we also have 

al = C11cI + Cl2c2 + Cl3c3 + C14c4 + Cl5c5 + C16c6 

Note that the elastic parameters Cij are the same for the two coordinate systems 
because they are the mirror images in the plane of symmetry. From the above two 
equations (subtract one from the other) we arrive at 

Cl4c4 + Cl5c5 = 0 for all values of C4 and C5 

The above equation holds only if C l4 = 0 and C l5 = O. Similar discussion with the 
two alternative expressions of the remaining stress components yield C24 = 0 and 
C 25 = 0; C 34 = 0 and C 35 = 0; and C 46 = 0 and C 56 = o. Thus out of 21 material 
parameters, we only have 21 - 8 = 13 independent parameters, as indicated below 

C11 C l2 Cl3 0 0 CHi 
C l2 C22 C23 0 0 C 26 

[C] 
Cl3 C 23 C33 0 0 C 36 (1.3.42) 

0 0 0 C 44 C 45 0 
0 0 0 C45 C 55 0 

C l6 C 26 C36 0 0 C6G 

Note that monoclinic materials exhibit shear-extensional coupling; i.e., a shear strain 
can produce a normal stress; for example, a11 = C16c6 = 2C16cI2. Therefore, the 
principal axes of stress do not coincide with those of strain. 

The result in Eq. (1.3.42) can also be obtained using the following transformation 
matrix (which converts the unprimed coordinate system to the primed one) in Eq. 
(1.3.40): 

[L] = [~ ~ ~ 1 (or £11 = £22 = 1, £33 = -1, £ij = 0 for i i- j) (1.3.43) 
o 0 -1 

Orthotropic Materials 

When three mutually orthogonal planes of material symmetry exist, the number of 
elastic coefficients is reduced to 9 using arguments similar to those given for single 
material symmetry plane, and such materials are called orthotropic. The stress
strain relations for an orthotropic material take the form 

al C11 Cl2 Cl3 0 0 0 CI 
a2 Cl2 C 22 C23 0 0 0 C2 
a3 Cl3 C23 C 33 0 0 0 C3 (1.3.44) 
a4 0 0 0 C 44 0 0 C4 
a5 0 0 0 0 C 55 0 C5 
a6 0 0 0 0 0 C66 C6 
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The transformation matrices associated with the planes of symmetry are 

o 
1 
o 

0] [-1 o ; [L(2)] = 0 
-1 0 

o 
1 
o 

o 
-1 

o ~] 
Most simple mechanical-property characterization tests are performed with a 

known load or stress. Hence, it is convenient to write the inverse of relations in 
(1.3.44). The strain-stress relations of an orthotropic material are given by 

C1 5 11 5 12 5l:{ 0 0 0 (J1 

C2 512 5 22 5 23 0 0 0 (J2 

c:3 5 13 52:3 5:3:3 0 0 0 (J:3 
(1.3.45) 

C4 0 0 0 5 44 0 0 (J4 

C5 0 0 0 0 5 5.5 0 (J,5 

C6 0 0 0 0 0 5 6G (J6 

where 5 ij are the compliance coefficients ([C] = [5]-1) 

(1.3.46) 

Most often, the material properties are determined in a laboratory in terms of the 
engineering constants such as Young's modulus, shear modulus, and so on. These 
constants are measured using simple tests like uniaxial tension test or pure shear test. 
Because of their direct and obvious physical meaning, engineering constants are used 
in place of the more abstract stiffness coefficients Cij and compliance coefficients 
5iJ . Next we discuss how to relate the compliance coefficients 5i ) to the engineering 
constants. 

One of the consequences of linearity (both kinematic and material linearizations ) 
is that the principle of superposition applies. That is, if the applied loads and 
geometric constraints are independent of deformation, the sum of the displacements 
(and hence strains) produced by two sets of loads is equal to the displacements (and 
strains) produced by the sum of the two sets of loads. In particular, the strains 
of the same type produced by the application of individual stress components can 

be superposed. For example, the extensional strain cW in the material coordinate 
direction Xl due to the stress (Jll in the same direction is (Jll! E 1 , where E1 denotes 

Young's modulus of the material in the Xl direction. The extensional strain c~;) due 
to the stress (J22 applied in the X2 direction is -V21(J22! E2, where V21 is the Poisson 
ratio 
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and E2 is Young's modulus of the material in the X2 direction. Similarly, 0"33 

produces a strain Eg) equal to -V3lO"33/ E3. Hence, the total strain E11 due to 
the simultaneous application of all three normal stress components is 

(a) 

where the direction of loading is denoted by the superscript. Similarly, we can write 

(b) 

0"11 V13 0"22 V23 0"33 
E33 = ---- - ---+-

E1 E2 E3 
(c) 

The simple shear tests with an orthotropic material give the results 

(d) 

Recall that 2Eij (i i- j) is the change in the right angle between two lines parallel 
to the Xl and X2 directions at a point, O"ij (i i- j) denotes the corresponding shear 
stress in the XiXj plane, and Gij (i i- j) are the shear moduli in the XiXj plane. 
Writing Eqs. (a)-(d) in matrix form, we obtain 

1 -~ -~ 0 0 0 
E1 El E2 E3 0"1 

V12 1 -~ 0 0 0 
E2 - El E2 E3 0"2 

_!i:i -~ 1 0 0 0 E3 El E2 E3 0"3 (1.3.47) 
E4 0 0 0 1 0 0 0"4 G23 
E5 0 0 0 0 1 0 0"5 

G 13 
E6 0 0 0 0 0 1 0"6 

G12 

where E 1 , E 2 , E3 are Young's moduli in 1, 2, and 3 material directions, respectively, 
Vij is Poisson's ratio, defined as the ratio of transverse strain in the jth direction 
to the axial strain in the ith direction when stressed in the ith direction, and 
G23 , G13 , G12 are shear moduli in the 2-3, 1-3, and 1-2 planes, respectively. Since 
the compliance matrix [5] is the inverse of the stiffness matrix [C] and the inverse of 
a symmetric matrix is symmetric, it follows that the compliance matrix [5] is also a 
symmetric matrix. This in turn implies that the following reciprocal relations hold 
[see Eq. (1.3.47)]: 

V13. V32 V23 

E 1 ' E3 E2 

or, in short 
Vij Vji ( . .) 
Ei = E

j 
no sum on Z,] (1.3.48) 

for i,j = 1,2,3. The 9 independent material coefficients for an orthotropic material 
are 

(1.3.49) 
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It is important to note the difference, for example, between I/ij and I/ji for i =I=- j 
for an orthotropic material [10]. For example the difference between 1/12 and 1/21 
for an orthotropic material is illustrated in Figure 1.3.4 with two cases of uniaxial 
stress for a square element of length a. First a stress (J" is applied in the Xl-direction 
as shown in Figure 1.3.4a. The resulting strains are 

(1) (J" (1) 1/12 ( ) 
Ell = ~ E22 = --(J" 1.3.50 

El E1 

where the direction of loading is denoted by the superscript and negative sign 
indicates compression. Next, the same value of stress is applied in the x2-direction 
as shown in Figure 1.3.4b. The strains are 

(1.3.51) 

While it is obvious that Eg) < E~~ if El > E2, we have no clue about the relative 

magnitudes of EW and Ei;). However, the displacements associated with the two 
loads are 

(1.3.52a) 

(1.3.52b) 

and the reciprocal relation (1.3.48) gives u~l) = ui2
), which is the statement of 

Betti's reciprocity theorem (see Reddy [6]). 

(I) 

--------- - -
J:U

2 

, , 

(a) Lx! 
, , 

a' 
(J' 

, 

I- a ~I I~u(l) 
j 

U(2) (J' 

2:t 

} 
-------- --~ (2) 

X2 

Lx! 
' U j , , (b) 

) 
(J' 

Figure 1.3.4: Distinction between 1/12 and 1/21. 
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Comparing Eqs. (1.3.45) and (1.3.47), we note that 

1 
811 = E1 ' 

1 
822 = E2 ' 

1 
8 44 = -G ' 

23 
(1.3.53) 

and using Eq. (1.3.46) the stiffness coefficients can be expressed in terms of the 
engineering constants 

C11 = 
1 - 1/231/23 

C12 = 1/21 + 1/311/23 1/12 + 1/321/13 

E2E3b. 
, 

E2E3b. EIE3b. 

C13 = 
1/31 + 1/211/32 1/13 + 1/121/23 

E2E3b. E1E2b. 

C22 = 
1 - 1/131/31 

C23 = 1/32 + 1/121/31 1/23 + 1/211/13 

E1E3b. 
, 

E1E3b. E1E3b. 

C33 = 
1 - 1/121/21 

C44 = G23 C55 = G31 C66 = G12 
E1E2b. 

, 

b. = 1 - 1/121/21 - 1/231/32 - 1/311/13 - 21/211/321/13 

E1E2 E 3 

Example 1.3.4: 

(1.3.54) 

The material properties of graphite fabric-carbon matrix layers, which are characterized as 
orthotropic, are: 

E1 = 25.1 x 106 psi, E2 = 4.8 x 106 psi, E3 = 0.75 x 106 psi 

0 12 = 1.36 x 106 psi, 0 13 = 1.2 x 106 psi, 0 23 = 0.47 x 106 psi 

V12 = 0.036, V13 = 0.25, V23 = 0.171 

The matrix of elastic coefficients for the material can be calculated using Eq. (1.3.54) as 

25.16 0.2063 0.1934 0 0 0 
0.2063 4.8240 0.1304 0 0 0 

[C]= 
0.1934 0.1304 4.8320 0 0 0 

(msi) 
0 0 0 0.47 0 0 
0 0 0 0 1.2 0 
0 0 0 0 0 1.36 

A qualitative understanding of the anisotropic behavior of a material can be 
obtained by simple tension and shear tests [10]. Application of a normal stress to 
a rectangular block of isotropic or orthotropic material leads to only extension in 
the direction of the applied stress and contraction perpendicular to it, whereas an 
anisotropic material experiences extension in the direction of the applied normal 
stress, contraction perpendicular to it, as well as shearing strain (see Figure 1.3.5). 
Conversely, the application of a shearing stress to an anisotropic material causes 
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Isotropic 
and 

Orthotropic 

Anisotropic 

Shear Stress 

Figure 1.3.5: Deformation of orthotropic and anisotropic rectangular block under 
uniaxial tension. 

shearing strain as well as normal strains. Normal stress applied to an orthotropic 
material at an angle to its principal material directions causes it to behave like an 
anisotropic material. The coupling between the two loading modes and the two 
deformation modes plays a significant role in the testing, analysis, and design of 
composite materials. 

Isotropic Materials 

When there exist no preferred directions in the material (i.e., the material has 
infinite number of planes of material symmetry), the number of independent elastic 
coefficients reduces to 2. Such materials are called isotropic. For isotropic materials 
we have 

E1 = E2 = E3 = E, G 12 = G1:3 = G2:3 == G, V12 = V2:3 = V13 == v (1.3.55 ) 

Consequently, Eqs. (1.3.44) and (1.3.47), in view of the relations (1.3.53), (1.3.54) 
and (1.3.55), take the form 

a1 I-v v v 0 0 0 10 1 

a2 v I-v v 0 0 0 10 2 

a3 v v I-v 0 0 0 103 =A 0 0 0 ~(1 - 2v) 0 0 a4 104 

a5 0 0 0 0 ~(1-2v) 0 105 

a6 0 0 0 0 0 ~(1-2v) 106 

(1.3.56) 
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E1 1 -v -v 0 0 0 0"1 

E2 -v 1 -v 0 0 0 0"2 

E3 1 -v -v 1 0 0 0 0"3 

E4 E 0 0 0 l+v 0 0 0"4 
(1.3.57) 

E5 0 0 0 0 l+v 0 0"5 

E6 0 0 0 0 0 l+v 0"6 

where 
A= E 

(1 + v)(l - 2v) 
(1.3.58) 

Alternatively, the stress-strain relations can be written in more compact form 
using the fact that a fourth-order isotropic tensor can be expressed as 

(1.3.59) 

where ,\ and I-" are called Lame constants. Therefore, the stress-strain relation for 
the isotropic case takes the form 

(1.3.60) 

The strain-stress relations are 

(1.3.61 ) 

We note the following relations between the Lame constants ,\ and I-" and 
engineering constants E, v and G for an isotropic material [8]: 

,\ 

v = -=-2 (~I-"-+-'\::-:-) , (1.3.62) 

The following definitions and constitutive relations are of interest in the sequel: 

_ 1 
mean stress, 0" ==30"ii' dilatation, e == Eii (1.3.63) 

1 
deviatoric stress, 0"' = 0" - a-I, deviatoric strain, E' = E - 3tr(E) (1.3.64) 

2 
O"ii = (3'\ + 21-")Eii, a- = Ke, K =,\ + 31-" (1.3.65) 

where K is the bulk modulus and I-" = G is the shear modulus. 

In view of the relations between the Lame constants and engineering constants, 
Eqs. (1.3.60) and (1.3.61) can be written in terms of engineering constants: 

E vE E vE 
O"ij = 1 + V Eij + (1 + v)(l _ 2v) EkkOij, 0" = 1 + V E + (1 + v)(l - 2v) 

1 1 
Eij = E [(1 + V)O"ij - VO"kkOd, E = E [(1 + v)O" - vtr(O")I] 

tr(E)I 

(1.3.66) 

(1.3.67) 
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The strain energy density for a linear isotropic material is given by 

1 1 
Uo = 2,Cijk£Eij Ekf = 2,(Jij Eij 

1 
= 2, ((Jl1 E11 + (J22 E22 + (J33 E33 + 2(J12E12 + 2(J13E13 + 2(J23 E23) (1.3.68) 

Plane Stress-Reduced Constitutive Relations 

A state of generalized plane stress with respect to the Xlx2-plane is defined to be 
one in which 

(1.3.69) 

where 0: and (3 take the values of 1 and 2. Although (J33 = 0, E33 is not zero. 

The strain-stress relations of an orthotropic body in plane stress state can be 
written as [see Eq. (1.3.47)] 

(1.3.70a) 

and the transverse normal strain is given by 

(1.3.70b) 

The strain-stress relations (1.3.70a) are inverted to obtain the stress-strain relations 

(1.3.71) 

where the Qij, called the plane stress-reduced stiffnesses, are given by 

Q 
_ 522 

11 - 5 2 511 22 - 5 12 
511 

Q22 = 5 2 511 22 - 5 12 
(1.3.72) 

Note that the reduced stiffnesses involve four independent material constants, E 1 , 

E2, V12, and G12 . 

The transverse shear stresses are related to the transverse shear strains in an 
orthotropic material by the relations 

(1.3.73) 
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1.3.7 Thermodynamic Principles 

Of the four principles of thermodynamics, the first law of thermodynamics and the 
second law of thermodynamics are important in the study of deformable solids. The 
first law of thermodynamics, also known as the principle of conservation of energy, 
states that the time rate of change of the total energy is equal to the sum of the rate 
of work done by applied forces and the change of heat content per unit time. The 
second law of thermodynamics places restrictions on the interconvertibility of heat 
and work done. For irreversible processes, the second law states that the entropy 
production is positive. 

The thermodynamic principles can be expressed, in the Lagrangian description 
of deformation of solid bodies, as 

aT n Q . 
pCV8t = - v . q + + a: E (1.3.74) 

where T is the temperature, q is the heat flux vector, Q is the internal heat 
generation (measured per unit volume), p is the density, Cv is the specific heat 
at constant volume or constant strain, a is the stress tensor, and Ii is the strain rate 
tensor (or time rate of the strain tensor). 

Equation (1.3.74), termed the generalized heat conduction equation, is used to 
determine the temperature distribution in the body. The viscous dissipation couples 
the thermal problem to the stress problem. Even when the viscous dissipation is 
neglected, the thermal problem is coupled to the stress problem through constitutive 
relations, as explained in the next section. 

The thermal problem for the solid requires the temperature or the heat flux to 
be specified on all parts of the boundary enclosing the heat transfer region as 

T = T(s, t) on rT 

n·q+he(T-Te)=qn(s,t) on rq 

(1.3.75a) 

(1.3.75b) 

where r is the total boundary enclosing the heat transfer region, r = rT U r q, 

rT n r q = 0, he is the convective heat transfer coefficient, Te is a reference (or sink) 
temperature for convective transfer, qn is the specified boundary flux, and s denotes 
the position of a point on the boundary. 

Thermoelasticity 

The thermoelastic problem is governed by the strain-displacement equations of 
Section 1.3.4, equations of motion of Section 1.3.5, thermodynamic equations of this 
section, and the constitutive equations to be given in this section. The constitutive 
equation of the thermal problem is the well known Fourier's heat conduction law, 
which states that heat flux is proportional to the gradient of temperature: 

aT 
q=-k·\7T or qi=-kij -

aXj 
(1.3.76) 

where k denotes the thermal conductivity tensor of order two. The negative 
sign in Eq. (1.3.51) indicates that heat flows from higher temperatures to lower 
temperatures. 
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The constitutive equations of thermoelasticity are derived by assuming the 
existence of the Helmholtz free-energy function Wo = WO(cij, T) (see [11-14]) 

WO(Cij, T) = Uo - T/T 

1 p~ 2 
= 2Cijk£ Eij Ek£ - i3ij Eije - 2To e (1.3.77a) 

such that 
aWO 

(Jij = -- = Cijk£ Eld - (3ij e 
8cij 

(1.3. 77b) 

where e = T - To, To is the reference temperature, T/ is the entropy density, and (3ij 

are material coefficients. It is assumed that T/ and (Jij are initially zero. Equation 
(1.3. 77b) is known as the Duhamel-Neumann law for an anisotropic body. Inverting 
relations (1.3.77b), we obtain 

(1.3.78) 

where Sijk£ are the elastic compliances, and aij are the thermal coefficients of 
expansion and related to (3ij by i3ij = C ijk£ ak£· 

Hygrothermal Elasticity 

Temperature and moisture concentration in fiber-reinforced composites cause 
reductions of both strength and stiffness [15-18]. Therefore, it is important to 
determine the temperature and moisture concentration in composite laminates under 
given initial and boundary conditions. As described in the previous section, the 
heat conduction problem described by equations (1.3.74)-(1.3.76) can be used to 
determine the temperature field. 

The moisture concentration problem is mathematically similar to the heat 
transfer problem. The moisture concentration c in a solid is described by Fick's 
second law: ac 

- = - \7 . qj + rP j at 
qj = -D· \7c 

(1.3.79a) 

(1.3.79b) 

where D denotes the mass dijJusitivity tensor of order two, qj is the flux vector, and 
rPj is the moisture source in the domain. The negative sign in Eq. (1.3.79b) indicates 
that moisture seeps from higher concentration to lower concentration. The boundary 
conditions involve specifying the moisture concentration or the flux normal to the 
boundary: 

c = c( s, t) on r 1 

n· qj = ('iJ(s, t) on f2 

(1.3.80a) 

(1.3.80b) 

where f = f1 Uf2, and r 1 nf2 = 0 and quantities with a hat are specified functions 
on the respective boundaries. 

The moisture-induced strains {E}M are given by 

(1.3.81 ) 
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where {aM} is the vector of coefficients of hygroscopic expansion. Thus, the 
hygrothermal strains have the same form as the thermal strains [see Eq. (1.3.76)]. 
The total strains are given by 

{E} = [S]{o-} + {aT}(T - To) + {aM}(c - co) (1.3.82) 

where To and Co are reference values from which the strains and stresses are 
measured. In view of the similarity between the thermal and moisture strains, 
we will use only thermal strains to show their contribution to governing equations 
in the sequel. 

Electroelasticity 

Electroelasticity deals with the phenomena caused by interactions between electric 
and mechanical fields. The piezoelectric effect is one snch phenomenon, and it is 
concerned with the effect of the electric charge on the deformation [14-16]. A 
laminated structure with piezoelectric laminae receives actuation through an applied 
electric field, and the piezoelectric laminae send electric signals that are used to 
measure the motion or deformation of the laminate. In these problems, the electric 
charge that is applied to actuate a structure provides an additional body force to 
the stress analysis problem, much the same way a temperature field induces a body 
force through thermal strains. 

The piezoelectric effect is described by the polarization vector P, which represents 
the electric moment per unit volume or polarization charge per unit area. It is related 
to the stress tensor by the relation (see [14-17]) 

(1.3.83a) 

where d is the third-order tensor of piezoelectric moduli. The inverse effect relates 
the electric field vector [ to the linear strain tensor E by 

(1.3.83b) 

Note that dkij is symmetric with respect to indices i and j because of the symmetry 
of Eij (note that i,j,k = 1,2,3). 

The pyroelectic effect is another phenomenon that relates temperature changes 
to polarization of a material. For a small temperature change !:1T, the change in 
polarization vector !:1P is given by 

!:1P = p!:1T (1.3.84) 

where p is the vector of pyroelectric coefficients. 

The coupling between the mechanical, thermal, and electrical fields can be 
established using thermodynamical principles and Maxwell's relations. Analogous 
to the strain energy function Uo for elasticity and the Helmholtz free-energy function 
'110 for thermoelasticity, we assume the existence of a function <Po 

<Po (Eij , [i, T) = Uo - [. D - TJT 
1 

= 2CijkC Eij EkC - eijk Eij[k - Pij Eij() 

1 pCv 2 
- -EkC [k[C - Pk[k() - -() 

2 2To 
(1.3.85a) 
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which is called the electric Gibbs free-energy function or enthalpy function, such that 

(l.3.85b) 

where aij are the components of the stress tensor, Di are the components of the 
electric displacement vector, and TJ is the entropy. Use of Eq. (l.3.85a) in Eq. 
(l.3.85b) gives the constitutive equations of a deformable piezoelectric medium: 

aij = Cijke cke - eijkEk - (3ij B 

Dk = eijk Cij + EkPE€ + Pk B 
pCv 

TJ = (3ij Cij + PkEk + To B 

(l.3.86a) 

(l.3.86b) 

(l.3.86c) 

where C ijk£ are the elastic moduli, eijk are the piezoelectric moduli, Eij are the 
dielectric constants, Pk are the pyroelectric constants, (3ij are the stress-temperature 
expansion coefficients, Cv is the specific heat per unit mass, and To is the reference 
temperature. In single-subscript notation, Eqs. (l.3.86a-c) can be expressed as 

ai = CijCj - eikEk - (3iB 

Dk = ekjCj + Ek€Ee + Pk B 
PCv 

TJ = (3ici + PkEk + To B 

(l.3.87a) 

(l.3.87b) 

(l.3.87c) 

Note that the range of summation in (l.3.87a-c) is different for different terms: 
i, j = 1,2,···,6; k, € = 1,2,3. For the general anisotropic material, there are 21 
independent elastic constants, 18 piezoelectric constants, 6 dielectric constants, 3 
pyroelectric constants, and 6 thermal expansion coefficients. 

Maxwell's equation governing the electric displacement vector is given by 

(l.3.88) 

It is often assumed that the electric field E is derivable from an electric scalar 
potential function 1jJ: 

(l.3.89) 

This assumption allows us to write Eq. (l.3.88), in view of Eq. (l.3.87b), as 

(l.3.90a) 

where 

(l.3.90b) 

This completes a review of the basic equations of solid mechanics. In the coming 
chapters reference is made to many of the equations presented here. 
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1.4 Virtual Work Principles 
1.4.1 Introduction 

In solid mechanics some of the laws of physics take several alternative forms. For 
example, the principle of conservation of linear momentum, which requires that 
the vector sum of all applied forces acting on a body be equal to the total time 
rate of momentum of the body, is known in mechanics as Newton's second law 
and it is also derivable from a variational principle. The use of Newton's laws to 
determine the governing equations of a structural problem requires isolation of a 
typical volume element of the structure with all its applied and reactive forces (i.e., 
the free-body diagram of the element). For complicated systems the procedure 
becomes more cumbersome and intractable. In addition, the type of boundary 
conditions to be used in conjunction with the derived equations is not always clear. 
In a variational approach, the governing equations are obtained by the principle of 
virtual displacements or by seeking the minimum of the total potential energy of 
the system. The variational approach, applicable to linear or nonlinear theories, is 
useful both in deriving governing equations and boundary conditions, and obtaining 
approximate solutions by variational methods. 

In the context of the present study, the principle of virtual displacements will be 
used to derive the equations of motion of laminated plates. Hence, it is useful to 
study variational principles and methods (see Reddy [6] for additional details). We 
begin with the concepts of virtual displacements and forces. 

1.4.2 Virtual Displacements and Virtual Work 

From purely geometrical considerations, a given mechanical system can take many 
possible configurations consistent with the geometric constraints of the system. Of 
all the possible configurations, only one corresponds to the actual configuration, 
and it is this configuration that satisfies Newton's second law (i.e., equations of 
equilibrium or motion of the system). The set of configurations that satisfy the 
geometric constraints but not necessarily Newton's second law is called the set of 
admissible configurations. These configurations are restricted to a neighborhood of 
the true configuration so that they are obtained from infinitesimal variations of the 
true configuration. During such variations, the geometric constraints of the system 
are not violated and all the forces are fixed at their actual values. When a mechanical 
system experiences such variations in its configuration, it is said to undergo virtual 
displacements from its true or actual configuration. These displacements need not 
have any relationship to the actual displacements that might occur due to a change 
in the applied loads. The displacements are called virtual because they are imagined 
to take place (i.e., hypothetical) while the actual loads acting at their fixed values. 
The virtual displacements at the boundary points at which the geometric conditions 
(or displacements) are specified, are necessarily zero. 

The work done by the actual forces moving through virtual displacements is 
called virtual work. The virtual work done by actual forces F in a body 0 0 in 
moving through the virtual displacements bu is given by 

bW = r F· bu dv (1.4.1) 
Joo 
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where dv denotes the volume element dv = dXldx2dx:J in the material body 0 0 . 

The external virtual work done due to virtual displacements 8u in a solid body 
0 0 subjected to body forces f per unit volume and surface tractions t per unit area 
of the boundary r (J is given by 

oV = - (r f· ou dv + r t· ou dS) .! 00 .!r (J" 

(1.4.2) 

where ds denotes a surface element and r (J denotes the portion of the boundary 
on which stresses are specified. The negative sign in Eq. (1.4.2) indicates that the 
work is performed on the body. It is understood that the displacements are specified 
on the remaining portion r 11 = r - r (J of the boundary r. Therefore, the virtual 
displacements are zero on r 11, irrespective of whether u is specified to be zero or not. 
For example, a bar fixed at one end (x = 0) and subjected to an axial load at the 
other end (x = L) can be imagined to have a virtual displacement 8'/1,( x), provided 
ou(O) = 0, because the actual displacement is specified at x = O. Thus, one may 
select O'/1,(x) = ex, where e is an arbitrary constant. 

Recall that the deformation of solid body acted upon by forces can be measured 
in terms of strains and that the body experiences internal stresses. The forces 
associated with the stress field move the material particles through displacements 
corresponding to the strain field in the body, and hence work is done. The work done 
by these internal forces in moving through displacements of the material particles 
is called internal work. Note that the work done on the body is responsible for the 
internal work stored in the body. 

The internal virtual work due to the virtual displacement 8u can be computed as 
follows. Suppose that an infinitesimal material element of volume dv = dX1dx2dx3 

of the body experiences virtual strains 8E:ij due to the virtual displacements 8'/1,i, 
where [see Eq. (1.3.12)] 

(1.4.3) 

The work done by the force due to actual stress 0"11, for example, in moving through 
the virtual displacement 8'/1,1 = 8cl1dx1 is 

Here Cij denote the strain components and O"ij the stress components. Similarly, the 
work done by the force due to stress 0"12 in the body is 

Thus, the total virtual work done by forces due to all the stresses in a volume 
element (that originally occupied the material element dV) in moving through their 
respective displacements is 

(1.4.4) 



40 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

The total internal virtual work done is obtained by integrating the above expression 
over the entire volume of the body 

8U = r aij &ij dv Joo 
(1.4.5) 

Equation (1.4.5) is valid for any material body irrespective of its constitutive 
behavior. The expression in Eq. (1.4.5) is called the virtual strain energy of a 
deformable body. 

The internal virtual work done by virtual stresses 8aij in moving through the 
actual strains Gij is 

8U* = r Gij 8aij dv Joo 
(1.4.6) 

The expression in Eq. (1.4.6) is also known as the virtual complementary strain 
energy. The virtual forces (8 Ii, 8td and virtual stresses (8aij) should be such that 
the stress equilibrium equations [see Eq. (1.3.27b)] and stress boundary conditions 
[see Eq. (1.2.25)] are satisfied: 

[8aji],j + 8fi = 0 in 0 0 

8ti == 8ajinj = 0 on r (T 

In the present study we will not consider complementary energy principles. 

1.4.3 Variational Operator and Euler Equations 

(1.4.7a) 

(1.4.7b) 

The delta symbol 8 used in conjunction with virtual displacements and forces can 
be interpreted as an operator, called the variational operator. It is used to denote a 
variation (or change) in a given quantity; i.e., 8u denotes a variation in u. Thus 8 
is an operator that produces virtual change or variation 8u in a dependent variable 
u, in much the same way as dx denotes a change in x, and 8u is called the first 
variation of u. The operator proves to be very useful in constructing virtual work 
statements and deriving governing equations from virtual work principles, as will be 
shown shortly. 

There is an analogy between the variational operator 8 and the total differential 
operator d. To see this consider a function F of the dependent variable u and its 
derivative u' = du/dx in one dimension. The total differential of F, for fixed x, is 

of of of, 
dF = ax dx + au du + au' du (1.4.8) 

The first variation of F is 

a F of, 1 02 F 2 1 02 F , 2 
8F=-·8u+-·8u+--(8u) +--(8u) + ... & a~ 2a~ 2&~ 

(1.4.9) 

Since 8u is small, terms involving squares and higher powers of 8u can be neglected. 
We have 

(1.4.10) 
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Since x is fixed during the variation of 'U to u+8u, we have dx = 0 in Eq. (1.4.8) and 
the analogy between 8F in Eq. (1.4.10) and dF in Eq. (1.4.8) becomes apparent: 
the variational operator, 8, is a differential operator with respect to the dependent 
variable, u. Indeed, the laws of variation of sums, products, ratios, powers, and so 
forth, are completely analogous to the corresponding laws of differentiation. The 
following properties of the variational operator should be noted: 

8(\7u) = \7(8u) 

8 (L u dO ) = L 8u dO 

8 (Fl ± F2) = 8F1 ± 8F2 
8 (HF2) = 8F1 F2 + F1 8F2 

8 (Fl) = 8F1 
_ Fl (8F;) 

F2 F2 F2 

8 (Fd n = n (Fdn
-

1 8F1 

(l.4.11) 

(l.4.12) 

(l.4.13) 

(l.4.14) 

(l.4.15) 

(l.4.16) 

where Fl = Fl(U) and F2 = F2(U). If G = G(u,v,w) is a function of several 
dependent variables (and possibly their derivatives), the total variation is the sum 
of partial variations: 

(l.4.17) 

where, for example, 8u denotes the partial variation of G with respect to u. 

Functionals 

Integral expressions whose integrands are functions of dependent variables and their 
derivatives are called functionals. Mathematically, a functional is a real number (or 
scalar) obtained by operating on functions (dependent variables) from a given set 
(or vector space). Thus, a functional IC) is an operator which maps functions u of 
a vector space H into a real number I ( u) in the set of real numbers, R: 

(l.4.18) 

For example, the integral expression 

I(u) = .Ia
L 

[au (x) + bu'(x) + cul/(x)] dx 

qualifies as a functional for all integrable and square-integrable functions u(x). Note 
that I( u) is a number whose value depends on the choice of u. 

A functional is said to be linear if 

I(o:u + ;3v) = o:I(u) + ;3I(v) (l.4.19) 

for all constants 0: and ;3 and dependent variables u and v. A quadratic functional 
is one which satisfies the relation 

(l.4.20) 
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for all constants a and dependent variable u. 

The first variation of a functional J( u) of u (and its derivatives) can be calculated 
using the definition in Eq. (1.4.10). For instance consider the functional J ( u) defined 
in the interval (a, b) 

J( u) = lb F(x, U, u') dx (1.4.21) 

where F is a function, in general, of x, u and du/dx == u'. The first variation of the 
functional J is 

I
b Ib Ib (aF aF) 8I = 8 a F dx = a 8F dx = a au 8u + au,8u' dx 

Thus, the variation of a functional can be readily calculated. 

Fundamental Lemma of Variational Calculus 

(1.4.22) 

The fundamental lemma of calculus of variations can be stated as follows: for any 
integrable function G, if the statement 

lb G· r; dx = 0 (1.4.23) 

holds for any arbitrary continuous function r;(x), for all x in (a, b), then it follows 
that G = 0 in (a, b). A mathematical proof of the lemma can be found in most books 
on variational calculus. A simple proof of the lemma follows. Since r; is arbitrary, 
it can be replaced by G. We have 

Since an integral of a positive function is positive, the above statement implies that 
G = O. A more general statement of the fundamental lemma is as follows: If r; is 
arbitrary in a < x < band r;(a) is arbitrary, then 

if lb Gr; dx + B(a)r;(a) = 0 

then G = 0 in a < x < band B ( a) = 0 

(1.4.24a) 

(1.4.24b) 

In most of our study in this book, we shall be interested in the use of Eqs. (1.4.24a,b) 
because they provide the means to the determination of the governing equations and 
boundary conditions and their solution by the variational methods. 

Consider the question of finding the extremum (i.e., minimum or maximum) of 
the functional 

J(u) = lb F(x,u,u') dx, u(a) = ua , u(b) = Ub (1.4.25) 

The necessary condition for the functional to have a minimum or maximum is 
(analogous to minima or maxima of functions) that its first variation be zero: 

8I = 0 (1.4.26) 
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Using Eq. (1.4.10) we obtain 

I
b (OF OF,) o = (l au 8u + ou,8u dx 

Note that 8u' = 8(du/dx) = d(8u)/dx. We cannot use the fundamental lemma in 
the above equation because it is not in the form of Eq. (1.4.24). To recast the above 
equation in the form of Eq. (1.4.24), we integrate the second term by parts and 
obtain 

rb 
(OF OF) O=.fa au 8u + ou,8u' dx 

= Ib (OF 8u + of d8U) dx 
a au au' dx 

= lb [OF _ ~ (OF)] 8u dx + [OF 8U]b 
a au dx au' au' a 

(1.4.27) 

Let us first examine the boundary expression: 

[OF] .8u 
au' 

There are two parts to this expression: a varied quantity and its coefficient. The 
variable u that is subjected to variation is called the primary variable. The 
coefficient of the varied quantity, i.e., the expression next to 8u in the boundary 
term, is called a secondary variable. The product of the primary variable (or its 
variation) with the secondary variable often represents the work done (or virtual 
work done). The specificatioIl of the primary variable at a boundary point is 
termed the essential boundary condition, and the specification of the secondary 
variable (oF/au') is called the natural boundary condition. In solid mechanics, 
these are known as the geometric and force boundary conditions, respectively. 
All admissible variations must satisfy the homogeneous form of the essential (or 
geometric) boundary conditions: 8u(a) = 0 and 8u(b) = O. Elsewhere, a < x < b, 
8u is arbitrary. 

Returning to Eq. (1.4.27), we note that the boundary terms drop out because of 
the conditions on 8u. We have 

Ib [OF d (OF)] o = - - - --, 8u dx 
. a au dx au 

which must hold for any 8u in (a, b). In view of the fundamental lemma of calculus 
of variations (rJ = 8u), it follows that 

G=:oF _~(OF)=O III a<x<b 
au dx au' 

(1.4.28) 

Thus the necessary condition for I (u) to be an extremum at u = u( x) is that u( x) 
be the solution of Eq. (1.4.28). 
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If u(a) = U a and 8u(b) is arbitrary (i.e., u(a) is specified but u is not specified at 
x = b), then 8u(a) = 0 and we have from Eq. (1.4.27) the result 

l
b [OF d (OF)] (OF) 0= - - - --, 8u dx + -, 8u(b) 

a au dx au au x=b 
(1.4.29) 

Since 8u is arbitrary in (a, b) and 8u(b) is arbitrary, the above equation implies, in 
view of Eq. (1.4.28), that both the integral expression and the boundary term be 
zero separately: 

of d (OF) 
au - dx au' = 0, a < x < b 

(OF) =0 atx=b 
au' 

(1.4.30a) 

(1.4.30b) 

Both Eq. (1.4.30a) and Eq. (1.4.30b) are called the Euler-Lagrange equations. 
Note that the boundary conditions that are a part of the Euler-Lagrange equations 
always belong to the class of natural boundary conditions. 

Now we have all the necessary concepts and tools in place to study the principles 
of virtual work. In the next section, we discuss the principle of virtual displacements 
and its special case, the principle of minimum total potential energy. For a discussion 
of the principle of virtual forces and its special cases, consult Reddy [6]. 

1.4.4 Principle of Virtual Displacements 

Recall that the virtual work due to virtual displacements is the work done by actual 
forces in displacing the body through virtual displacements that are consistent 
with the geometric constraints. All applied forces are kept constant during the 
virtual displacements. Consider a rigid body acted upon by a set of applied 
forces Fl, F 2, ... F n, and suppose that the points of application of these forces 
are subjected to the virtual displacements 8Ul, 8U2, "', 8un , respectively. The 
virtual displacement 8Ui has no relation to 8uj for i i- j. The external virtual work 
done by the virtual displacements is 

n 

8V = -[Fl' 8Ul + F 2 · 8U2 + ... + Fn' 8un ] = - LF i · 8Ui 
i=l 

(1.4.31) 

The internal virtual work done 8U is zero because a rigid body does not undergo 
any strains (hence virtual strains are zero). In addition, the virtual displacements 
8Ul, 8U2, "', 8un should all be the same, say 8u, for a rigid body. Thus, we have 

(1.4.32) 

But by Newton's second law, the vector sum of the forces acting on a body in 
static equilibrium is zero. This implies that the total virtual work, 8U + 8V, is 
equal to zero. Thus, for a body in equilibrium the total virtual work done due to 
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virtual displacements is zero. This statement is known as the principle of virtual 
displacements. The principle also holds for continuous, deformable bodies, for which 
8U is not zero. In this section, the principle of virtual displacements and its special 
case are described since they play an important role in the formulation of theories 
(e.g., plate theories) and their analysis by variational methods of approximation. 

Consider a continuous body B in equilibrium under the action of body forces f and 
surface tractions t. Let the reference configuration be the initial configuration Co, 
whose volume is denoted as no. Suppose that over portion r,u of the total boundary 
r of the region no the displacements are specified to be U, and on portion r a the 
tractions are specified to be t. The boundary portions r u and r a are disjoint (i.e., 
do not overlap), and their sum is the total boundary r. Let u be the displacement 
vector corresponding to the equilibrium configuration of the body, and let (J and 
e be the associated stress and strain tensors, respectively. The set of admissible 
configurations are defined by sufficiently differentiable functions that satisfy the 
geometric boundary conditions: u = U on r u. 

If the body is in equilibrium, then of all admissible configurations, the actual one 
corresponding to the equilibrium configuration makes the total virtual work done 
zero. In order to determine the equations governing the equilibrium configuration 
C, we let the body experience a virtual displacement 8u from the true configuration 
C. The virtual displacements are arbitrary, continuous functions except that they 
satisfy the homogeneous form of geometric boundary conditions; i.e., they must 
belong to the set of admissible variations. 

The principle of virtual displacements can be stated as: if a continuous body 
is in equilibrium, the virtual work of all actual forces in moving through a virtual 
displacement is zero: 

8U +8V == 8W = 0 (1.4.33) 

Just as we derived the Euler-Lagrange equations associated with the statement 
8I = 0, we can derive them for the statement in Eq. (1.4.33). However, first 
we must identify 8U and 8V for a given problem. The principle of virtual work is 
independent of any constitutive law and applies to both elastic (linear and nonlinear) 
and inelastic continua. 

For a solid body, the external and internal virtual work expressions are given in 
Eqs. (1.4.2) and (1.4.5), respectively. The principle can be expressed as 

r (J: be dv - r f· 8u dv - r t· 8u ds = 0 
Jou JOa Jra (1.4.34) 

where (J : 8e denotes the "double dot product," no is the volume of the undeformed 
body, and dv and ds denote the volume and surface elements of no. Writing in 
terms of the Cartesian rectangular components, Eq. (1.4.34) takes the form 

(1.4.35) 

where the summation on repeated subscripts is implied. 

The Euler-Lagrange equations associated with the statement (1.4.35) of the 
principle of virtual displacements are nothing but the equilibrium equations of the 
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3-D elasticity theory. Recall the strain-displacement equations from Eq. (1.3.11). 
The virtual strains 8E ij are related to the virtual displacements 8Ui by 

1 
8E = -(8u + 8u) t) 2 t,) ),t , (1.4.36) 

Substituting 8Eij from the above equation into Eq. (1.4.35), and using the divergence 
theorem, Eq. (1.2.38), to transfer differentiation from 8Ui to its coefficient, one 
obtains ((}ij = (}ji) 

(1.4.37) 

Since r = r u u r a and 8Ui = 0 on r u, we have 

(1.4.38) 

Because the virtual displacements are arbitrary in no and on r a, Eq. (1.4.38) yields 
the following equations [ef., Eq. (1.3.27b)] 

(1.4.39) 

(1.4.40) 

Equations (1.4.39) and (1.4.40) are the Euler-Lagrange equations associated with 
the principle of virtual displacements for a body undergoing small deformation. The 
stress boundary conditions in Eq. (1.4.40) are the natural boundary conditions. The 
principle of virtual displacements is applicable to any continuous body with arbitrary 
constitutive behavior (i.e., elastic or inelastic). 

Example 1.4.1: (Euler-Bernoulli beam theory) _________________ _ 

Consider the bending of a beam of length L, Young's modulus E and moment of inertia I, and 
subjected to distributed axial force f(x) and transverse load q (see Figure 1.4.1). Under the 
assumption of small strains and displacements, we derive the governing differential equation of the 
beam using the Euler-Bernoulli hypotheses, which assumes that straight lines perpendicular to the 
beam axis before deformation remain (1) straight, (2) perpendicular to the tangent line to the beam 
axis, and (3) inextensible after deformation. These assumptions lead to the displacement field (see 
Figure 1.4.1a) 

dwo 
u = uo(x) - z dx' v = 0, w = wo(x) (1.4.41) 

where (u, v, w) are the displacements of a point (x, y, z) along the x, y and z coordinates, respectively, 
and (uo, wo) are the displacements of the point (x, 0, 0). Under the assumption of smallness of strains 
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Figure 1.4.1: Bending of beams. (a) Kinematics of deformation of an Euler
Bernoulli beam. (b) Equilibrium of a beam element. (c) Definitions 
(or internal equilibrium) of stress resultants. 

and rotations, the only nonzero strain is 

(1.4.42) 

First we derive the equilihrium equations using Newton's second law of motion. Summing the 
forces and moments on an element of the beam (see Figure 1.4.1b) gives the following equilibrium 
equations: 

LFx =0: 

LFz =0: 

Llv1y = 0: 

dN 
- dx = f(x). 

dV 
- - = q(x) 

dx 

V _ dM =0 
dx 

(1.4.43a) 

(1.4.43b) 

(1.4.43c) 

where N(x) is the net axial force, M(x) the hending moment, and V(x) the shear force, which are 
known as the stress resultants, and they are defined in terms of the stresses a xx and au on a cross 
section as (see Figure 1.4.1c) 

N(x) = r a" dA, M(x) = ;. a.rxz dA, V(x) = r axzdA 
.fA .A JA 

(1.4.44) 

Here A denotes the area of cross section. Equations (1.4.43h) and (1.4.43c) can be combined into 
the single equation so that Eqs. (1.4.43a-c) reduce to 

dN 
--d = Hr), 

x 
d2 M 
-- =q(x) 

dx2 
(1.4.45a, b) 
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The stress resultants (N, M) can be related back to the stress CTxx using the linear elastic 
constitutive relation for an isotropic material as [see Eq. (1.4.42)] 

First, note that 

or 

N(x) = 1 CTxx dA = E~:O 1 dA = EA d;: 

1 1 (duo d2wo) d2wo 
M(x) = CTxxZ dA = E -d - Z-2- z dA = -EI-2-A A X dx dx 

duo 
dx 

M 
EI 

(1.4.46) 

(1.4.47a) 

(1.4.47b) 

(1.4.48) 

where I is the moment of inertia about the axis of bending (y-axis) and z is the transverse 
coordinate. Note that the x-axis is taken through the geometric centroid of the cross section 
so that fA zdA = O. Using the relations in Eq. (1.4.48) in Eq. (1.4.46), we obtain 

N Mz 
CTxx = A + I' (1.4.49) 

Next, we derive the governing equations (1.4.45a,b) using the principle of virtual displacements. 
Note that for the problem at hand the only nonzero stress is CTxx . Hence, the internal virtual work 
done per unit length of the beam by the actual internal force CTxx dA in moving through the virtual 
displacements t5E:xx dx is given by CTxxdA· DE:xxdx. The total internal virtual work done is 

(1.4.50) 

where all other stresses are assumed to be zero; i.e., the Euler-Bernoulli assumptions are invoked. 
The actual strain in the Euler-Bernoulli beam theory is given by Eq. (1.4.42). The virtual 
strain DE:xx is related to the virtual displacements (8uo,8wo) by 8cxx = (d8uo/dx) -z(d28wo/dx2). 
Substituting this expression into (1.4.50), we obtain 

(1.4.51a) 

The virtual work done by the external distributed forces f(x) and q(x) in moving through the 
displacements 8uo and 8wo, respectively, is 

8V = -1oL 
(f8uo + q8wo) dx (1.4.51b) 

The virtual work done by any applied point loads (and moments) must be added to 8V in Eq. 
(1.4.51b). For example, the virtual work done by the counterclockwise moment ML at x = L in 
rotating through the virtual rotation d~:o (L) is 

ML (_ d8wo) 
dx L 

and the virtual work done by an axial point load PL in moving through 8uo(L) and a transverse 
point load FL in moving through the virtual displacement 8wo(L) is (see Figure 1.4.2) 
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Thus, the total external virtual work done is 

(1.4.52) 

The principle of virtual displacements states that if the beam is in equilibrium we must have 
6U + 6V = 0 or 

l L (d6'110 d26wO ) ( d6wo) N-- - M--2- - j6'110 - q6wo dx - ML ---. - PL6'110(L) - FL6wO(L) = 0 
o dx dx dx x=L 

(1.4.53) 

To obtain the Euler-Lagrange equations associated with the virtual work statement (1.4.47), 
integrate the first term by parts once and the second term by parts twice and obtain 

Io
L 

[( dN) ( d
2 

M ) ] [ d6wo dM ] L -- - j 6'110 + --- - q 6wo dx + N6'110 - M-- + -6wo 
. 0 dx dx2 dx dx 0 

( 
d6wo) - ML -~ x=L - PL6'110(L) - FL 6wO(L) = 0 

Note from the boundary terms that '110, Wo and dwo/dx are primary variables and N, d!vl/dx = V 
and M are the secondary variables of the problem. We have 

First, consider the integral expressions in (1.4.54). Since 6'110 and 6wo are independent and 
arbitrary in 0 < x < L, we obtain the Euler equations 

6'110 : 
dN 

- dx -f=O, O<x<L 

6wo: 
d2 M 

- dx2 - q = 0 , 0 < x < L 

which are the same as those in Eqs. (1.4.45a,b). 

uoCO) = 0 
wo(O)=O 
w:,(O)=O 

z, Wo 

q(x) 

(l.4.55a) 

(1.4.5.5b) 

Figure 1.4.2: A cantilever beam with distributed loads f and q, and concentrated 
loads PL , FL and ML at the right end. 
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Next, consider the boundary expressions in (1.4.54). If the beam is fixed at x = 0 and subjected 
to forces PI, M L , and FL , the virtual displacements 8uo and 8wo must satisfy the conditions 

8uo(0) = 0, 8wo(0) = 0, (
d8wO) = 0 

dx x=O 
(1.4.56) 

and they are arbitrary at x = L. Consequently, the second, fourth and sixth boundary expressions 
vanish, and we have the (natural) boundary conditions resulting from the virtual work principle: 

8uo(L) : 

8wo(L) : 

(
d8WO) : 

dx x=L 

N(L) - PL = 0, at x = L 

( dd
M

) -FL=O, at x=L 
x x=L 

M(L) - ML = 0, at x = L 

(1.4.57) 

(1.4.58) 

(1.4.59) 

We note that Eqs. (1.4.55a) and (1.4.57) together define axial deformation, while Eqs. (1.4.55b), 
(1.4.58) and (1.4.59) describe bending deformation of the beam. These sets of equations can be 
solved independently as N is only a function of Uo and M is a function of only Wo [see Eq. (1.4.48)]. 

The Principle of Minimum Total Potential Energy 

A special case of the principle of virtual displacements that deals with linear as 
well as nonlinear elastic bodies is known as the principle of minimum total potential 
energy. For elastic bodies (in the absence of temperature variations) there exists a 
strain energy density function Uo such that 

8Uo 
a=--

Oc 
or 

8Uo 
aij =-

Ocij 
(1.4.60) 

Equation (1.4.60) represents the constitutive equation of an hyperelastic material. 
The strain energy density Uo is a single-valued function of strains at a point 
and is assumed to be positive definite. The statement of the principle of virtual 
displacements, Eq. (1.4.34), can be expressed in terms of the strain energy density 
Uo: 

r 8::0 : bE dv - [r f· bu dv + r t· bu dS] = 0 Jou uE Joo Jra 
or, in component form, 

The first integral is equal to 

r bUo dv = bU Joo 

where U is the internal strain energy functional 

U = r Uo dv 
Joo 

(1.4.61a) 

(1.4.61b) 

(1.4.62a) 
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Suppose that there exists a potential V whose first variation is 

(1.4.62b) 

Then the principle of virtual work takes the form 

bU + bV = b(U + V) == bIT = 0 (1.4.63) 

The sum U + V = IT is called the total potential energy of the elastic body. The 
statement in Eq. (1.4.63) is known as the principle of minimum total potential 
energy. It means that of all admissible displacements, those which satisfy the 
equilibrium equations make the total potential energy a minimum: 

IT(u) :S IT(u) (1.4.64) 

where u is the true solution and u is any admissible displacement field. The equality 
holds only if u = u. 

Example 1.4.2: 

We consider the cantilever beam problem of Example 1.4.1 (see Figure 1.4.2). The minimum total 
potential energy principle requires us to construct the total potential energy (i.e., sum of the strain 
energy and potential energy due to applied loads) of the beam and set its first variation to zero to 
obtain the Euler-Lagrange equations of the functional. 

The total strain energy stored in the beam is 

(1.4.65) 

where Eq. (1.4.48) is used to write the last expression for U. The work done by external applied 
loads f, q, Jvh, PL and FL is 

(1.4.66) 

The total potential energy of the beam is given by 

l L[EA(dUO )2 EI(d2wo)2 1 IT = U + V = - - + - -2- - fuo - qwo dx 
o 2 dx 2 dx 

( 
dwo) - PLuo(L) - Ah - dXc=L - FLWO(L) (1.4.67) 

The total potential energy principle requires that O(U + V) = 0: 

0 - EAduo douo E1d Wo d owo f" " d . l L ( 2 2 ) - --- + ----- - uUo -quwo .x 
o dx dx dx2 dx2 

. ( dOwo) - PLouo(L) - Ah --- . - FLowo(L) 
dx .r=L 
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Integration by parts of the first two terms, and use of Eq. (1.4.56) and the property that 8uo and 
8wQ are arbitrary both in (0, L) and at x = L, yields the Euler equations 

-.!!...(EAdUO)-f=O,O<X<L 
dx dx 

(1.4.68a) 

~ (Eld2WO) _ = 0 0 < x < L 
dx2 dx2 q , (1.4.68b) 

( EA
dUo

) -PL=O 
dx x=L 

(1.4.68c) 

( _El
d2wO

) _ ML = 0 
dx 2 

x=L 

(1.4.68d) 

[_.!!... (Eld2wO)] _ FL = 0 
dx dx 2 

x=L 

(1.4.68e) 

Equations (1.4.55a,b), and (1.4.57)-(1.4.59) are the same as above when Nand M are replaced in 
terms of Uo and Wo using Eq. (1.4.47a,b), i.e., when the beam constitutive equations are used. 

The minimum property of the total potential energy can be established by considering an 
arbitrary admissible displacement field, (il, w) 

il = Uo + aVl, a small, Vl(O) = 0 

w = Wo + (3v2' (3 small, V2(0) = 0, 

For the example problem we have 

Now, consider the second integral and the boundary terms 

(
dV2) _ 0 
dx x=o-

(1.4.69a) 

(1.4.69b) 

(1.4.70a) 
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(1.4.70b) 

The boundary terms at x = 0 are zero because of the conditions in Eq. (1.4.69a,b). Since (uo, wo) 
is the true solution of the problem, all terms in Eq. (1.4.70b) are zero. Thus, Eq. (1.4.70a) becomes 

IT(u,w) = IT(uo, wo) + Io L [a2 Et (~~: ) 2 + (32 ~I (~:i ) 2] dx 

2: IT ( Uo , wo) (1.4.71) 

and the equality holds only when u = Uo and w = Wo. Thus IT(u,w) is greater than IT(uo,wo) when 
'w i= Wo and 'tL i= uo, establishing the minimum character of the total potential energy of the beam. 

One may note that in this example, we considered axial deformation of a bar (set llJo = 0) as 
well as pure bending of a beam (set 1LO = 0). These equations are uncoupled for the case of small 
strains. The total potential energy is the minimum with respect to both Uo and Wo. 

Hamilton's Principle 

Hamilton's principle is a generalization of the principle of virtual displacements to 
dynamics of systems. The principle assumes that the system under consideration 
is characterized by two energy functions; a kinetic energy K and a potential energy 
II. For deformable bodies, the energies can be expressed in terms of the dependent 
variables (which are functions of position) of the problem. Hamilton's principle may 
be considered as dynamics version of the principle of virtual displacements [6]. 

Newton's second law of motion applied to deformable bodies expresses the global 
statement of the principle of conservation of linear momentum. However, it should 
be noted that Newton's second law of motion for continuous media is not sufficient 
to determine its motion u = u(x, t); the kinematic conditions and constitutive 
equations discussed in the previous sections are needed to completely determine 
the motion. 

Newton's second law of motion for a continuous body can be written in general 
terms as 

F -ma = 0 (1.4.72) 

where m is the mass, a the acceleration vector, and F is the resultant of all forces 
acting on the body. The actual path u = u(x, t) followed by a material particle 
in position x in the body is varied, consistent with kinematic (essential) boundary 
conditions, to u + bu, where bu is the admissible variation (or virtual displacement) 
of the path. We suppose that the varied path differs from the actual path except 
at initial and final times, t1 and t2, respectively. Thus, an admissible variation bu 
satisfies the conditions, 

bu = 0 on 51 for all t 

bu(x, td = bu(x, t2) = 0 for all x 

(1.4.73a) 

(1.4.73b) 
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where Sl denotes the portion of the boundary of the body where the displacement 
vector u is specified. Note that the scalar product of Eq. (1.4.72) with bu gives 
work done at point x, because F, a, and u are vector functions of position (whereas 
the work is a scalar). Integration of the product over the volume (and surface) of 
the body gives the total work done by all points. 

The work done on the body at time t by the resultant force in moving through 
the virtual displacement bu is given by 

r f. Ou dV + r t· ou dS - r '(; : oE dV 
Jv J~ Jv (1.4.74) 

where f is the body force vector, t the specified surface traction vector, and '(; and 
E are the stress and strain tensors. The last term in Eq. (1.4.74) represents the 
virtual work of internal forces stored in the body. The strains bE are assumed to be 
compatible in the sense that the strain-displacement relations (1.3.11) are satisfied. 
The work done by the inertia force ma in moving through the virtual displacement 
bu is given by 

(1.4.75) 

where p is the mass density (can be a function of position) of the medium. We have 
the result 

1:2 {Iv p ~:~ . Ou dV - [Iv (f. Ou - '(; : oE) dV + h2 t . OU dS] }dt = 0 

or 

l t2 [1 au aou 1 ( <-> <-» J A ] - p~ . ---:;:} dV + f· Ou - (T : 0 E dV + t . Ou dS dt = 0 (1.4.76) 
tl v ut ut v 52 

In arriving at the expression in Eq. (1.4.76), integration-by-parts is used on the first 
term; the integrated terms vanish because of the initial and final conditions in Eq. 
(1.4.73b). Equation (1.4.76) is known as the general form of Hamilton's principle 
for a continuous medium (conservative or not, and elastic or not). 

For an ideal elastic body, we recall from the previous discussions that the forces 
f and t are conservative, 

oV = - (Iv f . Ou dV + h2 t . Ou dS) (1.4.77a) 

and that there exists a strain energy density function Uo = Uo (Eij) such that 

(1.4.77b) 

Substituting Eqs. (1.4.77a,b) into Eq. (1.4.76), we obtain 

l
t2 

o [K - (V + U)]dt = 0 
tl 

(1.4.78) 
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where K and U are the kinetic and strain energies: 

K = r £ ou . ou dV, U = Iv' Uo dV 
}v 2 ot ot }, (1.4.79) 

Equation(1.4.78) represents Hamilton's principle for an elastic body (linear or 
nonlinear). Recall that the sum of the strain energy and potential energy of external 
forces, U + V, is called the total potential energy, II, of the body. For bodies 
involving no motion (i.e., forces are applied sufficiently slowly such that the motion 
is independent of time, and the inertia forces are negligible), Hamilton's principle 
(1.4.78) reduces to the principle of virtual displacements. 

The Euler-Lagrange equations associated with the Lagrangian, L = K - II, 
(II = U + V) can be obtained from Eq. (1.4.78): 

I
t2 

0=8 L(u, \i'u, u) dt 
tl 

I t2 J ( 02 
U +-» j A = [ P"'2 -diVCT-f ·8udV+ ,(t-t).8udS]dt 

tl v ut S2 
(1.4.80) 

where integration-by-parts, gradient theorems, and Eqs. (1.4.73a,b) were used in 
arriving at Eq. (1.4.80) from Eq. (1.4.78). Because 8u is arbitrary for t, tl < t < t2, 
and for x in V and also on S2, it follows that 

in V 

t-t=O (1.4.81) 

Equations (1.4.81) are the Euler-Lagrange equations for an elastic body. 

Example 1.4.3 (Third-order beam theor'Y) _____________________ _ 

Consider the displacement field 

( ) _ , , . :l ( oWo ) 
U x, z, t - u.o(x, t) + Z¢(.1,. t) - CIZ ¢ + ax 

w(:r, Z, t) = w()(x, t) (1.4.82) 

where C1 = 4/(3h2), Uo is the axial displacement, Wo the transverse displacement, and ¢ the rotation 
of a point on the centroidal axis x of the beam. The displacement field is arrived by (a) relaxing the 
Euler-Bernoulli hypotheses to let the straight lines normal to the beam axis before deformation to 
become (cubic) curves with arbitrary slope at Z = 0, and (b) requiring the transverse shear stress to 
vanish at the top and bottom of the beam. Thus. only restriction from the Euler-I3ernoulli beam 
theory that is kept is W(.T, Z, t) = wo(x, t) (i.e .. transverse deflection is independent of the thickness 
coordinate z). The displacement field (1.4.82) accommodates quadratic variation of transverse shear 
strain E.rz and shear stress a xz through the beam height. as can be seen from the strains computed 
next. 

Now suppose that the beam is subjected to distributed axial force f(x) and transverse load of 
q(x, t) along the length of the beam. Since we are primarily interested in deriving the equations of 
motion and the nature of the boundary conditions of the beam that experiences a displacement field 
of the form in Eq. (1.4.82), we will not consider specific geometric or force boundary conditions 
here. The procedure to obtain the equations of motion and boundary conditions involves the 
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following steps: (i) compute the strains, (ii) compute the virtual energies required in Hamilton's 
principle, and (iii) use Hamilton's principle, derive the Euler-Lagrange equations of motion and 
identify the primary and secondary variables of the theory (which in turn help identify the nature 
of the boundary conditions). 

Although one can use the general nonlinear strain-displacement relations, here we restrict the 
development to small strains and displacements. The linear strains associated with the displacement 
field are 

where 

Exx = E~:Q + ZE~;,J + z3E~~ 
"(xz = "(£~) + z2,,(£;) 

(O)_OUo (I)_O¢ (3)_~ (o¢+o2wo) 
Exx - ax' Exx - ox ' Exx - CI oX o:c2 

(0) _ OWo (2) _ ( OWo) 
"(xz - ¢ + ox ' "(xz - ~c2 ¢ + ox 

(1.4.83a) 

(1.4.83b) 

and C2 = 4/h2. Note that "(xz = 2Exz is a quadratic function of z. Hence, axz = G,,(xz is also 
quadratic in z. 

From the dynamic version of the principle of virtual displacements (i.e. Hamilton's principle) 
we have 

rT r r [ (0) (1) 3" (3)) (" (0) 2" (2))] dA 0=10 lolA a xx 6Exx + Z6Exx + Z vEx x + a xz v"(xz + Z v"(xz dxdt 

~ lT lL lp{[uo+Z4>~Clz3 (4)+ O;~n] [6uo+z64>~Clz3 (64)+ O~~o)] 

+ w06wo }dAdxdt ~ lT lL (f6uo + q6wo)dxdt 

= lT lL (Nxx&~:Q + Mxx6E~;,J + Pxx6E~~ + Qx6"(£~) + Rx6"(£;)) dxdt 

~ lT lL {lou06uo + [124> ~ cI14 (4) + 0:0 ) ] 64> + f6uo + q6wo} dxdt 

~ lT lL { ~cI [144> ~ cIIe (4) + 0:0 )] (64) + O~~o) + low06wo } dxdt 

where all the terms involving [ . 16' vanish on account of the assumption that all variations and 
their derivatives are zero at t = 0 and t = T, and the new variables introduced in arriving at the 
last expression are defined as follows: 

{ 
Nxx} 1h/2 { 1 } Mxx = Z a xx dz , 
Pxx -h/2 z3 

{ 
Qx } 1h/2 { 1 } 
Rx = -h/2 z2 a xz dz (1.4.85) 
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(1.4.86a) 

(1.4.86b) 

Note that Ii are zero for odd values of i (i.e., II = 13 = 15 = 0). 

Thus, the Euler-Lagrange equations are 

6uo: (1.4.87) 

6wo: 

(1.4.88a) 

6¢ : (1.4.88b) 

The last line of Eq. (1.4.84) includes boundary terms, which indicate that the primary variables 
of the theory are (those with the variational symbol) uo, wo, ¢, and 8wo/8x. The corresponding 
secondary variables are the coefficients of 6uo, 6wo, 6¢, and 86wo/8x: 

(1.4.89) 

Whcn Cl = 0 in Eq. (1.4.82), it corresponds to the displacement field of the Timoshenko beam 
theory. Thus, the equations of motion of the Timoshcnko beam theory can bc obtained directly 
from Eqs. (1.4.87) and (1.4.88a,b) by setting Cl = C2 = 0: 

(1.4.90) 

(1.4.91a) 

(1.4.91 b) 

The primary and secondary variables of the Timoshenko beam theory are: (uo, Wo, ¢) and 
(Ncrx, Q x, !vI xx). Note that the Timoshenko beam theory accounts for transverse shear strain 
IXZ = I~z and hence Qx. In thc Timoshenko beam theory Qx is defined, in place of the definition 
(1.4.85), by 

where K is the shear correction factor. 

A simplified third-order beam theor·y can be obtained from Eqs. 
setting C1 = 0 (but not (2): 

8Nxx: f - I 82uo 
8x + - 0 8t2 
- 2 

8Qx _ I 8 Wo 
8x + q - 0 8t2 

8A1xx _ Q- _ I 8 2¢ 
8x .r - 28t2 

(1.4.92) 

(1.4.87) and (1.4.88a,b) by 

(1.4.93) 

(1.4.94) 

(1.4.95) 

These equations are lower-order than those in Eqs. (1.4.87) and (1.4.88a,b). 
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1.5 Variational Methods 

1.5.1 Introduction 

In Section 1.4, we saw how virtual work and variational principles can be used to 
obtain governing differential equations and associated boundary conditions. Here 
we study the direct use of the variational principles in the solution of the underlying 
equations. The methods to be described here are known as the classical variational 
methods. In these methods, we seek an approximate solution to the problem in 
terms of adjustable parameters that are determined by substituting the assumed 
solution into a variational statement equivalent to the governing equations of the 
problem. Such solution methods are called direct methods because the approximate 
solutions are obtained directly by applying the same variational principle that was 
used to derive the governing (i.e., Euler-Lagrange) equations. 

The assumed solutions in the variational methods are in the form of a finite linear 
combination of undetermined parameters with appropriately chosen functions. This 
amounts to representing a continuous function by a finite set of functions. Since the 
solution of a continuum problem in general cannot be represented by a finite set of 
functions, error is introduced into the solution. Therefore, the solution obtained is 
an approximation to the true solution of the equations describing a physical problem. 
As the number of linearly independent terms in the assumed solution is increased, 
the error in the approximation will be reduced, and the assumed solution converges 
to the exact solution. 

It should be understood that the equations governing a physical problem are 
themselves approximate. The approximations are introduced by several sources, 
including the geometry, representation of specified loads and boundary conditions, 
and material behavior. Therefore, when one thinks of permissible error in an 
approximate solution, it is understood to be relative to exact solutions of the 
governing equations that inherently contain approximations. The variational 
methods of approximation to be described here are limited to the Ritz method. and 
the weighted-residual methods (e.g., the least-squares method, collocation method, 
and so on). The weighted-residual methods will be visited only briefly. Interested 
readers may consult the references at the end of the chapter for additional details 
[6]. 

1.5.2 The Ritz Method 

As noted in Section 1.4 the principle of virtual displacements gives the equilibrium 
equations as the Euler-Lagrange equations. These governing equations are in the 
form of differential equations that are not always solvable by exact methods of 
solution. There exists a number of approximate methods that can be used to solve 
differential equations (e.g., finite-difference methods, the finite element method, 
etc.). The most direct methods are those which bypass the derivation of the Euler
Lagrange equations, and go directly from a variational statement of the problem to 
the solution of the equations. One such direct method was proposed by Ritz [26]. 
The Ritz method is based on variational statements, such as those provided by the 
principles of virtual displacements or the minimum total potential energy, which are 
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equivalent to the governing differential equations as well as the natural boundary 
conditions, and they are also known as the weak forms. 

The basic idea of the Ritz method is described here using the principle of virtual 
displacements or the minimum total potential energy principle. In the Ritz method 
we approximate a dependent unknown (e.g., the displacement) u of a given problem 
by a finite linear combination of the form 

N 

U ~ UN = L Cj'Pj + 'Po 
j=l 

(l.5.1) 

and then determine the parameters Cj by requiring that the principle of virtual 
displacements holds for the approximate solution, i.e., minimize TI(U N) with respect 
to Cj, j = 1,2,···, N. In Eq. (l.5.1) Cj denote undetermined parameters, and 'Po 
and 'Pj are the approximation functions, which are appropriately selected functions 
of position x. Equation (l.5.1) can be viewed as a representation of u in a finite 
component form; Cj are termed the Ritz coefficients. The selection of 'Pj is discussed 
next. 

Properties of Approximation Functions 

Substitution of Eq. (l.5.1) into TI( u) for u and the minimization of TI( Cj) results 
in a set of algebraic equations among the parameters Cj. In order to ensure that 
the algebraic equations resulting from the Ritz procedure have a solution, and the 
approximate solution converges to the true solution of the problem as the number 
of parameters N is increased, we must choose 'Pj (j = 1,2,3,···, N) and 'Po such 
that they meet the following requirements: 

l. 'Po has the principal purpose of satisfying the specified essential (or geometric) 
boundary conditions associated with the variational formulation; 'Po plays the 
role of particular solution. It should be the lowest order possible for completeness. 

2. 'Pj (j = 1,2, ... ,N) should satisfy the following three conditions: 

(a) be continuous as required in the variational statement (i.e., 'Pj should be such 
that it has a nonzero contribution to the virtual work statement); 

(b) satisfy the homogeneous form of the specified essential boundary conditions; 

(c) the set {'Pj} is linearly independent and complete. (l.5.2) 

The completeness property is defined mathematically as follows. Given a function 
u and a real number f > 0, the sequence {'Pj} is said to be complete if there exists 
an integer N (which depends on f ) and scalars C1, C2,··· ,CN such that 

N 

Ilu - L Cj'Pj II < f 

j=l 

(l.5.3) 

where II . II denotes a norm in the vector space of functions u. The set {'Pj} is called 
the spanning set. A sequence of algebraic polynomials, for example, is complete if 
it contains terms of all degrees up to the highest degree (N). 
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Linear independence of a set of functions {'Pj} refers to the property that there 
exists no trivial relation among them; i.e., the relation 

holds only for all ClOj = O. Thus no function is expressible as a linear combination of 
others in the set. 

For polynomial approximations functions, the linear independence and 
completeness properties require 'Pj to be increasingly higher-order polynomials. For 
example, if 'PI is a linear polynomial, 'P2 should be a quadratic polynomial, 'P3 should 
be a cubic polynomial, and so on (but each 'Pj need not be complete by itself): 

The completeness property is essential for the convergence of the Ritz approximation 
(see Reddy [29], p. 262). 

Since the natural boundary conditions of the problem are included in the 
variational statements, we require the Ritz approximation UN to satisfy only the 
specified essential boundary conditions of the problem. This is done by selecting 'Pi 
to satisfy the homogeneous form and 'Po to satisfy the actual form of the essential 
boundary conditions. For instance, if u is specified to be U on the boundary x = L, 
we require 

'Po = u at x = L and 'Pi = 0 at x = L for i = 1,2"" ,N 

The requirement on 'Pi to satisfy the homogeneous form of the specified essential 
boundary conditions follows from the approximation adopted in Eq. (1.5.1). Since 
UN = u and 'Po = u at x = L, we have 

N 

UN(L) = L cj'Pj(L) + 'Po(L) 
j=1 

N 

u = L cj'Pj(L) + u 
j=1 

and, therefore, it follows that 2::.7=1 Cj'Pj(L) = O. Since this condition must hold for 
any set of parameters Cj, it follows that 

'Pj(L) = 0 for j = 1,2,"',N 

Note that when the specified values are zero, i.e., u = 0, there is no need to include 
'Po (or equivalently, 'Po = 0); however, 'Pj are still required to satisfy the specified 
(homogeneous) essential boundary conditions. 

The conditions in Eq. (1.5.2) provide guidelines for selecting the coordinate 
functions; they do not give any formula for generating the functions. As a general 
rule, coordinate functions should be selected from the admissible set, from the lowest 
order to a desirable order without missing any intermediate admissible terms in the 
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representation of UN(i.e., satisfy the completeness property). The function 'Po has 
no other role to play than to satisfy specified (nonhomogeneous) essential boundary 
conditions; there are no continuity conditions on 'Po. Therefore, one should select 
the lowest order 'Po that satisfies the essential boundary conditions. 

Algebraic Equations for the Ritz Parameters 

Once the functions 'Po and 'Pi are selected, the parameters Cj in Eq. (1.5.1) are 
determined by requiring UN to minimize the total potential energy functional II (or 
satisfy the principle of virtual work) of the problem: 8II(U N) = O. Note that II(U N) 
is now a real-valued function of variables, C1, C2,"', CN. Hence minimization of the 
functional II(U N) is reduced to the minimization of a function of several variables: 

(1.5.4) 

This gives N algebraic equations in the N coefficients (C1' C2, ... , CN) 

an N 
o = ~ = L AijCj - bi or [A]{c} = {b} 

c2 j=l 

(1.5.5) 

where Aij and bi are known coefficients that depend on the problem parameters 
(e.g., geometry, material coefficients, and loads) and the approximation functions. 
These coefficients will be defined for each problem discussed in the sequel. Equations 
(1.5.5) are then solved for {c} and substituted back into Eq. (1.5.1) to obtain the 
N-parameter Ritz solution. 

Some general features of the Ritz method based on the principle of virtual 
displacements are listed below: 

1. If the approximate functions 'Pi are selected to satisfy the conditions in Eq. 
(1.5.2), the assumed approximation for the displacements converges to the true 
solution with an increase in the number of parameters (i.e., as N ----+ 00). A 
mathematical proof of such an assertion can be found in [20~22, 29]. 

2. For increasing values of N, the previously computed coefficients Aij and bi of the 
algebraic equations (1.5.5) remain unchanged, provided the previously selected 
coordinate functions are not changed. One must add only the newly computed 
coefficients to the system of equations. Of course, Cj will be different for different 
values of N. 

3. If the resulting algebraic equations are symmetric, one needs to compute only 
upper or lower diagonal elements in the coefficient matrix, [A]. The symmetry 
of the coefficient matrix depends on the variational statement of the problem. 

4. If the variational (or virtual work) statement is nonlinear in u, then the resulting 
algebraic equations will also be nonlinear in the parameters Ci. To solve such 
nonlinear equations, a variety of numerical methods are available (e.g., Newton's 
method, the Newton~Raphson method, the Picard method), which will be 
discussed later in this book (see Chapter 13). 
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5. Since the strains are computed from an approximate displacement field, the 
strains and stresses are generally less accurate than the displacement. 

6. The equilibrium equations of the problem are satisfied only in the energy sense, 
not in the differential equation sense. Therefore the displacements obtained from 
the Ritz approximation, in general do not satisfy the equations of equilibrium 
pointwise, unless the solution converged to the exact solution. 

7. Since a continuous system is approximated by a finite number of coordinates 
(or degrees of freedom), the approximate system is less flexible than the 
actual system. Consequently, the displacements obtained using the principle 
of minimum total potential energy by the Ritz method converge to the exact 
displacements from below: 

U1 < U2 < ... < UN < UM ... < u(exact), for M > N 

where UN denotes the N-parameter Ritz approximation of u obtained from the 
principle of virtual displacements or the principle of minimum total potential 
energy. It should be noted that the displacements obtained from the Ritz method 
based on the total complementary energy (maximum) principle provide the upper 
bound. 

8. The Ritz method can be applied, in principle, to any physical problem that can 
be cast in a weak form ~ a form that is equivalent to the governing equations 
and natural boundary conditions of the problem. In particular, the Ritz method 
can be applied to all structural problems since a virtual work principle exists. 

Example 1.5.1: 

Consider the cantilever beam shown in Figure 1.4.2. We consider the pure bending case (i.e., 
Uo = 0). We set up the coordinate system such that the origin is at the fixed end. For this case the 
geometric (or essential) boundary conditions are 

dwo 
wo(O) = 0, dx (0) = 0 

The force (or natural) boundary conditions can be arbitrary. For example, the beam can be 
subjected to uniformly distributed transverse load q(x) = qo, concentrated point load Fo, and 
moment M o, as in Figure 1.4.2. The applied loads will have no bearing on the selection of 'Po and 
'Pi. The applied loads will enter the analysis through the expression for the external work done [see 
Eq. (1.4.52)], which will alter the expression for the coefficients Fi of Eq. (1.5.5). 

An N-parameter Ritz approximation of the transverse deflection wo(x) is chosen in the form 

N 

wo(x) "'" W N = L Cj'Pj + 'Po 
j=l 

(1.5.6) 

Since the specified essential boundary conditions are homogeneous, 'Po = O. Next, we must select 
'Pi to satisfy the homogeneous form of the specified essential boundary conditions 

d'P 
'Pi(O) = 0 and dX' (0) = 0 (1.5.7) 

and 'Pi must be differentiable as required by the total potential energy functional in Eq. (1.4.67) 
of Example 1.4.2. Since there are two conditions to satisfy, we begin with 'PI = a + bx + cx2 and 



EQUATIONS OF ANISOTROPIC ELASTICITY 63 

determine two of the three constants using Eq. (l.5.7). The third constant will remain arbitrary. 
Conditions (1.5.7) give a = b = 0, and 'PI (:1:) = c:r2 We can arbitrarily take c = 1. Using the same 
procedure, we can determine !.p2, !.p3, etc. One may set the coefficients of lower order terms to zero, 
since they are already accounted in the preceding !.pi: 

!.pI = ;r2, !.p2 = x 3, !.p:3 = x4, 'PN = x N+I 

The Ritz approximation becomes 

W N = C1x2 + C2 x3 + ... + CNx N+I (l.5.8 ) 

Substituting Eq. (1.5.8) into Eq. (1.4.67) we obtain II as a function of the coefficients CI, C2, . 
CN: 

II(CI,C2, .... CN) = lL {~I [2Cl + 6C2X + ... +N(N + 1)CNXN- 1j2 

- q(C1x2 + C2x3 + ... + CNx N+ I ) }dX 

- FdcI;r;2 + C2x3 + ... + CNx N+1]x=L 

- Ah[2c1.T + 3C2X2 + ... + (N + l)cNxN]x=L (1.5.9) 

Using the total potential energy principle, oIl = 0, which requires that Il be a minimum with 
respect to each of C1, C2, "', CN, we arrive at the conditions 

all = 0 all = 0 all = 0 
aCl • aC2 ' aCN 

The ith equation in (l.5.1O) has the form 

0= ~~ = lL { EI [2C1 + 6C2X + ... + N(N + 1)CNXN- 1
] i(i + 1)x i

-
1 - q xi+l }dX 

- F L L i+1 - Mdi + l)V 

=CI [fuL 2EI.i(i+l)Xi- 1dX] +c2 [l
L 

(jEIX.i(i+l)X i
-

1dX] + ... 

(l.5.1O) 

+ CN [fuL EIN(N + l)x N- 1i(i + l)X'-ldX] -lL q(x)xi+ldx - FLL i +1 - Mdi + I)V 

N 

= cIAil + c2A,2 + ... + cNAiN - Fi = LAi]C] - b" (i = 1,2, ... ,N) 
j=l 

where 

Aij = EI r j(j + l)xJ - I ·i(i + l)xi- Idx, 
.fo 

For one- and two-parameter approximations we have the following equations: 

qa L :' 
N = 1 : All = 4EIL, bj = -3- + FLL2 + 2NhL 

qoL2 FLL Ah 
C1 = 12EI + 4EI + 2EI ' 

W () (qa L4 FLL3 AhL2) x
2 

I X = 12EI + 4EI + 2EI L2 

N=2: 

(1.5.11a) 

(1.5.12a) 

(1.5.12b) 
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The exact solution is 

(1.5.13) 

The two-parameter solution is exact for the case in which qo = O. For qo 1'= 0, the solution is not 
exact for every x but the maximum deflection W 2 (L) coincides with the exact value wo(L). The 
three-parameter solution, with <P3 = x4, would be exact for this problem. 

If we were to choose trigonometric functions for 'Pi, we may select the functions 'Pi(X) = 

1 - cos[(2i - 1)7rx/2L]. This particular choice would not give the exact solution for a finite value 
of N, because the applied load qo, when expanded in terms of 'Pi, would involve infinite number 
of terms. Thus, a proper choice of the coordinate functions is important in realizing the exact 
solution. Of course, both algebraic and trigonometric functions would yield acceptable results with 
finite number of terms. 

1.5.3 Weighted-Residual Methods 

Consider an operator equation in the form 

A(u)=finO 

(1.5.14) 

where A is a linear or nonlinear differential operator, u is the dependent variable, f 
is a given force term in the domain 0, B1 and B2 are boundary operators associated 
with essential and natural boundary conditions of the operator A, and il and 9 are 
specified values on the portions r1 and r2 of the boundary r of the domain. An 
example of Eq. (1.5.14) is given by 

r 1 is the point x = 0, r 2 is the point x = L 

We seek a solution in the form 

N 

UN = L Cj!.pj + !.pO 

j=1 

(1.5.15) 

where the parameters Cj are determined by requiring the residual of the 
approximation 

RN = A (f. Cj!.pj + !.pO) - f i= ° 
J=1 

(1.5.16a) 

be orthogonal to N linearly independent set of weight functions 'l/Ji: 

(1.5.16b) 

The method based on this procedure is called, for obvious reason, a weighted-residual 
method. 



EQUATIONS OF ANISOTROPIC ELASTICITY 65 

The coordinate function !.po and !.pi in a weighted-residual method should satisfy 
the properties in Eq. (1.5.2), except that they should satisfy all specified boundary 
conditions: 

• !.po should satisfy all specified boundary conditions . 

• !.pi should satisfy homogeneous form of all specified boundary conditions. (1.5.17) 

The variational statement referred to in Property 2a of (1.5.2) is now given in Eq. 
(1.5.16b). Properties in (1.5.17) are required because the boundary conditions, 
both essential and natural, are not included in Eq. (1.5.16b). Both properties now 
require !.pi to be of higher order than those used in the Ritz method. On the other 
hand, 1/Ji can be any linearly independent set, such as {I, x, ... }, and no continuity 
requirements are placed on 1/Ji. 

Various special cases of the weighted-residual method differ from each other due 
to the choice of the weight function 1/Ji. The most commonly used weight functions 
are 

Galerkin's method: 1/Ji = !.pi 

Least-squares method: 1/Ji = A( !.pi) 

Collocation method: 1/Ji = 8(x - Xi) 

Here 8(-) denotes the Dirac delta function. The weighted-residual method in the 
general form (1.5.16b) (with 1/Ji #- !.pi) is known as the Petrov-Galerkin method. 
Equation (1.5.16b) provides N linearly independent equations for the determination 
of the parameters Ci. If A is a nonlinear operator, the resulting algebraic equations 
will be nonlinear. Whenever A is linear, we have 

and Eq. (1.5.16b) becomes 

where 

N 

L GijCj - qi = 0, i = 1,2,··· ,N 
j=1 

(1.5.18) 

(1.5.19a) 

(1.5.19b) 

Note that G ij is not symmetric in general, even when 1/Ji = !.pi (Galerkin's method). 
It is symmetric when A is a linear operator and 1/Ji = A(!.pi) (the least-squares 
method). 

It should be noted that in most problems of interest in solid mechanics, the 
operator A is of the form that permits the use of integration by parts to transfer 
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half of the differentiation to the weight functions 1/Ji and include natural boundary 
conditions in the integral statement (see Reddy [6]). For problems for which there 
exists a quadratic functional or a virtual work statement, the Ritz method is most 
suitable. The least-squares method is applicable to all types operators A but requires 
higher-order differentiability of l(Ji. 

The Galerkin Method 

The Galerkin method is a special case of the Petrov-Galerkin method in which 
the coordinate functions and the weighted functions are the same (l(Ji = 1/Ji). It 
constitutes a generalization of the Ritz method. When the governing equation has 
even order of highest derivative, it is possible to construct a weak form of the 
equation, and use the Ritz method. If the Galerkin method is used in such cases, 
it would involve the use of higher-order coordinate functions and the solution of 
unsymmetric equations. 

The Ritz and Galerkin methods yield the same set of algebraic equations for the 
following two cases: 

1. The specified boundary conditions of the problem are all essential type, and 
therefore the requirements on l(Ji in both methods are the same. 

2. The problem has both essential and natural boundary conditions, but the 
coordinate functions used in the Galerkin method are also used in the Ritz 
method. 

Least-Squares Method 

The least-squares method is a variational method in which the integral of the square 
of the residual in the approximation of a given differential equation is minimized 
with respect to the parameters in the approximation: 

(1.5.20a) 

or 

(1.5.20b) 

where RN is the residual defined in Eq. (1.5.16a). Equation (1.5.20) provides N 
algebraic equations for the constants Ci. 

First we note that the least-squares method is a special case of the weighted
residual method for the weight function, 1/Ji = 2(8RN/8ci) [compare Eqs. (1.5.16b) 
and (1.5.20b)]. Therefore, the coordinate functions l(Ji should satisfy the same 
conditions as in the case of the weighted-residual method. Next, if the operator 
A in the governing equation is linear, the weight function 1/Ji becomes 

(1.5.21) 

Then from Eq. (1.5.20) we have 

N f; [L A(l(Ji)A(l(Jj)dX] Cj - L [A(l(Ji)f - A('Pi)A(l(Jo)] dx = 0 
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or 

where 

N 

L LijCj - hi = 0, i = 1,2", . , N 
j=l 

(l.5.22a) 

(l.5.22b) 

Note that the coefficient matrix is symmetric. The least-squares method requires 
higher-order coordinate functions than the Ritz method because the coefficient 
matrix Lij involves the same operator as in the original differential equation and no 
trading of differentiation can be achieved. For first-order differential equations the 
least-squares method yields a symmetric coefficient matrix, whereas the Ritz and 
Galerkin methods yield unsymmetric coefficient matrices. Note that in the least
squares method the boundary conditions can also be included in the functional. For 
example, consider Eq. (l.5.14). The least-squares functional is given by 

Collocation Method 

In the collocation method, we require the residual to vanish at a selected number of 
points xi in the domain: 

RN(Xi, {c}, {¢},j) =0, (i=1,2,···,N) 

which can be written, with the help of the Dirac delta function, as 

r b(x-xi)RN(x,{c},{cp},f)dx=O, (i=1,2,···,N) in 

(l.5.24a) 

(l.5.24b) 

Thus, the collocation method is a special case of the weighted-residual method 
(l.5.16b) with 7fJi(X) = b(x - xi). In the collocation method, one must choose as 
many collocation points as there are undetermined parameters. In general, these 
points should be distributed uniformly in the domain. Otherwise, ill-conditioned 
equations among Cj may result. 

Eigenvalue and Time-Dependent Problems 

It should be noted that if the problem at hand is an eigenvalue problem or a 
time-dependent problem, the operator equation in Eq. (l.5.14) takes the following 
alternative forms: 

Eigenvalue problem 
A(u) - AC(U) = ° (l.5.25 ) 

Time-dependent problem 
At(u) + A(u) = f(x. t) (l.5.26) 
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In Eq. (1.5.25), parameter>. is called the eigenvalue, which is to be determined 
along with the eigenvector u(x), and A and C are spatial differential operators. An 
example of the equation is provided by the buckling of a beam-column 

(1.5.27) 

where u denotes the lateral deflection and P is the axial compressive load. The 
problem involves determining the value of P and mode shape u(x) such that the 
governing equation and certain end conditions of the beam are satisfied. The 
minimum value of P is called the critical buckling load. Comparing Eq. (1.5.27) 
with Eq. (1.5.25), we note that 

>. = P, 

In Eq. (1.5.26) A is a spatial differential operator and At is a temporal differential 
operator. Examples of Eq. (1.5.26) are provided by the equations governing the axial 
motion of a bar: 

EPu a ( aU) -p- - - EAo- = f(x, t) at2 ax ax (1.5.28) 

where u denotes the axial displacement, p the density, E Young's modulus, Ao area 
of cross section, and f body force per unit length. In this case, we have 

a ( aU) A(u) = -- EAo-ax ax 

Application of the weighted-residual method to Eqs. (1.5.25) and (1.5.26) follows 
the same idea, i.e., Eq. (1.5.16b) holds. For additional details and examples, the 
reader may consult [6]. 

Example 1.5.2: ________________________________________________________ _ 

Consider the eigenvalue problem described by the equations 

d2 u 
- - - AU = 0 'u(O) = 0, 

dx2 ' 

du 
-- +u = 0 at x = 1 
dx 

(1.5.29) 

In a weighted-residual method, 'Pi must satisfy not only the condition 'PI (0) = 0 but also the 
condition 'P;(1) + 'Pi(l) = O. The lowest-order function that satisfies the two conditions is 

(1.5.30) 

The one-parameter Galerkin's solution for the natural frequency can be computed using 

(1.5.31) 

which gives (for nonzero Cl) A = 50/12 = 4.167. If the same function is used for 'PI in the one
parameter Ritz solution, we obtain the same result as in the one-parameter Galerkin solution. 
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For one-parameter collocation method with the collocation point at x 0.5, we obtain 
['PdO.5) = 1.0 and (d2'Pdd:r;2) = -4.0] 

which gives A = 4. 

The one-parameter least-squares approximation with 1/Jl = A('Pd gives 

(1.5.33) 

and A = 4.8. If we use 1h = A('Pl) - A'Pl, we obtain 

j.l (d2 ) o = cl 0 d~l + A'PI 

= -A - -A + 16 Cl (
4 2 20 ) 
5 3 

(1.5.34) 

whose roots are 

Al 2 = 25 ± ~ V445 --> Al = 7.6825, A2 = 0.6508 , 6 6 (1.5.35) 

Neither root is closer to the exact value of 4.116. This indicates that the least-squares method with 
1/Ji = A('Pi) is perhaps more suitable than 1/Ji = A('Pi) - AC('Pi). 

Let us consider a two-parameter weighted-residual solution to the problem 

(1.5.36) 

where 'Pdx) is given by Eq. (1.5.30). To determine 'P2(X), we begin with a polynomial that is one 
degree higher than that used for 'PI: 

and obtain 

We can arbitrarily pick the values of band c, except that not both are equal to zero (for obvious 
reasons). Thus we have infinite number of possibilities. If we pick b = 0 and c = 4, we have d = -3, 
and 'P2 becomes 

Ou the other hand, if we choose b = 1 and c = 2, we have d = -2, and 'P2 becomes 

The set {'PI, 'P2} is equivalent to the set {'PI, 'P2}' Note that 

U2(x) = cl 'PI (x) + c2'P2(:r) 

= cd3x - 2x2) + c2(4x2 - 3x3) 

= 3CIX + (-2Cl + 4C2)X2 - 3C2X3 

U2(x) "'" cl 'PI (x) + C2'P2(X) 

= Cl (3x - 2x2) + C2(X + 2x2 - 2x3) 

= (3Cl + (2) x + (-2C1 + 2(2) x 2 - 2C2X3 

( 1.5.37a) 

(1.5.37b) 
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Comparing the two relations we can show that 

Hence, either set will yield the same final solution for U2 (x) or >.. 
Using 'PI from (1.5.30) and 'P2 from Eq. (1.5.37a), we compute the residual of the approximation 

as 

(1.5.38) 

For the Galerkin method, we set the integral of the weighted-residual to zero and obtain 

0= 11 'PI (x)R dx = 11 'PI (x) [~C1 d:~l ~ c2 d:~l ~ >. (CI 'PI + C2'P2)] dx 

= Kl1 c1 + K 12 C2 ~ >. (MIl c1 + M 12 C2) 

0= 11 'P2(x)R dx = 11 'P2(X) [~C1 d:~l ~ C2 d:~l ~ >. (Cl'Pl + C2¢>2)] dx 

= K21C1 + K 22 C2 ~ >. (M21 C1 + M 22 C2) 

In matrix form, we have 
[K]{c} ~ >'[M]{c} = {O} 

where 
_ 'Pj 11 d2 

Kij - ~ 0 'Pi dx2 dx, 

First, for the choice of functions in Eqs. (1.5.30) and (1.5.37a), we have 

d
2

'P1 = ~4 
dx2 ' 

d
2

'P2 = 8 ~ 18x 
dx2 

Evaluating the integrals, we obtain 

j 'l d2rPl 11 2 10 
Kl1 = ~ rPl--

2 
dx = (3x ~ 2x )(4)dx = ~ 

o dx 0 .3 

11 d2rP 11 7 
K12 = ~ rPl -----f dx = (3x ~ 2x2)( ~8 + 18x)dx = -

o dx 0 3 

1
1 ~rP 11 7 

K2I = ~ rP2---,j- dx = (4x2 ~ 3x3 )(4)dx = ;-
o dx 0 3 

i 1 d2rP2 11 2 3) ( 38 K22 = ~ rP2--2 dx = (4x ~ 3x ~8 + 18x)dx = -
, 0 dx 0 15 

1
1 11 4 

MIl = rP1rPl dx = (3x ~ 2x2)(3x ~ 2x2 )d.T = ~ 
00) 

11 i1 2 2 3 3 M12 = rP1rP2 dx = (3x ~ 2x )(4x ~ 3x' )dx = - = M21 
o ' 0 5 

j 'l r1 17 
M22 = 0 rP2rP2 dx = J

o 
(4x

2 ~ 3x3 )(4x
2 ~ 3x3 )dx = 35 

and 

( 1 [50 35] >. [28 21]) {c1
} {O} 

15 35 38 ~ 35 21 17 C2 = 0 
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For nontrivial solution, Cl # 0 and C2 # 0, we set the determinant of the coefficient matrix to zero 
to obtain the characteristic polynomial 

675 - 1332 A + 315 A2 = 0 or 525 - 148A + 5A2 = 0 
7 49 

( 1.5.39) 

which gives 
Al = 4.121, A2 = 25.479 (1.5.40) 

Clearly, the value of ).,1 has improved over that computed using the one-parameter approximation. 
The exact value of the second eigenvalue is 24.139. 

If we were to use the collocation method, we may select x = 1/3 and x = 2/3 as the collocation 
points, among other choices. We leave this as an exercise to the reader. 

1.6 Summary 

In this chapter a review of the linear and nonlinear strain-displacement relations, 
equations of motion in terms of stresses and displacements, compatibility conditions 
on strains, and linear constitutive equations of elasticity, thermoelasticity and 
electroelasticity is presented. Also, an introduction to the principle of virtual 
displacements and its special case, the principle of minimum total potential energy, 
is also presented. The virtual work principles provide a means for the derivation of 
the governing equations of structural systems, provided one can write the internal 
and external virtual work expressions for the system. They also yield the natural 
boundary conditions and give the form of the essential and natural boundary 
conditions. The last feature proves to be very helpful in the derivation of higher
order plate theories, as will be shown in the sequel. A brief but complete introduction 
to the Ritz method and weighted-residual methods (Galerkin, least-squares, and 
collocation methods) is also included in this chapter. 

The principle of virtual displacements will be used in this book to derive 
governing equations of plates according to various theories, and the Ritz and 
Galerkin methods will be used to determine solutions of simple beam and plate 
problems. The ideas introduced in connection with classical variational methods 
are also useful in the study of the finite element method (see Chapter 9). 

The single most difficult step in all classical variational methods is the selection 
of the coordinate functions. The selection of coordinate functions becomes more 
difficult for problems with irregular domains or discontinuous data (i.e., loading 
or geometry). Further, the generation of coefficient matrices for the resulting 
algebraic equations cannot be automated for a class of problems that differ from 
each other only in the geometry of the domain, boundary conditions, or loading. 
These limitations of the classical variational methods are overcome by the finite 
element method. In the finite element method, the domain is represented as an 
assemblage (called mesh) of subdomains, called finite elements, that permit the 
construction of the approximation functions required in Ritz and Galerkin methods. 
Traditionally, the choice of the approximation functions in the finite element method 
is limited to algebraic polynomials. Recent trend in computational mechanics is 
to return to traditional variational methods that are meshless and find ways to 
construct approximation functions for arbitrary domains [31-36]. The traditional 
finite element method is discussed in Chapter 9. 



72 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

Problems 

1.1 The nine cross-product (or vector product) relations among the basis (el,e2,e3) can be 
expressed using the index notation as 

where Eijk is the permutation symbol. Prove the following properties of l5ij and Eijk: 

(a) F ij l5jk = Fik 

(b) l5ij l5ij = l5ii 

(c) EijkEijk = 6, (for i,j, k over a range of 1 to 3) 

(d) EijkAiAj = 0 

(e) Eijk = Ekij = Ejki = -Ejik = -Eikj = -Ekji 

1.2 Prove the following vector identities lIsing the summation convention and the E -15 identity 
(1.2.8). In the first three identities A, B, C and D denote vectors: 

(a) (A x B) x (C x D) = [A . (C x D) 1 B - [B . (C x D) 1 A 

(b) (A x B). (C x D) = (A· C)(B. D) - (A. D)(B· C) 

(c) (A x B)· [(B x C) x (C x A)l = [A. (B x C)J2 

(d) (AB)T = (B)T(A)T, where A and B are dyads 

1.3 Use the integral theorems to establish the following results: 

(a) The total vector area of a closed surface is zero. 

(b) Show that ~V = £¥~S (see Figure 1.2.3b). 

1.4 Derive the following integral identities: 

(a) _ r Wi [~ (aU i + aUj)] dn = r aWi (aUi + aUj) dn _ 1 Winj (au; + aUj) dr io aXj aXj aXi io aXj aXj aXi Jr aXj aXi 

(b) 10 (ip'\74'IjJ - '\72ip'\72'IjJ) dn = i [ip :n ('\72'IjJ) - '\72'IjJ ~~] dr 

where Wi and Ui are functions of position in n, and r is the boundary of n. The summation 
convention on repeated subscripts is used. 

1.5 If A is an arbitrary vector and <I> is an arbitrary second-order tensor, show that 

(a) (I x A) . <I> = A x <1>, 1 = unit tensor 

(b) (<I> x A)T = -A x <l>T 

1.6 Write the position of an arbitrary point (Xl,X2,X3) in the deformed body (solid lines) in 
terms of its coordinates in the undeformed body (broken lines) and compute the nonlinear 
Lagrangian strains for the body shown in Figure P1.6. 

Xz,Xz 
xz,Xz eo 

I--f 

--- Ieo 

b1 b1 
eo 

I' '1 Xl,X1 Xl,X1 a a 

(a) (b) 

Figure P1.6 
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1. 7 Write the position of an arbitrary point (Xl, X2, X3) in the deformed body (solid lines) in 
terms of its coordinates in the un deformed body (broken lines) and compute the nonlinear 
Lagrangian strains for the body shown in Figure P1.7. 

X2,X2 
x2,X2 

eo 

,I oj Parallel 
quadratic 

a X"X, a x"X, 

(a) (b) 

Figure P1.7 

1.8 Compute the axial strain in the line element AB and the shear strain at point 0 of the 
rectangular block shown in Figure P1.8 using the engineering definitions. 

X2,X2 X2,X2 eo 
I----l 

a1 

C 

B 

I' '1 x"X, x"X, a I' 
a 

(a) (b) 

Figure P1.8 

1.9 Compute the nonlinear strain components E'j associated with the displacement field 

where co, a, and b are constants. 

1.10 Consider the uniform deformation of a square of side 2 units initially centered at X = (0,0). 
The deformation is given by the mapping 

(a) Sketch the deformed configuration of the body. 

(b) Compute the components of the deformation gradient tensor F and its inverse (display 
them in matrix form). 

(c) Compute the Green's strain tensor components (display them in matrix form). 

1.11 Find the linear strains associated with the 2-D displacement field 
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where P, h, v, and EI are constants. 

1.12 Find the linear strains associated with the 2-D displacement field (U3 = 0) 

U1 = -COX1X2 + C1 X 2 + C2X3 + C4 

U2 = ~co [v (x~ - xI) + xi] + C4X3 + C5X1 + C6 

where Co, C1, ... ,C6 are constants. 

1.13 Use the definition (1.3.11) and the vector form of the displacement field and the del operator 
(\7) in the cylindrical coordinate system 

to compute the linear strain-displacement relations in the cylindrical coordinate system: 

1.14 Show that in order to have a valid displacement field corresponding to a given infinitesimal 
strain tensor E, it must satisfy the compatibility relation 

\7 x (\7 X E)T = 0 or CirnpCjnqEij,mn = 0 

where Cijk is the permutation symbol [see Eqs. (1.2.5b) and (1.2.7)J and Eij are the 
Cartesian components of the strain tensor. Hints: Begin with \7 x E and use the requirement 

Ui,jk = Ui,kj' 

1.15 Consider the Cartesian components of an infinitesimal strain field for an elastic body [8J: 

E31 = E32 = E33 = 0 

Ell = Ax~, E22 = Axi, 21012 = BX1X2 

where A and B are constants. 

(a) Determine the relation between A and B required for there to exist a continuous, 
single-valued displacement field that corresponds to this strain field. 

(b) Determine the most general form of the corresponding displacement field with the A 
and B from Part (a). 

(c) Determine the specific corresponding displacement field that is fixed at the origin so 
that u = 0 and \7 x u = 0 when x = O. 

1.16 Use the del operator (\7) and the dyadic form of a in the cylindrical coordinate system 
(r, e, z) to express the equations of motion (1.3.26a) in the cylindrical coordinate system: 

Darr ~ Dar 8 fJarz a rr - aee f _ D2 u r 
8r + r 8e + 8z + r + r - Po 8t2 

1.17 The components of a stress dyadic a at a point, referred to the rectangular Cartesian system 
(X1,X2,X3), are: 

[

12 

raj = ~ 
9 

-12 
o ~l MPa 
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Find the following: 

(a) The stress vector acting on a plane perpendicular to the vector 2el - 2e2 + e:l passing 

through the point. Here ei denote the basis vectors in (Xl, x2, X:l) system. 

(b) The magnitude of the stress vector and the angle between the stress vector and the 
normal to the plane. 

(c) The magnitudes of the normal and tangential components of the stress vector. 

(d) Principal stresses. 

1.18 The problem of pulling a fiber imbedded in a matrix material can be idealized (in the interest 
of gaining qualitative understanding of the stress distributions at the fiber-matrix interface) 
as one of studying the following problem [8]: consider a hollow circular cylinder with outer 
radius eL, inner radius b, and length L. The outer surface of the hollow cylinder is assllmed 
to be fixed and its inner surface ideally bonded to a rigid circular cylindrical core of radius 
b and length L, as shown in Fig. P1.I8. Suppose that an axial force F = Pez is applied to 
the rigid core along its centroidal axis. 

(a) Find the axial displacement fl of the rigid core by assuming the following displacement 
field in the hollow cylinder: 

7J,r = 7J,g = 0, 1/z = 7J,z(r) 

(b) Find the relationship between the applied load P and displacement fl of the rigid core. 

(c) Determine the work done by the load P. 

Here the hollow cylinder represents the matrix around the fiber while the fiber is idealized 
as the rigid core. 

Figure P1.18 

1.19-1.20 Write expressions for the total virtual work done, flW = flU + flV, for each of the 
beam structures shown in Figs. P1.I9 and P1.20. 

;0 a 

x T 
Beam (El, EA ) b 

1 
3 

4 P 

Figure P1.19 
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Figure P1.20 

Find the Euler-Lagrange equations and the natural boundary conditions associated with each of the 
functionals in Problems 1.21 through 1.25. The dependent variables are listed as the arguments 
of the functional. All other variables are not functions of the dependent variables. 

1.21 

1.22 

r [EI (d2 
) 2 k ] I1(WO) = 10 ""2 d~O + 2"W5 - qwo dx, Wo(O) = 0, wo(L) = 0 

1.23 

I1(Uo wo) = r {EA [dUO + ~ ( dWO)2]2 + EI (d2w
o)2} dx , 10 2 dx 2 dx 2 dx2 

- Fowo(L) - Puo(L) 

dwo 
Uo(O) = 0, wo(O) = 0, dx (0) = 0 

1.24 

Wo = 0, aa:o = 0 on the boundary r 

1.25 

I(u,v) = in {~ [(Cll~~ +C12~~f + (C12~~ +C22~~f 

+ C33 (~~ + ~~f]- JIu - hv }dXdY - t2 (tlu + t2v)ds 
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1.26 Suppose that the total displacements (u, v, w) along the three coordinate axes (x, y, z) in a 
laminated beam can be expressed as 

u(x, z) = uo(x) + zepx(x) + z21/Jx(x) + z3(;1x(x) 

v(x,z)=O 

w(x, z) = wo(x) + zepz(x) + z21/Jz(x) + z:'(;Iz(x) 

where (uo, wo) denote the displacements of a point (x, y, 0) along the x and z directions, 
respectively, epx denotes the rotation of a transverse normal about the y-axis, and 
1/Jx, (;Ix, epz,'ljJz , and (;Iz are functions of x. Construct the total potential energy functional 
for the theory. Assume that the beam is subjected to a distributed load q( x) at the top 
surface of the beam. 

1.27 Give the approximation functions 'PI and 'Po required in the (i) Ritz and (ii) weighted
residual methods to solve the following problems: 

(a) A bar fixed at the left end and connected to an axial elastic spring (spring constant, 
k) at the right end. 

(b) A beam clamped at the left end and simply supported at the right end. 

1.28 Consider a uniform beam fixed at one end and supported by an elastic spring (spring constant 
k) in the vertical direction. Assume that the beam is loaded by uniformly distributed load 
qo. Determine a one-parameter Ritz solution using algebraic functions. 

1.29 Use the total potential energy functional in Eq. (1.4.67) to determine a two-parameter Ritz 
solution of a simply supported beam subjected a transverse point load Fa at the center. You 
may use the symmetry about the center (x = L/2) of the beam to set up the solution. 

1.30 Determine a two-parameter Galerkin solution of the cantilever beam problem ill Example 
1.5.1. 

1.31 Determine a two-parameter collocation solution of the cantilever beam problem in Example 
1.5.1. Use collocation points x = L/2 and x = L. 

1.32 Determine the one-parameter Galerkin solution of the equation 

that governs a cantilever beam on elastic foundation and subjected to linearly varying load 
(from zero at the free end to qo at the fixed end). Take k = L = 1 and qo = 3, and use 
algebraic polynomials. 

1.33 Find the first two eigenvalues associated with the differential equation 

d2 u 
-dx2 =>"u, O<x<l; u(O)=O, u(l)+u'(l)=O 

Use the least-squares method. Use the operator definition to be A = -(d2/dx 2) to avoid 
increasing the degree of the characteristic polynomial for >... 

1.34 Solve the Poisson equation 

- \72 u = fa in a unit square, u = 0 on the boundary 

using the following N-parameter Galerkin approximation 

N 

UN = L cijsini7fx sinj7fY 
U=I 
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2 
Introduction to 

Composite Materials 

2.1 Basic Concepts and Terminology 
2.1.1 Fibers and Matrix 

Composite materials are those formed by combining two or more materials on 
a macroscopic scale such that they have better engineering properties than the 
conventional materials, for example, metals. Some of the properties that can be 
improved by forming a composite material are stiffness, strength, weight reduction, 
corrosion resistance, thermal properties, fatigue life, and wear resistance. Most man
made composite materials are made from two materials: a reinforcement material 
called fiber and a base material, called matrix material. 

Composite materials are commonly formed in three different types: (1) fibrous 
composites, which consist of fibers of one material in a matrix material of another; (2) 
particulate composites, which are composed of macro size particles of one material 
in a matrix of another; and (3) laminated composites, which are made of layers of 
different materials, including composites of the first two types. The particles and 
matrix in particulate composites can be either metallic or nonmetallic. Thus, there 
exist four possible combinations: metallic in nonmetallic, nonmetallic in metallic, 
nonmetallic in nonmetallic, and metallic in metallic. 

The stiffness and strength of fibrous composites come from fibers which are 
stiffer and stronger than the same material in bulk form. Shorter fibers, called 
whiskers, exhibit better strength and stiffness properties than long fibers. Whiskers 
are about 1 to 10 microns (i.e., micro inches or J-L in.) in diameter and 10 to 100 times 
as long. Fibers may be 5 microns to 0.005 inches. Some forms of graphite fibers are 
5 to 10 microns in diameter, and they are handled as a bundle of several thousand 
fibers. The matrix material keeps the fibers together, acts as a load-transfer medium 
between fibers, and protects fibers from being exposed to the environment. Matrix 
materials have their usual bulk-form properties whereas fibers have directionally 
dependent properties. 

The basic mechanism of load transfer between the matrix and a fiber can be 
explained by considering a cylindrical bar of single fiber in a matrix material (see 
Figure 2.1.1a). The load transfer between the matrix material and fiber takes place 
through shear stress. When the applied load P on the matrix is tensile, shear stress 
T develops on the outer surface of the fiber, and its magnitude decreases from a high 
value at the end of the fiber to zero at a distance from the end. The tensile stress (J' 

in the fiber cross section has the opposite trend, starting from zero value at the end 
of the fiber to its maximum at a distance from the end. The two stresses together 
balance the applied load, P, on the matrix. The distance from the free end to the 
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point at which the normal stress attains its maximum and shear stress becomes zero 
is known as the characteristic distance. The pure tensile state continues along the 
rest of the fiber. 

When a compressive load is applied on the matrix, the stresses in the region of 
characteristic length are reversed in sign; in the compressive region, i.e., rest of the 
fiber length, the fiber tends to buckle, much like a wire subjected to compressive 
load. At this stage, the matrix provides a lateral support to reduce the tendency of 
the fiber to buckle (Figure 2.1.1 b). When a fiber is broken, the load carried by the 
fiber is transferred through shear stress to the neighboring two fibers (see Figure 
2.1.1c), elevating the fiber axial stress level to a value of 1.50-. 

p 

't , .. ....... .",.., 

~ y--Fiber 
... p p ... 
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~:::;; 
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~ t====t .. ~._.~."T"T.l 'r;f:.=====( ~ 
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Figure 2.1.1: Load transfer and stress distributions in a single fiber embedded in 
a matrix material and subjected to an axial load. 
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2.1.2 Laminae and Laminates 

A lamina or ply is a typical sheet of composite material. It represents a fundamental 
building block. A fiber-reinforced lamina consists of many fibers embedded in a 
matrix material, which can be a metal like aluminum, or a nonmetal like thermoset 
or thermoplastic polymer. Often, coupling (chemical) agents and fillers are added 
to improve the bonding between fibers and matrix material and increase toughness. 
The fibers can be continuous or discontinuous, woven, unidirectional, bidirectional, 
or randomly distributed (see Figure 2.1.2). Unidirectional fiber-reinforced laminae 
exhibit the highest strength and modulus in the direction of the fibers, but they 
have very low strength and modulus in the direction transverse to the fibers. A poor 
bonding between a fiber and matrix results in poor transverse properties and failures 
in the form of fiber pull out, fiber breakage, and fiber buckling. Discontinuous 
fiber-reinforced composites have lower strength and modulus than continuous fiber
reinforced composites. 

A laminate is a collection of laminae stacked to achieve the desired stiffness and 
thickness. For example, unidirectional fiber-reinforced laminae can be stacked so 
that the fibers in each lamina are oriented in the same or different directions (see 
Figure 2.1.3). The sequence of various orientations of a fiber-reinforced composite 
layer in a laminate is termed the lamination scheme or stacking sequence. The layers 
are usually bonded together with the same matrix material as that in a lamina. If a 
laminate has layers with fibers oriented at 30° or 45°, it can take shear loads. The 
lamination scheme and material properties of individual lamina provide an added 
flexibility to designers to tailor the stiffness and strength of the laminate to match 
the structural stiffness and strength requirements. 

(a) Unidirectional (b) Bi-directional 

(c) Discontinuous fiber (d) Woven 

Figure 2.1.2: Various types of fiber-reinforced composite laminae. 
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-9 

p----y 

Figure 2.1.3: A laminate made up of laminae with different fiber orientations. 

Laminates made of fiber-reinforced composite materials also have disadvantages. 
Because of the mismatch of material properties between layers, the shear stresses 
produced between the layers, especially at the edges of a laminate, may cause 
delamination. Similarly, because of the mismatch of material properties between 
matrix and fiber, fiber debonding may take place. Also, during manufacturing 
of laminates, material defects such as interlaminar voids, delamination, incorrect 
orientation, damaged fibers, and variation in thickness may be introduced. It is 
impossible to eliminate manufacturing defects altogether; therefore, analysis and 
design methodologies must account for various mechanisms of failure. 

This book is devoted to the theoretical study of laminated structures. 
Determination of static, transient, vibration, and buckling characteristics of fiber
reinforced composite laminates with different lamination schemes, thicknesses, 
loads, and boundary conditions constitutes the major objective of the study. The 
theoretical concepts and analysis methods presented herein can help structural 
engineers in aerospace, civil, and mechanical engineering industries to select suitable 
materials and the number and orientations of fiber-reinforced laminae for the best 
performance in a particular application. 
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In the remaining portion of this chapter, we study the mechanical behavior of a 
single lamina, treating it as an orthotropic, linear elastic continuum. The generalized 
Hooke's law is revisited (see Section 1.3.6) for an orthotropic material, the elastic 
coefficients of an orthotropic material are expressed in terms of engineering constants 
of a lamina, and the fiber-matrix interactions in a unidirectional lamina are 
discussed. Transformation of stresses, strains, and elasticity coefficients from the 
lamina material coordinates to the problem coordinates are also presented. 

2.2 Constitutive Equations of a Lamina 
2.2.1 Generalized Hooke's Law 

In this section we study the mechanical behavior of a typical fiber-reinforced 
composite lamina, which is the basic building block of a composite laminate. In 
formulating the constitutive equations of a lamina we assume that: 

(1) a lamina is a continuum; i.e., no gaps or empty spaces exist. 

(2) a lamina behaves as a linear elastic material. 

The first assumption amounts to considering the macromechanical behavior of a 
lamina. If fiber-matrix debonding and fiber breakage, for example, are to be included 
in the formulation of the constitutive equations of a lamina, then we must consider 
the micromechanics approach, which treats the constituent materials as continua 
and accounts for the mechanical behavior of the constituents and possibly their 
interactions. The second assumption implies that the generalized Hooke's law is 
valid. It should be noted that both assumptions can be removed if we were to 
develop micromechanical constitutive models for inelastic (e.g., plastic, viscoelastic, 
etc.) behavior of a lamina. 

Composite materials are inherently heterogeneous from the microscopic point 
of view. From the macroscopic point of view, wherein the material properties 
of a composite are derived from a weighted average of the constituent materials, 
fiber and matrix, composite materials are assumed to be homogeneous. The 
following discussion of constitutive equations is independent of whether the material 
is homogeneous or not, because the stress-strain relations hold for a typical point in 
the body. 

The generalized Hooke's law for an anisotropic material under isothermal 
conditions is given in contracted notation [see Eq. (1.3.37a,b)] by 

(2.2.1) 

where O"ij (O"i) are the stress components, Cij (ci) are the strain components, and 
Cij are the material coefficients, all referred to an orthogonal Cartesian coordinate 
system (Xl, X2, X3). In general, there are 21 independent elastic constants for 
the most general hyperelastic material as discussed in detail in Section 1.3.6. 
When materials possess one or more planes of material symmetry, the number 
of independent elastic coefficients can be reduced. For materials with one plane 
of material symmetry, called monoclinic materials, there are only 13 independent 
parameters, and for materials with three mutually orthogonal planes of symmetry, 
called orthotropic materials, the number of material parameters is reduced to 9 in 
three-dimensional cases. 



86 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

2.2.2 Characterization of a Unidirectional Lamina 

A unidirectional fiber-reinforced lamina is treated as an orthotropic material whose 
material symmetry planes are parallel and transverse to the fiber direction. The 
material coordinate axis Xl is taken to be parallel to the fiber, the x2-axis transverse 
to the fiber direction in the plane of the lamina, and the X3-axis is perpendicular 
to the plane of the lamina (see Figure 2.2.1). The orthotropic material properties 
of a lamina are obtained either by the theoretical approach or through suitable 
laboratory tests. 

The theoretical approach, called a micromechanics approach, used to determine 
the engineering constants of a continuous fiber-reinforced composite material is 
based on the following assumptions: 

1. Perfect bonding exists between fibers and matrix. 

2. Fibers are parallel, and uniformly distributed throughout. 

3. The matrix is free of voids or microcracks and initially in a stress-free state. 

4. Both fibers and matrix are isotropic and obey Hooke's law. 

5. The applied loads are either parallel or perpendicular to the fiber direction. 

The moduli and Poisson's ratio of a fiber-reinforced material can be expressed in 
terms of the moduli, Poisson's ratios, and volume fractions of the constituents. To 
this end, let 

E f = modulus of the fiber; Em = modulus of the matrix 
vf = Poisson's ratio of the fiber; Vm = Poisson's ratio of the matrix 
vf = fiber volume fraction; Vm = matrix volume fraction 

Then it can be shown (see Problems 2.1 and 2.2) that the lamina engineering 
constants are given by 

(2.2.2) 

Figure 2.2.1: A unidirectional fiber-reinforced composite layer with the material 
coordinate system (Xl, X2, X3) (with the xl-axis oriented along the 
fiber direction). 
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where El is the longitudinal modulus, E2 is transverse modulus, V12 is the major 
Poisson's ratio, and G 12 is the shear modulus, and 

G - Ef G _ Em 
f - 2(1 + vf)' m - 2(1 + vm ) 

(2.2.3) 

Other micromechanics approaches use elasticity, as opposed to mechanics of 
materials approaches. Interested readers may consult Chapter 3 of Jones [3] and 
the references given there (also see [18-20]). 

The engineering parameters E l , E 2 , E 3 , G 12 , G n , G2:3, V12, Vn, and V23 of an 
orthotropic material can be determined experimentally using an appropriate test 
specimen made up of the material. At least four tests are required to determine 
the four constants E l , E 2 , E3 and G 12 and the longitudinal strength X, transverse 
strength Y and shear strength S (and additional tests to determine G 13 and G2:3). 

These are shown schematically in Figure 2.2.2a-d. 
For example, E 1 , V12 and X of a fiber-reinforced material are measured using a 

uniaxial test shown in Figure 2.2.2a. The specimen consists of several layers of the 
material with fibers in each layer being aligned with the longitudinal direction. 
The specimen is then loaded along the longitudinal direction and strains along 
and perpendicular to the fiber directions are measured using strain gauges (see 
Figure 2.2.2e). By measuring the applied load P, the cross-sectional area A, the 
longitudinal strain Eg = El and transverse strain Et = E2, we can calculate 

! X2 

4 P .. • Xl 
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Figure 2.2.2: Tests required for the mechanical characterization of a laminate. 
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where Pu1t is the ultimate load (say, load at which the material reaches its elastic 
limit). Similarly, E 2, lI21 and Y can be determined from the test shown in Figure 
2.2.2b: 

C2 
lite = lI12 = -- , 

C1 

Y = Pult 
A 

The shear modulus is determined from the test shown in Figure 2.2.2c by measuring 
E1 = P / AC1, Ee, E t and lIet, and using the transformation equation (4a) of Problem 
2.3: 

1 1 ( 1 1 1 2l1te ) 
E1 ="4 Ee + Et + Get - Ee 

wherein Get is the only unknown. The shear strength S is determined from the test 
shown in Figure 2.2.2d: 

Tult 
S=Tult = ---

21l'r2h 

where T is the applied torque, and rand h are the mean radius and thickness of 
the tube, respectively. The values of the engineering constants for several materials 
are presented in Tables 2.2.1 and 2.2.2. 

Table 2.2.1: Values of the engineering constants for several materials*. 

Materialt E1 E2 G 12 G 13 G23 1/12 

Aluminum 10.6 10.6 3.38 3.38 3.38 0.33 
Copper 18.0 18.0 6.39 6.39 6.39 0.33 
Steel 30.0 30.0 11.24 11.24 11.24 0.29 
Gr.-Ep (AS) 20.0 1.3 1.03 1.03 0.90 0.30 
Gr.-Ep (T) 19.0 1.5 1.00 0.90 0.90 0.22 
Gl.-Ep (1) 7.8 2.6 1.30 1.30 0.50 0.25 
Gl.-Ep (2) 5.6 1.2 0.60 0.60 0.50 0.26 
Br.-Ep 30.0 3.0 1.00 1.00 0.60 0.30 

*Moduli are in msi = million psi; 1 psi = 6,894.76 N/m2 ; Pa = N/m2 ; kPa = 103 Pa; MPa = 
106 Pa; GPa = 109 Pa. 
t The following abbreviations are used for various material systems: Gr.-Ep (AS) = graphite-epoxy 
(AS/3501); Gr.-Ep (T) = graphite-epoxy (T300/934); Gl.-Ep = glass-epoxy; Br.-Ep = boron-epoxy. 

Table 2.2.2: Values of additional engineering constants for the materials listed 
in Table 2.2.1 *. 

Material E3 1/13 1/23 0'1 0'2 

Aluminum 10.6 0.33 0.33 13.1 13.1 
Copper 18.0 0.33 0.33 18.0 18.0 
Steel 30.0 0.29 0.29 10.0 10.0 
Gr.-Ep (AS) 1.3 0.30 0.49 1.0 30.0 
Gr.-Ep (T) 1.5 0.22 0.49 -0.167 15.6 
Gl.-Ep (1) 2.6 0.25 0.34 :3.5 11.4 
Gl.-Ep (2) 1.3 0.26 0.34 4.8 12.3 
Br.-Ep 3.0 0.25 0.25 2.5 8.0 

* Units of E3 are msi, and the units of 0'1 and 0'2 are 10-6 in.jin.;oF. 
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2.3 Transformation of Stresses and Strains 
2.3.1 Coordinate Transformations 

The constitutive relations (1.3.44) and (1.3.45) for an orthotropic material were 
written in terms of the stress and strain components that are referred to a coordinate 
system that coincides with the principal material coordinate system. The coordinate 
system used in the problem formulation, in general, does not coincide with the 
principal material coordinate system. Further, composite laminates have several 
layers, each with different orientation of their material coordinates with respect to 
the laminate coordinates. Thus, there is a need to establish transformation relations 
among stresses and strains in one coordinate system to the corresponding quantities 
in another coordinate system. These relations can be used to transform constitutive 
equations from the material coordinates of each layer to the coordinates used in the 
problem description. 

In forming flat laminates, fiber-reinforced laminae are stacked with their X1X2-

planes parallel but each having its own fiber direction. If the z-coordinate of the 
problem is taken along the laminate thickness, the x3-coordinate of each lamina 
we will always coincide with the z-coordinate of the problem. Thus we have a 
special type of coordinate transformation between the material coordinates and the 
coordinates used in the problem description. 

Let (x, y, z) denote the coordinate system used to write the governing equations 
of a laminate, and let (Xl, X2, X3) be the principal material coordinates of a typical 
layer in the laminate such that X3-axis is parallel to the z-axis (i.e., the XIX2-

plane and the xy-plane are parallel) and the X I-axis is oriented at an angle of +e 
counterclockwise (when looking down on the lamina) from the x-axis (see Figure 
2.3.1). The coordinates of a material point in the two coordinate systems are related 
as follows (z = X3): 

[ 

cose 

-s~ne 
sin e 
cose 

o 

The inverse of Eq. (2.3.1) is 

{
X} [COS e 
~ = Si~e 

- sine 
cose 
o 

Note that the inverse of [L] is equal to its transpose: [L]-l = [L]T. 

(2.3.1) 

(2.3.2) 

The transformation relations (2.3.1) and (2.3.2) are also valid for the unit vectors 
associated with the two coordinate systems: 

{ ~l} {~} {~} {~1} :~ = [L] :~ , :~ = [L] T :~ (2.3.3) 
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Figure 2.3.1: A lamina with material and problem coordinate systems. 

2.3.2 Transformation of Stress Components 

Next we consider the relationship between the components of stress in (x, y, z) 
and (Xl, X2, X3) coordinate systems. Let a denote the stress tensor, which 
has components an, aI2,··· ,a33 in the material (m) coordinates (Xl, X2, X3) and 
components a xx , a xy ,···, a zz in the problem (p) coordinates (x, y, z). Since stress 
tensor is a second-order tensor, it transforms according to the formula 

(2.3.4) 

where (aij)m are the components of the stress tensor a in the material coordinates 
(XI,X2,X3), whereas (aij)p are the components of the same stress tensor a in the 
problem coordinates (x, y, z), and f ij are the direction cosines defined by 

and (ei)m and (ei)p are the orthonormal basis vectors in the material and problem 
coordinate systems, respectively. Note that the tensor transformation equations 
(2.3.4) hold among tensor components only. Equations (2.3.4) can be expressed in 
matrix forms. First, we introduce the 3 x 3 arrays of the stress components in the 
two coordinate systems: 

(2.3.5) 

Then Eqs. (2.3.4) can be expressed in matrix form as 

(2.3.6a, b) 

where [L 1 is the 3 x 3 matrix of direction cosines f ij . 
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Equation (2.3.6a) provides a means to convert stress components referred to the 
problem (laminate) coordinate system to those referred to the material (lamina) 
coordinate system, while Eq. (2.3.6b) allows computation of stress components 
referred to the problem coordinates in terms of stress components referred to 
the material coordinates. Equations (2.3.6a,b) hold for any general coordinate 
transformation, and hence it holds for the special transformation in Eqs. (2.3.1). 

Carrying out the matrix multiplications in Eq. (2.3.6b), with [L] defined by 
Eq. (2.3.1), and rearranging the equations in terms of the single-subscript stress 
components in (x, y, z) and (Xl, X2, X3) coordinate systems, we obtain 

(Jxx cos2 e sin2 e 0 0 0 - sin 2e (Jl 

(Jyy sin2 () cos2 () 0 0 0 sin 2() (J2 

(J zz 0 0 1 0 0 0 (J3 

(Jyz 0 0 0 cos () sin () 0 (J4 

(Jxz 0 0 0 - sin () cos () 0 (J5 

(Jxy sine cos e - sine cos e 0 0 0 cos2 e - sin2 e (J6 

(2.3.7) 
or 

{(J}p = [T]{ (J}m (2.3.8) 

The inverse relationship between {(J}m and {(J }p, Eq. (2.3.6a), is given by 

(Jl cos2 () sin2 () 0 0 0 sin2e (Jxx 

(J2 sin2 () cos2 e 0 0 0 - sin 2e (Jyy 

(J3 0 0 1 0 0 0 (J zz 

(J4 0 0 0 cose - sine 0 (Jyz 

a5 0 0 0 sin () cose 0 (Jxz 

(J6 - sin e cos e sin e cos e 0 0 0 cos2 e - sin2 e (Jxy 

(2.3.9) 
or 

{(Jhn = [R]{(J}p (2.3.10) 

The result in Eq. (2.3.9) can also be obtained from Eq. (2.3.7) by replacing e 
with -e. 

Example 2.3.1: 

The stress transformation equations (2.3.9) can be derived directly by considering the equilibrium of 
an element of the lamina (see Figure 2.3.2). Consider a wedge elerrwnt whose slant face is parallel 
to the fibers. Suppose that the thickness of the lamina is h. and the length of the slant face is 
t:...S. Then the horizontal and vertical sides of the wedges are of lengths t:...S cos Band t:...S sin B, 
respectively. The forces acting on any face of the wedge are obtained by multiplying the stresses 
acting on the face with the area of the surface. 

Suppose that we wish to determine 0"22 in terms of (0" xx. O"yy, 0" xy). Then by summing all forces 
acting on the wedge along coordinate X2 (i.e., equilibrium of forces along X2) we obtain 

or 

0"22t:...S h - (a,rrt:...S sin B h) sin B + (O"xyt:...S sin B h) cos B - (O"yyt:...S cos B h) cos B 

+ (O";ryt:...ScosB h)sinB=O 
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Figure 2.3.2: A free-body diagram of a wedge element with stress components. 

or 

Similarly, summing the forces along Xl coordinate, we obtain 

0"12.6..S h + (O"xx.6..Ssine h) cose + (O"xy.6..Ssine h) sine - (O"yy.6..Scose h) sine 

- (O"xy.6..Scose h) cose = 0 

0"12 = -0" xx sin e cos e + 0" yy cos e sin e + 0" xy (cos2 e - sin2 e) 

Clearly, the expressions for 0"22 and 0"12 derived here are the same as those for O"l and 0"6, 
respectively, in Eq. (2.3.9). The stress component O"ll can be determined in terms of (O"xx, O"yy, O"xy) 
by considering a wedge element whose slant face is perpendicular to the fibers (see Figure 2.3.2). 
By summing forces along the x- and y-coordinates we can obtain stresses 0" xx and 0" xy in terms of 

(O"ll' 0"22, 0"12)· 

Example 2.3.2: 

Consider a thin (i.e., the thickness is about one-tenth of the radius), filament-wound, closed 
cylindrical pressure vessel (see Figure 2.3.3). The vessel is of63.5 cm (25 in.) internal diameter and 
pressurized to 1.379 MPa (200 psi). We wish to determine the shear and normal forces per unit 
length of filament winding. Assume a filament winding angle of e = 53.125° from the longitudinal 
axis of the pressure vessel, and use the following material properties, typical of graphite-epoxy 
material: EI = 140 MPa (20.3 Msi), E2 = 10 MPa (1.45 Msi), G l2 = 7 MPa (1.02 Msi), and 
Vl2 = 0.3. Note that MPa means mega (106 ) Pascal (Pa) and Pa = N/m2 (1 psi = 6,894.76 Pa). 
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Figure 2.3.3: A filament-wound cylindrical pressure vessel. 

The equations of equilibrium of forces in a structure do not depend on the material properties. 
Hence, equations derived for the longitudinal (0" xx) and circumferential (O"yy) stresses in a thin
walled cylindrical pressure vessel are valid here: 

pDf 
O"yy = 2h 

where p is internal pressure, Di is internal diameter, and h is thickness of the pressure vessel. We 
obtain 

O"xx = 1.379 x 0.635 = 0.2189 MPa 1.379 x 0.635 = 0.4378 MP 
4h h ' 0" YY = 2h h a 

The shear stress 0" xy is zero. 

Next we determine the shear stress along the fiber and the normal stress in the fiber using the 
transformation equations (2.3.9) or from the equations derived in Example 2.3.1. We obtain 

0"11 = 0.2~89 (0.6)2 + 0.4~78 (0.8)2 = 0.3~90 MPa 

0"22 = 0.2~89 (0.8)2 + 0.4~78 (0.6)2 = 0.2~77 MPa 

= (0.4378 ~ 0.2189) 06 08= 0.1051 MP 
0"12 h h x. x. h a 

Thus the normal and shear forces per unit length along the fiber-matrix interface are F22 = 0.2977 
MN and F12 = 0.1051 MN, whereas the force per unit length in the fiber direction is F11 = 0.359 
MN. 

2.3.3 Transformation of Strain Components 

Since strains are also second-order tensor quantities, transformation equations 
derived for stresses, Eqs. (2.3.6a,b), are also valid for tensor components of strains: 

(2.3.l1a) 
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(2.3.11b) 

Therefore, Eqs. (2.3.7) and (2.3.9) are valid for strains when the stress components 
are replaced with tensor components of strains from the two coordinate systems. 
However, the single-column formats in Eqs. (2.3.7) and (2.3.9) for stresses are not 
valid for single-column formats of strains because of the definition: 

(2.3.12) 

Slight modification of the results in Eqs. (2.3.7) and (2.3.9) will yield the proper 
relations for the engineering components of strains. We have 

cxx cos2 () sin2 () 0 0 0 - sin () cos () Cl 

Cyy sin2 0 cos2 0 0 0 0 sin 0 cos () C2 

Czz 0 0 1 0 0 0 C3 (2.3.13) 
2cyz 0 0 0 cos () sin () 0 C4 

2cxz 0 0 0 - sin () cos () 0 C5 

2cxy sin 2() - sin 2() 0 0 0 cos2 () - sin2 () C6 

The inverse relation is given by 

Cl cos2 () sin2 () 0 0 0 sin () cos () cxx 

C2 sin2 () cos2 () 0 0 0 - sin () cos () Cyy 

C3 0 0 1 0 0 0 czz (2.3.14) 
C4 0 0 0 cos () - sin () 0 2cyz 

C5 0 0 0 sin () cos () 0 2cxz 

C6 - sin 2() sin 2() 0 0 0 cos2 () - sin2 () 2cxy 

We note that the transformation matrix [T] in Eq. (2.3.8) is the transpose of the 
square matrix in Eq. (2.3.14). Similarly, the transformation matrix in Eq. (2.3.13) 
is the transpose of the matrix [R] in Eq. (2.3.10): 

(2.3.15) 

Example 2.3.3: 

A square lamina of thickness h and planar dimension a is made of glass-epoxy material (El 
40 x 103 MPa, E2 = 10 x 103 MPa, G 12 = 3.5 X 103 MPa, and V12 = 0.25). When the lamina is 
deformed as shown in Figure 2.3.4, we wish to determine the longitudinal strain in the fiber and 
shear strain at the center of the lamina. The fibers are oriented at 45° to the horizontal. 

From Eq. (2.3.14), the only nonzero strain is Exy = 0.01. Hence, longitudinal strain in the fiber 
is 

1 1 
E1 = Ell = 0 + 0 + 2Exy V2 V2 = 0.01 cm/cm 

and the shear strain is given by 

E6 = 2E12 = 0 + 0 + 2Exy (~ - ~) = 0.0 
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Figure 2.3.4: Deformation of a fiber-reinforced lamina. 

Example 2.3.4: 

Suppose that the thickness of the cylindrical pressure vessel of Example 2.3.2 is h = 2 cm. Then 
the stress field in the material coordinates becomes 

0"11 = 17.95 MPa, 0"22 = 14.885 MPa, 0"12 = 5.255 MPa 

The strains in the material coordinates can be calculated using the strain-stress relations (1.3.47). 
We have (V2J/ E2 = V12/ Ed 

= 0"11 _ 0"22 V 12 = 17.95 _ 14.885 x 0.3 = 0.0963 m/m 
Ell El EI 140 140 

E22 = _ 0"11 VI2 + 0"22 = _ 17.95 x 0.3 + 14.885 = 1.45 m/m 
EI E2 140 10 

= ~ = 5.255 = 0 3757 
EI2 2G12 2x7 . 

The strains in the (:r:,y) coordinates can be computed using Eq. (2.3.13): 

Er " = 0.0963 x (0.6)2 + 1.45 x (0.8)2 - 0.3757 x 0.6 x 0.8 = 0.782 m/m 

Eyy = 0.0963 x (0.8)2 + 1.45 x (0.6)2 + 0.3757 x 0.6 x 0.8 = 0.764 m/m 

Exy = 2(0.0963 - 1.45) x (0.6) x 0.8 + 0.3757[(0.6)2 - (0.8)2J = -1.405 
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2.3.4 'Transformation of Material Coefficients 

In formulating the problem of a laminated structure, we must write the governing 
equations, with all their variables and coefficients, in the problem coordinates. In 
the previous section we discussed transformation of coordinates (which are also valid 
for displacements and forces), stresses, and strains. The only remaining quantities 
that need to be transformed from the material coordinate system to the problem 
coordinates are the material stiffnesses Cij and thermal coefficients of expansion CXij' 

The material stiffnesses Cij in their original form [see Eq. (1.3.35)] are the 
components of a fourth-order tensor. Hence, the tensor transformation law holds. 
The fourth-order elasticity tensor components Cijkf in the problem coordinates 
can be related to the components Cmnpq in the material coordinates by the tensor 
transformation law 

However, the above equation involves five matrix multiplications with four-subscript 
material coefficients. Alternatively, the same result can be obtained by using 
the stress-strain and strain-stress relations (1.3.38a,b), and the stress and strain 
transformation equations in (2.3.8) and (2.3.15): 

(2.3.16) 

where [C]m is the 6 x 6 material stiffness matrix [see Eq. (1.3.38a)] in the material 
coordinates and [T] is the transformation matrix defined in Eq. (2.3.8). Thus the 
transformed material stiffness matrix is given by ([C] = [C]p and [C] = [C]m) 

[C] = [T][C][T]T (2.3.17) 

Equation (2.3.17) is valid for general constitutive matrix [C] (i.e., for orthotropic 
as well as anisotropic). Of course, [T] is the matrix based on the particular 
transformation (2.3.1) (rotation about a transverse normal to the lamina). 

Carrying out the matrix multiplications in (2.3.17) for the general anisotropic 
case, we obtain 

Cn = Cn cos4 () - 4C16 cos3 
() sin () + 2( C12 + 2C66 ) cos2 

() sin2 
() 

- 4C26 cos () sin3 () + C22 sin4 () 

C12 = C12 cos4 () + 2( C16 - C26 ) cos3 
() sin () + (Cn + C22 - 4C66) cos2 

() sin2 
() 

+ 2( C26 - C16 ) cos () sin3 () + C12 sin4 () 

C13 = C13 cos2 
() - 2C36 cos () sin () + C23 sin2 

() 

C16 = C16 cos4 () + (C11 - C12 - 2C66) cos3 
() sin () + 3( C26 - C16) cos2 

() sin2 
() 

+ (2C66 + C12 - C22) cos () sin3 () - C26 sin4 () 

022 = C22 cos4 () + 4C26 cos3 
() sin () + 2( C12 + 2C66 ) cos2 

() sin2 
() 

+ 4C16 cos () sin3 () + C11 sin4 () 

C23 = C23 cos2 
() + 2C36 cos () sin () + C13 sin2 

() 
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- 4 3 2 2 
C26 = C26 cos e + (C12 - C22 + 2C66) cos e sin e + 3( C16 - C26) cos e sin e 

+ (C11 - C 12 - 2C66) cos 61 sin3 61 - C16sin4e 

0 33 = C33 
036 = (C13 - C23) cos 61 sin e + C36( cos2 61 - sin2 e) 
0 66 = 2( C16 - C26 ) cos3 61 sin 61 + (Cll + C22 - 2C12 - 2C66 ) cos2 61 sin2 61 

+ 2( C26 - C 16 ) cos 61 sin3 61 + C66 ( cos4 61 + sin4 e) 

044 = C44 cos2 e + C55 sin2 61 + 2C45 cos e sin 61 

0 45 = C45( cos2 e - sin2 e) + (C55 - C44 ) cos e sin 61 

0 55 = C55 cos2 e + C44 sin2 e - 2C45 cos e sin e 
014 = C 14 cos3 e + (C15 - 2C46) cos2 e sin e + (C24 - 2C56 ) cos e sin2 e + C25 sin3 e 
0 15 = C15 cos3 61 - (C14 + 2C56) cos2 e sin 61 + (C25 + 2C46) cos 61 sin2 61 - C24 sin:~ 61 

0 24 = C24 cos3 e + (C25 + 2C46) cos2 61 sin e + (C14 + 2C56) cos e sin2 61 + C 15 sin3 61 

025 = C25 cos3 61 + (2C56 - C24) cos2 61 sin e + (C15 - 2C46) cos e sin2 e - C14 sin3 61 

0 34 = C34 cos e + C35 sin e 
0 35 = C35 cos e - C34 sin 61 

046 = C46 cos3 e + (C56 + C 14 - G24) cos2 e sin e + (C15 - C 25 - C46 ) cos e sin2 e 
- G56 sin3 61 

0 56 = C56 cos3 e + (C15 - G25 - G46) cos2 e sin e + (C24 - C 14 - G56 ) cos e sin2 e 
+ C46 sin3 e (2.3.18) 

When [C] is the matrix corresponding to an orthotropic material, it has the form 
shown in Eq. (1.3.44); then Eq. (2.3.16) has the explicit form [ef. Eq. (1.3.42) for 
monoclinic materials] 

(Jxx 

(Jyy 

(J zz 

(Jyz 

(Jxz 

(Jxy 

GIl 012 0 13 
C21 022 0 23 
031 032 0 33 
000 
000 

016 026 0 36 

o 0 
o 0 
o 0 

044 045 
0 45 0 55 
o 0 

016 
026 
036 
o 
o 

066 

Exx 

Eyy 

Ezz 

2Eyz 

2Exz 

2Exy 

(2.3.19) 

where the Oij are the transformed elastic coefficients referred to the (x, y, z) 
coordinate system, which are related to the elastic coefficients in the material 
coordinates Cij by Eq. (2.3.18). Note that C 14 , G15 , C 16 , C24 , G25 , C26, C34, 
C35 , C36 , C45, G46 , and C56 are zero for an orthotropic material. 

In order to relate compliance coefficients in the two coordinate systems, we use 
the strain transformation equation in Eq. (2.3.15): 

{E}P = [R]T {E}m = [R]T ([8]m {(J }m) = [R]T[8]m ([R]{ (J}p) 

== [8]p{(J}P (2.3.20a) 

Thus the compliance coefficients 5 ij referred to the (x, y, z) system are related to the 
compliance coefficients 8ij in the material coordinates by ([8jp == [5] and [8]m == [8]) 

(2.3.20b) 
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Expanded form of the relations in Eq. (2.3.20b) is 

5 11 = 511 cos4 (J - 2516 cos3 (J sin (J + (2512 + 566) cos2 (J sin2 (J 

- 2526 cos (J sin3 (J + 5 22 sin4 (J 

5 12 = 5 12 cos4 (J + (516 - 5 26 ) cos3 (J sin (J + (511 + 522 - 5 66 ) cos2 (J sin2 (J 

+ (526 - 516) cos (J sin3 (J + 512 sin4 (J 

5 13 = 5 13 cos2 (J - 5 36 cos (J sin (J + 5 23 sin2 (J 

5 16 = 516 cos4 (J + (2511 - 2512 - 5 66 ) cos3 (J sin (J + 3(526 - 516) cos2 (J sin2 (J 

+ (566 + 2512 - 2522 ) cos (J sin3 (J - 526 sin4 (J 
- 4 3 2 2 5 22 = 5 22 cos (J + 2526 cos (J sin (J + (2512 + 566) cos (J sin (J 

+ 2516 cos (J sin3 (J + 5 11 sin4 (J 

5 23 = 523 cos2 (J + 536 cos (J sin (J + 5 13 sin2 (J 

5 26 = 5 26 cos4 (J + (2512 - 2522 + 5 66 ) cos3 (J sin (J + 3(516 - 5 26 ) cos2 (J sin2 (J 

+ (2511 - 2512 - 5 66 ) cos (J sin3 (J - 5 16 sin4 (J 

5 33 = 5 33 

5 36 = 2(513 - 5 23 ) cos (J sin (J + 5 36 ( cos2 (J - sin2 (J) 

5 66 = 566 (cos2 (J - sin2 (J)2 + 4( 5 16 - 5 26 ) (cos2 (J - sin2 (J) cos (J sin (J 

+ 4(511 + 522 - 2512) cos2 (Jsin2 (J 

5 44 = 544 cos2 (J + 2545 cos (J sin (J + 5 55 sin2 (J 

5 45 = 545 (cos2 (J - sin2 (J) + (555 - 5 44 ) cos (J sin (J 

5 55 = 5 55 cos2 (J + 544 sin2 (J - 2545 cos (J sin (J 

5 14 = 514 cos3 (J + (515 - 5 46 ) cos2 
(J sin (J + (524 - 5 56 ) cos (J sin2 (J + 5 25 sin3 (J 

5 15 = 5 15 cos3 (J - (514 + 5 56 ) cos2 (J sin (J + (525 + 5 46 ) cos (J sin2 (J - 5 24 sin3 (J 

5 24 = 5 24 cos3 
(J + (525 + 5 46 ) cos2 

(J sin (J + (514 + 556) cos (J sin2 
(J + 515 sin3 

(J 

5 25 = 525 cos3 (J + (-524 + 5 56 ) cos2 (J sin (J + (515 - 5 46 ) cos (J sin2 (J - 5 14 sin3 (J 

5 34 = 5 34 cos (J + 5 35 sin (J 

5 35 = 535 cos (J - 5 34 sin (J 

5 46 = (2514 - 2524 + 5 56) cos2 (J sin (J + (2515 - 2525 - 546) cos (J sin2 (J 

+ 5 46 cos3 (J - 5 56 sin3 (J 

5 56 = (2515 - 2525 - 546) cos2 (J sin (J + (2524 - 2514 - 5 56 ) cos (J sin2 (J 

+ 5 56 cos3 (J + 546 sin3 (J (2.3.21) 

For an orthotropic material, the compliance matrix [5] has the form shown in 
Eq. (1.3.45), and the strain-stress relations in the problem coordinates are given by 

Exx 511 5 12 5 13 0 0 5 16 CJxx 

Eyy 521 5 22 5 13 0 0 526 CJyy 

Ezz 531 5 32 533 0 0 5 36 CJ zz (2.3.22) 
2Eyz 0 0 0 544 5 45 0 CJyz 

2Exz 0 0 0 545 555 0 CJxz 

2Exy 5 16 5 26 5 36 0 0 5 66 CJxy 
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Note that Eq. (2.3.22) relates stresses to strains in the problem coordinates while 
Eq. (1.3.45) relates the stresses to strains in the material coordinates. 

The thermal coefficients O:ij are the components of a second-order tensor, and 
therefore they transform like the strain components (because 006 = 20012, and so on). 
In the context of the present study, only nonzero components of thermal expansion 
tensor are au == 001, 0022 == 002, and 0033 == 003. All other components are zero. Hence, 
following Eq. (2.3.7), we can write the transformation relations (006 = 0012 = 0, 
005 = an = 0, 004 = 002:1 = 0) 

a xx = au cos2 e + 0022 sin2 e 
·22 

a yy = au sm e + 0022 cos e 
2axy = 2 (au - n22) sin e cos e 
2axz = 0, 2ayz = 0, a zz = a33 (2.3.23) 

The same transformations hold for the coefficients of hygroscopic expansion. The 
transformation relations (2.3.18), (2.3.21), and (2.3.23) are valid for a rectangular 
coordinate system (Xl, X2, X3) which is oriented at an angle e (in the xy-plane) 
from the (x, y, z) coordinate system (see Figure 2.3.1). The orientation angle e is 
measured counterclockwise from the x-axis to the xl-axis. 

In summary, Eq. (1.3.44) represents the stress-strain relations in the principal 
material coordinates (Xl, X2, X3), and Eq. (2.3.19) represents the stress-strain 
relations in the (x, y, z) coordinate system. The material coefficients of the lamina 
in the (x, y, z) coordinate system are related to material coefficients in the material 
coordinates by Eq. (2.3.18). In general, for the kLh layer of a laminate, the 
hygro-thermo-elastic stress-strain relations in the laminate coordinate system can 
be written as 

{O" }~k) = [G](k) ({ E }~k) - {aT }i,k) (T - To) - {(J'M }~k) (c - co)) 

{E Hk) = [S](k) {O" }~k) + {aT }~k) (T - To) + {aM }~k) (c - co) (2.3.24) 

where all quantities are referred to the (x, y, z) coordinate system, and {aT} and 
{aM} are vectors of thermal and hygroscopic coefficients of expansion, respectively. 

2.4 Plane Stress Constitutive Relations 

Most laminates are typically thin and experience a plane state of stress (see Section 
1.3.6). For a lamina in the X1x2-plane, the transverse stress components are 
O":n, O"n, and 0"2:3 (see Figure 2.4.1). Although these stress components are small in 
comparison to O"U, 0"22, and 0"12, they can induce failures because fiber-reinforced 
composite laminates are weak in the transverse direction (because the strength 
providing fibers are in the X1x2-plane). For this reason, the transverse shear stress 
components are not neglected in shear deformation theories. However, in most 
equivalent-single layer theories the transverse normal stress 0"33 is neglected. Then 
the constitutive equations must be modified to account for this fact. 
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Figure 2.4.1: A lamina in a plane state of stress. 

The condition 0"33 = 0 results in the following thermoelastic constitutive 
equations for the kth layer that is characterized as an orthotropic lamina with 
piezoelectric effect: 

r r [Qll 
Q12 ° fk) rl - "J LlT} (k) [~ 

0 
e

31
] {~: r 0"2 = Q12 Q22 o E2 - 0:2 !:1T 0 e32 

0"6 0 0 Q66 E6 0 0 £3 

(2.4.1) 

{ ~: fk) = [Q~4 o fk) {E4 fk) [0 e24 orr Q55 E5 e15 0 0] £2 (2.4.2) 
£3 

rr {~:r UI 
0 0 e15 0fk) 02 

[1 
0 

~rr:r 0 e24 0 o E4 + E22 

e32 0 0 o E5 0 E33 £3 

E6 

(2.4.3) 

where Q~;) are the plane stress-reduced stiffnesses, e~;) are the piezoelectric moduli, 
and Eij are the dielectric constants of the kth lamina in its material coordinate 
system, (O"i,Ei,£i,Di) are the stress, strain, electric field, and electric displacement 
components, respectively, referred to the material coordinate system (Xl, X2, X3), 

0:1 and 0:2 are the coefficients of thermal expansion along the Xl and X2 directions, 
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respectively, and t::.T is the temperature increment from a reference state, t::.T = 

T - To. Recall from Eq. (1.3.72) that Q~~) are related to the engineering constants 
as follows: 

(2.4.4a) 

Q
(k) _ dk) Q(k) _ dk) Q(k) _ dk) 
66 - 12, 44 - 23' 55 - 13 (2.4.4b) 

Note that the reduced stiffnesses involve six independent engineering constants: E 1 , 

E2, V12, G12 , G13 , and G23 . 

The transformed stress-strain relations of an orthotropic lamina in a plane state 
of stress are (the superscript k is omitted in the interest of brevity) 

( { 
cxx } {axx} ) [0 0 
Cyy - a yy t::.T + 0 0 
'1xy 2axy 0 0 

:;:. ~l{ ~} 
011:::) _ [EXX o '1yz Exy 

e36 '1xz 0 
'1xy 

Exy 

Eyy 

o 

where 'ljJ denotes the scalar electric potential [see Eq. (1.3.89)] and 

Qll = Qll cos4 () + 2( Q12 + 2Q(6) sin2 () cos2 () + Q22 sin4 () 

Q12 = (Qll + Q22 - 4Q(6) sin2 () cos2 () + Ql2(sin4 () + cos4 ()) 

Q22 = Qll sin4 () + 2( Q12 + 2Q(6) sin2 () cos2 () + Q22 cos4 () 

{~} 
oz 

(2.4.5) 

(2.4.6) 

(2.4.7) 

Q16 = (Qll - Q12 - 2Q(6) sin () cos3 
() + (Q12 - Q22 + 2Q(6) sin3 

() cos () 

Q26 = (Qll - Q12 - 2Q(6) sin3 
() cos () + (Q12 - Q22 + 2Q(6) sin () cos3 

() 

QG6 = (Qll + Q22 - 2Q12 - 2Q(6) sin2 () cos2 () + Q66(sin4 () + cos4 ()) 
- 2 2 

Q44 = Q44 cos () + Q55 sin () 

Q45 = (Q55 - Q44) cos () sin() 
- 2 2 

Q55 = Q55 cos () + Q44 sin () (2.4.8) 

a xx , a yy , and a xy are the transformed thermal coefficients of expansion [see Eq. 
(2.3.23)] 

a xx = al cos2 () + a2 sin2 (), a yy = al sin2 () + a2 cos2 (), a xy = (a] - (2) sin () cos () 
(2.4.9) 
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and (;ij are the transformed piezoelectric moduli, and Exx , Exy , and Exy are 
transformed dielectric coefficients 

- 2()+' 2() - .2()+ 2() e31 = e31 cos e32 sm ,e32 = e31 sm e32 cos , 

(;36 = (e31 - e32) sin() cos (), (;14 = (e15 - e24) sin() cos () 
2() . 2() - 2()+' 2() (;24 = e24 cos + e15 sm ,e15 = e15 cos e24 sm 

(;25 = (e15 - e24) sin () cos (), Exx = Ell cos2 
() + E22 sin2 

() 

Eyy = Ell sin2 
() + E22 cos2 

(), Exy = (Ell - E22) sin () cos () (2.4.10) 

This completes the development of constitutive relations for an orthotropic lamina 
in a plane state of stress. 

Example 2.4.1: 

The material properties of graphite fabric-carbon matrix layers are (see Example 1.3.4): 

EI = 25.1 x 106 psi, E2 = 4.8 x 106 psi, E3 = 0.75 x 106 psi 

Gl2 = 1.36 x 106 psi, G I3 = 1.2 x 106 psi, G23 = 0.47 x 106 psi 

vI2 = 0.036, VI3 = 0.25, v23 = 0.171 

The matrix of plane stress-reduced elastic coefficients for the material can be calculated using Eqs. 
(2.4.4) and (2.4.8) for various values of () as 

[ 

25.11 0.1728 0 0 
0.1728 4.8010 0 0 

[Ql8=O = 0 0 0.47 0 
o 0 0 1.20 
o 0 0 0 

(2.4.11) 

The transformed coefficients for various angles of orientation are given below: 

[48010 
0.1728 0 0 

11 
0.1728 25.11 0 0 

[Q]e=9o = 0 0 1.20 0 msi 
0 0 0 0.47 
0 0 0 0 

(2.4.12) 

[8923 6.203 0 0 5076

1 
6.203 8.923 0 0 5.076 

[Q]8=45 = 0 0 0.835 0.365 0 IIlsi 
0 0 0.365 0.835 0 

5.076 5.076 0 0 7.390 

(2.4.13) 

[ 8.923 
6.203 0 0 

-"

076

1 6.203 8.923 0 0 -5.076 

[Q]8=-45 = 0 0 0.835 -0.365 0 mSl 
0 0 -0.365 0.835 0 

-5.076 -5.076 0 0 7.390 

(2.4.14) 

[ 1551 
4.696 0 0 7007

1 
4.696 5.355 0 0 1.785 

[Q]e=3o = 0 0 0.6525 0.3161 

5.~8:~ 
msi 

0 0 0.3161 1.0175 
7.007 1.785 0 0 

(2.4.15) 
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Problems 
2.1 Consider the composite lamina subjected to axial stress 0"1, as shown in Fig. P2.1 below. 

Let E I , vI and AI denote Young's modulus, volume fraction and area of cross section of the 
fiber, and (Em, V m , Am) be the same quantities for the matrix. Assuming that plane sections 
remain plane during the deformation process and both matrix and fiber undergo the same 
longitudinal deformation .6. x 1 , derive the law of mixtures, 

X2 

b b 
-.j~ -.j~ 

O5hmI~ °1 O5hmI~ h, __ 
Xl 

h, __ 
Xl 

O.5hmI O.5hmI 
L 

~ 

Figure P2.1 Figure P2.2 

2.2 Consider the composite lamina of Problem 2.1 but subjected to axial stress 0"2 alone, as 
shown in Fig. P2.2. Derive the result 

2.3 (Apparent moduli of an orthotropic material) Note that the transformed material compliance 
matrix [5] is relatively full and is in the same form as that for a monoclinic material. For 
an orthotropic material, we have 

(1) 

where 5ij are the transformed compliances defined in Eq. (2.3.21). Guided by the form 
of the strain-stress relations (1.3.47) in the material coordinates, we can write strain-stress 
relations in the problem coordinates as 

11"'lrx 1 {O"XX } rhry, y ---e;- O"yy 

_1_ O"xy 
G.T-1J 

(2) 

Comparing Eq. (2) with Eq. (1), we note that 

1 S- Vyx S- 7/xy ,x - s- T/xy,y = S-26 
Ex = 11, - Ey = 12, Ex - 16, Ey (3) 

and so on. Thus, the equivalent modulus of elasticity Ex in the problem coordinates, for 
example, can be evaluated using the engineering constants in the material coordinate system: 

(4a) 
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where 

(4b) 

Thus, the apparent compliance 811 in the (x,y,z) coordinate system is contributed by the 
compliances 811,812,822, and 8 66 and the lamination angle (): 

(5) 

We note that the compliance 816 , which was zero in the material coordinates, is contributed 
by 811,812,822, and 8 66 : 

Physically, 816 represents the normal strain in the x-direction caused by the shear stress in 
the xy-plane, when all other stresses are zero. Since 816 = 861 , it also represents the shear 
strain in the xy-plane caused by the normal stress along the x-direction, when all other 
stresses are zero. Guided by these observations, Lekhnitskii [4] introduced the following 
engineering constants, called coefficients of mutual influence: 

7]ij,i =characterizes shearing in the xixrplane caused by a normal stress 

in the Xi -direction (i oF j) 

_ 2Eij 
for (Jii oF 0 and all other stresses being zero (7) 

The compliance 816 and 826 are related, by definition, to the coefficients 7]xy,x and 7]xy,y by 

(8) 

Show that 

(9) 

(10) 

2.4 (Continuation of Problem 2.3) Derive an expression for Gxy in terms of E 1 , E 2 , V12, G 12 , 

and (). 

2.5 (Continuation of Problem 2.3) Show that Gxy is a maximum for () = 45 0
• Make use of the 

following trigonometric identities: 

1 
cos4 

() = 8(3 + 4cos2() + cos4()) 

sin4 () = ~(3 - 4cos2() + cos4()) 

cos2 
() sin2 

() = ~ (1 - cos 4()) 

2.6 (Continuation of Problem 2.3) Show that the coefficient of mutual influence is zero at () = 00 

and () = 90 0
• 
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2.7 (Continuation of Problem 2.3) Show that the moduli Ex (and Ey) varies between E1 and 
E 2, but it can either exceed or get smaller than both E1 and E 2. 

2.8 (Continuation of Problem 2.3) Derive the expression for Be" in terms of E 1, E 2 , V12, G l2 , 
0'1, 0'2, and 8 for the nonisothermal case. 

2.9 (Continuation of Problem 2.3) Derive the expression for G",y in terms of E 1 , E 2 , Vl2, G I2 , 
0'1, 0'2, and 8 for the nonisothermal case. 

2.10 Show that the following combinations of stiffness coefficients are invariant: 

S1 = (3Ql1 + 3Q22 + 2Q12 + 4Q66) 

S2 = (Q12 - Q6G) 

S3 = (Ql1 + Q22 + 2Q66) 

S4 = (Ql1 + Q22 + 2Q12) 

2.11 Rewrite the transformation equations (2.4.8) as 

where 

Ql1 = U I + U2 cos 28 + U3 cos48 

Q12 = U4 - U3 cos48 

Q22 = U1 - U2 cos 28 + U3 cos 48 

Ql6 = ~U2 sin28 + U3 sin48 

Q26 = ~U2 sin28 - U3 sin48 

- 1 
Q66 = 2 (U j - U4 ) - U3 cos48 

1 . 
U1 = 8' (3Qll + 3Q22 + 2Q12 + 4Q66) 

1 
U2 = 2 (Ql1 - Q22) 

1 
U3 = 8' (Qu + Q22 - 2Q12 - 4Q66) 

1 
U4 = 8' (Qll + Q22 + 6Q12 - 4Q66) 

2.12 Determine the transformation matrix (i.e., direction cosines) relating the orthonormal basis 
vectors (e1,e2,e3) of the system (X1,X2,X3) to the orthonormal basis (e1,e2,e:l ) of the 
system (xl' x2' x3), when e; are given as follows: el is along the vector e1 - e2 + e3 and e2 
is perpendicular to the plane 2XI + 3X2 + X3 - 5 = O. 

2.13 Verify the transformation relations for the piezoelectric moduli given in Eq. (2.4.10). 

2.14 Consider a square, graphite-epoxy lamina of length 8 in., width 2 in., and thickness 0.005 
in., and subjected to an axial load of 1000 lbs. Determine the transverse normal strain E3' 

Assume that the load is applied parallel to the fibers, and use E j = 20 msi, E2 = 1.3 msi, 
G12 = G l3 = 1.03 msi, G23 = 0.9 rnsi, VI2 = VI:l = 0.3, and V23 = 0.49. 

2.15 Compute the numerical values of the reduced stiffnesses Qij for the graphite-epoxy material 
of Problem 2.14. Ans: 

[

20.118 
0.392 

[Q] = 0 
o 
o 

0.392 
1.308 

0 
0 
0 

0 
0 

0.9 
0 
0 

o 
o 
o 

1.03 
o 
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2.16 The material properties of AS/3501 graphite-epoxy material layers are 

Gl3 = 7 x 103 MPa, G 23 = 7 x 103 MPa, v12 = 0.3 

0:1 = 1.0 x 10-6 m/mtK, 0:2 = 30 x 10-6 m/mtK 

Show that (1 GPa = 103 MPa = 109 Pa) 

[

140.90 
3.02 

[Q] = 0 
o 
o 

3.02 
10.06 

o 
o 
o 

o 0 0] 000 
7 0 0 GPa 
070 
007 

The transformed coefficients for various angles of orientation are given below: 

[1006 3.02 0 0 

~] GPo 

3.02 140.9 0 0 

[Q]e=9o = ~ 0 7 0 
0 0 7 
0 0 0 

[4625 32.25 0 0 3271] 32.25 46.25 0 0 32.71 
[Q]e=45 = 0 0 7 0 o GPa 

0 0 0 7 0 
32.71 32.71 0 0 36.23 

Also, compute the transformed thermal coefficients of expansion for e = 45° . 
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3 

Classical and First-Order Theories 
of Laminated Composite Plates 

3.1 Introduction 
3.1.1 Preliminary Comments 

Composite laminates are formed by stacking layers of different composite materials 
and/or fiber orientation. By construction, composite laminates have their planar 
dimensions one to two orders of magnitude larger than their thickness. Often 
laminates are used in applications that require membrane and bending strengths. 
Therefore, composite laminates are treated as plate elements. 

The objective of this chapter is to develop two commonly used laminate plate 
theories, namely the classical plate theory and the first-order shear deformation 
plate theory. To provide a background for the theories discussed in this chapter, an 
overview of pertinent literature on laminate plate theories is included here. 

3.1.2 Classification of Structural Theories 

Analyses of composite plates in the past have been based on one of the following 
approaches: 

(1) Equivalent single-layer theories (2-D) 
(a) Classical laminated plate theory 
(b) Shear deformation laminated plate theories 

(2) Three-dimensional elasticity theory (3-D) 
(a) Traditional 3-D elasticity formulations 
(b) Layerwise theories 

(3) Multiple model methods (2-D and 3-D) 

The equivalent single layer (ESL) plate theories are derived from the 3-D elasticity 
theory by making suitable assumptions concerning the kinematics of deformation or 
the stress state through the thickness of the laminate. These assumptions allow the 
reduction of a 3-D problem to a 2-D problem. In the three-dimensional elasticity 
theory or in a layerwise theory, each layer is modeled as a 3-D solid. In this 
chapter, we present the classical plate theory and the first-order shear deformation 
plate theory as applied to laminated plates. Literature reviews and development of 
the governing equations of the third-order shear deformation plate theory and the 
layerwise theory will be presented in later chapters (see Chapters 11 and 12). 
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3.2 An Overview of Laminated Plate Theories 
The equivalent single layer laminated plate theories are those in which a 
heterogeneous laminated plate is treated as a statically equivalent single layer having 
a complex constitutive behavior, reducing the 3-D continuum problem to a 2-D 
problem. The ESL theories are developed by assuming the form of the displacement 
field or stress field as a linear combination of unknown functions and the thickness 
coordinate [1-13]: 

N 

'Pi(X, y, z, t) = I)z)1'PHx, y, t) (3.2.1) 
j=O 

where 'Pi is the ith component of displacement or stress, (x, y) the in-plane 
coordinates, z the thickness coordinate, t the time, and 'Pi are functions to be 
determined. 

When 'Pi are displacements, then the equations governing 'P{ are determined by 
the principle of virtual displacements (or its dynamic version when time dependency 
is to be included; see Section 1.4): 

0= rT 
(8U + 8V - 8K) dt io (3.2.2) 

where 8U, 8V, and 8K denote the virtual strain energy, virtual work done by 
external applied forces, and the virtual kinetic energy, respectively. These quantities 
are determined in terms of actual stresses and virtual strains, which depend on 
the assumed displacement functions, 'Pi and their variations. For plate structures, 
laminated or not, the integration over the domain of the plate is represented as the 
(tensor) product of integration over the plane of the plate and integration over the 
thickness of the plate, because of the explicit nature of the assumed displacement 
field in the thickness coordinate: 

h 

r ( . ) dV = 12 r (-) dn dz 
iVai. - ~ ioo 

(3.2.3) 

where h denotes the total thickness of the plate, and no denotes the undeformed 
midplane of the plate, which is chosen as the reference plane. Since all functions are 
explicit in the thickness coordinate, the integration over plate thickness is carried 
out explicitly, reducing the problem to a two dimensional one. Consequently, the 
Euler-Lagrange equations of Eq. (3.2.2) consist of differential equations involving 

the dependent variables 'Pi (x, y, t) and thickness-averaged stress resultants, R~";): 

h 

(m) 12 ()m d Rij = _!l z (Tij z 
2 

(3.2.4) 

The resultants can be written in terms of 'Pi with the help of the assumed constitutive 
equations (stress-strain relations) and strain-displacement relations. More complete 
development of this procedure is forthcoming in this chapter. 

The same approach is used when 'Pi denote stress components, except that the 
basis of the derivation of the governing equations is the principle of virtual forces. In 
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the present book, the stress-based theories will not be developed. Readers interested 
in stress-based theories may consult the book by Panc [14]. 

The simplest ESL laminated plate theory is the classical laminated plate theory 
(or CLPT) [15~20], which is an extension of the Kirchhoff (classical) plate theory 
to laminated composite plates. It is based on the displacement field 

oWQ 
'/L(x, y, z, t) = '/Lo(x, y, t) - z~ 

uX 

a7Jio 
v(x, y, z, t) = vo(x, y, t) - z ay 

7Ji(.T, y, z, t) = 7Jio(x, y, t) (3.2.5) 

where (uo, vo, 7Jio) are the displacement components along the (:r, y, z) coordinate 
directions, respectively, of a point on the midplane (i.e., z = 0). The displacement 
field (3.2.5) implies that straight lines normal to the xy-plane before deformation 
remain straight and normal to the midsurface after deformation. The Kirchhoff 
assumption amounts to neglecting both transverse shear and transverse normal 
effects; i.e., deformation is due entirely to bending and in-plane stretching. 

The next theory in the hierarchy of ESL laminated plate theories is the first-order 
shear deformation theory (or FSDT) [21-27], which is based on the displacement field 

u(x, y, z, t) = uo(x, y, t) + zrP:J;(x, y, t) 

v(x, y, z, t) = VO(.T, y, t) + zrPy(x, y, t) 

7Ji(x, y, Z, t) = 7Jio(x, y, t) (3.2.6) 

where rPx and -rPy denote rotations about the y and x axes, respectively. The 
FSDT extends the kinematics of the CLPT by including a gross transverse shear 
deformation in its kinematic assumptions; i.e., the transverse shear strain is 
assumed to be constant with respect to the thickness coordinate. Inclusion of 
this rudimentary form of shear deformation allows the normality restriction of the 
classical laminate theory to be relaxed. The first-order shear deformation theory 
requires shear correction factors (see [28~32]), which are difficult to determine 
for arbitrarily laminated composite plate structures. The shear correction factors 
depend not only on the lamination and geometric parameters, but also on the loading 
and boundary conditions. 

In both CLPT and FSDT, the plane-stress state assumption is used and plane
stress reduced form of the constitutive law of Section 2.4 is used. In both theories 
the inextensibility and/or straightness of transverse normals can be removed. Such 
extensions lead to second- and higher-order theories of plates. 

Second- and higher-order ESL laminated plate theories use higher-order 
polynomials [i.e., N > 1 in Eq. (3.2.1)] in the expansion of the displacement 
components through the thickness of the laminate (see [33~38], among many others). 
The higher-order theories introduce additional unknowns that are often difficult to 
interpret in physical terms. The second-order theory with transverse inextensibility 
is based on the displacement field 

u(x, y, z, t) = uo(x, y, t) + zrPx(x, y, t) + z2'l/Jx(x, y, t) 

v(x, y, z, t) = vo(x, y, t) + zrPy(x, y, t) + z21/Jy(x, y, t) 

7Ji(x, y, z, t) = wo(x, y, t) (3.2.7) 



112 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

The third-order laminated plate theory of Reddy [38,39] with transverse 
inextensibility is based on the displacement field 

u(x, y, z, t) = uo(x, y, t) + zrPx(x, y, t) + z3 ( - 3~2) (rPx + 88:0) 
v(x, y, z, t) = vo(x, y, t) + zrPy(x, y, t) + z3 ( - 3~2) (rPy + 88:0 ) 

w(x, y, z, t) = wo(x, y, t) (3.2.8) 

The displacement field accommodates quadratic variation of transverse shear strains 
(and hence stresses) and vanishing of transverse shear stresses on the top and bottom 
of a general laminate composed of monoclinic layers. Thus there is no need to use 
shear correction factors in a third-order theory. The third-order theories provide 
a slight increase in accuracy relative to the FSDT solution, at the expense of 
an increase in computational effort. Further, finite element models of third-order 
theories that satisfy the vanishing of transverse shear stresses on the bounding planes 
require continuity of the transverse deflection and its derivatives between elements. 
Complete derivations of the governing equations of the third-order laminated plate 
theory and their solutions are presented in Chapter 11. 

In addition to their inherent simplicity and low computational cost, the ESL 
models often provide a sufficiently accurate description of global response for thin 
to moderately thick laminates, e.g., gross deflections, critical buckling loads, and 
fundamental vibration frequencies and associated mode shapes. Of the ESL theories, 
the FSDT with transverse extensibility appears to provide the best compromise 
of solution accuracy, economy, and simplicity. However, the ESL models have 
limitations that prevent them from being used to solve the whole spectrum of 
composite laminate problems. First, the accuracy of the global response predicted 
by the ESL models deteriorates as the laminate becomes thicker. Second, the ESL 
models are often incapable of accurately describing the state of stress and strain at 
the ply level near geometric and material discontinuities or near regions of intense 
loading - the areas where accurate stresses are needed most. In such cases, 3-D 
theories or multiple model approaches are required (see Chapter 12 for the layerwise 
theory and multiple model approaches). 

This completes an overview of various ESL theories. For additional discussion 
and references, one may consult the review articles [40-43]. In the remaining sections 
of this chapter, we study the classical and first-order shear deformation plate theories 
for laminated plates [44-52]. 

3.3 The Classical Laminated Plate Theory 
3.3.1 Assumptions 

The classical laminated plate theory is an extension of the classical plate theory to 
composite laminates. In the classical laminated plate theory (CLPT) it is assumedt 
that the Kirchhoff hypothesis holds: 

t An assumption is that which is necessary for the development of the mathematical 
model, whereas a restriction is not a necessary condition for the development of the 
theory. 



CLASSICAL AND FIRST-ORDER THEORIES 113 

(1) Straight lines perpendicular to the midsurface (i.e., transverse normals) before 
deformation remain straight after deformation. 

(2) The transverse normals do not experience elongation (i.e., they are inextensible). 

(3) The transverse normals rotate such that they remain perpendicular to the 
midsurface after deformation. 

The first two assumptions imply that the transverse displacement is independent 
of the transverse (or thickness) coordinate and the transverse normal strain E zz is 
zero. The third assumption results in zero transverse shear strains, Exz = 0, Eyz = O. 

3.3.2 Displacements and Strains 

Consider a plate of total thickness h composed of N orthotropic layers with the 
principal material coordinates (x~, x~, x~) of the kth lamina oriented at an angle (h 
to the laminate coordinate, x. Although not necessary, it is convenient to take the 
xy-plane of the problem in the undeformed midplane 0 0 of the laminate (see Figure 
3.3.1). The z-axis is taken positive downward from the midplane. The kth layer is 
located between the points z = Zk and Z = Zk+l in the thickness direction . 

y 

h 
2 

•• """'.x 

.-----~--+-----------------_r~r_~~~~._--~ x 

z 

fl 
2 

_ _ Zk+! 

.I. ZL -----'- t ZL+! 

= = = = = = =-~ 
h~ =Zk+! -Zk 

Figure 3.3.1: Coordinate system and layer numbering used for a laminated plate. 
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The total domain 00 of the laminate is the tensor product of 00 x (-h/2, h/2). 
The boundary of 00 consists of top surface St(z = -h/2) and bottom surfaces 
Sb(Z = h/2), and the edge f == r x (-h/2, h/2) of the laminate. In general, r is 
a curved surface, with outward normal n = nxex + nyey. Different parts of the 
boundary f are subjected to, in general, a combination of generalized forces and 
generalized displacements. A discussion of the boundary conditions is presented in 
the sequel. 

In formulating the theory, we make certain assumptions or place restrictions, as 
stated here: 

• The layers are perfectly bonded together (assumption). 

• The material of each layer is linearly elastic and has three planes of material 
symmetry (i.e., orthotropic) (restriction). 

• Each layer is of uniform thickness (restriction). 

• The strains and displacements are small (restriction). 

• The transverse shear stresses on the top and bottom surfaces of the laminate are 
zero (restriction). 

By the Kirchhoff assumptions, a material point occupying the position (x, y, z) in 
the undeformed laminate moves to the position (x + u, y + v, Z + w) in the deformed 
laminate, where (u, v, w) are the components of the total displacement vector u 
along the (x, y, z) coordinates. We have 

(3.3.1) 

where (ex, ey , ez ) are unit vectors along the (x, y, z) coordinates. Due to small strain 
and small displacement assumption, no distinction is made between the material 
coordinates and spatial coordinates, between the finite Green strain tensor and 
infinitesimal strain tensor, and between the second Piola-Kirchhoff stress tensor 
and the Cauchy stress tensor (see Chapter 1). The Kirchhoff hypothesis requires 
the displacements (u, v, w) to be such that (see Figure 3.3.2) 

owo 
u(x, y, z, t) = uo(x, y, t) - z ox 

owo 
v(x, y, z, t) = vo(x, y, t) - z oy 

w(x, y, z, t) = wo(x, y, t) (3.3.2) 

where (uo, vo, wo) are the displacements along the coordinate lines of a material 
point on the xy-plane. Note that the form of the displacement field (3.3.1) allows 
reduction of the 3-D problem to one of studying the deformation of the reference 
plane z = 0 (or midplane). Once the midplane displacements (uo, vo, wo) are known, 
the displacements of any arbitrary point (x, y, z) in the 3-D continuum can be 
determined using Eq. (3.3.2). 
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awo : , --, ax I 

Figure 3.3.2: Undeformed and deformed geometries of an edge of a plate under 
the Kirchhoff assumptions. 

The strains associated with the displacement field (3.3.2) can be computed 
using either the nonlinear strain-displacement relations (1.3.10) or the linear strain
displacement relations (1.3.12). The nonlinear strains are given by 

(3.3.3) 
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If the components of the displacement gradients are of the order E, i.e., 

au au ov avow = 0 ( ) 
ox ' oy , ox ' oy' a z E 

(3.3.4) 

then the small strain assumption implies that terms of the order E2 are negligible in 
the strains. Terms of order E2 are 

(~~r, (~~r, (~~r, (~~) (~~), (~~) (~~), (~~) (~~) 
(~~r, (~~r, (~~r, (~~) (~~), (~~) (~~), (~~) (~~) 

(~:) (~:), (~;) (~:), (~:r (3.3.5) 

If the rotations ow%x and ow%y of transverse normals are moderate (say 10°-
15°), then the following terms are small but not negligible compared to E: 

(OW)2 (OW)2 ow ow 
ox oy' ox oy (3.3.6) 

and they should be included in the strain-displacement relations. Thus for small 
strains and moderate rotations cases the strain-displacement relations (3.3.3) take 
the form 

1 (aU OW) ov 1 (OW)2 
Exz ="2 oz + ox ' Eyy = oy +"2 oy 

1 (OV OW) ow 
Eyz ="2 oz + oy , Ezz = oz (3.3.7) 

where, for this special case of geometric nonlinearity (i.e., small strains but moderate 
rotations), the notation Eij is used in place of Eij . The corresponding second Piola
Kirchhoff stresses will be denoted (J"ij. 

For the assumed displacement field in Eq. (3.3.2), ow/oz = O. In view of the 
assumptions in Eqs. (3.3.4)-(3.3.6), the strains in Eq. (3.3.7) reduce to 

_ ouo 1 (OWO)2 02wo 
Exx - ox +"2 ox - z ox2 
E = ~ (ouo + avo + oWo owo) _ Z 02wo 

xy 2 ay ax ax ay axay 
_ avo 1 (awo) 2 02wo 

Eyy - ay +"2 ay - z ay2 
E = ~ (_ owo + owo) = 0 

xz 2 ox ox 
E z = ~ (- oWo + owo) = 0 

y 2 oy oy 
Ezz = 0 (3.3.8) 
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The strains in Eqs. (3.3.8) are called the von Karman strains, and the associated 
plate theory is termed the von Karman plate theory. Note that the transverse strains 
(fxz, fyz, fzz) are identically zero in the classical plate theory. 

The first three strains in Eq. (3.3.8) have the form 

{ 
(O)} {(1) } fxx fxx Exx 

{ Eyy } = E£~ + Z E£V 
'"'(xy '"'I ( ) '"'I ( ) 

, /xy /xy 

(3.3.9) 

{ 
(O)} { ~ +.! (~)2 } { (1)} {_CPWO

} Exx ox 2 ox Exx 7"fX2 
o _ (0) _' 2 1 _ (1) _ a2 w 

{f } - fyy - ~ +.! (~) ,{E } - fyy - -W 
(0) ay 2 ay (1) 0 2 

'"'(xy ~ + ~ + ~~ '"'(xy -20 ~Q 
ay ox ox ay x y 

(3.3.10) 

( 
(0) (0) (0) ,(1) (1) (1) 

where Exx , Eyy ,'"'(xy ) are the membrane strams, and (Exx, fyy ,'"'(xy ) are the flexural 
(bending) strains, known as the curvatures. 

Once the displacements (11.0, vo, wo) of the midplane are known, strains at any 
point (x, y, z) in the plate can be computed using Eqs. (3.3.9) and (3.3.10). Note 
from Eq. (3.3.9) that all strain components vary linearly through the laminate 
thickness, and they are independent of the material variations through the laminate 
thickness (see Figure 3.3.3a). For a fixed value of z, the strains are, in general, 
nonlinear functions of x and y, and they depend on time t for dynamic problems. 

3.3.3 Lamina Constitutive Relations 

In the classical laminated plate theory, all three transverse strain components 
(fzz, Exz , f yz ) are zero by definition. For a laminate composed of orthotropic layers, 
with their X1x2-plane oriented arbitrarily with respect to the xy-plane (X3 = z), 

z z z 

x Exx <Jxx 

Ca) (b) 

Figure 3.3.3: Variations of strains and stresses through layer and laminate 
thicknesses. (a) Variation of a typical in-plane strain. (b) Variation 
of corresponding stress. 
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the transverse shear stresses (CTxz , CTyz ) are also zero. Since Ezz = 0, the transverse 
normal stress CT zz, although not zero identically, does not appear in the virtual 
work statement and hence in the equations of motion. Consequently, it amounts 
to neglecting the transverse normal stress. Thus we have, in theory, a case of both 
plane strain and plane stress. However, from practical considerations, a thin or 
moderately thick plate is in a state of plane stress because of thickness being small 
compared to the in-plane dimensions. Hence, the plane-stress reduced constitutive 
relations of Section 2.4 may be used. 

The linear constitutive relations for the kth orthotropic (piezoelectric) lamina in 
the principal material coordinates of a lamina are 

[

Q11 
Q12 

o 

- [~ (3.3.lla) 

where Q~;) are the plane stress-reduced stiffnesses and e~;) are the piezoelectric 
moduli of the kth lamina [cf., Eq. (2.4.4a,b)], (CTi,Ei,Ei) are the stress, strain, and 
electric field components, respectively, referred to the material coordinate system 
(Xl, X2, X3), OCI and OC2 are the coefficients of thermal expansion along the Xl and 
X2 directions, respectively, and 6.T is the temperature increment from a reference 
state, 6.T = T-Tref. When piezoelectric effects are not present, the part containing 

the piezoelectric moduli e~;) should be omitted. The coefficients Q~;) are known in 
terms of the engineering constants of the kth layer: 

El 
Q11 = ----

1- V12V2l 

E2 
Q22 = , Q66 = G12 

1 - V12V2l 
(3.3.llb) 

Since the laminate is made of several orthotropic layers, with their material 
axes oriented arbitrarily with respect to the laminate coordinates, the constitutive 
equations of each layer must be transformed to the laminate coordinates (x, y, z), 
as explained in Section 2.3. The stress-strain relations (3.3.lla) when transformed 
to the laminate coordinates (x, y, z) relate the stresses (CTxx , CTyy , CTxy ) to the strains 
(Exx, Eyy , rxy) and components of the electric field vector (Ex, Ey , Ez ) in the laminate 
coordinates [see Eq. (2.4.5)] 

rxxr [011 Q12 
(J1(; r (rxx} {axx } ) CTyy Q12 Q22 9.26 Eyy - OC yy 6.T 

CTxy Q16 Q26 Q66 rxy 20cxy 

[~ 
0 '31 1 (k) { Ex } (k) 
0 e32 Ey (3.3.12a) 
0 e36 Ez 
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where 

Ql1 = Ql1 COS
4 e + 2( Q12 + 2Q66) sin2 e cos2 e + Q22 sin4 e 

Q12 = (Ql1 + Q22 - 4Q66) sin2 e cos2 e + Q12 (sin4 e + cos4 e) 
Q22 = Qll sin4 () + 2( Q12 + 2Q66) sin2 

() cos2 
() + Q22 cos4 () 

Q16 = (Ql1 - Q12 - 2Q66) sin e cos3 e + (Q12 - Q22 + 2Q66) sin3 e cos e 
Q26 = (Ql1 - Q12 - 2Q66) sin3 

() cos () + (Q12 - Q22 + 2Q66) sin () cos3 
() 

Q66 = (Qll + Q22 - 2Q12 - 2Q66) sin2 
() cos2 

() + Q66(sin4 () + cos4 ()) (3.3.12b) 

and a xx , ayy, and a xy are the transformed thermal coefficients of expansion [see Eq. 
(2.3.23)] 

a xx = a1 cos2 
() + a2 sin2 () 

ayy = a1 sin2 e + a2 cos2 () 

2a;cy = 2(a1 - (2)sin()cos() 

and eij are the transformed piezoelectric moduli 

- 2e+ ·2() e31 = e31 cos e32 sm 
- '2()+ 2() e32 = e31 sm e32 cos 

e36 = (e31 - e32) sin () cos () 

(3.3.12c) 

(3.3.12d) 

Here e is the angle measured counterclockwise from the x-coordinate to the X1-

coordinate. Note that stresses are also linear through the thickness of each layer; 
however, they will have different linear variation in different material layers when 

Q~J) change from layer to layer (see Fig. 3.3.3b). If we assume that the temperature 
increment varies linearly, consistent with the mechanical strains, we can write 

b.T = To(x, y, t) + ZTl (x, y, t) (3.3.13) 

and the total strains are of the form in Eq. (3.3.9) with 

{ 

(0) } { (1) } cxx - axxTo c;rJ; - a x;cT1 
o _ (0) 1 _ (1) {c } - cyy - ayyTo , {E} - cyy - a yyT1 

(0) (1) 
rxy - 2axyTo rxy - 2axyT1 

(3.3.14) 

3.3.4 Equations of Motion 

As noted earlier, the transverse strains (rxz, ryz, czz) are identically zero in the 
classical plate theory. Consequently, the transverse shear stresses (a xz, a yz) are zero 
for a laminate made of orthotropic layers if they are computed from the constitutive 
relations. The transverse normal stress a zz is not zero by the constitutive relation 
because of the Poisson effect. However, all three stress components do not enter the 
formulation because the virtual strain energy of these stresses is zero due to the fact 
that kinematically consistent virtual strains must be zero [see Eq. (3.3.8)]: 

8Exz = 0, 8cyz = 0, 8czz = 0 
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Whether the transverse stresses are accounted for or not in a theory, they 
are present in reality to keep the plate in equilibrium. In addition, these stress 
components may be specified on the boundary. Thus, the transverse stresses do not 
enter the virtual strain energy expression, but they must be accounted for in the 
boundary conditions and equilibrium of forces. 

Here, the governing equations are derived using the principle of virtual 
displacements. In the derivations, we account for thermal (and hence, moisture) 
and piezoelectric effects only with the understanding that the material properties 
are independent of temperature and electric fields, and that the temperature T and 
electric field vector E are known functions of position (hence, bT = 0 and bE = 0). 
Thus temperature and electric fields enter the formulation only through constitutive 
equations [see Eq. (3.3.12a)]. 

The dynamic version of the principle of virtual work [see Eq. (1.4.78)] is 

0= faT (bU + bV - bK) dt (3.3.15) 

where the virtual strain energy bU (volume integral of bUo), virtual work done by 
applied forces bV, and the virtual kinetic energy bK are given by 

h 

bU = ka [2~ (O"xxDcxx + O"yyDcyy + 20"xy Dcxy ) dzdxdy 

= 1 {1~ [0" (Dc(O) + zbEY») + 0" (&0(0) + ZDc(l») h xx xx xx yy yy yy 
no -2 

+ O"xy (b1iV + zb1W)] dz }dXdY 

bV = - r [qb(X, y)bw(x, y,~) + qt(X, y)bw(x, y, -~)] dxdy Jno 2 2 
h -£ [2f!. [G-nnbun + G-nsbus + G-nzbw] dzds 

u 2 

= - r {[qb(X, y) + qt(x, y)] bwo(x, y)} dxdy Jna 
r J~ [~( abWo) ~ ( abWo) - Jru _~ O"nn bUon - za;;: + O"ns buos - z----a;-

+ G-nzbwo] dzds 

r J~ [(. aWo) ( abwo) bK = Jna _~ Po Uo - z ax buo - z~ 

(
. awo) (>: abWo). >: jd d d + Vo - z ay uVo - z----ay + wouwo z x y 

(3.3.16) 

(3.3.17) 

(3.3.18) 

where qb is the distributed force at the bottom (z = h/2) of the laminate, qt is 
the distributed force at the top (z = -h/2) of the laminate, (ann, ans , anz ) are the 
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specified stress components on the portion r cr of the boundary r, (DUon, Duos) are 
the virtual displacements along the normal and tangential directions, respectively, 
on the boundary r (see Figure 3.3.4), Po is the density of the plate material, and a 
superposed dot on a variable indicates its time derivative, Uo = auo/ at. Details of 
how (uon,uos ) and (()"nn,()"ns) are related to (uo,vo) and (()"xx,()"yy,()"xy), respectively, 
will be presented shortly. 

The virtual displacements are zero on the portion of the boundary where the 
corresponding actual displacements are specified. For time-dependent problems, 
the admissible virtual displacements must also vanish at time t = 0 and t = T [see 
Eq. (1.4.73b)]. Since we are interested in the governing differential equations and 
the form of the boundary conditions of the theory, we can assume that the stresses 
are specified on either a part or whole of the boundary. If a stress component is 
specified only on a part of the boundary, on the remaining part of the boundary 
the corresponding displacement must be known and hence the virtual displacement 
must be zero there, contributing nothing to the virtual work done. 

Substituting for I5U, I5V, and 15K from Eqs. (3.3.16)-(3.3.18) into the virtual work 
statement in Eq. (3.3.15) and integrating through the thickness of the laminate, we 
obtain 

.. x 

y Z " .. " .... --'C~ 

Figure 3.3.4: Geometry of a laminated plate with curved boundary. 



122 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

where q = % + qt is the total transverse load and 

{ 
Nxx } Jf:!. {O"xx} {Mxx } Jf:!. {O"xx} Nyy = _2f:!. O"yy dz, Myy = _2f:!. (Jyy z dz 
Nxy 2 O"xy Mxy 2 O"xy 

(3.3.20a) 

{ J\[nn } = J~ {~nn} dz, {A!nn } = J~ {~nn} Z dz 
Nns _f:!. O"ns Mns _f:!. O"ns 

2 2 

(3.3.20b) 

{ 
10 } f:!. { 1 } ~~ = i2~ :2 Po dz, (3.3.20c) 

The quantities (Nxx , Nyy , Nxy ) are called the in-plane force resultants, and 
(Mxx, M yy , Mxy) are called the moment resultants (see Figure 3.3.5); Qn denotes 
the transverse force resultant, and (la, h, h) are the mass moments of inertia. All 
stress resultants are measured per unit length (e.g., Ni and Qi in lb/in. and Mi in 
lb-in/in.). 

x 

y 

Figure 3.3.5: Force and moment resultants on a plate element. 
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The virtual strains are known in terms of the virtual displacements in the same 
way as the true strains in terms of the true displacements [see Eq. (3.3.10)]: 

8 (0) _ o8uo owo o8wo 8 (1) __ o28wO 
cxx - Ox + ox Ox ' Cxx - ox2 

8 (0) _ obvo owo obwo ,,(1) __ o2bwO 
Cyy - oy + oy oy , UC yy - oy2 

8,(0) = obuo + o8vo + obwo owo + owo obwo 
xy oy ox ox oy ox oy 

b (1) _ _ o28wO 
'xy - 2oxoy (3.3.21) 

Substituting for the virtual strains from Eq. (3.3.21) into Eq. (3.3.19) and 
integrating by parts to relieve the virtual displacements (buo, bvo, 8wo) in 0 0 of any 
differentiation, so that we can use the fundamental lemma of variational calculus, 
we obtain 

where a comma followed by subscripts denotes differentiation with respect to the 
subscripts: Nxx.x = oNxx/ox, and so on. Note that both spatial and time 
integration-by-parts were used in arriving at the last expression. The terms obtained 
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in no but evaluated at t = 0 and t = T were set to zero because the virtual 
displacements are zero there. 

Collecting the coefficients of each of the virtual displacements (ouo, ovo, owo) 
together and noting that the virtual displacements are zero on r u, we obtain 

o = faT { 100 [ - ( Nxx,x + Nxy,y - 10uo + h aa~o ) ouo 

( 
a·· ) 

- Nxy,x + Nyy,y - 10vo + h 0:0 
oVo 

- ( Mxx,xx + 2Mxy ,xy + Myy,yy +N(wo) + q 

-lowo-h--h-+h--+h-- oWo dxdy auo avo a2wo a2wo) 1 
ax ay ax2 ay2 

+ her [(Nxxnx + Nxyny) Ouo + (Nxynx + Nyyny) OVo 

+ ( Mxx,xnx + Mxy,ynx + Myy,yny + Mxy,xny + P( wo) 

1 .. 1 .. I awo 1 awo ) >: 
- luOnx - IVOny + 2 ax nx + 2 ay ny uWo 

aowo aowo] 
- (Mxxnx + Mxyny) -----a;;- - (Mxynx + Myyny) ---a:;; ds 

-her (NnnOUon + NnsOuos - Mnn a~~o - Mns a~~~o + Qnowo) ds }dt 

(3.3.23) 

where 

(3.3.24a) 

(3.3.24b) 

The Euler-Lagrange equations of the theory are obtained by setting the 
coefficients of ouo, ovo, and owo over 0 0 of Eq. (3.3.23) to zero separately: 

ouo: aNxx aNxy = J, a2uo _ 1 ~ (awo) 
ax + ay 0 at2 1 at2 ax 

Ovo: aNxy aNyy = L a2vo _ 1 ~ (awo) 
ax + ay 0 at2 1 at2 ay 

oWo : 
02 Mxx 02 Mxy 02 Myy N a2wo 

ax2 + 2 ayax + ay2 + (wo) + q = 10 at2 

0
2 

(a2wo a2wo) 0
2 

(auo avo) 
- h at2 ax2 + ay2 + h at2 ax + ay (3.3.25) 
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The terms involving h are called rotary inertia terms, and are often neglected in 
most books. The term can contribute to higher-order vibration or frequency modes. 

Next we obtain the boundary conditions of the theory from Eq. (3.3.23). In order 
to collect the coefficients of the virtual displacements and their derivatives on the 
boundary, we should express (DUO, DVo) in terms of (DUOn,DUOs). If the unit outward 
normal vector n is oriented at an angle e from the x-axis, then its direction cosines 
are nx = cos e and ny = sin e. Hence, the transformation between the coordinate 
system (n,s,r) and (x,y,z) is given by 

ex = cose en - sine es 

ey = sin e en + cos e es 

ez = er 

Therefore, the displacements (uon , uos) are related to (uo, vo) by 

(3.3.26) 

(3.3.27a) 

Similarly, the normal and tangential derivatives (WO,n, wo,s) are related to the 
derivatives (wo,x, WO,y) by 

OWO oWo oWo 
ox = nx On - ny Os ' (3.3.27b) 

Now we can rewrite the boundary expressions m terms of (uon, uOs) and 
(WO,n, wo,s). We have 

(Nxxnx + Nxyny) Duo + (Nxynx + Nyyny) DVo 

= (Nxxnx + Nxyny) (nxDun - nyDus) + (Nxynx + Nyyny) (nyDun + nxDus) 

= (Nxxn; + 2Nxynxny + Nyyn~) DUn + [(Nyy - N xx ) nxny + Nxy (n; - n~)] DUs 

(3.3.28a) 

We recognize that the coefficients of DUon and Duos in the right-hand side of the 
above equation are equal to N nn and N ns , respectively. This follows from the fact 
that the stresses (ann, ans ) are related to (axx , ayy , axy ) by the transformation in 
Eq. (2.3.9): 

{ } [ 2 
n2 

2nxny 1 { :x" } ann nx y 
ans - -nxny nxny n 2 - n 2 yy 

x y axy 
(3.3.28b) 

Hence we have 

{ Nnn} [ n~ 
2 

2nxny ] r"x} ny 
N yy N ns - -nxny nxny n2 _ n 2 

x y N xy 
(3.3.29a) 

{ Mnn} [ n~ n 2 
2nxny 1 { :xx } y 

Mns - -nxny nxny n 2 _ n 2 yy 
x y Mxy 

(3.3.29b) 
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In view of the above relations, the boundary integrals in Eq. (3.3.23) can be 
written as 

0= faT ira [ (Nnn - lYnn) 8uon + (Nns - lYns ) 8uOs 

+ ( Mxx,xnx + Mxy,ynx + Myy,yny + M,r;y,xny + P( wo) 

I .. I .. I aillo I aillo Q') s: 
- 1 UOnx - 1 VOny + 2 aX nx + 2 ay ny - n uWo 

( ') a8wo ( ') a8wo 1 - Mnn - Mnn ----a:;:;: - Mns - Mns -as dsdt (3.3.30) 

The natural boundary conditions are then given by 

(3.3.31a) 

on fa, where 

( a" ) Qn == Mxx,x + Mxy,y - h uo + h 0:0 
nx+ 

( a" ) Myy,y + Mxy,x - hvo + h 0:0 
ny + P(wo) (3.3.31b) 

Thus the primary variables (i.e., generalized displacements) and secondary variables 
(i.e., generalized forces) of the theory are 

primary variables: 

secondary variables: 

awo 
an' 

awo 
as 

(3.3.32) 

The generalized displacements are specified on r u, which constitutes the essential 
(or geometric) boundary conditions. 

We note that the equations in Eq. (3.3.25) have the total spatial differential order 
of eight. In other words, if the equations are expressed in terms of the displacements 
(uo, vo, wo), they would contain second-order spatial derivatives of Uo and Vo and 
fourth-order spatial derivatives of WOo Hence, the classical laminated plate theory 
is said to be an eighth-order theory. This implies that there should be only eight 
boundary conditions, whereas Eq. (3.3.32) shows five essential and five natural 
boundary conditions, giving a total of ten boundary conditions. To eliminate this 
discrepancy, one integrates the tangential derivative term by parts to obtain the 
boundary term 

(3.3.33a) 
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The term in the square bracket is zero since the end points of a closed curve coincide. 
This term now must be added to Qn (because it is a coefficient of 8wo): 

v, = Q aMns 
n - n + as (3.3.33b) 

which should be balanced by the applied force Qn. This boundary condition, 
Vn = Qn, is known as the Kirchhoff free-edge condition. The boundary conditions 
of the classical laminated plate theory are 

awo 
Un, Us, '11)0, -a (essential) 

n 

N nn , N ns , Vn , !vlnn (natural) (3.3.34) 

The initial conditions of the theory involve specifying the values of the 
displacements and their first derivatives with respect to time at t = 0: 

0 
Un = Un' Us 

0 
= Us' 

0 Wo = Wo 

. ·0 
Un = Un' 

. ·0 
Us = Us, 

. ·0 Wo =wo (3.3.35) 

where variables with superscript '0' denotes values at time t = O. We note that both 
the displacement and velocities must be specified. 

This completes the basic development of the classical laminated plate theory for 
nonlinear and dynamic analyses. As a special case, one can obtain the equations 
of equilibrium from (3.3.25) by setting all terms involving time derivatives to zero. 
For linear analysis, we set N(wo) and P(wo) to zero, in addition to setting the 
nonlinear terms in the strain-displacement equations to zero. Equations (3.3.25) are 
applicable to linear and nonlinear elastic bodies, since the constitutive equations 
were not utilized in deriving the governing equations of motion. 

3.3.5 Laminate Constitutive Equations 

Here we derive the constitutive equations that relate the force and moment resultants 
in Eq. (3.3.20a) to the strains of a laminate. To this end, we assume that each layer 
is orthotropic with respect to its material symmetry lines and obeys Hooke's law; 
i.e., Eq. (3.3.12a) holds for the kth lamina in the problem coordinates. For the 
moment we consider the case in which the temperature and piezoelectric effects are 
not included. Although the strains are continuous through the thickness, stresses 
are not, due to the change in material coefficients through the thickness (i.e., each 
lamina). Hence, the integration of stresses through the laminate thickness requires 
lamina-wise integration. The force resultants are given by 

Q- 1 (k) { s(O) + zs(l) } 16 xx xx 
- (0) (1) 

Q26 Syy + ZSyy dz 
- (0) (1) 

Q66 rxy + Zrxy 
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cxx 
cW (3.3.36) 

{

(I) } 

(1) 
'Yxy 

{ 
Mxx } N rZk+1 

{ CT
xx 

} 
Myy = ~ JZk a yy Z dz 
Mxy k-1 axy 

- - - (k) {(O) (1) } 
N rZk+1 [qu q12 q16] cxg: + ZCX.1 

= L Jz q12 q22 q26 c~J + Zc~J Z dz 
k=l Zk Q16 Q26 Q66 'Y~V + Z'YW 

{ 
Mxx} [BU B12 B16] { c~~ } [DU D12 D16] { c~~ } 
Myy = B12 Bn B 26 c~V + D12 D22 D 26 cW 
Mxy B 16 B 26 B66 ",(0) D16 D26 D66 ",(I) /xy /xy 

(3.3.37) 

where Aij are called extensional stiffnesses, Dij the bending stiffnesses, and Bij the 
bending-extensional coupling stiffnesses, which are defined in terms of the lamina 
stiffnesses Q~;) as 

J~ - 2 ~ rZk
+1 -(k) 2 

(Aij , B ij , Dij ) = h Qij(l,z,z )dz = ~ Jz Qij (l,z,z )dz 
-2" k=l Zk 

(3.3.38a) 

or 

~ -(k) 1 ~ -(k) 2 2 
Aij = ~ Qij (Zk+1 - Zk), Bij = 2" ~ Qij (Zk+1 - Zk) 

k=l k=l 

_ 1 ~ -(k) 3 3 
Dij - 3" ~ Qij (Zk+1 - Zk) 

k=l 
(3.3.38b) 

Note that Q's, and therefore A's, B's, and D's, are, in general, functions of position 
(x, y). Equations (3.3.36) and (3.3.37) can be written in a compact form as 

{ 
{N}} = [[A] 
{M} [B] (3.3.39) 

where {cO} and {c1} are vectors of the membrane and bending strains defined in 
Eq. (3.3.10), and [AJ, [BJ, and [D] are the 3 x 3 symmetric matrices of laminate 
coefficients defined in Eqs. (3.3.38a,b). Values of the laminate stiffnesses for various 
stacking sequences will be presented in Section 3.5. 

For the nonisothermal case, the strains are given by Eq. (3.3.14) and the laminate 
constitutive equations (39) become 

{ {N}} _ [[A] 
{M} - [B] (3.3.40) 

(3.3.41a) 

(3.3.41b) 
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and {NP } and {MP } are the piezoelectric resultants 

(3.3.42a) 

(3.3.42b) 

Relations similar to Eqs. (3.3.41a,b) can be written for hygroscopic effects. 

3.3.6 Equations of Motion in Terms of Displacements 

The stress resultants (N's and M's) are related to the displacement gradients, 
temperature increment, and electric field. In the absence of the temperature and 
electric effects, the force and moment resultants can be expressed in terms of the 
displacements (uo, Vo, wo) by the relations 

(3.3.43) 

(3.3.44) 

The equations of motion (3.3.25) can be expressed in terms of displacements 
(uo, Va, wo) by substituting for the force and moment resultants from Eqs. (3.3.43) 
and (3.3.44). In general, the laminate stiffnesses can be functions of position (x, y) 
(i.e., nonhomogeneous plates). For homogeneous laminates (i.e., for laminates with 
constant A's, B's, and D's), the equations of motion (3.3.25) take the form 
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(3.3.45) 

(3.3.46) 
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(3.3.47) 

where N(wo) was defined in Eq. (3.3.24a). 
The nonlinear partial differential equations (3.3.45)-(3.3.47) can be simplified 

for linear analyses, static analyses, and lamination schemes for which some of the 
stiffnesses (Aij , B ij , D ij ) are zero. These cases will be considered in the sequel. Once 
the displacements are determined by solving Eqs. (3.3.45)(3.3.47), analytically or 
numerically for a given problem, the strains and stresses in each lamina can be 
computed using Eqs. (3.3.10) and (3.3.12), respectively. 

Example 3.3.1: (Cylindrical Bending) 

If a plate is infinitely long in one direction, the plate becomes a plate strip. Consider a plate strip 
that has a finite dimension along the x-axis and sUbjected to a transverse load q(x) that is uniform 
at any section parallel to the x-axis. In such a case, the deflection 1110 and displacements (uo, 11(J) 

of the plate arc functions of only x. Therefore. all derivatives with respect to yare zero. In such 
cases, the deflected surface of the plate strip is cylindrical, and it is referred to as the cylindrical 
bending. For this case, the governing equations (3.3.45)-(3.3.47) reduce to 

A ( 
[Puo 01110 [)2wo) A 02vo _ B [)3 wQ _ oNIr _ I iJ2uo _ I O:lwO 

11 [) 2 + D D 2 + 16 D.·2 11 D :1 D. - 0 "t2 1 .~ Dt2 x x x x x xu. ox . 
(3.3.48a) 

(3.:3.4Sb) 

(:u. 4Sc ) 

Example 3.3.2: 

Suppose that a six-layer (±60jO)8 symmetric laminate is subjected to loads such that the only 

nonzero strains at a point (x, y) are E,\,~) = EO in.jin. and E~l) = l'i:ojin. Assume that layers are 
of thickness 0.005 in. with material properties E1 = 7.8 psi, E2 = 2.6 psi, G 12 = G1.1 = 1.:3 psi, 
G23 = 0.5 psi, and V12 = 0.25. We wish to determine the state of stress ({J x,,,, (J!JY' a,,;y) and force 
resultants in the laminate. 

The only nonzero strain is Elf" = cO + ZI'i:(). Hence, the stresses in kth lamina are given by 
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where 

[ 

3.215 1.431 ±0.707] 
[Ql±60o = 1.431 5.871 ±1.593 

±0.707 ±1.593 2.068 

The stress resultants are given by 

msi, 
[

7.966 0.664 0] 
[Qloo = 0.6

0
64 2.655 0 

o 1.3 
msi 

{ 

Nxx } { 0.1440} 
~:: = 0.og53 EO x 10

6 
lbjin., Myy = 3.1566 KO lb-injin. 

{ 

Mxx } { 7.6306 } 

Mxy 0.7066 

If EO = 1000 x 10-6 in.jin. and KO = 0, we have 

{ 
Nxx} {144} 
~:: = 3~.3 lbjin., { ~:~ } = { ~} lb-injin. 

If EO = 0 in.jin. and KO = 1.0 jin., we have 

{ ~:~ } = { ~} lbjin., {~:~} = { ~:!~~~} lb-injin. 

3.4 The First-Order Laminated Plate Theory 

3.4.1 Displacements and Strains 

In the first-order shear deformation laminated plate theory (FSDT), the Kirchhoff 
hypothesis is relaxed by removing the third part; i.e., the transverse normals do not 
remain perpendicular to the midsurface after deformation (see Figure 3.4.1). This 
amounts to including transverse shear strains in the theory. The inextensibility of 
transverse normals requires that w not be a function of the thickness coordinate, z. 

Under the same assumptions and restrictions as in the classical laminate theory, 
the displacement field of the first-order theory is of the form 

U(x, y, z, t) = uo(x, y, t) + zrPx(x, y, t) 

v(x, y, z, t) = vo(x, y, t) + zrPy(x, y, t) 

w(x, y, z, t) = wo(x, y, t) (3.4.1 ) 

where (uo, Vo, wo, rPx, rPy) are unknown functions to be determined. As before, 
(uo, vo, wo) denote the displacements of a point on the plane z = O. Note that 

(3.4.2a) 

which indicate that rPx and rPy are the rotations of a transverse normal about the 
y- and x-axes, respectively (see Figure 3.4.1). The notation that rPx denotes the 
rotation of a transverse normal about the y-axis and rPy denotes the rotation about 
the x-axis may be confusing to some, and they do not follow the right-hand rule. 
However, the notation has been used extensively in the literature, and we will not 
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z 

x 

- - - - . t---.--.... 

Wo 

I J- ___ _ 

I 

L...-__ Uo --.... ~~: 

Figure 3.4.1: Undeformed and deformed geometries of an edge of a plate under 
the assumptions of the first-order plate theory. 

depart from it. If ((3x, (3y) denote the rotations about the x and y axes, respectively, 
that follow the right-hand rule, then 

(3.4.2b) 

The quantities (uo, Vo, wo, ¢x, ¢y) will be called the generalized displacements. For 
thin plates, i.e., when the plate in-plane characteristic dimension to thickness ratio 
is on the order 50 or greater, the rotation functions ¢x and ¢y should approach the 
respective slopes of the transverse deflection: 

The nonlinear strains associated with the displacement field (3.4.1) are obtained 
by using Eq. (3.4.1) in Eq. (3.3.7): 

_ oUo ~ (OWO)2 o¢x 
exx - ax + 2 ax + z ax 

Ix = (ouo + avo + Owo Owo) + z (O¢x + O¢y) 
y oy ax ax oy oy ax 
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_ aVo ~ (OWO)2 O¢y 
Eyy - oy + 2 oy + Z oy 

oWo owo 
"/xz = ox + ¢x, "/yz = oy + ¢y, Ezz = 0 (3.4.3) 

Note that the strains (Exx, Eyy , "/xy) are linear through the laminate thickness, while 
the transverse shear strains ("/xz, "/yz) are constant through the thickness of the 
laminate in the first-order laminated plate theory. Of course, the constant state of 
transverse shear strains through the laminate thickness is a gross approximation of 
the true stress field, which is at least quadratic through the thickness. 

The strains in Eq. (3.4.3) have the form 

(0) (1) ~ + 1(~)2 a¢x 

r") 
Exx Exx ax 2 ax 7JX (0) (1) ~ + 1(~)2 a¢y Eyy Eyy Eyy ay 2 ay 

(0) (1) awo + ¢ 8y 
"/yz = "/yz +Z "(yz ay y +Z 0 
"/xz (0) (1) awo + ¢ 0 "/xz "/xz ax x a¢x + a¢y "/xy (0) (1) auo + avo + awo awo "/xy "/xy ay ax ax ay ay ax 

(3.4.4) 

3.4.2 Equations of Motion 

The governing equations of the first-order theory will be derived using the dynamic 
version of the principle of virtual displacements: 

0= faT (DU + DV - DK) dt (3.4.5) 

where the virtual strain energy DU, virtual work done by applied forces DV, and the 
virtual kinetic energy DK are given by 

8U = 1 {J~ [0' (&(0) + z&(l)) + 0' (8E(0) + z8E(1)) h xx xx xx yy yy yy 
00 -"2 

(
>: (0) >: (1)) >: (0) >: (0)] d'l}d d + O'xy u"/xy + zU"/xy + O'xzu"/xz + O'yzu"/yz ,~ x y (3.4.6) 

h 

8V = - r [(qb + qt) Dwo] dxdy - r J"2
h 

[O"nn (8un + zD¢n) 
Joo Jf" -"2 

+ O"ns (Dus + zD¢s) + O"nzDwO 1 dzds (3.4.7) 

DK= koi~~po[(uo+z¢x) (Duo+ZD¢x) + (vo+z¢Y) (Dvo+ZD¢y) 

+ woDwo 1 dz dxdy (3.4.8) 

where all variables were previously introduced [see Eqs. (3.3.16)-(3.3.18) and the 
paragraph following the equations]. 
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Substituting for 8U,8V, and 8K from Eqs. (3.4.6)-(3.4.8) into the virtual work 
statement in Eq. (3.4.5) and integrating through the thickness of the laminate, we 
obtain 

0= faT {1oo [Nxx&~~ + ]l;r£x&~~ + Nyy&~~ + Myy&W + NxyDri~ + MxyDri~ 
+ QxDr~~) + Qy8r~~) - qDwo - 10 (uoDUo + voDVo + wu8wu) 

- h (¢xDuo + ¢yDVO + D¢xUo + D¢yVO) - 12 (¢xD¢x + ¢yD¢y) ] dxdy 

- ira (NnnDUn + NnsDUs + ifnnDcPn + MnsDcPs + QnDWo) d8 }dt (3.4.9) 

where q = qb + qt, the stress resultants (Nxx , Nyy , Nxy , Mxx , Myy , Mxy) and the 
inertias (10, h, h) are as defined in Eq. (3.3.20), (Nnn, Nns , Mnn , Mns) are as defined 
in Eq. (3.3.29a,b), and 

{ Qx } = J~ {(Jxz} dz 
Qy _fl (Jyz 

2 

(3.4.lOa) 

The quantities (Qx, Qy) are called the tran8ver8e force re8ultant8. 

Shear Correction Factors 

Since the transverse shear strains are represented as constant through the laminate 
thickness, it follows that the transverse shear stresses will also be constant. It 
is well known from elementary theory of homogeneous beams that the transverse 
shear stress varies parabolically through the beam thickness. In composite laminated 
beams and plates, the transverse shear stresses vary at least quadratically through 
layer thickness. This discrepancy between the actual stress state and the constant 
stress state predicted by the first-order theory is often corrected in computing 
the transverse shear force resultants (Qx, Qy) by multiplying the integrals in Eq. 
(3.4.lOa) with a parameter K, called shear correction coefficient: 

(3.4.lOb) 

This amounts to modifying the plate transverse shear stiffnesses. The factor K 
is computed such that the strain energy due to transverse shear stresses in Eq. 
(3.4.10b) equals the strain energy due to the true transverse stresses predicted by 
the three-dimensional elasticity theory. 

For example, consider a homogeneous beam with rectangular cross section, with 
width b and height h. The actual shear tltreStl ditltributiull through the thicknetltl uf 
the beam, from a course on mechanics of materials, is given by 
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where Q is the transverse shear force. The transverse shear stress in the first-order 
theory is a constant, aL = Q /bh. The strain energies due to transverse shear 
stresses in the two theories are 

U C 1 J ( c )2 dA 3Q2 
s = 2G

13 
A (Jxz = 5G

1
3 bh 

f _ 1 J ( f) 2 _ Q2 
Us -2G

13 
A (Jxz dA - 2G

13
bh 

The shear correction factor is the ratio of U! to U~, which gives K = 5/6. The 
shear correction factor for a general laminate depends on lamina properties and 
lamination scheme. 

Returning to the virtual work statement in Eq. (3.4.9), we substitute for 
the virtual strains into Eq. (3.4.9) and integrate by parts to relieve the virtual 
generalized displacements (8uo, 8vo, 8wo, 8cpx, 8cpy) in 0 0 of any differentiation, so 
that we can use the fundamental lemma of variational calculus; we obtain 

0= faT 100 [ - (Nxx,x + Nxy,y - Iouo - h¢x) 8uo 

- (Nxy,x + Nyy,y - Iovo - h ¢y) 8vo 

- (Mxx,x + Mxy,y - Qx - h¢x - hUo) 8cpx 

- (Mxy,x + Myy,y - Qy - h¢y - hvo) 8cpy 

- (Qx,x + Qy,y + N( wo) + q - Iowo) 8wo 1 dxdy 

+ faT 1r [ (Nnn - lYnn) 8un + (Nns - lYns ) 8us + (Qn - Qn) 8wO 

+ (Mnn - Mnn) 8cpn + (Mns - Mns) 8cps 1 dsdt (3.4.11) 

where N(wo) and P(wo) were defined in Eq. (3.3.24), and the boundary expressions 
were arrived by expressing CPx and cpy in terms of the normal and tangential rotations, 
(CPn, CPs): 

(3.4.12) 

The Euler-Lagrange equations are obtained by setting the coefficients of 8uo, 
8vo, 8wo, 8cpx, and 8cpy in 0 0 to zero separately: 

ouo : 

ovo : 

owo: 
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DcPx: 

(3.4.13) 

The natural boundary conditions are obtained by setting the coefficients of DUn) 
Du." Dwo) DcPn) and DcP~ on r to zero separately: 

where 
Qn == Qxnx + Qyny + P(wo) 

Thus the primary and secondary variables of the theory are 

primary variables: 

(3.4.14a) 

(3.4.14b) 

(3.4.15) 

Note that Qn defined in Eq. (3.4.14b) is the same as that defined in Eq. (3.3.31b). 
This follows from the last two equations of (3.4.13). 

The initial conditions of the theory involve specifying the values of the 
displacements and their first derivatives with respect to time at t = 0: 

'U =uo 0 0 cPn = ¢~) ¢s = ¢~ n n) 'Us = US) Wo = wo) 
. ·0 Un =Un ) . ·0 Us = US) . ·0 Wo = Wo) 

. '0 
cPn = cPr" 

. '0 
cPs = cPs (3.4.16) 

for all points in 0 0 . 

3.4.3 Laminate Constitutive Equations 

The laminate constitutive equations for the first-order theory are obtained using the 
lamina constitutive equations (3.3.12a) and the following relations: 

{
(JYZ}(k) = [q44 
(Jxz Q45 

~r {1: }(k) 

where [see Eq. (2.4.10)] 

e14 = (e15 - e24) sinBcosB) e24 = e24 cos2 B + e15 sin2 B 

e15 = e15 cos2 B + e24 sin2 B) e25 = (e15 - e24) sin B cos B 

(3.4.17a) 

(3.4.17b) 

(3.4.17c) 
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The laminate constitutive equations in Eqs. (3.3.36) and (3.3.37) are valid also 
for the first-order laminate theory. In addition, we have the following laminate 
constitutive equations: 

or 

(3.4.18) 

where the extensional stiffnesses A 44 , A 45 , and A55 are defined by 

(3.4.19a) 

and the piezoelectric forces Q; and Q: are defined by 

(3.4.19b) 

When thermal and piezoelectric effects are not present, the stress resultants 
(N's and M's) are related to the generalized displacements (uo,vo,wo,cPx,cPy) by 
the relations 

(3.4.20) 

{ 
Mxx} [1311 
Myy = 1312 

Mxy 1316 

(3.4.21) 
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{ Qy } = K [A44 A45] { ~ + cPy } 
Qx A45 A55 ~ + cPx 

(3.4.22) 

When thermal and piezoelectric effects are present, Eqs. (3.4.20) and (3.4.21) 
take the same form as Eq. (3.3.40), and Eq. (3.4.22) will contain the column 
of piezoelectric forces given in Eq. (3.4.18). 

3.4.4 Equations of Motion in Terms of Displacements 

The equations of motion (3.4.13) can be expressed in terms of displacements 
(uo, Vo,1JJo, cPx, cPy) by substituting for the force and moment resultants from Eqs. 
(3.4.20) (3.4.22). For homogeneous laminates, the equations of motion (3.4.13) 
take the form (including thermal and piezoelectric effects) 

(3.4.23) 
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(3.4.24) 

(3.4.25) 

(3.4.26) 
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(3.4.27) 

Equations (3.4.23)-(3.4.27) describe five second-order, nonlinear, partial 
differential equations in terms of the five generalized displacements. Hence, 
the first-order laminated plate theory is a tenth-order theory and there are ten 
boundary conditions, as stated earlier in Eqs. (3.4.14) and (3.4.15). Note that the 
displacement field of the classical plate theory can be obtained from that of the 
first-order theory by setting 

and ¢ __ 8wo 
y - 8y (3.4.28) 

Conversely, the relations in Eq. (3.4.28) can be used to derive the first-order theory 
from the classical plate theory via the penalty function method (see Chapter 10). 

Example 3.4.1: 

The linearized equations of motion for cylindrical bending according to the first-order shear 
deformation theory are given by setting all derivatives with respect to y in Eqs. (3.4.23)-(3.4.27): 

A [)2uo A [)2vo B [)2¢x B [)2¢y [)NJ'x [)NI'x 
11-[) 2 + 16-[) 2 + ll-[) 2 + 16-[) 2 - -[)- - -[)-x x x x x x 

[)2ua [)2¢x 
= fa [)t2 + h [)t2 (3.4.29) 

(3.4.30) 

(3.4.31 ) 

(3.4.32) 
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(3.4.33) 

3.5 Laminate Stiffnesses for Selected Laminates 

3.5.1 General Discussion 

A close examination of the laminate stiffnesses defined in Eqs. (3.3.38) and (3.4.19a) 
show that their values depend on the material stiffnesses, layer thicknesses, and 
the lamination scheme. Symmetry or antisymmetry of the lamination scheme and 
material properties about the midplane of the laminate reduce some of the laminate 
stiffnesses to zero. The book by Jones [44] has an excellent discussion of the laminate 
stiffnesses for various types of laminated plates. In this section, we review selective 
lamination schemes for their laminate stiffness characteristics. 

Before we embark on the discussion of laminate stiffnesses, it is useful to introduce 
the terminology and notation associated with special lamination schemes. The 
lamination scheme of a laminate will be denoted by (ex / f3 Ii / {j / E / ... ), where ex is 
the orientation of the first ply, f3 is the orientation of the second ply, and so on (see 
Figure 3.5.1). The plies are counted in the positive z direction (see Figure 3.3.1). 
Unless stated otherwise, this notation also implies that all layers are of the same 
thickness and made of the same material. 

A general laminate has layers of different orientations () where -900 
::; () ::; 

900
• For example, (0/15/-35/45/90l-45) is a six-ply laminate. General angle-ply 

laminates (see Figure 3.5.2) have ply orientations of () and -() where 00 
::; () ::; 900

, 

and with at least one layer having an orientation other than 00 or 900
• An example 

z 

h 
2 

h 
2 

x 

Figure 3.5.1: A laminate with general stacking sequence. 
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of angle-ply laminates is provided by (15/-30/0/90/45/-45). Cross-ply laminates 
are those which have ply orientations of 00 or 900 (see Figure 3.5.3). An example of 
a cross-ply laminate is (0/90/90/0/0/90). For layers with 00 or 900 orientations, the 
layer stiffnesses Q16, Q26, Q45 are zero. Hence, A 16 = A 26 = A45 = D16 = D 26 = O. 

When ply stacking sequence, material, and geometry (i.e., ply thicknesses) are 
symmetric about the midplane of the laminate, the laminate is called a symmetric 
laminate (see Figure 3.5.4). For a symmetric laminate, the upper half through 
the laminate thickness is a mirror image of the lower half. The laminates (-
45/45/45/-45)=(-45/45)s and (45/-45/-45/45) = (45/-45)8' with all layers having 
the same thickness and material, are examples of a symmetric angle-ply laminate, 
(0/90/90/0) = (0/90)8 is a symmetric cross-ply laminate, and (30/-45/0/90/90/0/-
45/30)=(30/ -45/0/90)8 is a general symmetric laminate. 

t1 

t2 fl. 
2 

t3 

tk 
X 

fl. 
2 

t L-1 

tL 

z 

Figure 3.5.2: A general angle-ply laminate. 
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x 

fl. 
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Figure 3.5.3: A cross-ply laminated plate with the 00 and 900 layers. 
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Figure 3.5.4: A symmetric laminate. 

x 

Note that symmetric laminates are also denoted by displaying only the lamination 
scheme of the upper half. The symmetric laminate (-25/35/0/90/90/0/35/-25) is 
denoted as (-25/35/0/90)8. 

An unsymmetric or asymmetric laminate is a laminate that is not symmetric. 
An antisymmetric laminate is one whose lamination scheme is antisymmetric 
and material and thicknesses are symmetric about the midplane. Examples of 
antisymmetric angle-ply and cross-ply laminates are provided, respectively, by (-
30/30/-30/30/-30/30)= (-30/30h and (0/90/0/90/0/90)= (0/90h-

Laminate stiffnesses Aij depend on only on the thicknesses and stiffnesses of 
the layers but not on their placement in the laminate. On the other hand, laminate 
stiffnesses Dij depend not only on the layer thickness and stiffnesses but also on their 
location relative to the midplane. For example, both (0/90)8 and (90/0)8 laminates 
will have the same in-plane stiffnesses A ij . However, (0/90)8 laminate will have 
larger bending stiffnesses Dij about an axis perpendicular to the fiber direction than 
the (90/0)8 laminate, because the 0° layers are located farther from the midplane in 
the (0/90)8 laminate. Both Aj and Dij are always positive. Laminate stiffnesses Bij 

also depend on the layer thickness, stiffnesses and location relative to the midplane, 
and they can be negative, depending on the lamination scheme and the number of 
layers. 

3.5.2 Single-Layer Plates 

Here we discuss some special cases of single-layered configurations and their 
stiffnesses. The special single layer plates discussed here include: isotropic, specially 
orthotropic (i.e., the principal material coordinates coincide with those of the plate), 
generally orthotropic (i.e., the principal material coordinates do not coincide with 
those of the plate), and anisotropic. The bending-stretching coupling coefficients 
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Bij and the shear stiffnesses A 16 , A 26 , D 16 , and D 26 can be shown to be zero for 
all single-layer plates except for generally orthotropic and anisotropic single-layer 
plates. The units of Ni and M i , in the U.S. Customary System (USCS), are lb-in. 
and lb-injin., respectively. 

Single Isotropic Layer 

For a single isotropic layer with material constants E and u [G = 2(1!V)] and 

thickness h, the nonzero laminate stiffnesses of Eqs. (3.3.38) and (3.4.19a) become 

Eh 1-u 1-u 
All = 1 _ u2 ' A12 = uAll , A22 = All, A66 = -2-All, A44 = A55 = -2-All 

E~ 1-u 
Dll = 12(1 _ u2)' D12 = uDll , D22 = D ll , D66 = -2-Dll (3.5.1) 

The plate constitutive equations for the classical and first-order theories become 

uAll 
All 
o 

{ 

l'vlxx } [Dll u Dll 
Myy = uDll Dll 
Mxy 0 0 

{ Qy } = K ~ [All 
Qx 2 0 

{ 

(O)} o Exx 

o 1 E~V (1b jin.) 
I-v A (0) 

2 II IXY 

o 1 { (I)} o :rV (1b-injin.) 
I-v D (1) 

2 U IXY 

{ 
(O)} 

}] Ir~) (lb-in) 
u IXZ 

The nonzero thermal stress resultants {NT} and {MT} are given by 

h h 

T T En 12 T T En 12 N xx = N yy = ( ) f'j.T dz, Mxx = Myy = ( ) f'j.Tz dz 1 - u _tl 1 - u _tl 
2 2 

Single Specially Orthotropic Layer 

(3.5.2) 

(3.5.3) 

(3.5.4) 

(3.5.5) 

For a single specially orthotropic layer, the stiffnesses can be expressed in terms 
of the Qij and thickness h. The nonzero stiffnesses of Eqs. (3.3.38) and (3.4.19a) 
become 

Au = Qu h , A12 = Q12h, A22 = Q22h 

A66 = Q66 h , A44 = Q44h, A55 = Q55 h 

D - Qllh
3 

D _ Q12 h3 D _ Q22 h3 D _ Q66 h3 
II - 12 ' 12 - 12 ' 22 - 12 ' 66 - 12 (3.5.6) 

where Qij are the plane-stress-reduced stiffnesses, and they are given in terms of 
the engineering constants [see Eq. (3.3.11b)] as 

E1 Q _ U12E2 E2 
Qll = , 12 - , Q22 = ----

I - U12U21 1 - U12U21 1 - U12U21 
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(3.5.7) 

The plate constitutive equations for the classical and first-order theories become 

rxx} [Qll Q12 o ]{ (O)} Exx 
N yy = h Q12 Q22 o (0) 

N xy 0 0 Q66 ~rV 
(3.5.8) 

{ Mxx } _ ", [Q11 Q12 o ]{ (1)} Exx 
Q22 o (1) Myy - - Q12 

Q66 ~rV Mxy 12 0 0 
(3.5.9) 

{ Q
QxY} = Kh [Q

0
44 0] {r~~) } 

Q55 r~~) 
(3.5.10) 

The nonzero thermal stress resultants are given by 

(3.5.11a) 

(3.5.11b) 

Single Generally Orthotropic Layer 

For a single generally orthotropic layer (i.e., the principal material coordinates do 
not coincide with those of the plate), the stiffnesses can be expressed in terms of the 
transformed coefficients Qij and thickness h. The nonzero stiffnesses are (Bij = 0) 

- 3 
- Qijh - -

Aij = Qijh, Dij = ~' A44 = hQ44, A55 = hQ55 (3.5.12) 

The plate constitutive equations are 

(3.5.13) 

(3.5.14) 

(3.5.15) 

The thermal stress resultants for this case are given by 

(3.5.16) 
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A similar expression holds for {MT }. 

If the temperature increment is linear through the layer thickness, tlT = To + zT1 , 

the thermal stress resultants have the form 

{Ny} ... [qll Q12 Q16] { OXX } Nyy - Q12 Q22 Q26 a yy Toh 

N'1,; Q16 Q26 Q66 2a:cy 

{ M~x} [011 Q12 
Q"] { ~xx } T,h3 M'{y = q12 Q22 Q26 (3.5.17) yy 12 

M'1,; Q16 Q26 Q66 2axy 

Single Anisotropic Layer 

For a single anisotropic layer, the stiffnesses are expressed in terms of the coefficients 
Gij and thickness h. The nonzero stiffnesses are (Bij = 0) 

(3.5.18) 

for i,j = 1,2,3,4,5 and 6 [see Eq. (2.4.3a)]. The plate constitutive equations are 
the same as in Eqs. (3.5.13)-(3.5.16) with the plate stiffnesses given by Eq. (3.5.18). 

Example 3.5.1: 

The material properties of boron-epoxy material layers are 

G23 = 0.6 x 106 psi, V12 = 0.25, V13 = 0.25, V23 = 0.25 

The matrix of clastic coefficients for the material is [see Eq. (1.3.44)] 

30.508 1.017 1.017 0 0 

II 
1.017 3.234 0.834 0 0 

[C]= 
1.017 0.834 3.234 0 0 

msi 
0 0 0 0.6 0 
0 0 0 0 1.5 
0 0 0 0 0 

The plane stress-reduced elastic coefficient matrix in the material coordinates is 

[ 30189 
0.755 0 0 

~] m,; 

0.755 3.019 0 0 
[Q] = 0 0 0.6 0 

0 0 0 1.5 
0 0 0 0 1.5 

The transformed stiffness matrix [0] for (} = 600 is given by r9

"1 

5.573 0 0 3101] 5.573 18.578 0 0 8.664 

[0]60 = ~ 0 1.275 0.390 0 msi 
0 0.390 0.825 0 

3.101 8.664 0 0 6.318 

(3.5.19) 
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The laminate stiffnesses Aij and Dij for i,j = 1,2,6 may be computed using Eq. (3.5.12). The 
transverse shear stiffnesses A44,A45, and A55 are given by Aij = Qijh for i,j = 4,5. 

Suppose that the thermal coefficients of expansion of the material are 

001 = 2.5 x 10-6 in./in.;oF , 002 = 8.0 x 10-6 in./inpF (3.5.20) 

The transformed coefficients are 

{ 

ooxx } {6.625 } 
ooyy = 3.875 X 10-6 in.jin.;oF 

200xy 600 -4.763 

3.5.3 Symmetric Laminates 

When the material properties, locations, and lamination scheme are symmetric 
about the midplane, the laminate is called a symmetric laminate. If a laminate is not 
symmetric, it is said to be an unsymmetric laminate. Due to the symmetry of the 

layer material coefficients Q~), distances Zk, and thicknesses hk about the midplane 
of the laminate for every layer, the coupling stiffnesses Bij are zero for symmetric 
laminates (see Figure 3.5.5). The elimination of the coupling between bending 
and extension simplifies the governing equations. When the strain-displacement 
equations are linear, the equations governing the in-plane deformation can be 
uncoupled from those governing bending of symmetric laminates. Further, if there 
are no applied in-plane forces or displacements, the in-plane deformation (i.e., 
strains) will be zero, and only the bending equations must be analyzed. From 
production point of view, symmetric laminates do not have the tendency to twist 
from the thermally induced contractions that occur during cooling following the 
curing process. 

h 
2 

CD 
~-----+----------~-----------+------~----~x 

CD 

z 

h 
2 

Figure 3.5.5: A symmetric cross-ply laminate. 
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The force and moment resultants for a symmetric laminate, in general, have 
the same form as the generally orthotropic single-layer plates [see Eqs. (3.5.13)
(3.5.15)]. For certain special cases of symmetric laminates, the relations between 
strains and resultants can be further simplified, as explained next. 

Symmetric Laminates with Multiple Isotropic Layers 

When isotropic layers of possibly different material properties and thicknesses are 
arranged symmetrically from both a geometric and a material property standpoint, 
the resulting laminate will have the following laminate constitutive equations for 
the classical or first-order theories: 

[

A11 
A12 
o 

{ 
Mxx} [D11 
Myy = D12 
Mxy 0 

A12 
A11 
o 

D12 
D11 
o 

O 

1 {
(I) } cxx 

o (1) 

D66 ~r~ 
o ] { (o)} 

A55 ~r~) 

(3.5.21a) 

(3.5.21b) 

(3.5.21c) 

where the laminate stiffnesses Aij and Dij are defined by Eqs. (3.3.38) and (3.4.19a) 
with 

(3.5.22) 

The thermal stress resultants for this case are given by 

q12] (k) { a xx } tlT dz 
Q22 a yy 

(3.5.23) 

and similar expression holds for {MT }. 

If tlT = To + ZT1, then Eq. (3.5.23) can be written as 

(3.5.24) 

Symmetric Laminates with Multiple Specially Orthotropic Layers 

A laminate composed of multiple specially orthotropic layers that are symmetrically 
disposed, both from a material and geometric properties standpoint, about the 
midplane of the laminate does not exhibit coupling between bending and extension 
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i.e., Bij = O. The laminate constitutive equations are again given by Eqs. (3.5.21a
c), where the laminate stiffnesses Aij and Dij are defined by Eqs. (3.3.38) and 
(3.4.19a) with 

E k k Ek Ek 
-(k) 1 -(k) v21 1 -(k) _ 2 

Q ll = k k ' Q 12 = 1 k k ' Q 22 - 1 k k 1 - v12 v21 v v v v - 12 21 - 12 21 

(3.5.25) 

Such laminates are also called specially orthotropic laminates. The thermal stress 
resultants have the same form as those given in Eq. (3.5.23). 

A common example of specially orthotropic laminates is provided by the regular 
symmetric cross-ply laminates, which consist of laminae of the same thickness and 
material properties but have their major principal material coordinates (i.e., Xl 

and X2) alternating at 0° and 90° to the laminate axes X and y: (0/90/0/90/·· .). 
The regular symmetric cross-ply laminates necessarily contain an odd number of 
layers; otherwise, they are not symmetric. Of course, a general symmetric cross-ply 
laminate can have either an even or odd number of layers: (0/90/0/90/90/0/90/0) 
or (0/90/90/0/0/90/90/0) (see Figure 3.5.5). 

Symmetric Laminates with Multiple Generally Orthotropic Layers 

Laminates can be composed of generally orthotropic layers whose principal material 
directions are aligned with the laminate axes at an angle () degrees. If the thicknesses, 
locations, and material properties of the layers are symmetric about the midplane 
of the laminate, the coupling between bending and extension is zero, Bij = 0, and 
the laminate constitutive equations are given by Eqs. (3.5.13)-(3.5.15). Note that 
the coupling between normal forces and shearing strain, shearing force and normal 
strains, normal moments and twist, and twisting moment and normal curvatures is 
not zero for these laminates (i.e., A 16 , A26 , D 16 , and D 26 are not zero). An example 
of a general symmetric laminate with generally orthotropic laminae is provided by 
(30/-603/155/-603 /30), where the subscript denotes the number of layers of the 
same orientation and thickness. 

Regular symmetric angle-ply laminates are those that have an odd number of 
orthotropic laminae of equal thicknesses and alternating orientations: (a/-a/a/
alai .. ,),0° < a < 90° (see Figure 3.5.6). A general symmetric angle-ply laminate 
has the form (()/(3/,/" ')8' where (),(3, and, can take any values between -90° and 
90°, and each layer can have any thickness, but they should be symmetrically placed 
about the midplane. It can be shown that the stiffnesses A 16 . A26 , D l6 , and D26 of 
a regular symmetric angle-ply laminate are the largest when the number of layers 
N is equal to 3, and they decrease in proportion to l/N as N increases. Thus, for 
symmetric angle-ply laminates with many layers, the values of A l6 , A26 , D16 , and 
D 26 can be quite small compared to other Aij and D ij . 

A laminate composed of multiple anisotropic layers that are symmetrically 
disposed about the midplane of the laminate does not have any stiffness 
simplification other than Bij = 0, which holds for all symmetric laminates. 
Stiffnesses A 16 , A 26 , D 16, and D26 are not zero, and they do not necessarily go 
to zero as the number of layers is increased. 
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Figure 3.5.6: A symmetric angle-ply laminate. 

In general, symmetric laminates are preferred wherever they meet the application 
requirements. Symmetric laminates are much easier to analyze than general or 
unsymmetric laminates. Further, symmetric laminates do not have a tendency to 
twist due to thermally induced contractions that occur during cooling following the 
curing process. 

Example 3.5.2: 

A general symmetric laminate (30/0/90/-45)5 of total thickness 1 in. and made of boron-epoxy 
layers [see Eqs. (3.5.19) and (3.5.20) for material properties] has the following laminate stiffnesses: 

[

15.491 3.565 
[AJ = 3.565 12.095 

0.468 -0.923 

0.468] [ l.683 0.303 0.409] 
-0.923 106 Ib/in., [DJ = 0.303 0.604 0.141 106 Ib-in. 

4.311 0.409 0.141 0.366 

The transverse shear stiffnesses are (in 106 Ib/in.) 

A44 = 0.9938, A45 = -0.0151, A55 = 1.106:3 

The thermal stress resultants are (To 1" 0, Tl = 0) 

{
NIx} {57.241 } 
N¥';t = 50.307 106To Ib/in., 
N xy -0.929 

{MT} {O} M~.: = 0 Ib-in.jin. 
Mxy 0 

A symmetric cross-ply laminate (0/90/0/90), of boron-epoxy layers has the stiffnesses 

[

16.604 
[AJ = 0;55 

0.755 
16.604 

o 
~ ]106 Ib/in., [DJ = [~:~~~ ~:~~~ ~ ]106 Ib-in. 

l.5 0 0 0.125 

The transverse shear stiffnesses are (in 106 Ib /in.) 

A44 = l.05, A45 = 0.0, A55 = l.05 
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Note that the cross-ply laminate considered here is equivalent to (0/90/0/90/0/90/0) where all 
layers except the middle layer having a thickness of h/8 and the middle layer (90) has a thickness 
of h/4; here h is the total thickness of the laminate. 

A symmetric angle-ply laminate (30/-30/45/-45)8 of boron-epoxy layers has the stiffnesses 

[

14.379 6.376 0] [1.461 0.481 0.256] 
[AJ = 6.376 7.586 0 106 Ib/in., [DJ = 0.481 0.470 0.126 106 Ib-in. 

o 0 7.122 0.256 0.126 0.543 

The transverse shear stiffnesses are 

A44 = 0.9375 x 106 Ib/in., A45 = 0.0 Ib/in., A55 = 1.1625 x 106 Ib/in. 

Example 3.5.3: 

Consider a symmetric laminate (0/90)8 made of boron-epoxy layers of thickness 0.005 in. Suppose 
that the laminate is subjected to loads such that it experiences only nonzero strain of E~x = 103 JL 
in.jin. We wish to determine the forces and moment resultants. 

The only nonzero strain is Exx = E~<;l. Hence the force resultants in the laminate are given by 

{
NXX} 
N yy = 

N xy 
o (0) o ] {E~<;l } 

A66 ~!~) 

[

0.3321 0.0151 
0.0151 0.3321 

o 0 

o ] { 1,000 } { 332.1 } o 0 = 15.1 Ib/in. 
0.03 0 0 

All moments will be zero on account of the fact that there are no bending strains and the coupling 
stiffnesses Bij are zero. 

Now suppose that the laminate is subjected to loads such that it experiences only nonzero strain 

of E~~ = 0.1. Hence, the only nonzero strain is Exx = E~~ z. Then the force resultants are zero, and 
the moment resultants are given by 

{MXX} [Dll 
D12 o J{ ")} Exx 

Myy = D12 D22 o (1) 
Mxy 0 0 D66 ~r!) 

[ 17.862 0.503 0] {0.1} { 1.7862} 
0.503 4.277 ~ ~:~ = O.Og03 Ib-in./in. 

0 0 

3.5.4 Antisymmetric Laminates 

Although symmetric laminates are more desirable from an analysis standpoint, they 
may not meet the design requirements in some applications. For example, a heat 
shield receives heat from one side and thus requires nonsymmetric laminates to 
effectively shield the heat. Another example that requires coupling is provided by 
turbine blades with pretwist. Moreover, the shear stiffness of laminates can be 
increased by orienting the layers at angle to the laminate coordinates. 

The general class of antisymmetric laminates must have an even number of 
orthotropic laminae if adjacent laminae have equal thicknesses and alternating 
orientations: (() / -()), 00 :s: () :s: 900

• Due to the anti symmetry of the lamination 
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scheme (see Figure 3.5.7) but symmetry of the thicknesses of each pair of layers, this 
class of antisymmetric laminates has the feature that A16 = A 26 = D16 = D 26 = o. 
The coupling stiffnesses Bij are not all zero; they go to zero as the number of layers 
is increased. Foa general antisymmetric laminate, the relations between the stress 
resultants and the strains are given by 

rxx} [An A12 { (O)} [Bll B12 
ill{; 1 { E~~ } 

o Exx 
o E(O) + (1) N yy = A12 A22 AJ ~!v B12 B22 B 26 Eyy 

N xy 0 0 B16 B26 B66 (1) 
IXY 

(3.5.26a) 

rxx} [Bll B12 { (O)} D12 Ll f1~ } B16 Exx Du 

Myy = B12 B22 B26l E1~ + [ D12 D22 
(1) 

Eyy 

Mxy B16 B26 B66 ,(0) 0 0 (1) 
xy IXY 

(3.5.26b) 

(3.5.26c) 

The thermal force resultants are given by 

(3.5.27) 

Similar expression holds for {MT}. 

tl 

t2 h 
2 

tk 
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thl =tk 

h 
-

tL_l=t2 2 

@ tL =t1 

z 

Figure 3.5.7: An antisymmetric laminate. 
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In the following pages, we discuss some special cases of the class of antisymmetric 
laminates described above (i.e., laminates that have an even number of orthotropic 
laminae, each pair having equal thicknesses and alternating orientations). 

Antisymmetric Cross-ply Laminates 

A special case of antisymmetric laminates are those which have an even number 
of orthotropic layers with principal material directions alternating at 0° to 90° to 
the laminate axes. Such laminates are called antisymmetric cross-ply laminates. 
Examples of antisymmetric cross-ply laminates are (0/90/0/90/ ... ) with all layers 
of the same thickness, and (0/90/90/0/0/90) with layers of the thicknesses 
(hI/h2/h3/h3/h2/hd. Note that for every 0° layer of a given thickness and location, 
there is a 90° layer of the same thickness and location on the other side of the 
midplane (see Figure 3.5.8). For these laminates, the coupling stiffnesses Bij have 
the properties 

B22 = -Bll, and all other Bij = 0 (3.5.28) 

The relations between the stress resultants and the strains are 

r"" } [All 
A12 { (a)} 0 0] t~} 0] Exx [ Ell 

N yy = A12 A22 o EJO ) + 0 -Bll o (1) 
yy Eyy 

N xy 0 0 A66 '),(0) 0 0 o (1) 
xy fXY 

(3.5.29a) 

rxx} _ [Ell 0 OJ{ (O)} [Dll D12 Ll t~} -Bll o :~~ + D12 D22 
(1 ) 

Myy - 0 Eyy 

Mxy 0 0 o (0) 0 0 (1) 
fXY fXY 

(3.5.29b) 

{g~} = K [A~4 o ] { (O)} 
A55 ~r~) (3.5.30) 

Q) 

® h 

® 2 
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Q) h 

Q) 2 
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z 

Figure 3.5.8: An antisymmetric cross-ply laminate. 
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A regular ant'isymmetric cross-ply laminate is one that has an even number of 
layers of equal thickness and the same material properties and which have alternating 
00 and 900 orientations. For these laminates, the coupling coefficient Bn approaches 
zero as the number of layers is increased. 

Antisymmetric Angle-ply Laminates 

An antisymmetric angle-ply laminate has an even number of orthotropic layers with 
principal material directions alternating at e degrees to the laminate axes on one side 
of the midplane and corresponding equal thickness laminae oriented at -e degrees on 
the other side. When e = 0, -e should be interpreted as 900 or vice versa. A regular 
antisymmetric angle-ply laminate is one that has an even number of layers of equal 
thickness and material properties. An example is given by (-45/40/-15/15/-40/45). 

For antisymmetric angle-ply laminates without 900 layers, the stiffnesses can be 
simplified as 

(3.5.31) 

The relations between the stress resultants and the strains are 

rxx} [All A12 o ]{ E~~} [0 0 { (I)} R16] E"f 
N yy = A12 A22 

(0) 0 B 26 c~J (3.5.32) o Cyy + 0 
N xy 0 0 A66 1~V B16 B26 o (1) 

1xy 

rxx} [0 0 { (O)} [DlI D12 { (1)} B 16 cxx o cxx 
Myy = 0 0 B2fi ] E~O + D12 D22 0] Ef},} (3.0.33) 
M,1:'Y B 16 B 26 o (0) 0 0 D66 (1) 1xy 1xy 

{Qy} = K [ A44 
Qx 0 

o ] { (O)} 
A55 ~r~ (3.5.34) 

For a fixed laminate thickness, the stiffnesses B 16 and B26 go to zero as the number 
of layers in the laminate increases. 

Example 3.5.4: 

A regular antisyrnmetric cross-ply laminate (0/90/0/90/0/90/0/90) of boron-epoxy layers has the 
laminate stiffnesses 

[

16.604 0.755 
[A] = 0.;55 16.g04 

° ] [-0.849 ° 0] ° 10
6 

lb/in., [B] = ° 0.849 ° 10
6 

lb 
1.5 0 0 ° 

[D] = [~:~o~~ ~:~~! ~ ]106 lb-in., {~::} = { 1.~50} 100 lb/in. 
o 0.125 A 5 .5 l.()50 

Note that if the same 0° and 90 0 layers are positioned differently, say (0/90/90/0/90/0/0/90). then 
the coefficients Bij would vanish (why?). 

An antisymmetric angle-ply laminate (-45/45/30/0/0/ 30/-45/45) of boron-epoxy layers has 
the laminate stiffnesses 

[

17.281 5.172 0] [0 0 -0.194] 
[A] = 5.

0
172 7.093 ° 106 lb/in., [B] = ° ° 0.

0
°67 106 lb ° 5.917 -0.194 0.067 
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[D] = [~:~~~ ~:~~~ ~ ]106 Ib-in., {~::} = {0.~81 } 106 Ib/in. 
o 0 0.637 A55 1.219 

A general antisymmetric laminate (30/0/90/45)as == (30/0/90/-45/45/ 0/90/-30) of total 
thickness 1 in. and composed of boron-epoxy layers has the following laminate stiffnesses and 
thermal resultants: 

[

15.491 3.565 0] [-0.425 0 -0.842] 
[A] = 3.565 12.095 0 106 Ib/in., [B] = 0 0.425 -0.233 106 Ib 

o 0 4.311 -0.842 -0.233 0 

[

1.470 0.303 0] { A44 } { 0.9938 } 
[D] = 0.303 0.816 0 106 Ib-in., A45 = 0 106 Ib/in. 

o 0 0.366 A55 1.1063 

{
MIx} {48.113 } 
M;[y = -48.113 106 Ib-in./in. 
MIy 121.78 

{
NIx} { 5573.6 } Zf = 59~8.5 10

6 
Ib/in., 

3.5.5 Balanced and Quasi-Isotropic Laminates 

A laminate is said to be balanced if for every layer in the laminate there exists, 
somewhere in the laminate, another layer with identical material and thickness but 
opposite fiber orientation. The two layers are not necessarily symmetrically located 
with respect to the midplane. Thus, the unsymmetric laminate (±35/0)T =(35/-
35/0) as well as the symmetric laminate (±35/0)s are balanced laminates. The 
characteristic feature of any balanced laminate is that the in-plane shear stiffnesses 
A16 and A 26 are zero. The reason is that Q16 and Q26 from opposite orientations of 
the pair of layers are of opposite sign and therefore the net contribution from the 
pair to A 16 and A 26 is zero: 

For a general balanced laminate, the laminate constitutive relations are not that 
much simpler than for a general laminate. However, for a symmetric balanced 
laminate they are given by Eqs. (3.5.13)-(3.5.15) with A16 = A 26 = O. 

Laminates consisting of three or more orthotropic laminae of identical material 
and thickness which are oriented at the same angle relative to adjacent laminae 
exhibit in-plane isotropy in the sense that An = A 22 , A66 = (An - A 12 )/2, and 
A 16 = A 26 = o. Such laminates are called quasi-isotropic laminates. Examples 
of quasi-isotropic laminates are provided by (90/45/0/-45) and (60/0/-60) (see 
Example 3.3.2). When the bending-stretching coupling coefficients are zero, the 
relations between force resultants and membrane strains are the same as those for 
isotropic plates. The stress resultants are given by 

{
NXX} [An A12 
N yy = A12 An 
Nxy 0 0 

O 

1 { 
(O)} Exx o (0) 

(An - A 12 )/2 ~rV 
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Problems 

3.1 Suppose that the displacements (u, v, w) along the three coordinate axes (x, y, z) in a 
laminated beam can be expressed as 

u(x, z) = uo(x) + z [co d~:o + Cl 1>(x)] 

v(x,z)=O 

w(x, z) = wo(x) (1) 

where (uo,wo) denote the displacements of a point (x,y,O) along the x and z directions, 
respectively, and 1> denotes the rotation of a transverse normal about the y-axis. Show that 
the nonzero linear strains are given by 

(2a) 

where 

(2b) 

3.2 (Continuation of Problem 3.1) Use the principle of virtual displacements to derive the 
equations of equilibrium and the natural and essential boundary conditions associated with 
the displacement field of Problem 3.1, when the beam is subjected to axial distributed load 
p(x) and transverse distributed load q(x). In particular, show that 

6uo: dNxx ° --+p= 
dx 

61> : 

6wo: 

and the boundary conditions are of the form 

where 

c1fi.[xx or ¢ 
d 

- dx (coMxx) + (1 + CO)Q;r or Wo 

dWQ 
dx 

N xx = i (Jxx dA, Mxx = i (Jxx Z dA, Qx = i (Jxz dA 

(3) 

(4) 

(5) 

Note that the displacement field (1), hence the equations of equilibrium (3), contain those 
of the classical (Euler-Bernoulli) beam theory (co = -1, Cl = 0) and the first-order 
(Timoshenko) beam theory (co = 0, Cl = 1). 

3.3 (Continuation of Problem 3.1) Assume linear elastic constitutive behavior and show that the 
laminated beam's constitutive equations are given by 

{ 
Nxx } = [All 
Mxx Bll 

(6a) 

where 

(6b) 
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3.4 The 3-D equilibrium equations of a kth layer, in the absence of body forces, can be expressed 
in index notation as 

(1) 

(2) 

where summation on repeated subscripts (a, (3 = 1,2) is implied. Integrate the equations 
over the thickness (Zk,Zk+l) with respect to Z = X3 to obtain: 

(3) 

(4) 

for k = 1,2,· .. ,N and a,(3 = 1,2 (Xl = X'X2 = Y,X3 = z), where N is the total number of 
layers, and 

(5) 

(6) 

3.5 (Continuation of Problem 3.4) Multiply the equilibrium equations 

(1) 

with Z and integrate over the lamina thickness to obtain the third equation 

(2) 

3.6 Starting with a linear distribution of the displacements through the laminate thickness in 
terms of unknown functions (uo, Vo, WO, FI , F2, F3) 

u(X, y, Z, t) = uo(x, y, t) + ZFI (x, y, t) 

v(x, y, Z, t) = vo(x, y, t) + ZF2(X, y, t) 

w(x, y, Z, t) = wo(x, y, t) + ZF3(X, y, t) 

determine the functions (FI , F2, F3) such that the Kirchhoff hypothesis holds: 

ow =0 ou 
oz ' oz 

OW ov ow 
ox' oz oy 

3.7 Consider a single, orthotropic layer plate (Q45 = 0), and assume that the material 
coordinates coincide with the plate coordinates. Compute the stresses (u xx, U yy, u Xy) using 
the constitutive equations of the first-order plate theory, ane! then use the equilibrium 
equations of the three-dimensional elasticity theory to determine the transverse stresses 
(u xz, U yz , U zz) as a function of the thickness coordinate. 
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3.8 Consider a single, orthotropic layer plate (Q45 = 0), and assume that the material coordinates 
coincide with the plate coordinates. According to the first-order theory, the strain energy 
due to transverse shear stresses is given by 

Compute t}, using the transverse shear stresses obtained in Problem 3.7 from the three
dimensional elasticity, and equate it with U" to determine the shear correction coefficient, 
K. 

3.9 Consider the equations of motion of 3-D elasticity [see Eq. (1.3.26)J in the absence of body 
forces: 

OUxx oUxy oUxz o2u 
ox + ----a:y + oz = Po ot2 

oUxy OUyy oUyz _ o2v 
ox + oy + oz - Po ot2 

Integrate the above equations with respect to z over the interval (-h/2, h/2) and express the 
results in terms of the force resultants defined in Eq. (3.3.20a). Use the following boundary 
conditions: 

h h h h 
Uxz (x,y'-"2) =0, U,TZ(X,y, "2) =0, Uyz (X'Y'-"2) =0, Uyz (X'Y'"2) =0 

Next, multiply the equations of motion with z and integrate with respect to z over the 
interval (-h/2, h/2) and express the results in terms of the moment resultants defined in Eq. 
(3.3.20a). 

3.10 Show that the membrane strains {EO} and the moment resultants {M} in the classical or first
order laminated plate theory can be expressed in terms of force resultants {N} and bending 
strains {E 1 } as 

{EO} = [AJ~l UN} - [B]{El}) 

{M} = ([B][At1) {N} - ([B][AJ~l [BJ - [DJ) {E1} 

These equations bring out the bending-extensional coupling for laminates with nonzero [BJ. 
For example, when the bending strains are zero, the applied in-plane forces induce bending 
moments for laminates with nonzero coupling coefficients [BJ. 

3.11 Show that if Bij = 0 (e.g., for symmetric laminates), the equation of motion governing the 
transverse deflection Wo in the classical laminate theory is 
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3.12 Show that for a general laminate composed of multiple isotropic layers, the laminate stiffness 
A16,A26,Bl6,B26,D16, and D26 are zero, and that A22 = All,B22 = B ll , and D22 = Dll · 

3.13 Show that for a general laminate composed of multiple specially orthotropic layers, the 
laminate stiffness A 16 , A 26 , B 16 , B 26 , D l6 , and D26 are zero. 

3.14 Show that for antisymmetric laminates the stiffnesses, A l6 , A 26 , D 16 , and D26 are zero, and 
the coupling stiffnesses Bij are not zero. 

3.15 Show that for antisymmetric cross-ply laminates, the coupling stiffnesses Bij have the 
properties: B22 = -Bll and all other Bij = O. 

3.16 Show that for antisymmetric angle-ply laminated plates, the following stiffnesses are zero: 
A 16 , A 26 , D 16 , D26 , B ll , B 22 , B 12 , and B 66 . 

3.17 Show that for laminates (a/(3/(3/a/f3/a/a/(3) where -90 0 
::; a ::; 900 and -900 

::; (3::; 90 0
, 

coefficients Bij are zero. 

3.18 The material properties of AS/350l graphite-epoxy material layers are: 

El = 140 x 103 MPa, E2 = 10 x 103 MPa, G12 = 7 x 103 MPa 

G 13 = 7 x 103 MPa, G 23 = 7 x 103 MPa, 1/12 = 0.3 

al = -0.3 x 10-6 m/mt K, a2 = 28 x 10-6 m/mt K 

Determine the stiffnesses [AJ, [BJ, and [D] for the antisymmetric laminate (0/90) composed 
of equal thickness (0.5 mm) layers. 

3.19 Determine the stiffnesses [AJ, [BJ, and [D] for an antisymmetric laminate (-45/45) composed 
of equal thickness (0.5 mm) layers of AS/350l graphite-epoxy layers (see Problem 3.18 for 
the material properties). 

3.20 If the laminate of Problem 3.18 is heated from 200 to 900
, determine the thermal forces and 

moments generated in the laminate, if it were restrained from free expansion. 

3.21 If the laminate in Problem 3.19 is made of four layers (-45/45/-45/45) of thickness 0.25 mm 
each, show that the stiffnesses [A] and [D] remain unchanged. Compare the stiffnesses Bij 
for the two laminates (do they increase or decrease in values?). 

3.22 Suppose that a four-layer (0/90)$ symmetric laminate is subjected to loads such that the only 

nonzero strain at a point (x,y) is E~~ = 103 p in./in. The material properties of a lamina are 
(typical of a graphite-epoxy material) El = 20 msi, E2 = 1.30 msi, G 12 = 1.03 msi, 1/12 = 0.3. 
Assume that each layer is of thickness 0.005 in. Determine the state of stress ((T xx, (Tyy, (T xy) 

with respect to the laminate coordinates in each layer. Interpret the results you obtain in 
light of the assumed strains. 

3.23 Compute the stains and stresses in the principal material coordinate system of each layer for 
the problem in Problem 3.22. 

3.24 Compute the stress resultants N's and M's for the problem in Problem 3.22. 

3.25 Repeat Problem 3.22 for the case in which the laminate is subjected to loads such that the 

only nonzero strain at a point (x, y) is E~;J = (1/12) lin. 

3.26 Compute the stains and stresses in the principal material coordinate system of each layer for 
the problem in Problem 3.25. 

3.27 Compute the stress resultants N's and M's for the problem in Problem 3.25. 

3.28 Determine the displacement associated with the assumed strain field in Problem 3.25. 

3.29 Suppose that a six-layer (±45/0)$ symmetric laminate is subjected to loads such that the only 

nonzero strain at a point (x,y) is E~~ = 103 p in.jin. The thickness and material properties 
of a lamina are the same as those listed in Problem 3.22. Determine the state of stress 
((T xx, (T yy, (T xy) and force resultants. 



CLASSICAL AND FIRST-ORDER THEORIES 161 

3.30 Repeat Problem 3.29 for the case in which the laminate is subjected to loads such that the 

only nonzero strain at a point (x, y) is E~;) = (1/12) lin. 

3.31 Suppose that a three-layer (±45/0) unsymmetric laminate is subjected to loads such that 

the only nonzero strain at a point (x, y) is E~~) = 10-3 in.jin. The thickness and material 
properties of a lamina are the same as those listed in Problem 3.22. Determine the state of 
stress (CTxx , CTyy , CTxy ) and stress resultants. 
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4 

One-Dimensional Analysis 
of Laminated Composite Plates 

4.1 Introduction 

There are two cases of laminated plates that can be treated as one-dimensional 
problems; i.e., the displacements are functions of just one coordinate: (1) laminated 
beams, and (2) cylindrical bending of laminated plate strips. When the width 
b (length along the y-axis) of a laminated plate is very small compared to the 
length along the x-axis and the lamination scheme, and loading is such that the 
displacements are functions of x only, the laminate is treated as a beam (see Figure 
4.1.1). In cylindrical bending, the laminated plate is assumed to be a plate strip 
that is very long along the y-axis and has a finite dimension a along the x-axis (see 
Figure 4.1.2). The transverse load q is assumed to be a function of x only. In such a 
case, the deflection Wo and displacements (uo, vo) of the plate are functions of only 
x, and all derivatives with respect to yare zero. The cylindrical bending problem 
is a plane strain problem, whereas the beam problem is a plane stress problem. 

In this chapter we develop exact analytical solutions for the two classes of 
problems. An exact solution of a problem is one that satisfies the governing 
equations at every point of the domain and the boundary and initial conditions 
of the problem. A numerical solution is one that is obtained by satisfying the 
governing equations and boundary conditions of the problem in an approximate 
sense. The solutions obtained with any of the variational methods (see Chapter 1) 
and numerical methods, such as the finite difference, finite element, and boundary 
element methods, are termed numerical solutions. An exact solution can be either 
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x 
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Figure 4.1.1: Geometry of a laminated beam. 
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x 

y 

Figure 4.1.2: Geometry of a plate strip in cylindrical bending. 

closed-form or an infinite series. Closed-form solutions are those that can be 
expressed in terms of a finite number of terms. For example, u(x) = 2 - x + 3x2 + 
4 sin mrx is a closed-form solution, whereas a solution in the form of a convergent 
series 

00 

u(x) = L an sin mrx (4.1.1) 
n=l 

where an are real numbers, is not a closed-form solution because the number of 
terms in the series is not finite. Since the series solution, in reality, is evaluated 
for a finite number of terms, it is, in a sense, approximate. The finite-sum series 
solution 

N 

UN(X) = L ansinmfx (4.1.2) 
n=l 

will be termed an analytical solution, although it is approximate because not all 
terms of the series (4.1.1) are included in (4.1.2). For all practical purposes, it is 
"exact." 

Due to their one-dimensional nature, analytical - exact as well as numerical 
- solutions can be developed for a number of laminated beams and plate strips. 
The analytical solutions presented here for simple problems serve as a basis for 
understanding the response. In addition, the results can serve as a reference 
for verification of computational methods designed to analyze more complicated 
problems. 
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4.2 Analysis of Laminated Beams Using CLPT 
4.2.1 Governing Equations 

Here we consider the bending of symmetrically laminated beams according to CLPT. 
For symmetric laminates, the equations for bending deflection are uncoupled from 
those of the stretching displacements. If the in-plane forces are zero, the in-plane 
displacements ('Uo, va) are zero, and the problem is reduced to one of solving for 
bending deflection and stresses. 

In deriving the laminated beam theory we assume that 

Myy = Mxy = 0 (4.2.1) 

everywhere in the beam. The classical laminated plate theory constitutive equations 
for symmetric laminates, in the absence of in-plane forces, are given by [see Eqs. 
(3.3.44)] 

{ 
Nlxx} __ 
Myy -
Mxy 

or, in inverse form, we have 

[

Dll 
Dl2 
Dl6 

( 4.2.2a) 

(4.2.2b) 

where Dij denote the elements of the inverse matrix of Dij' In VIew of the 
assumption (1.2.1), we have 

where 

Drl = (D22 D66 - D 26 D26) / D* 

Dr2 = (D16D26 - D l2 D66 ) / D* 

Dr6 = (Dl2 D26 - D22 D l6 ) / D* 

D* =DllDl + Dl2D2 + D l6D3, Dl = D22D66 - D 26 D26 

D2 =Dl6D26 - Dl2D66, D3 = D l2 D26 - D22D 16 

( 4.2.3a) 

( 4.2.3b) 

Equations (4.2.3a) indicate that the transverse deflection Wa cannot be independent 
of the coordinate y due to the Poisson effect (Di'2) and anisotropic shear coupling 
(Di6)' These effects can be neglected only for long beams (i.e., when the length-to
width ratio is large). The length-to-width ratio for which the transverse deflection 
can be assumed to be independent of y is a function of the lamination scheme. For 
angle-ply laminates this ratio must be rather large to make the twisting curvature 
negligible. 
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In the following derivations we assume that the laminated beam under 
consideration is long enough to make the effects of the Poisson ratio and shear 
coupling on the deflection negligible. Then the transverse deflection can be treated 
only as a function of coordinate x (along the length of the beam) and time t: 

Wo = wo(x, t) (4.2.4) 

Then we can write 

(4.2.5) 

In order to cast Eq. (4.2.5) in the familiar form used in the classical Euler-Bernoulli 
beam theory, we introduce the quantities 

b 12 b bh3 

M = bMxx , Q = bQx, Exx = h3 D* = I D* , lilY = 12 
11 YY 11 

and write Eq. (4.2.5) as 

and the shear force and bending moments are related by 

aM 
or Q=

ax 

where b is the width and h is the total thickness of the laminate. 

(4.2.6) 

(4.2.7a) 

(4.2.7b) 

The equation of motion of laminated beams can be obtained directly from Eq. 
(3.3.25) by setting all terms involving differentiation with respect to y to zero: 

or, for symmetrically laminated long beams, we have 

where Nxx is the applied axial load, and 

h 

q = bq, io = bIo, i2 = bh, Ii = b I: p(z)i dz (i = 0,1,2) 
2 

The boundary conditions are of the form 

Geometric: specify 

Force: specify 

awo 
Wo, ax 

aM 
Q == ax ' M 

( 4.2.8a) 

(4.2.8b) 

(4.2.8c) 

( 4.2.9a) 

(4.2.9b) 
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Equations (4.2.7) - (4.2.9) are identical, in form, to those of the Euler-Bernoulli 
beam theory of homogeneous, isotropic beams. Hence, the solutions available for 
deflections of isotropic beams under various boundary conditions can be readily 
used for laminated beams by replacing the modulus E with E~x and multiplying 
loads and mass inertias with b. Note that the rotary (or rotatory) inertia h is not 
neglected in Eqs. (4.2.8a-c). 

4.2.2 Bending 

For static bending without the axial force, Nxx = 0, Eqs. (4.2. 7a) and (4.2.8b) take 
the form [ef., Eqs. (1.4.47b) and (1.4.45b); see Figure 1.4.1 for the sign convention] 

(4.2.10a, b) 

where q = bq. Equation (4.2.10a) is the most convenient when it is possible to 
express the bending moment M in terms of the applied loads. For indeterminate 
beams, use of Eq. (4.2.10b) is more convenient. 

General Solutions 

The general solutions of Eqs. (4.2.10a,b) are obtained by direct integration. We 
obtain from Eq. (4.2.10a) 

E~xlyywo(x) = -fox [fo'7 M(~)d~] dry + b1x + b2 (4.2.11a) 

and from Eq. (4.2.10b) 

E~xlyywo(x) = fox {foE [fo'7 (fo' q(JL)dJL ) del dry}d~ 
x 3 x 2 

+Cl(f +C2 2 +C3 X + C4 (4.2.11b) 

The constants of integration, b1 , b2 , and Cl through C4, can be determined using the 
boundary conditions of the problem. The boundary conditions for various types of 
supports are defined below: 

Free: 

Simply Supported: 

Clamped: 

Calculation of Stresses 

dM 
Q-=-=O, M=O 

dx 
Wo = 0, 111 = 0 

Wo = 0, dwo = 0 
dx 

( 4.2.11c) 

The in-plane stresses in the kth layer can be computed from the equations [see 
Eqs. (3.3.12a) and (4.2.2b)] 
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or 

z[Ql1 = - Q12 b -
Q16 

(k)( ) M(x)z (-(k) * -(k) * -(k) *) 
(}xx X, Z = b Q l1 Dl1 + Q 12 D12 + Q16 D 16 

(k)( ) M(x)z (-(k) * -(k) * -(k) *) 
(}yy x, z = b Q 12 Dl1 + Q 22 D12 + Q26 D 16 

(k)( ) M(x)z (-(k) * -(k) * -(k) *) 
(}xy X, Z = b Q16 Dl1 + Q26 D12 + Q 66 D 16 

(4.2.12a) 

(4.2.12b) 

In general, the maximum stress does not occur at the top or bottom of a laminated 
beam. The maximum stress location through the beam thickness depends on the 
lamination scheme. As will be seen later in this section, the 0° layers take the most 
axial stress. 

The stresses given by Eq. (4.2.12b) are approximate for the purpose of analyzing 
laminated beams. They are not valid especially in the free-edge zone, where the 
stress state is three dimensional. The width of the edge zone is about the order of 
the thickness of the beam. 

In the classical beam theory, the interlaminar stresses (() xz, () zz) are identically 
zero when computed using the constitutive equations. However, these stresses do 
exist in reality, and they can be responsible for failures in composite laminates 
because of the relatively low shear and transverse normal strengths of materials 
used. Interlaminar stresses may be computed using the equilibrium equations of 
3-D elasticity [see Eq. (1.3.27)]: 

f}(} xx f}(} xy f}(} xz 
0=--+--+--

ax f}y az 

f}(} xy f}(} yy f}(} yz 
0=--+--+--

ax ay az 

f}(} xz f}(} yz f}(} zz 
0=-+-+-

f}x f}y f}z 
(4.2.13) 

For each layer, these equations may be integrated with respect to z to obtain the 
interlaminar stresses within each layer (Zk :::; z :::; Zk+l): 

z ((k) (k») 
(k) = -1 a(}xx a(}xy 

(}xz ~ + ~ 
Zk uX uy 

dz + C(k) ( 4.2.14a) 

Z ((k) (k») 
(k) = -1 f}(}xy f}(}yy 

(}yz a + ~ 
Zk X uy 

dz + F(k) (4.2.14b) 

Z ((k) (k») 
(k) = -1 f}(}xz f}(}yz 

(}zz ~ + ~ 
Zk uX uy 

dz + H(k) (4.2.14c) 

where ((}~kj,(}~~),(}~~») are known from Eq. (4.2.12), and C(k), F(k), and H(k) are 
constants. 



ONE-DIMENSIONAL ANALYSIS OF LAMINATED COMPOSITE PLATES 171 

For beams, all variables are independent of y and v = O. Hence, derivatives with 
respect to yare zero. For example, from Eqs. (4.2.14a,c) and (4.2.12b), we obtain 

(k) _ .' -(k) * -(k) * -(k) * Z -Zk (k) , ( 2 2) 
(J;rz(x,z)--Qx(X)(Ql1 D l1+Q12 D 12+Q16 D 16) 2 +C (4.2.15a) 

(J(k)(x z) = _ dQx (Q-(k) D* + Q-(k) D* + Q-(k) D* ) (Z3 - Z~) + H(k) (42 15b) 
zZ' dx 11 11 12 12 16 16 6 . . 

where Eqs. (4.2.6) and (4.2.7b) are used to replace dM/dx with Q = bQx, and C(k) 

and H(k) are the integration constants, which are evaluated using the boundary and 
interface continuity conditions. For layer 1, the constants should be such that (J 2:Z 

and (J zz equal the shear and normal stresses at the bottom face of the laminate. For 
example, if the laminate bottom is stress free, we have C(1) = 0 and H(l) = O. The 
constants C(k) and H(k) for k = 2,3, ... are determined by requiring that (J~~) and 

(Ji~) be continuous at the layer interfaces (see Figure 4.2.1): 

Ca) 

Cb) 

(k)( ) _ (k+l)( ) (k)( ) _ (k+1)( ) (Jxz X,Zk;+1 -(Jxz X,Zk+l, (Jzz X,Zk+l -(Jzz x,zk+l 

y 

(k+l) (k) 
O"zx = O"zx 

(k+l) (k) 
O"zz = 0" zz 

dM _Q =0 
dx 
dQ 
-+q=O 
dx 

M =_El
d2wo 

dx 2 

t-----~x 

Figure 4.2.1: (a) Sign convention. (b) Equilibrium of interlaminar stresses in a 
laminated beam. 
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This gives, for k = 1,2, ... , the result 

C(k+1) _ _ Q (x) (Q-(k) D* + Q-(k) D* + Q-(k) D* ) (Zf+1 - Z~) + C(k) 
- x 11 11 12 12 16 16 2 

= 0"1~) (x, Zk+1) (4.2.16a) 

_ (k)( ) 
- O"zz x, zk+1 (4.2.16b) 

Note from Eqs. (4.2.15a,b) that the transverse shear stress O"xz is quadratic and 
normal stress O"zz is cubic through the thickness of each lamina. The distributions 
are described by different functions in different layers but they are continuous across 
layers. 

Example 4.2.1 (Simply supported beam): 

Consider a simply supported beam with a center point load (see Figure 4.2.2). This case is known 
as the three-point bending. The deflection is symmetric about the point x = a/2. The expression 
for the bending moment is 

M(x) = (F~b)X , for 0 < x < ~ - - 2 

Substituting this expression into Eq. (4.2.11a) and evaluating the integrals, we obtain 

The constants Cl and C2 are evaluated using the boundary conditions of the problem 

We obtain (Cl = Foba2 /16, C2 = 0) 

Wo(O) = 0, dwo (a/2) = 0 
dx 

The deflection is the maximum at x = a/2, which is given by 

Foba3 

W max = 48Eb I == We 
xx yy 

(4.2.17) 

(4.2.18) 

(4.2.19) 

This expression can be used to determine the modulus of the material in terms of the measured 
center deflection We, applied load Fo, and the geometric parameters of the laminated beam in a 
three-point bend test: 

Eb = Foba
3 

xx 4bh3we 
( 4.2.20) 

The maximum in-plane stress (Txx occurs at x = a/2 (M(a/2) = Foba/4) 

(4.2.21) 



ONE-DIMENSIONAL ANALYSIS OF LAMINATED COMPOSITE PLATES 173 

Fo 1-----.: 
2 x 

Q(x) 

E-------- ---- ) 
F M(x) 
---1l 
2 x 

!JJ. 
2 

Figure 4.2.2: Three-point bending of a laminated beam (see Figure 4.2.1a for the 
sign convention). 

Example 4.2.2 (Clamped beam): 

Consider a laminated beam, clamped at both ends, and subjected to uniformly distributed load 
acting downward, q = qo (see Figure 4.2.3). The deflection is symmetric about the point x = a/2. 
We have from Eq. (4.2.11b) the result 

qObx4 x 3 x 2 

E~Jyywo(x) = ~ + c1 If + C22 + c3 x + C4 

The constants C1 through C4 are evaluated using the boundary conditions of the half (because of 
the symmetry) or full beam. For the full beam case we have 

wo(O) = 0, wo(a) = 0, d::xo (0) = 0, d::xo (a) = 0 

and for the half beam model we have 

(0) = 0 dwo (0) = 0 dwo (9:.) = 0 
Wo 'dx 'dx 2 ' Q( 9:.) = dM = -E I d3wo (9:.) = 0 

2 dx xx YY dx3 2 

Either set of boundary conditions will yield the same solution. We obtain (C1 = -qoba/2, (;2 

qoba2 /12, C3 = (;4 = 0) 

(4.2.22) 
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z 
at x = 0 

Wo = d;:xo = 0 

or 
wo=<Px=O 

at x =a 

Wo = d;:xo = 0 

or 
wo=<Px= 0 

x 

Figure 4.2.3: Clamped beam under uniformly distributed load. 

The deflection is the maximum at x = a/2, which is given by 

Wrnax = 384Eb I 
xx yy 

( 4.2.23) 

The maximum bending moment, and hence the maximum in-plane stress rYxx , occurs at x = O,a: 

(4.2.24) 

Expressions for the transverse deflection of laminated beams with simple supports, clamped 
edges, and clamped-free (cantilever) supports and subjected to a transverse point load or uniformly 
distributed load are presented in Table 4.2.1. The maximum deflections and bending moments 
are also listed (note that the loads are assumed to be applied in the downward direction). Recall 
that wo(x) is taken positive upward and M(x) is positive clockwise on the right end. When 
both point load and uniformly distributed load are applied simultaneously, the solution can be 
obtained by superposing (i.e., adding) the expressions corresponding to each load. Expressions for 
other boundary conditions can be found in textbooks on a first course in reformable solids. The 
effects of material properties and stacking sequence are accounted for through the bending stiffness 
Egxlyy = b/Dil' as can be seen from Eqs. (4.2.6) and (4.2.3b). 
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Table 4.2.1: Transverse deflections of laminated composite beams with various boundary 
conditions and subjected to point load or uniformly distributed load (acting 
downward) according to the classical beam theory. 

Laminated Beam 

• Hinged-Hinged 

Central point load 

Uniform load 

• Fixed-Fixed 

Central point load 

a 

Uniform load 

:i III * III to 
I.. a _I 

• Fixed-Free 

Point load at free end 

Uniform load 

J Itt Itt Iro 
I.. a _I 

Deflection, Wo (x) 'l1)rnax and 
A1max 

u)·i~taJ· == is Cl 

A1:~.(1'" = - ~ C3 

w;;wx = 3~4 C2 

A1~,a"' = - ftC4 

1V,~w;.c == 1§2 Cl 

M~w'r = ft C3 

wicnax = ~C2 

A1,~wx = l2 C4 

'W~~ta:1: == 1 C1 

A1,r;,ax = C3 

1:1J,~w:l' == -§ C2 

M;;'ax = iC4 

Superscript "c" refers to the center (at x = 0,/2), "a" to the end x = a, and "0" refers to x = O. 
The constants in the expressions for the deflection are defined as 
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Figures 4.2.4 and 4.2.5 show the maximum normal stress distribution, as predicted by Eq. 
(4.2.12b), through the thickness of (0/45/-45/90)8 (0° corresponds to outer layers) and (90/45/-
45/0)8 (90° corresponds to outer layers) laminated beams, respectively, subjected to three-point 
bending (Fa = 1.0, b = 0.2, a = 1.0, h = 0.1). The following layer material properties are used 
(E2 = 1 msi): 

( 4.2.25) 

The maximum normal stress distribution in an orthotropic beam (with eight 0° layers) is shown in 
the figures by dashed lines. It is clear the 0° layer carries the most axial stress while the 90° layer 
carries the least axial stress, in proportion to their axial stiffness. 

Figures 4.2.6 and 4.2.7 show the effect of stacking sequence on maximum transverse shear 
stress, as predicted by Eq. (4.2.15a), for laminates (0/45/-45/90)8 and (90/45/-45/0)8' respectively 
(Fa = 1.0, b = 0.2, a = 1.0, h = 0.1). The parabolic distribution of transverse shear stress through an 
orthotropic beam is shown in dashed lines for comparison. The maximum stress value is dependent 
on the stacking sequence and considerably different from that in a homogeneous beam. 

4.2.3 Buckling 

A beam subjected to axial compressive load Nxx = - Ngx remains straight but 
shortens as the load increases from zero to a certain magnitude. If a small additional 
axial or lateral disturbance applied to the beam keeps it in equilibrium, then the 
beam is said to be stable. If the small additional disturbance results in a large 
response and the beam does not return to its original equilibrium configuration, the 
beam is said to be unstable. The onset of instability is called buckling (see Figure 
4.2.8). The magnitude of the compressive axial load at which the beam becomes 
unstable is termed the critical buckling load. If the load is increased beyond this 
critical buckling load, it results in a large deflection and the beam seeks another 
equilibrium configuration. Thus, the load at which a beam becomes unstable is of 
practical importance in the design of structural elements. Here we determine critical 
buckling loads for laminated straight beams. The equation governing buckling of 
laminated beams is also given by Eq. (4.2.8b), wherein the applied transverse load 
and inertia terms are set to zero, and axial force is assumed to be unknown. In 
addition, the deflection is measured from onset of buckling, and it is termed buckling 
deflection. 

• A 0 
Settmg Nxx = -Nxx' q = 0, and all inertia terms to zero in Eqs. (4.2.8b), we 

obtain the equation 
d4W bNo __ + xx 
dx4 E~Jyy 

where W denotes the buckling deflection. Equation (4.2.26) 
nonlinear equilibrium equation 

b d4wo d2wo 
EXX1yy dx4 + bNxx(wo) dx2 = ° 

( 4.2.26) 

is obtained from the 

by substituting Wo = w6 + W, where w6 is the original equilibrium (prebuckling) 
deflection and W is the buckling deflection. Note that Wo satisfies the equation 

d4we d2we 

E~xlyy dx40 + bNxx(wo) dx20 = ° 
[The reader is asked to verify the result in Eq. (4.2.26).] 
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Figure 4.2.4: Maximum normal stress, -tJxx (a/2, z), distribution through the 
thickness of a symmetrically laminated (O/±45/90)s beam. 
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Figure 4.2.5: Maximum normal stress, -tJxx (a/2, z), distribution through the 
thickness of a symmetrically laminated (90/±45/0)s beam. 
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Figure 4.2.6: Variation of transverse shear stress (-O"xz) through the thickness of 
a symmetrically laminated (0/±45/90)s beam subjected to three
point bending (Fo = 1.0, b = 0.2, a = 1.0, h = 0.1). 
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Figure 4.2.7: Variation of transverse shear stress (-O"xz) through the thickness of 
a symmetrically laminated 90/±45/0)s beam subjected to three
point bending (see Figure 4.2.6 for data). 
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Figure 4.2.8: Buckling of laminated beams under various edge conditions. 

Integrating Eq. (4.2.26) twice with respect to x, we obtain 

d2 W bNo 
-- + xx W = K x + K 
d 2 Eb I 1 2 X xx yy 

The general solution of Eq. (4.2.27) is 

where 
>,2 _ bN2x 

b - Eb I ' xx yy 

( 4.2.27) 

( 4.2.28) 

(4.2.29) 

and the constants Cl, C2, C3, and C4 can be determined using the boundary conditions 
of the beam. 

We are interested in determining the values of )..b for which there exists a nonzero 
solution W(x), i.e., when beam experiences deflection. Once such a )..b is known 
(often there will be many), the buckling load is determined from Eq. (4.2.29): 

NO = (E~xlyy) )..2 
xx b b ( 4.2.30) 

The smallest value of N2x, which is given by the smallest value of )..b, is the critical 
buckling load. The buckling shape (or mode) is given by W (x). In the following, 
we consider beams with different boundary conditions to determine )..b and then the 
critical buckling load for each beam. 
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Example 4.2.3 (Simply supported beam): 

For a simply supported beam, the boundary conditions are 

wo(O) = 0, wo(a) = 0, Mxx(O) = 0, Mxx(a) = 0 

These boundary conditions imply 

d2VV d2VV 
VV(O) = 0, VV(a) = 0, dx2 (0) = 0, dx2 (a) = 0 

We have 

VV(O) = 0 : c2 + c4 = 0 

VV" (0) = 0 : 

VV(a) = 0 : 

- c2A~ = 0 which implies C2 = 0, C4 = 0 

cl sin Aba + c3a = 0 

VV" (a) = 0: Cl sin Aba = 0 which implies C3 = 0 

For a nontrivial solution, the condition 

Cl sin Aba = 0 implies that Aba = n7r, n = 1,2, ... 

and the buckling load is given by 

The buckling mode is 

VV( ) 
. n7rX 

x = ClSln-- , 
a 

The critical buckling load becomes (n = 1) 

and the buckling mode (eigenfunction) associated with it is 

Example 4.2.4 (Clamped beam): 

VV(X) = Cl sin 7rX 
a 

When the beam is fixed at both ends, the boundary conditions are 

wo(O) = 0, d::xo (0) = 0, wo(a) = 0, dwo (a) = 0 
dx 

which can be expressed as 

We have 

VV(O) = 0, dd: (0) = 0, VV(a) = 0, 

VV(O) = 0: C2 + C4 = 0 

VV' (0) = 0: CIAb + C3 = 0 

dVV (a) = 0 
dx 

VV(a) = 0: cl sin Aba + c2 cos Aba + c3a + c4 = 0 

VV' (a) = 0: CIAb cos Aba - C2Ab sin Aba + C3 = 0 

( 4.2.31a) 

(4.2.31b) 

(4.2.32) 

( 4.2.33) 

( 4.2.34a) 

(4.2.34b) 

( 4.2.35) 

( 4.2.36a) 

(4.2.36b) 

( 4.2.37) 
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Expressing these equations in terms of constants Cl and C2, we obtain 

Cl (sin Aba - Aba) + c2 (cos Aba - 1) =0 

Cl (cos Aba -1) - c2sinAba =0 (4.2.38a) 

For a nontrivial solution, the determinant of the coefficient matrix of the above two equations 
must be zero (eigenvalue problem): 

o = I sin Aba - Aba 
cos Aba - 1 

cos Aba - 11 
- sin Aba 

(4.2.38b) 

The solution of equation (4.2.38b), known as the characteristic equation, gives the eigenvalues 
en == Aba, and the buckling load is calculated from Eq. (4.2.30). Equations (4.2.38b) is a 
transcendental equation, i.e., nonlinear equation involving trigonometric functions. A plot of 
the function f (en) = en sin en + 2 cos en - 2 against en shows that f (en) is zero at en = 

0, 6.2832( = 27r), 8.9868, 12.5664(= 47r), 15.4505, 67r,' .. (A2n-l a = 2n7r). Hence, the critical (i.e., 
smallest) buckling load is [see Eq. (4.2.30)J 

Ncr = (e: f (E~blyy ) = C:f (E~blyy ) 
= (

7r
3
2

) (E:2h3) ( 4.2.39) 

Table 4.2.2 contains governing equations for Ab, with some typical values, and 
values of the constants Cl, C2, C3, and C4 for several combinations of simply supported 
(hinged), clamped (fixed), and free-edge conditions. For example, for the critical 
buckling load of a cantilever beam (i.e., fixed at one end and free at the other end), 
the boundary conditions are 

wo(o) = 0, 
dwo 
dx (0) = 0, Qx(a) = 0, Mxx(a) = ° 

which are equivalent to 

W=o, dW =0 
dx 

The critical buckling load is given by 

at x = ° 
at x = a 

48a2 

( 4.2.40a) 

(4.2.40b) 

(4.2.41 ) 
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Table 4.2.2: Values of the constants and eigenvalues for buckling of laminated 
composite beams with various boundary conditions (,\2 

bN~x/ E~x1yy = (en /a)2). The classical laminate theory is used. 

End conditions at 
x = 0 and x = a 

Constantst Characteristic equation 
and values* of en == Ana 

• Hinged-Hinged 

• Fixed-Fixed 

• Fixed-Free 

• Free-Free 

• Hinged-Fixed 

Cl = 1/ (sin en - en) 
C3 = -1/An 
C2 = -C4 = 1/(cosen - 1) 

Cl = C3 = 0 
C2 = -C4 # 0 

Cl = C3 = 0 
C2 # 0, C4 # 0 

Cl = l/encosen , C3 =-1 
C2 = C4 = 0 

t SeeEq. (4.2.28): W(x)=clsinAbx+c2COSAbX+C3X+C4' 

sinen = 0 
en = n7f 

en sin en = 2(1 - cos en) 

en = 27f, 8.987, 47f,'" 

cos en = 0 
en = (2n -1)7f/2 

sinen = 0 
en = n7f 

tanen = en 
en = 4.493,7.725"" 

*For critical buckling load, only the first (minimum) value of e = Aa is needed. 

4.2.4 Vibration 

For natural vibration, the solution is assumed to be periodic 

wa(x, t) = W(x)eiwt , i = yC1 ( 4.2.42) 

In the absence of applied transverse load q, the governing equation (4.2.8b) reduces 
to 

b d4 w A d2w 2 A 2 A d2w 
EXX1yy dx4 - bNxx dx 2 = w 1a W - w h dx 2 

( 4.2.43) 

Equation (4.2.43) has the general form 

d4W d2W 
P dx4 + q dx2 - r W = 0 (4.2.44) 

where 
( 4.2.45) 
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The general solution of Eq. (4.2.44) is 

W (x) = Cl sin AX + C2 cos AX + C3 sinh f-LX + C4 cosh f-LX ( 4.2.46a) 

A = J ;p (q + ; q2 + 4pr) , f-L = J 2~ ( -q + ; q2 + 4pr) (4.2.46b) 

and Cl, C2, C3, and C4 are constants, which arc to be determined using the boundary 
conditions. 

From Eqs. (4.2.46b), we have 

(4.2.47a) 

(4.2.47b) 

Substituting for p, q, and r from Eq. (4.2.45) into Eq. (4.2.47a,b) and solving for 
w 2 , we obtain 

( 4.2.48a) 

(4.2.48b) 

The two expressions for w in Eqs. (4.2.48a, b) are the same and hence either one can 
he llsed to calculate the frequency once A is known. 

When the applied axial load is zero, the frequency of vibration can be calculated 
from 

(4.2.49) 

It is clear from the first expression that rotary inertia decreases the frequency of 
natural vibration. If the rotary inertia is neglected, we have A = f-L and 

w = A2ao, ao = (4.2.50) 

In the following discussion beams with both ends simply supported or clamped 
are considered to illustrate the procedure to evaluate the constants Cl through C4, 

and more importantly, to determine A so that Eqs. (4.2.46)-(4.2.48) can be used to 
find w. The smallest frequency w is known as the fundamental frequency. For other 
boundary conditions, the reader is referred to Table 4.2.3. For boundary conditions 
other than simply supported, one must solve a transcendental equation for en == Ana. 
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Table 4.2.3: Values of the constants and eigenvalues for natural vibration of 
laminated composite beams with various boundary conditions (>.; == 
w~Io/E~xIyy = (en /a)4). The classical laminate theory without 
rotary inertia is used. 

End conditions at 

x = ° and x = a 

Constantst 

• Hinged-Hinged Cl i- 0, C2 = C3 = C4 = 0 

• Fixed-Fixed 

• Fixed-Free 

• Free-Free 

• Hinged-Fixed 

• Hinged-Free 

Jk 

Cl = ~C3 = 1/(sinen ~ sinh en) 
~C2 = C4 = 1/(cosen ~ cosh en) 

Cl = ~C3 = 1/(sin en + sinh en) 
~C2 = C4 = 1/(cosen + cosh en) 

Cl = C3 = 1/(sinen ~ sinh en) 
C2 = C4 = ~1/(cosen ~coshen) 

Cl = 1/ sin en, C3 = 1/ sinh en 

C2 = C4 = ° 
Cl = 1/ sin en, c3 = ~ 1/ sinh en 

C2 = C4 = ° 

Example 4.2.5 (Simply supported beam): 

Characteristic equation 
and values of en == Ana 

sinen = 0 

cos en cosh en ~ 1 = ° 
En = 4.730,7.853"" 

cos En cosh En + 1 = ° 
En = 1.875,4.694, ... 

cos En cosh En ~ 1 = ° 
En = 4.730,7.853"" 

tan En = tanh En 
En = 3.927,7.069,· .. 

tan En = tanh En 
En = 3.927,7.069, ... 

For a simply supported beam, the boundary conditions in Eq. (4.2.31b) give 

C2 = C3 = C4 = ° 
Cl sin Aa = 0, which implies A = mr 

a 

Substituting for A from Eqs. (4.2.45) and (4.2.46a) into Eq. (4.2.48a), we obtain 

(n7r) 2 
wn = -;;: ao 

1 bNxx 

+ (=)2Eb I 
a xx YY 

1 

1 + (=)2b-
a 10 

If the rotary inertia is neglected, we obtain 

( n7r) 2 
wn = -;;: ao 1 bNxx 

+ (mr)2Eb I 
a xx yy 

(4.2.51) 

( 4.2.52) 

( 4.2.53a) 

(4.2.53b) 

Thus the effect of the axial tensile force Nxx is to increase the natural frequencies. If we have a very 
flexible beam, say a cable under large tension, the second term under the radical in Eq. (4.2.53b) 
becomes very large in comparison with unity; if n is not large, we have 

(4.2.53c) 
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which are natural frequencies of a stretched laminated cable. We also note from Eq. (4.2.53b) 
that frequencies of natural vibration decrea.'ie when a compressive force instead of a tensile force is 
acting on the beam. 

When Nxx = 0, we obtain from Eq. (4.2.53a) 

(rur)2 
Wn = --u,- ao 

(4.2.54) 

Thus, rotatory inertia decreases frequencies of natural vibration. If the rotatory inertia is neglected, 
we obtain 

Example 4.2.6 (Clamped beam): 

For a beam clamped at both ends, the boundary conditions in Eq. (4.2.36) lead to 

and the eigenvalue problem 

[
sin Aa - (~) sinh /La 

cos Aa - cosh /La 
cos Aa - cosh /La ] {Cl } { 0 } 

- sin Aa - (X) sinh /La C2 - 0 

( 4.2.55) 

( 4.2.56) 

( 4.2.57) 

where relations (4.2.56) are used to eliminate C3 and C4. For nonzero Cl and C2, we require the 
determinant of the coefficient matrix of the above equations to vanish, which yields the characteristic 
polynomial 

- 2 + 2 cos Aa cosh /La + (~ - ~) sin Aa sinh /La = 0 ( 4.2.58) 

The solution of this nonlinear equation gives A and /L. Then the natural frequency of vibration can 
be calculated from Eq. (4.2.48a) or (4.2.48b); if the applied axial force is zero, Eq. (4.2.49) can be 
used to calculate the frequency of vibration. 

For natural vibration without rotatory inertia and applied in-plane force (i.e., q = 0 in Eq. 
(4.2.46b) and A = /L), Eq. (4.2.58) takes the simpler form 

cos Aacosh Aa - 1 = 0 ( 4.2.59) 

Equation (4.2.59) is satisfied for the following values of A: 

(4.2.60) 

Maximum transverse deflections, critical buckling loads, and fundamental natural frequencies 
of various laminated beams, according to the classical beam theory, are presented in Table 4.2.4 for 
simply supported (hinged-hinged), clamped (fixed-fixed), and cantilever (clamped-free) boundary 
conditions. In the case of bending, the point load is Fob, where Fo is the line load across the width 
of the beam (force/unit length), and the distributed line load along the length is qob, where qo is the 
intensity of the distributed load (force/unit square area). In Table 4.2.4, the first row corresponds 
to deflections due to point load Fo, and the second row corresponds to deflections due to uniformly 
distributed load qo. Also, on the second and third rows, frequencies corresponding to a/h = 100 
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and a/h = 10 are listed when rotary inertia is included. All other frequencies were computed by 
neglecting the rotary inertia. The following nondimensionalizations are used: 

( 4.2.61) 

The stiffness in a laminate is largest in the fiber direction because El > E 2 . Also, the bending 

stiffness increases with (cube of) the distance of the 0° layers from the midplane. Thus, the 

0°-laminated beam is stiffer in bending than the 90°-laminated beam, and therefore, 0° beam 

has smaller deflection and larger buckling load and natural frequencies when compared to the 90° 

beam. Since the 0° laminae are placed farther from the midplane in (0/90)5 laminate, it has smaller 

deflection and larger buckling load and natural frequencies when compared to the (90/0)8 beams. 

Similarly, due to the placement of the 0° layers, laminate A is stiffer than laminate B, and laminate 

B is stiffer than laminate C. Symmetric angle-ply laminated beams (8/-8) 8 have the same stiffness 

characteristics as (-8/8)" and they are less stiff compared to the symmetric cross-ply laminated 

beams. 

Table 4.2.4: Maximum transverse deflections, critical buckling loads, and 
fundamental frequencies of laminated beams according to the 
classical beam theory (Ed E2 = 25, G12 = G13 = O.5E2, G23 = 
0.2E2, V12 = 0.25). 

Hinged-Hinged Clamped-Clamped Clamped-Free 

Laminate 11; N w 11; N w 11; N w 

0 1.000 20.562 14.246 0.250 82.247 32.292 16.000 5.140 5.074 
0.625 14.245 0.125 32.291 6.000 5.074 

14.187 32.129 .'i.071 

90 25.000 0.822 2.849 6.250 3.290 6.458 400.00 0.205 1.015 
15.625 3.125 150.00 

(0/90), 1.134 18.127 13.375 0.283 72.507 30.320 18.149 4.532 4.764 
0.709 0.142 6.806 

(90/0)8 6.239 3.296 5.703 1.560 13.183 12.929 99.821 0.824 2.032 
3.899 0.780 37.433 

(45/ - 45)8 14.308 1.437 3.766 3.577 5.748 8.537 228.93 0.359 1.341 
8.942 1.788 85.847 

Laminate A 1.607 12.790 11.236 0.402 51.162 25.469 25.721 3.197 4.002 
1.005 0.201 9.645 

Laminate B 2.801 7.341 8.512 0.700 29.366 19.296 44.813 1.835 3.032 
1.751 0.350 16.805 

Laminate C 7.945 2.588 5.054 1.986 10.351 11.456 127.13 0.647 1.800 
4.966 0.993 47.673 

Laminate A = (0/±45/90)s, Laminate B = (45/0/-45/90)5, Laminate C = (90/±45/0)s. 
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We note that for clamped-clamped and clamped-free beams, the calculation of natural 
frequencies require the solutions of transcendental equations for A. For the case where rotary 
inertia is negligible, the roots of these equations are given in Table 4.2.3. To see the effect 
of rotary inertia, Eq. (4.2.58) were solved for A and the frequencies were calculated. From 
the frequencies listed in rows 2 and 3 of Table 4.2.4, it is clear that the effect of rotary 
inertia on fundamental frequencies is negligible for small lcngth-to-height ratios. Except for 
second and third rows, all other frequencies listed in the table were calculated by neglecting 
the rotary inertia, in which case the values of Al given in Table 4.2.3 are applicable. 

4.3 Analysis of Laminated Beams Using FSDT 

4.3.1 Governing Equations 

Here we consider the bending of symmetrically laminated beams using the first
order shear deformation theory. When applied to beams, FSDT is known as the 
Timoshenko beam theory. The governing equations can be readily obtained from 
the results of Section 3.4. 

The laminate constitutive equations for symmetric laminates, in the absence of 
in-plane forces, are given by [see Eqs. (3.4.21) and (3.4.22)] 

(4.3.1a) 

(4.3.1b) 

or, in inverse form, we have 

( 4.3.2a) 

{ ~ + rPy } = ~ [A44 
Dwo ~ K A* 7h: +~x 45 

(4.3.2b) 

where K is the shear correction coefficient, D7j , (i,j = 1,2,6) denote the elements 
of the inverse of [DJ, and Aij , (i,j = 4,5) denote elements of the inverse of [A]: 

A* - A55 A* - A44 A* - A45 , A = A44A.55 - A45A 45 
44 - A ' 55 - A ' 45 - - A (4.3.3) 

As in Section 4.2, we assume that Myy = Mxy = Qy = rPy = 0 and both Wo and 
rPx are functions of only x and t: 

Wo = wo(x, t), rPx = rPx(x, t) (4.3.4) 
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From Eq. (3.4.1) the displacement field takes the form (when the in-plane 
displacements Uo and Vo are zero) 

u(x, z) = zcPx(x), w(x, z) = wo(x) 

and the linear strain-displacement relations give 

From Eqs. (4.3.2a,b) we have 

8wo A. _ A55Q 
8x + If/x - K x 

or 

KG~zbh (88:0 + cPx) = Q(x), Q(x) = bQx, G~z = At5h 

The equations of motion from Eq. (3.4.13) are 

8Mxx _ Q _ I 8
2

cPx 
8x x - 2 8t2 

( 4.3.5a) 

(4.3.5b) 

(4.3.6) 

(4.3.7a) 

(4.3.7b) 

( 4.3.8a) 

(4.3.8b) 

Using Eq. (4.3.7) in Eq. (4.~.8), the equations of motion can be recast in terms of 
the displacement functions: 

(4.3.9a, b) 

where 
q = bq, 10 = bIo, 12 = bh (4.3.9c) 

4.3.2 Bending 

Note that when the laminated beam problem is such that the bending moment M(x) 
and Q(x) can be written readily in terms of known applied loads (like in statically 
determinate beam problems), Eq. (4.3.7a) can be utilized to determine cPx, and 
then wo can be determined using Eq. (4.3.7b). When M(x) and Q(x) cannot be 
expressed in terms of known loads, Eqs. (4.3.9a,b) are used to determine wo(x) and 
cPx (x). In the latter case, the following relations prove to be useful. 
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For bending analysis, Eqs. (4.3.9a, b) reduce to 

(4.3.10a, b) 

Integrating Eq. (4.3.lOa) with respect to x, we obtain 

b (dWo ) rx A KGxzbh dx + ¢x = - J
o 

q(~)d~ + Cl (4.3.11) 

Substituting the result into Eq. (4.3.10b) and integrating with respect to x, we 
obtain 

(4.3.12a) 

E~xlyy¢x(x) = - {X (' r' q(~)d~d7]d( + Cl x2 + C2 X + C3 
Jo Jo Jo 2 

(4.3.12b) 

Substituting for ¢(x) from Eq. (4.3.12b) into Eq. (4.3.11), we arrive at 

dwo 
dx E£:'I

yy 
[- fox foe fory q(~)d~d7]d( + Cl ~2 + C2X + C3] 

+ KG~zbh [- fox q(~)d~+Cl] (4.3.13a) 

wo(x) = - E£~Iyy [- fox fo~ fory foil q(()d(dfLd7]d~ + Cl ~3 + C2 ~2 + C3X + C4] 

+ KG~zbh [- fox fo~ q(()d(d~+CIX] (4.3.13b) 

where the constants of integration Cl through C4 can be determined using the 
boundary conditions of the beam. 

It is informative to note from Eq. (4.3.13) that the transverse deflection of the 
Timoshenko beam theory consists of two parts, one due to pure bending and the 
other due to transverse shear: 

wo(x) = wg(x) + wo(x) (4.3.14a) 

where 

wg(x) = E£:I
yy 

[foX fo~ fory foil q()d(dfLd7]d~ - Cl ~3 - C2 ~2 - C3X - C4] 

wo(x) = KG~zbh [- foX fo~ q()d(d~+CIX] (4.3.14b) 
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The pure bending deflection w8 (x) is the same as that derived in the classical beam 
theory [ef., Eq. (4.2.11b)]. When the transverse shear stiffness is infinite, the 
shear deflection wo(x) goes to zero, and the Timoshenko beam theory solutions 
reduce to those of the classical beam theory. In fact, one can establish exact 
relationships between the solutions of the Euler-Bernoulli beam solutions and 
Timoshenko beam solutions (see [27-29]). These relationships enable one to obtain 
the Timoshenko beam solutions from known classical beam solutions for any set of 
boundary conditions (see Problems 4.33 and 4.36). 

The expressions for in-plane stresses of the Timoshenko beam theory remain the 
same as those in the classical beam theory [see Eq. (4.2.12b)]. The expressions 
given in Eqs. (4.2.15a,b) for transverse shear stresses derived from 3-D equilibrium 
are also valid for the present case. 

The transverse shear stress can also be computed via constitutive equation in 
the Timoshenko beam theory. We have 

(J"(k)(X z) = Q-(k) A* Q(x) 
xz' 55 55 b ( 4.3.15) 

Example 4.3.1 (Simply supported beam): 

Here we consider the three-point bending problem of Section 4.2 (see Figure 4.2.2). For this case, 
the bending moment [see Eq. (4.2.17)] and shear forces are 

M(x) = Fo
2
bx , Q(x) = dd": = Fgb ,OS x S ~ (4.3.16) 

Using Eq. (4.3.16) for M in Eq. (4.3.7a) and integrating with respect to x, we obtain 

( ) 
Fob 2 

<Px x = 4Eb I x + Cl 
xx yy 

By symmetry, Ul = Uo + zrpx is zero at x = a/2. This implies that rpx(a/2) = O. Hence 

and the solution becomes 

1-4 ~ O<x<-[ ( T) 2] a 
a ' - - 2 (4.3.17) 

It is interesting to note from Eq. (4.3.17) that the rotation function rpx(x) is the same as the 
slope -dwo/dx from the Euler-Bernoulli beam theory (i.e., <Px is independent of transverse shear 
stiffness). Consequently, the bending moment [see Eq. (4.3.7a)]' and therefore the axial stress, is 
independent of shear deformation. In fact, rpx is independent of shear deformation for all statically 
determinate beams and indeterminate beams with symmetric boundary conditions and loading (see 
Wang [27]). However, for general statically indeterminate beam8, the rotation rpx will depend on 
the shear stiffness KG~zbh (see Problem 4.11). 

Substituting for rpx into Eq. (4.3.7b), we obtain 

dwo 
dx 

Foba
2 [1 _ 4 (::) 2] + Fob 

16Egxl yy a 2KGLbh 
( 4.3.18a) 
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Let us denote the first expression in (4.3.18a) by 

dw8 
dx 

(4.3.18b) 

In light of Eq. (4.3.14a), the first part of Eq. (4.3.18a) can be viewed as the slope (or rotation) due 
to bending and the second one due to transverse shear strain: 

dWQ _ dwg dWil ---+-d:D - dx dx 

Indeed, dw'O/dx can be interpreted as the transverse shear strain [ef., Eq. (4.3.5b)] 

dwi) _ dWQ dwg _ dwo ( )_ 
-d - -d - -d - -d + rPx x = /XZ 

X X X X 

(4.3.18c) 

(4.3.19) 

Note from Eq. (4.3.18a) that, in contrast to the classical beam theory, the slope dwo/dx at the 
center of the beam in the Timoshenko beam theory is nonzero. We have (Iyy = bh3 /12) 

( 4.3.20) 

However, dw8/dx = -rPx is zero at x = a/2. Integrating Eq. (4.3.18a) with respect to x, we arrive 
at the expression 

Foba3 

wo(x) = 48Eb I 
xx yy 

(4.3.21 ) 

where the constant of integration is found to be zero on account of the boundary condition 
wo(O) = O. Note that the first part (wg) is the same as that obtained in the classical beam 
theory [cf., Eq. (4.2.18)]. 

The maximum deflection occurs at x = a/2 and it is given by 

( 4.3.22) 

Equation (4.3.22) shows that the effect of shear deformation is to increase the deflection. The 
contribution due to shear deformation to the deflection depends on the modulus ratio E~x/G~z as 
well as the ratio of thickness to length h/ a. The effect of shear deformation is negligible for thin 
and long beams. 

Example 4.3.2 (Clamped beam): 

Consider a laminated beam fixed at both ends and subjected to uniformly distributed transverse 
load qob as well as a point load Fob at the center, both acting downward. For this case, the boundary 
conditions are (using half beam) 

( 4.3.2:3) 

which in turn imply that 

(4.:t24) 
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The solution is 

( 4.3.25) 

(4.3.26) 

The maximum deflection is at x = a/2 and is given by [ef., Eq. (4.2.23)] 

(4.3.27a) 

where S is the positive parameter that characterizes the contribution due to the transverse shear 
strain to the displacement field 

S=4( E~~ ) ('::.)2 
KGxz a 

(4.3.27b) 

Table 4.3.1 contains expressions for transverse deflections and maximum transverse deflections 
of laminated beams according to the first-order shear deformation theory. By comparison to the 
classical theory (see Table 4.2.1), it is clear that the shear deformation increases the deflection. 

Table 4.3.2 contains maximum transverse deflections ill of various laminated beams according 

to the Timoshenko shear deformation beam theory. The effect of length-to-height (or thickness) 

ratios of the beam on the deflections can be seen from the results. Thin or long beams 

do not experience transverse shear strains. Clamped beams show the most difference in 

deflections due to transverse shear deformation (i.e., accounting for the transverse shear strain). 

The effect of shear deformation on maximum deflection can be seen from Figures 4.3.1 and 

4.3.2, where the nondimensionalized maximum deflection, w = wm«xE2 h 3 /qoa4 (Fo = qoa), 
of a simply supported beam is plotted as a function of length-to-height ratio a/h for various 

laminated beams under a point load and uniformly distributed load, respectively. The 

material properties of a lamina are taken to be those in Eq. (4.2.25). The effect of shear 

deformation is more significant for beams with length-to-thickness ratios smaller than 10. 

4.3.3 Buckling 

For buckling analysis, the inertia terms and the applied transverse load q in Eqs. 
(4.3.9a,b) are set to zero to obtain the governing equations of buckling under 
compressive edge load Nxx = -N~x: 

( 4.3.28a) 

(4.3.28b) 
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Table 4.3.1: Transverse deflections of laminated composite beams with various 
boundary conditions and subjected to point load or uniformly 
distributed load (acting downward) according to the shear 
deformation theory. 

Laminated Beam 

• Hinged-Hinged 

Central point load 

iFo 
a 

Uniform load 

• Fixed-Fixed 

Central point load 

~r-----::a:-------i'~ 
1<II11III----~-1 

Uniform load 

J+II+llltt 
1l1li a _I 

• Fixed-Free 

Point load at free end 

Uniform load 

AllllltlfO 
1l1li a _I 

Fa ba qoba2 

81 = KG~zbh' 82 = GLbh 

Deflection, Wo (x) 

:Th [3 (~) -4 (~fl] 
+~ (~) 

~~ [( ~) _ 2 (~ ) 3 + (~) 4 ] 

+~ [(~) _ (~)2] 

~ [3 (~) 2 _ 4 (~):l] 
+:if(~) 

~~ [( ~ ) 2 _ (~) ] 2 

+~ [(~) _ (~)2] 

lr [3 (~)2 - (~n 
+Sl (~) 

~ [6 (~)2 _ 4 (~)3 + (~)4] 

+"T [(2~) _ (~)2] 

Max. Deflection 

JsCl+iSl 

at x = ~ 

at x = ~ 

1~2C1+iSl 
at x = ~ 

at x = ~ 

j C1 + Sl 

at x = a 

at x = a 
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Table 4.3.2: Maximum transverse deflections of laminated beams according to 

the Timoshenko beam theory t (Ed E2 = 25, G 12 = G 13 = 0.5E2, 
G23 = 0.2E2, V12 = 0.25). 

Hinged-Hinged Clamped-Clamped Clamped-Free 

Laminate a 100 20 10 100 20 10 100 20 10 h 

0 1.001 1.150 1.600 0.256 0.400 0.850 16.02 16.60 18.40 
0.628 0.700 0.925 0.128 0.200 0.425 6.01 6.30 7.20 

90 25.015 25.375 26.500 6.265 6.625 7.750 400.00 401.50 406.00 
15.633 15.813 16.375 3.132 3.312 3.875 150.00 150.75 153.00 

(90/0)8 1.143 1.348 1.991 0.292 0.498 1.141 18.18 19.01 21.58 
0.713 0.816 1.137 0.146 0.249 0.570 6.82 7.23 8.52 

(45/-45)8 14.316 14.522 15.165 3.585 3.791 4.434 228.96 229.78 232.35 
8.947 9.049 9.371 1.793 1.895 2.217 85.86 86.28 87.56 

tThe first row of each laminate refers to nondimensionalized maximum deflections under point load 

(Fob) and the second one refers to maximum deflections under uniformly distributed load (qOb). 

The deflection is nondimensionalized as w = Wrnax(E2h3 /qaa4 ) x 102 (Fa = qaa). 

Solving Eq. (4.3.28a) for dX / dx one obtains 

b dX (b 0 ) d
2
W 

KGxzbh dx = - KGxzbh - bNxx dx 2 
( 4.3.29) 

Integration with respect to x yields 

b (b 0 ) dW KGxzbhX(x) = - KGxzbh - bNxx dx + Kl ( 4.3.30) 

N ext differentiate Eq. (4.3.28b) with respect to x and substitute for dX / dx from 
Eq. (4.3.29) to obtain the result 

or 
b ( bN~x) d

4
W 0 d

2
W 

EXX1yy 1 - KG~zbh dx4 + bNxx dx 2 = 0 ( 4.3.31) 

The general solution of Eq. (4.3.31) is 

W(x) = Cl sin AX + C2 cos AX + C3X + C4 ( 4.3.32) 

where 

A2 = bN~x 0 A2 E~xlyy 
(1 bNgx ) Eb I or bNxx = (1 + ),2 E~xlyy) 

- KGLbh xx yy KGLbh 

( 4.3.33) 

and Cl through C4 are constants of integration, which must be evaluated using the 
boundary conditions. 



ONE-DIMENSIONAL ANALYSIS OF LAMINATED COMPOSITE PLATES 195 

0.20 

0.18 - /2 Eoh' w=wo(a )---, 

0.16 
Foa" 

(45/-45)8 

0.14 
I~ iFo 
!:i~ 0.12 

.S 

~ 1-"'" 0.10 u a (J) 

~ (90/-45/45/0l8 (J) 

Q 0.08 

0.06 

0.04 
(0/-45/45/90l8 (0/90l8 

0.02 

0.00 

0 10 20 30 40 50 60 70 80 90 100 
Side-to-thickness ratio, a/h 

Figure 4.3.1: Transverse deflection Cw) versus length-to-thickness ratio (a/h) of 
simply supported beams under center point load. 
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Figure 4.3.2: Transverse deflection (w) versus length-to-thickness ratio (a/h) of 
simply supported beams under uniformly distributed load. 
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Example 4.3.3 (Simply supported beam): 

For a simply supported beam, the boundary conditions are [see Eq. (4.2.31a)] 

dX dX 
W(O) = 0, W(a) = 0, dx (0) = 0, dx (a) = ° ( 4.3.34a) 

In view of Eq. (4.3.29), the above conditions are equivalent to 

d2 W d2 W 
W(O) = 0, W(a) = 0, dx2 (0) = 0, dx2 (a) = ° (4.3.34b) 

The boundary conditions in Eq. (4.3.34b) lead to the result C2 = C3 = C4 = 0, and for Cl i= ° the 
requirement 

sin Aa = ° implies Aa = mr 

Substituting for A from Eq. (4.3.35) into Eq. (4.3.33) for N2x, we obtain 

The critical buckling load is given by the minimum (n = 1) 

bN = Eb I (~) 1 _ xx yy a 2 [ Eb I (71")2 1 
cr xx yy 2 

a KGLbh + Egxlyy (~) 

(4.3.35) 

(4.3.36) 

(4.3.37) 

It is clear from the result in Eq. (4.3.37) that shear deformation has the effect of decreasing the 
buckling load [ef., Eq. (4.2.35)]. 

Example 4.3.4 (Clamped beam): 

For a beam fixed at both ends, the boundary conditions are 

W(O) = 0, W(a) = 0, X(O) = 0, X(a) = ° ( 4.3.38) 

In order to impose the boundary conditions on X, we use Eq. (4.3.30). The constant Kl appearing 
in Eq. (4.3.30) can be shown (see Problem 4.10) to be equal to Kl = -c3(bN2x)' The boundary 
conditions yield 

C2 + C4 = 0, Cl sin Aa + C2 cos Aa + C3a + C4 = ° 
(

1 bN2x) \ ° - - KGLbh /\cl - C3 = 

- (1 - :~:xbh) (ACI cos Aa - AC2 sin Aa) - C3 = ° 
Expressing Cl and C2 in terms of C3 and C4, noting that 

1 bN2x 
KGb bh xz 

1 

and then setting the determinant of the resulting algebraic equations among Cl and c2 to zero, we 
obtain 

( 
A2 Eb I ) 

2(cosAa-l) 1+ KG~:b~ +Aa sinAa=O ( 4.3.39) 
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Once the value of Aa is determined by solving the nonlinear equation (4.3.39), the buckling load 
can be readily determined from Eq. (4.3.33). 

4.3.4 Vibration 

For natural vibration, we assume that the applied axial force and transverse load 
are zero and that the motion is periodic. Equations (4.3.9a, b) take the form 

( 4.3.40a) 

(4.3.40b) 

We use the same procedure as before to eliminate X from Eqs. (4.3.40a, b). From 
Eq. (4.3.40a), we have 

b dX '2 b d2 W 
KGxzbh- = -low W - KG bh--2 dx xz dx (4.3.41 ) 

Substitute the above result into the derivative of Eq. (4.3.40b) for dX / dx and obtain 
the result 

W h '2 ( 2') 1 - KGLbh low W = 0 (4.3.42a) 

or 
d4 W d2W 

p-- +q-- -rW = 0 
dx4 dx 2 

(4.3.42b) 

where 

( 
b ') (2' ) b EXXlyy h ' 2 W h '2 

P = EXXlyy, q = KGb bh + --;:- low, r = 1 - KGbxzbh low 
xz 10 

( 4.3.42c) 

The general solution of Eq. (4.3.42b) is 

W (x) = Cl sin AX + C2 cos AX + C3 sinh /-LX + C4 cosh /-LX ( 4.3.43a) 

where 

A = J 2~ (q + J q2 + 4pr) , /-L = J 21p ( -q + J q2 + 4pr) (4.3.43b) 

and Cl, C2, C3, and C4 are constants, which are to be determined using the boundary 
conditions. Note that we have 

( 4.3.44) 
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Alternatively, Eq. (4.3.42a) can be written, with W given by Eq. (4.3.43), in terms 
of was 

( 4.3.45a) 

where 

i2 
P = KGb bh ' 

xz 

(4.3.45b) 

Hence, there are two (sets of) roots of this equation (When i2 i- 0) 

( 4.3.46) 

It can be shown that Q2 - 4PR > 0 (and PQ > 0), and therefore the frequency 
given by the first equation is the smaller of the two values. vVhen the rotary inertia 
is neglected, we have P = 0 and the frequency is given by 

(4.3.47) 

Example 4.3.5 (Simply supported beam): 

For a simply supported beam, the boundary conditions in Eq. (4.3.34b) yield C2 = C3 = C4 = 0 and 

Cl sin Aa = 0, which implies An = n7r 
a 

(4.3.48) 

Substitution of A from Eq. (4.3.48) into Eq. (4.3.47) and the result into Eq. (4.3.46a,b) gives two 
frequencies for each value of A. The fundamental frequency will come from Eq. (4.3.46a). 

When the rotary inertia is neglected, we obtain from Eq. (4.3.47) the result 

_ (n7r)2 
Wn -

a 
( 4.3.49) 

Thus, shear deformation decreases the frequencies of natural vibration [see Eq. (4.2.55)]. 

Example 4.3.6 (Clamped beam): 

Using Eq. (4.3.40a) and expression (4.3.43a) for W(x), dX/dx can be determined in terms of the 
constants Cl through C4, which then can be integrated with respect to x to obtain an expression 
for X. Using the boundary conditions in Eq. (4.3.38), we obtain 

( 4.3.50a) 

where 
(4.3.50b) 

Eliminating C2 and C4 from the above equations, and setting the determinant of the resulting 
equations among Cl and C2 to zero (for a nontrivial solution), we obtain 

-2 + 2 cos Aa cosh J1a + sin Aa sinh J1a (~~~ - ~~~) = 0 (4.3.51) 
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Table 4.3.3 contains critical buckling loads and fundamental frequencies of various 
laminated beams according to the Timoshenko beam theory. The first row of each 
laminate refers to the nondimensionalized critical buckling load, the second row 
refers to nondimensionalized fundamental frequencies with rotary inertia, and the 
fourth row refers to fundamental frequencies without rotary inertia. The numbers 
in rows 3 and 5 refer to the fundamental frequencies calculated using the frequency 
equations of the classical laminate theory (for the simply supported boundary 
conditions, the frequency equations are the same in both theories). The following 
nondimensionalizations are used: 

( 4.3.52) 

The frequency equations (4.3.51) of the Timoshenko theory depend, for clamped
clamped and clamped-free boundary conditions, on the lamination scheme and 
geometric parameters (through Sij) , whereas those of the classical laminate theory 
[see Eqs. (4.2.58) and (4.2.59)] are independent of the beam geometry or material 
properties. Thus, there are two different things that influence the frequencies in the 
Timoshenko theory: (i) the effect of transverse shear deformation [see Eqs. (4.3.47) 
and (4.3.49)]' and (ii) the values of A, which are governed by different equations 
than those of the classical theory (for clamped-clamped and clamped-free beams). 
The second effect is not significant, as can be seen from rows 3 and 5 of Table 
4.3.3. Also, for clamped-clamped and clamped-free boundary conditions, the effect 
of rotary inertia on the frequencies is not as obvious as it was in the case of simply 
supported beams, where the rotary inertia would decrease the frequencies. From the 
results presented in Table 4.3.3, it appears that rotary inertia may actually increase 
the frequencies slightly. 

The effect of length-to-height (or thickness) ratios of the beam on critical 
buckling loads N and fundamental frequencies w is shown in Figures 4.3.3 and 4.3.4, 
respectively, for various lamination schemes. The material properties used are those 
listed in Eq. (4.2.25). Transverse shear deformation has the effect of decreasing 
both buckling loads and natural frequencies. Thus, the classical laminate theory 
overpredicts buckling loads and natural frequencies. This is primarily due to the 
assumed infinite rigidity of the transverse normals in the classical laminate theory. 
Note that the assumption does not yield a conservative result; i.e., if one designs a 
beam for buckling load based on the classical laminate theory and if no safety factor 
is used, it will fail for a working load smaller than the critical buckling load. 

Once again we note that the relationships between the classical beam theory 
and the Timoshenko beam theory may be used determine the deflections, buckling 
loads and fundamental frequencies according to the Timoshenko beam theory from 
those of the Euler-Bernoulli beam theory [29]. Such relationships exist only for 
isotropic beams, and the reader may find it challenging to develop the relationships 
for bending, buckling and vibration of laminated beams (see Section 5.5 of [29]). 
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Table 4.3.3: Critical buckling loads (N) and fundamental frequencies (w) 
of laminated beams according to the Timoshenko beam theory 
(Ed E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, V12 = 0.25). 

Hinged-Hinged Clamped-Clamped Clamped-Free 

Laminate a 
---t 100 20 10 100 20 10 100 20 10 h 

0 N 20.461 18.304 13.768 80.655 55.070 27.656 5.134 4.987 4.576 

W(i2 oF 0) 14.210 13.430 11.635 31.899 25.327 17.212 5.070 4.930 4.528 
14.210 13.430 11.635 32.110 28.506 22.140 5.070 4.965 4.675 

W(i2 = 0) 14.211 13.441 11.657 31.824 24.636 16.680 5.063 4.813 4.229 
14.211 13.441 11.657 32.113 28.547 22.186 5.070 4.966 4.680 

90 0.822 0.812 0.784 3.283 3.135 2.747 0.205 0.205 0.203 

2.848 2.829 2.771 6.450 6.260 5.761 1.015 1.012 1.004 
2.848 2.829 2.771 6.454 6.356 6.079 1.015 1.012 1.005 

2.848 2.832 2.781 6.449 6.232 5.681 1.015 1.009 0.993 
2.848 2.832 2.781 6.455 6.370 6.125 1.015 1.013 1.006 

(90/0)8 18.015 15.689 11.179 70.748 44.716 20.800 4.525 4.362 3.922 

13.334 12.434 10.488 29.857 22.672 14.837 4.758 4.594 4.132 
13.334 12.434 10.488 30.106 26.041 19.504 4.759 4.636 4.307 

( 45/-45)8 1.436 1.419 1.369 5.737 5.478 4.802 0.359 0.358 0.355 

3.765 3.739 3.663 8.526 8.275 7.616 1.341 1.338 1.326 
3.765 3.739 3.663 8.531 8.402 8.036 1.341 1.338 1.328 

4.4 Cylindrical Bending Using CLPT 

4.4.1 Governing Equations 

Consider a laminated rectangular plate strip, and let the x and y coordinates be 
parallel to the edges of the strip. Suppose that the plate is long in the y-direction 
and has a finite dimension along the x-direction, and subjected to a transverse 
load q(x) that is uniform at any section parallel to the x-axis. In such a case, 
the deflection Wo and displacements (uo, vo) of the plate are functions of only x. 
Therefore, all derivatives with respect to yare zero, and the plate bends into a 
cylindrical surface. For this cylindrical bending problem (see Figure 4.1.2), the 
governing equations of motion according to the linear classical laminate plate theory 
(CLPT) are given by [see Example 3.3.1; Eqs. (3.3.48)] 

82uo 82vo 83wo 8N'Ix 82uo 83wo 
An 8x2 + A 16 8x2 - Bn 8x3 - ----a;;- = 10 8t2 - h 8x8t2 (4.4.1a) 

82uo 82vo 83wo 8N~ 82vo 
A16 8x2 + A66 8x2 - B16 8x3 - ----a;;- = 10 8t2 (4.4.1b) 
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Figure 4.3.3: Nondimensionalized critical buckling load (fir) versus length-to
thickness ratio (a/h) of simply supported beams. 
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where Nxx is an applied axial load, and 

L 
rZk+l 2 (k) 

(10, II, h) = {; i
Zk 

(1, Z, z )Po dz (4.4.1d) 

For a general lamination scheme, the three equations are fully coupled. In the 
case of cross-ply laminates, the second equation becomes uncoupled from the rest. 
In the general case, Eqs. (4.4.1a-c) can be expressed in an alternative form by 
solving the first two equations for u" and v" and substituting the results into the 
third equation 

where 

- - - B - e 
D = Dn - BnB - B 16e, B = A' e = A ( 4.4.2d) 

Note that e = 0 for a cross-ply laminate (A 16 = B 16 = D 16 = 0), and v is identically 
zero unless N;I'y is at least a linear function of x. 

If the in-plane inertias are neglected, Eq. (4.4.2c) for Wo is uncoupled from those 
of Uo and Vo. In the absence of thermal forces and axial loads, Eq. (4.4.2c) will have 
the same form as Eq. (4.2.8b). Therefore, the solutions developed in Sections 4.2.2 
through 4.2.4 are also valid for cylindrical bending with appropriate change of the 
coefficients. 
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4.4.2 Bending 

For static bending analysis, Eqs. (4.4.2a-c) reduce to 

d2 d3 dNT dNT 
A~-B~ A ~-A ~ 

dx2 - dx3 + 66 dx 16 dx ( 4.4.3a) 

d2 d3 dNT dNT 
A~-e~ A ~-A ~ 

dx2 - dx3 + 11 dx 16 dx ( 4.4.3b) 

D d4wo B d2 NIx C d2 
NJ',; d2 MIx 

dx4 = dx 2 + d;i2 - dx 2 + q (4.4.3c) 

Equation (4.4.3c) governing Wo is uncoupled from those governing (uo, vo). 
Equation (4.4.3c) closely resembles that for symmetrically laminated beams [see Eq. 
(4.2.lOb)]. While Eq. (4.4.3c) is valid for more general laminates (symmetric as well 
as nonsymmetric), it differs from Eq. (4.2.10b) mainly in the bending stiffness term. 
Hence, much of the discussion presented in Section 4.2 on exact solutions applies to 
Eq. (4.4.3c). The limitation on the lamination scheme in cylindrical bending comes 
from the boundary conditions on all three displacements of the problem. When both 
edges are simply supported or clamped, exact solutions can be developed without 
any restrictions on the lamination scheme. For clamped-free laminated plate strips, 
satisfaction of the boundary conditions places a restriction on the lamination scheme, 
as will be seen shortly. 

Since Eq. (4.4.3c) is uncoupled from Eqs. (4.4.3a,b), it can be integrated, for 
given thermal and mechanical loads, to obtain wo(x), and the result can be used in 
Eqs. (4.4.3a) and (4.4.3b) to determine uo(x) and vo(x): 

where 

D d3wO _B dNIx CdN'ly dM'Ix loX (e) de -d '3 - -d-+ -d---d-+ q", ",+C1 
X' X x x 0 

A d
2
uO _ B' loX (e) de G dN'Ix F dNJ',; BA dMIx --- q", ",+ 1--+ 1--- --+a1 

dx2 0 dx dx dx 

d2 j'x dNT dNT dMT 
A~=G q(~)d~+G2~+F2~-G~+b1 

dx2 0 dx dx dx 

BB BB 
G1 = D + A 66 , H = D - A 16 , 

Be Be 
G2 = D - A 16 , F2 = D + All, 

a1 = BC1, b1 = GC1 

A B 
B=

D 

A e 
e=

D 

Further integrations lead to 

( 4.4.4a) 

(4.4.4b) 

(4.4.4c) 

(4.4.5) 

( 4.4.6a) 

( 4.4.6b) 
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(4.4.6c) 

and 

(4.4.7a) 

(4.4.7c) 

Dwo(x) = fox {fo~ [fo1) (fo( q(fL)dfL ) d( 1 d17} d~ + B fox (fo~ N~(17)d17) d~ 

+ C fox (fo~ NJ'y(17)d17) d~ -fox (fo~ M~(17)d17) d~ 
(4.4.7d) 

If the temperature distribution in the laminate is of the form 

ilT(x, z) = To + ZTl ( 4.4.8) 

where To and Tl are constants, then we have 

( 4.4.9a) 

(4.4.9b) 

(4.4.9c) 
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where 

(4.4.10) 

In addition, if q = qo, expressions in Eqs. (4.4.7) become 

Auo(x) = Bqo ~3 + GI (AiTo + BfTI) X + FI (ArTo + BlTI) X 

2 
A( T T) X - B B1 To + D1 T1 X + a1 2 + a2 x + a3 

A x 3 x 2 

== Bqor; + a12 + fi2x + a3 (4.4.11a) 

3 

Avo(x) = CqO ~ + G2 (AiTo + BfT1) X + F2 (ArTo + BlT1) X 

- C (BfTo + DfTI) X + b1 ~2 + b2x + b3 

A x 3 x 2 
A 

== Cqor; + b12 + b2x + b3 (4.4.11b) 

x4 - ( T T) x2 - ( T T) x2 
Dwo(x) = qo24 + B Al To + BI TI 2 + C A6 To + B6 TI 2 

( ) 
x2 x3 x2 

- BfTo + DiTI 2 + CI (3 + C2 2 + C3 X + C4 

x4 x3 x2 
== qo - + C1 - + (;2 - + C3 X + C4 

24 6 2 
(4.4.11c) 

The constants of integration ai, bi , and Ci can be determined using the boundary 
conditions. 

The in-plane stresses in each layer can be computed using the constitutive 
equations, and the transverse stresses can be determined using equilibrium equations 
of 3-D elasticity [see Eqs. (4.2.13) and (4.2.14)]. For a cross-ply laminate the only 
nonzero strain is Cxx. 

Example 4.4.1 (Simply supported plate strip): 

For a plate strip with simply supported edges at x = 0 and x = a, the boundary conditions are (see 
Table 4.4.1) 

N xx = 0, Wo = 0, 111xx = 0 (4.4.12) 

where 

(4.4.13a) 

( 4.4.13b) 
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duo dvo d2wo T 
N xy = A I6Tx + A66~ - B I6 dx2 - N xy (4.4. 13c) 

duo dvo d2wo T 
lvlxx = Bll Tx + B I6 dx - Dll dx 2 - M XJ' ( 4.4. 14a) 

duo dvo d2wo T 
Myy=BI2-d +B26 -

d 
-DI2 -

d 
2 -Myy 

X X X 
(4.4.14b) 

(4.4.14c) 

From Eqs. (4.4.12), (4.4.13a), and (4.4.14a) it follows that, for an arbitrary lamination scheme and 
dvo / dx = 0, we must have at .7: = 0, a 

dvo = 0 
dx ' 

( 4.4.15a) 

(4.4.15b) 

Since only the derivatives of 110 and Vo are specified at the boundary points, the solution for 110 and 
Vo can be determined only with an arbitrary constant (i.e., rigid body motion is not eliminated). 

Using boundary conditions (4.4.15) in Eq. (4.4.11a-c), we obtain 

uo(X) = :D q~~3 [2 (~f -3 (D2] +N;x x+a3 

vo(X) = ACD q~~3 [2(D 3 -3Gf] +b3 

Wo (x) = ~~~ [G f -2 (D 3 + (~) ] 

+ M~a2 [(~f -(~)] 

( 4.4. 16a) 

(4.4.16b) 

(4.4.16c) 

where the constants a3 and b3 can be interpreted as rigid body displacements. The constants can 
be determined by setting uo(O) = 0 and vo(O) = 0, which give a3 = b3 = O. 

The stress resultants for any x are then given by substituting Eqs. (4.4.16) into Eqs. (4.4.13) 
and (4.4.14): 

( 4.4.17a) 

(4.4.17b) 

Mxx = qO;2 [Gf -G) ] (4.4.17c) 

Mxy = ~~a~ (B16 B + B66C - D16 A ) [ (~) 2 - G)] 
A TAT T 

+ B16 N xx - D I6 M,"X - Mxy ( 4.4.17d) 

Myy = ~~a~ (BI2B + B 26C - DI2A) [ G) 2 - (D] 
A TAT T 

+ B 12 N xx - D12Mxx - Myy (4.4.17e) 
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The maximum transverse deflection occurs at x = 0,/2, and it is given by 

( 4.4.18) 

In order to see the effect of the bending-stretching coupling on the transverse deflection, the 
reciprocal of the bending stiffness D [see Eq. (4.4.2d)] is expressed as 

~ = _1_ (Dll) = _1_ (D + EllB + H16C) 
D Dll D Dll D 

Hence, the maximum deflection can be expressed in the form 

. _ 5Qoa4 
(1 Bll B + E16 C ) 

W mn :" - 384D
11 

+ D ( 4.4.19) 

For symmetric laminates the coupling terms are zero, and the maximum deflection is given by 

W rna .r ( 4.4.20) 

It can be shown that the expression Ell jj + E 16C is always positive. Therefore, it follows that 
the effect of the coupling is to increase the maximum transverse deflection of the plate strip. For 
example, for antisymmetric cross-ply laminates, we have A 16 = A 26 = E 16 = B 26 = D16 = D 26 = 0, 
B = Ell/All, C = 0, and D = Dll - ErdAll' Thus the maximum deflection becomes 

(4.4.21) 

In the case of antisymmetric angle-ply laminates, we have A16 = A 26 = Ell = B22 = E12 = E66 = 

Dl(j = D'26 = 0, B = 0, C = E I6 /A 66 , and D = Dll - EidA66' The maximum deflection becomes 

5 4 ( E2 ) AAIT 2 
11J -~ 1 16 _~ 

rna,: - 384D + A D - E2 8 
11 66 11 16 

( 4.4.22) 

Note that when the bending-stretching coupling terms are zero (e.g., for symmetric laminates), 
the cylindrical bending and laminated beam solutions havt~ the same form. The difference is only 
in the bending stiffness term. The bending stiffness Dll used in cylindrical bending is given by 

( 4.4.23) 

whereas the bending stiffness used in the beam theory is E~:Jyy = E~:rbh?' /12. Thus, the difference 
is in the expression containing Poisson's ratios, which is due to the plane strain assumption used 
in cylindrical bending compared to the plane stress assumption used in the beam theory. The 
difference between the two solutions will be the most for laminates containing angle-ply layers, 
where V~y can be very large. 

Analytical solutions for beams under uniform transverse load with other 
boundary conditions may be obtained from Eqs. (4.4.lla-c). For loads other than 
uniformly distributed transverse load, one must use Eqs. (4.4.7a-d). 
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Table 4.4.1: Boundary conditions in the classical (CLPT) and first-order shear 
deformation (FSDT) theories of beams and plate strips. The 
boundary conditions on Ua and Va are only for laminated strips 
in cylindrical bending. 

Edge Condition CLPT FSDT 

zt free No: =0 Nxy=O Nxx=O Nxy=O 

dMxx -0 E-- i--- Mxx=O Mxx=O Qx=O x dx -

zt roller wo=O duo -0 
dx - wo=O duo =0 

dx 

~ 
i---x Nxx=O Mxx=O Nxx=O Mxx=O 

zt simple support uo=O wo=O uo=O wo=O 

7ft ·--4--X duo =0 
dx 

Mxx=O duo -0 
dx - Mxx=O 

z t clamped uo=O uo=O uo=O uo=O 

~ dwo =0 ___ C-~ ___ "::CC.-=- --X wo=O 
dx 

wo=O <Vx =0 

4.4.3 Buckling 

The equilibrium of the plate strip under the applied in-plane compressive load 
Nxx = -N~x can be obtained from Eqs. (4.4.2a-c) by omitting the inertia terms 
and thermal resultants 

(4.4.24) 

( 4.4.25) 

( 4.4.26) 

where (U, V, W) denote the displacements measured from the prebuckling 
equilibrium state. 

Equation (4.4.26), which is uncoupled from (4.4.24) and (4.4.25), can be 
integrated twice with respect to x to obtain 

( 4.4.27) 
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where Kl and K2 are constants. The general solution of Eq. (4.4.27) is 

W(X) = Cl sin AX + C2 cos AX + C3X + C4 

where C3 = Kl/A2
,c4 = K 2 /A2

, and 

( 4.4.28) 

( 4.4.29) 

The three of the four constants Cl, C2, C3, C4, and A are determined using (four) 
boundary conditions of the problem. Once A is known, the buckling load can be 
determined using Eq. (4.4.29). The results of Section 4.2.3 are applicable here 
with b = 1 and E~xIyy = D. Here we consider only the case of simply supported 
boundary conditions for illustrative purposes. 

Example 4.4.2: 

When the plate strip is simply supported at x = 0, a, from Eq. (4.4.15a) we have 

(4.4.30) 

Use of the boundary conditions on W gives C2 = C3 = C4 = 0 and the result 

sinAa == sin( V N~x) = 0, or N~x = D (naIr) 2 (4.4.31) 

The critical buckling load Ncr is given by (n = 1) 

( 4.4.32) 

Thus the effect of the bending-extensional coupling is to decrease the critical buckling load. 

Recall from Section 4.2.3 that when both edges are clamped, A is determined by solving the 
equation 

Aa sin Aa + 2 cos Aa - 2 = 0 ( 4.4.33) 

The smallest root of this equation is A = 2Ir, and the critical buckling load becomes 

( 4.4.34) 

4.4.4 Vibration 

For vibration in the absence of in-plane inertias, thermal forces, and transverse load, 
Eq. (4.4.2c) is reduced to 

(4.4.35) 

where J2 = h - Bh. For a periodic motion, we assume 

wo(x, t) = W(x)e iwt , i = R (4.4.36) 
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where W is the natural frequency of vibration. Then Eq. (4.4.35) becomes 

( 4.4.37) 

Equation (4.4.35) has the same form as Eq. (4.2.43). Hence, all of the results of 
Section 4.2.4 are applicable here with b = 1 (io = 10, i2 = 12 ) and E~xlyy = D. We 
summarize the results here for completeness. 

The general solution of Eq. (4.4.37) is 

W (x) = Cl sin AX + C2 cos AX + C3 sinh JLX + C4 cosh JLX (4.4.38) 

where 

A = J 2~ (q + V q2 + 4pr) , JL = J 2~ ( -q + V q2 + 4pr) ( 4.4.39) 

- 2 A 2 
P = D, q = hw - Nxx , r = low ( 4.4.40) 

and Cl, C2, C3, and C4 are integration constants, which are determined using the 
boundary conditions. For natural vibration without rotary inertia and applied axial 
load, the equation for A = JL reduces to 

( 4.4.41) 

If the applied axial force is zero, the natural frequency of vibration, with rotary 
inertia included, is given by 

( 4.4.42) 

When rotary inertia is neglected, we have 

(4.4.43) 

Example 4.4.3: 

For a simply supported plate strip, An is given by An = :-rr and from Eq. (4.4.42) it follows that 

1 
(4.4.44) 

Note that the rotary inertia has the effect of decreasing the natural frequency. When the rotary 
inertia is zero, we have 

( 4.4.45) 
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For a plate strip clamped at both ends, A must be determined from [see Eqs. (4.2.56)-(4.2.60)J 

-2 + 2cosAacosht-ta + (~ - ~) sin Aasinh t-ta = 0 ( 4.4.46) 

For natural vibration without rotary inertia, Eq. (4.4.46) takes the simpler form 

cos Aa cosh Aa - 1 = 0 (4.4.47) 

The roots of Eq. (4.4.47) are 

(4.4.48) 

In general, the roots of the transcendental equation in (4.4.46) are not the same as those of 
Eq. (4.4.47). If one approximates Eq. (4.4.46) as (4.4.47) (i.e., A "" IL), the roots in Eq. 
(4.4.48) can be used to determine the natural frequencies of vibration with rotary inertia from 
Eq. (4.4.42). When rotary inertia is neglected, the frequencies are given by Eq. (4.4.43) 
with A as given in Eq. (4.4.48). The frequencies obtained from Eq. (4.4.42) with the values 
of A from Eq. (4.4.48) are only an approximation of the frequencies with rotary inertia. 

Figure 4.4.1 contains a plot of the nondimensionalized fundamental frequency 
w = wa2 vi 10/ E 2 h3 of a simply supported plate strip with rotary inertia versus 
length-to-thickness ratio, a/h. For small values of a/ h, rotary inertia IS more 
significant in reducing the frequency than for thin and long plate strips. 

4.90 

(-45/45) 

4.85 

18 
Fundamental mode, oh >; 

u 
>=: 
Q) 

4.80 ;::l 
0' 
Q) 
1-< 
~ 

4.75 

Plate strip 

4.70 

0 10 20 30 40 50 60 70 80 90 100 
Side-to-thickness ratio, a/h 

Figure 4.4.1: Effect of rotary inertia on nondimensionalized fundamental 
frequency of a simply supported (-45/45) laminated plate strip. 
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Table 4.4.2 contains nondimensionalized maximum deflections, critical buckling 
loads, and fundamental natural frequencies of simply supported and clamped (at 
both ends) laminated plate strips with various lamination schemes. Compared to 
laminated beams (see Table 4.2.4), laminated plates in cylindrical bending undergo 
smaller displacements and have larger buckling loads and frequencies. This is due 
to the Poisson effect discussed earlier. All of the frequencies listed in Table 4.4.2 are 
for the case where rotary inertia is included and a/h = 10. The (0/90/0) laminates 
have larger bending stiffness as well as axial stiffness compared to the (90/0/90) 
laminates. This is because there are two 0° layers and they are placed farther from 
the midplane in the first laminate than in the second laminate. Hence, (0/90/0) 
laminates undergo smaller deflections and have larger buckling loads and natural 
frequencies. The (0/90)8 laminates have larger bending stiffness than the (90/0)8 
laminates; both have the same axial stiffness. The antisymmetric laminates have 
some of the Bij 0/= 0 and thus are relatively flexible when compared to symmetric 
laminates. 

Figures 4.4.2 and 4.4.3 show the effect of lamination angle on maximum 
deflections w = -Wmax(E2h3/qoa4), critical buckling load N, and fundamental 
frequency w of two-layer antisymmetric angle-ply (-e /e) plates. It should be noted 
that antisymmetric angle-ply laminates with more than two plies are stiffer, i.e., 
deflect less and carry more buckling load. 

Table 4.4.2: Maximum deflections (w) under uniform load, critical buckling 
loads (N), and fundamental frequencies (w) of laminated plate 
strips according to the classical laminate theory (Ed E2 = 25, 
G12 = G13 = 0.5E2, G23 = 0.2E2, V12 = 0.25). 

Laminate Hinged-Hinged Clamped-Clamped 

W N w w N w 

0 0.623 20.613 14.205 0.125 82.453 32.169 

90 15.586 0.824 2.841 3.117 3.298 6.434 

(0/90/0) 0.646 19.880 13.950 0.129 79.521 31.592 
(90/0/90) 8.251 1.557 3.905 1.650 6.230 8.842 

(0/90) 3.321 3.869 6.154 0.664 15.476 13.937 
(0/90)as 1.427 9.006 9.389 0.285 36.026 21.264 

(0/90)$ 0.708 18.140 13.326 0.142 72.558 30.177 
(90/0)8 3.896 3.298 5.682 0.779 1:3.192 12.868 

( -45/45) 5.396 2.382 4.828 1.079 9.526 10.935 
( -45/45)as 2.570 5.000 6.996 0.514 20.003 15.845 
(45/ - 45)$ 2.188 5.873 7.583 0.437 23.495 17.172 

Laminate A 4.035 3.185 5.584 0.807 12.740 12.645 
Laminate B 0.897 14.316 11.838 0.179 57.264 26.809 

(I)8 = symmetric, (I)a$ = antisymmetric (four layers). 

Laminate A: (90/±45/0)$; Laminate B: (0/±45/90)s. 

W = -Wmax(E2h3/qoa4) x 102 , N = N~x(a2 / E 2h3), w = wa2 jlo/E2h3. 
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Figure 4.4.2: Nondimensionalized maximum transverse deflection (ill) versus 
lamination angle ((}) of a simply supported (-() / (}) laminated plate 
strip in cylindrical bending (CLPT). 
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Figure 4.4.3: Nondimensionalized critical buckling load (N) and fundamental 
frequency (w) versus lamination angle ((}) of a simply supported 
( -() / ()) laminated plate strip in cylindrical bending (CLPT). 
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4.5 Cylindrical Bending Using FSDT 

4.5.1 Governing Equations 

In order to see the effect of shear deformation on bending deflections and buckling 
loads, we consider the equations of motion for cylindrical bending according to the 
first-order shear deformation theory (FSDT) [see Eqs. (3.4.23)-(3.4.27)]: 

{Puo (Pvo a2¢x a2¢y aN'Ix a2uo a2¢x ) 
Au ax2 + A16 ax2 + Bu ax2 + B16 ax2 - ~ = 10 fJt 2 + h at2 (4.5.1a 

a2uo a2vo a2¢x a2¢y aN'!u a2vo a2¢y 
A16 ax2 + A66 ax2 + B16 ax2 + B66 ax2 - ~ = 10 at2 + h at2 (4.5.1b) 

For cylindrical bending we further assume that ¢y = 0 everywhere, and omit 
Eq. (4.5.1d) from further consideration. For the purpose of developing analytical 
solutions, we neglect the in-plane inertia terms and assume that there are no thermal 
effects. Then Eqs. (4.5.1a-e) are simplified to 

a2uo a2vo a2¢x a2¢x 
Au ax2 + A16 ax2 + Bll ax2 = h at2 ( 4.5.2a) 

a2uo a2vo a2¢x 
A16 ax2 + A66 ax2 + B16 ax2 = 0 (4.5.2b) 

a2uo a2vo a2¢x (aWo) a2¢x 
Bll ax2 + B16 ax2 + Dll ax2 - K A55 ax + ¢x = h fJt2 (4.5.2c) 

(
a2wo a¢x) a ( aWo) a2wo 

K A55 ax2 + ax + ax N xx ax + q = 10 at2 ( 4.5.2d) 

Next, we eliminate Uo and Vo from Eqs. (4.5.2a-c) by solving (4.5.2a) and (4.5.2b) 
for Uo and Vo in terms of ¢x and substituting the result into Eq. (4.5.2c): 

(
a2wo a¢x) A a2wo a2wo 

KA55 ax2 + ax + N xx ax2 + q = 10 at2 (4.5.3) 

a
2
¢x (aWo) a

2
¢x 

D ax2 - K A55 ax + ¢x = h at2 (4.5.4) 
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Equations (4.5.3) and (4.5.4) are similar to Eqs. (4.3.9a,b) for laminated beams, 
and therefore all developments of Section 4.3 would apply here. 

4.5.2 Bending 

For static analysis, Eqs. (4.5.3) and (4.5.4) reduce to 

( 4.5.5a) 

(4.5.5b) 

Following the procedure of Section 4.3.2, we obtain [see Eqs. (4.3.12)-(4.3.14)] the 
general solution for the rotation 

(4.5.6) 

and transverse deflection 

where the constants of integration Cl through C4 can be determined using the 
boundary conditions. The solutions developed are general in the sense that they are 
applicable to any symmetrically laminated beams. Next we illustrate the procedure 
to determine the constants for beams with both edges simply supported or clamped. 

Example 4.5.1 (Simply supported beam): 

For a plate strip simply supported at both ends and subjected to uniformly distributed load q = qo 
as well as a downward point load Fo at the center, we obtain 

qoa
3 [(X)3 . (X)2 ] Foa

2 [ (X)2] cP£(x)=-24D 4 a -6 a +1 + 16D 1-4 a (4.5.8) 

qoa
4 [(X)4 (X)3 (X)] qoa

2 [(X) (X)2] wo(X) = 24D a - 2 a + a + 2KA55 a - a 
Foa

3 [3 (X) 4 (X)3] Foa (X) + 48D a - a + 2K A55 a (4.5.9) 

The maximum deflection occurs at X = a/2 and it is given by 

(4.5.10) 



216 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

Example 4.5.2 (Clamped beam): 

Consider a laminated plate strip fixed at both ends and subjected to uniformly distributed 
transverse load qa and a point load Fa at the center, both acting downward. For this case, the 
solution is given by 

(4.5.11) 

( 4.5.12) 

The maximum deflection is given by 

( 
qaa4 qaa2 Faa3 Faa) 

W
max = 384D + 8KA55 + 192D + 4KA55 

( 4.5.13) 

The determination of the shear correction coefficient K for laminated structures is still an 
unresolved issue. Values of K for various special cases are available in the literature (see [4-8]). 
The most commonly used value of K = 5/6 is based on homogeneous, isotropic plates (see Section 
3.4), although K depends, in general, on the lamination scheme, geometry, and material properties. 

Figure 4.5.1 shows the effect of shear deformation, shear correction coefficient, and lamination 
scheme on nondimensionalized deflections w = Wrnax(E2h3/qaa4) of simply supported, cross-ply 
(0/90) and angle-ply (45/-45) laminates under uniformly distributed load. The shear correction 
factor has little influence on the global response for the antisymmetric laminates analyzed. The 
effect of shear deformation is to increase the deflections, especially for a/ h :s: 10. Antisymmetric 
angle-ply laminates are relatively more flexible than antisymmetric cross-ply laminates. 

Figure 4.5.2 contains plots of nondimensionalized maximum deflection versus length-to-height 
ratio for two-layer antisymmetric cross-ply (0/90) and angle-ply (45/-45) laminates (K = 5/6) 
under uniformly distributed load and with simply supported edges as well as for clamped edges. 
For clamped boundary conditions, shear deformation is relatively more significant for a/h :s: 10. 
The effect of orthotropy on deflections is shown in Figure 4.5.3 (G12 = G I3 = 0.5E2, G23 = 

0.2E2' VI2 = 0.25, and K = 5/6). 

4.5.3 Buckling 

For stability analysis, we set q = 0 , Nxx = -N~x' and 10 = h = 0 in Eqs. (4.5.3) 
and (4.5.4): 

Following the procedure of Section 4.3.3, we obtain 

dX 

dx 

( 4.5.14a) 

(4.5.14b) 

(4.5.15) 
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Figure 4.5.1: Transverse deflection (w) versus length-to-thickness ratio (a/h) of 
simply supported plate strips (K = 1.0,5/6,2/3). 
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Figure 4.5.2: Transverse deflection (w) versus length-to-thickness ratio (a/h) of 
simply supported (SS) and clamped (CC) plate strips. 
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Figure 4.5.3: The effect of material orthotropy and shear deformation on 
transverse deflections w of simply supported cross-ply (0/90) 
laminated plate strips under uniformly distributed load. 

X x = - 1 - -- - + Kl ( ) ( 
N2x ) dW 

KA55 dx 

(

NO ) d4 W d2W 
D 1 - K A~5 dx4 + N~x dx 2 = a 

The general solution of Eq. (4.5.17) is 

W(x) = Cl sin Ax + C2 cos Ax + C3X + C4 

where 
NO ).,2D 

A 
2 

= ( :r~) or N~x = ( ) 
1 - K A~5 D 1 + t~5 

and Cl through C4 are constants of integration, which are evaluated 
boundary conditions. 

Example 4.5.3: 

For a simply supported plate strip, the critical buckling load is given by 

(4.5.16) 

(4.5.17) 

(4.5.18) 

(4.5.19) 

usmg the 

( 4.5.20) 
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Thus, the effect of the transverse shear deformation is to decrease the buckling load. Omission of 
the transverse shear deformation in the classical theory amounts to assuming infinite rigidity in the 
transverse direction (i.e., A55 = G 13 = (0); hence, in the classical laminate theory the structure is 
represented stiffer than it is. 

For a plate strip fixed at both ends, A is governed by the equation 

( 
A2D) 2 (cos Aa - 1) 1 + -A + Aa sin Aa = 0 

K 55 
(4.5.21) 

The roots of the equation are approximately the same as for the case in which shear deformation is 
neglected [see Eq. (4.2.38b)J. The first root of the equation is A1 = 211'. Hence, the critical buckling 
load is given by 

(4.5.22) 

Figures 4.5.4 and 4.5.5 show the effect of shear deformation and modulus ratio on 
nondirnensionalized critical buckling loads N = N~:r(a2/E2h3) of two-layer antisymmetric angle
ply (-45/45) and cross-ply (0/90) plate strips (EdE2 = 25, G 12 = G 1:l = 0.5E2' G23 = 0.2E2' 
1/ = 0.25, K = 5/6). In Figure 4.5.4 results are presented for simply supported as well as clamped 
boundary conditions. The effect of shear deformation is significant for a/ h ::; 10 in the case of 
simply supported boundary conditions, and a/ h ::; 20 in the case of clamped boundary conditions. 
The effect of shear deformation is more for materials with larger modulus ratios (see Figure 4.5.5). 

4.5.4 Vibration 

For a periodic motion, we assume solution in the form 

'Wo(x, t) = W(x)e iwt
, ¢x(x, t) = X(x)eiwt

, i = R 

where W is the natural frequency of vibration, and W(x) and X(x) are the mode 
shapes. Substitution of the above solution forms into Eqs. (4.5.3) and (4.5.4) yields 
[ef. Eq. (4.3.40a,b)] 

d2X (dW) 2 D--2 - K A55 - + X + hw X = 0 
d,c£ d:£ 

(
d

2
W dX) 2 K A55 -d 2 + -d + loW W = 0 
x x 

Following the results of Section 4.3.4, we obtain 

where 

p=D, 
loD 2 

q=--w 
KA55 ' 

The general solution of Eq. (4.5.24a) is 

W (x) = C1 sin AX + C2 cos AX + C:~ sinh {LX + C4 cosh {LX 

( 4.5.23a) 

(4.5.23b) 

( 4.5.24a) 

(4.5.24b) 

(4.5.25a) 
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Figure 4.5.4: The effect of shear deformation on the critical buckling loads of 
simply supported (SS) and clamped (CC) cross-ply and angle-ply 
plate strips. 
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where 

(4.5.25b) 

and Cl, C2, C3, and C4 are integration constants. Use of the boundary conditions leads 
to the determination of three of the four constants, the fourth one being arbitrary, 
and an equation governing). and JL (see Section 4.3.4 for details). The frequencies 
w can be determined from 

( 4.5.26a) 

where 

(4.5.26b) 

When the rotary inertia is neglected, we have P = 0 and the frequency is given by 

Example 4.5.4: 

For a simply supported plate strip, the boundary conditions give C2 = C3 = C4 = 0, and 

sinAa = 0, or An = nJr 
a 

( 4.5.27) 

( 4.5.28) 

Substitution of A from Eq. (4.5.28) into Eq. (4.5.26a,b) gives two frequencies for each value of A. 
The fundamental frequency will come from Eq. (4.5.26a). When the rotary inertia is neglected, we 
obtain from Eq. (4.5.27) the result 

( 4.5.29) 

By neglecting the shear deformation (i.e., A55 = Gl3 = =) we obtain the result 

(4.5.30) 

which is the same as in Eq. (4.4.45). Thus, the effect of shear deformation is to reduce the frequency 
of natural vibration. 

For a laminated strip with clamped edges, the following equation governs A: 

- 2 + 2 cos Aa cosh /La + sin Aa sinh /La (5522 _ 5 ll) = () 
11 522 

( 4.5.31a) 

(4.5.31b) 

Once the value of A is known, frequencies of vibration can be determined from Eqs. (4.5.26a,b). 
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Figures 4.5.6 and 4.5.7 show the effect of shear deformation and modulus ratio (EdE2) on 

nondimensionalized fundamental frequencies w = wa2 vi fo/ E 2 h3 of two-layer antisymmetric angle

ply (-45/45) and cross-ply (0/90) plate strips (K = 5/6, Ed E2 = 25, G 12 = G 13 = 0.5E2, 

G23 = 0.2E2 , V12 = 0.25). From Figure 4.5.6 it is clear that shear deformation effect in decreasing 

frequencies is felt for a/h ::; 10 for simply supported boundary conditions, whereas for clamped 

boundary conditions the effect is felt for a/ h ::; 15. Also, the effect of shear deformation is more for 

materials with larger modulus ratio, as can be seen from the results of Figure 4.5.7. 

4.6 Vibration Suppression in Beams 
4.6.1 Introduction 

The grains of certain materials consist of numerous small, randomly oriented 
magnetic domains that can rotate and align under the influence of an external 
electric or magnetic field. The electric (magnetic) orientation brings about internal 
strains in the material. This is known as the electrostriction. ( magnetostriction). 
For example, a commercially available magnetostrictive material Terfenol-D is an 
alloy of terbium, iron, and dysprosium. The use of Terfenol-D for vibration 
suppression has some advantages over other smart materials, in particular, it 
has easy embedability into host materials, such as the modern carbon fiber
reinforced polymeric (CFRP) composites, without significantly affecting the 
structural integrity. Considerable effort is spent to understand the interaction 
between magnetostrictive layers and composite laminates and the feasibility of using 
magnetostrictive materials for active vibration suppression (see [30-32]). Although 
there have been important research efforts devoted to characterizing the properties 
of Terfenol-D material, fundamental information about variation in elasto-magnetic 
material properties is not available. Few studies [33-35] report experimental 
evidence of significant variation in material properties such as Young's modulus 
and magneto-mechanical coupling coefficient. 

Here we present a generalized beam theory that contains the classical Euler
Bernnoulli beam theory as well as the first-order and the third-order beam theories, 
and bring out the effects of material properties of a lamina, lamination scheme, and 
placement of the actuating layers on vibration suppression time. 

4.6.2 Theoretical Formulation 

Displacement and strain fields 

Consider a symmetrically laminated beam of n layers. Suppose that two of the 
layers, namely, the mth and (n - m + l)th layers, are made of magnetostrictive 
material, such as Terfenol-D particles embedded in a resin (see Figure 4.6). The 
remaining n - 2 layers can be made of any fiber-reinforced materials with varying 
fiber orientation e but symmetrically disposed about the mid-plane of the beam. 
We wish to study the problem of vibration suppression in these beams using the 
Euler-Bernoulli, Timoshenko, and Reddy third-order beam theories. To facilitate 
the development of all three theories in a unified manner, we introduce tracers whose 
values will yield the results for a particular theory [29]. 
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Figure 4.5.6: The effect of shear deformation on the fundamental frequencies of 
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Figure 4.6.1: Layered composite beam with embedded actuating layers. 

Consider the displacement field 

awo 3 ( aWo) u(x, y, z, t) = -zco ax + ZCl<P - Z c3 <P + ax 

awo 
== JI(z) ax + h(z)<p(x, t) 

v(x,y,z,t) =0 

w(x, y, z, t) = wo(x, t) (4.6.1a) 

where (u, v, w) are the displacement components along the (x, y, z) coordinate 
directions, respectively, Wo is the transverse deflection of a point on the midplane 
(i.e., z = 0), and <p(x, t) is the rotation of a transverse normal line. The functions 
JI(z) and h(z) are given by 

(4.6.1b) 

The displacement field (4.6.1a) can be specialized to various beam theories as follows: 

Euler-Bernoulli beam theory (EBT): 

Timoshenko beam theory (TBT): 

Reddy beam theory (RBT): 

Co = 1, 

Cl = 1, 
4 

C3 = 3h2 ' 

Cl = C3 = 0 

Co = C3 = 0 

Cl = 1, Co = 0 (4.6.2) 
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The non-zero linear strains are given by 

82wo 8¢ 3 (8¢ 82WO) = zc(1) + Z3 c (3) 
Exx = -zco ox2 + ZC1 oX - Z c3 ox + ox2 "-xx '--xx 

{XZ = (1 - co) 00:0 + q ¢ - 3C3Z2 (¢ + 00:0
) = {1~) + z2{1~) (4.6.3a) 

where 

(1) _ _ 02wo o¢ 
cxx - Co ox2 + C1 oX ' 

( 4.6.3b) 

Constitutive relations 

The constitutive relations of the kth fiber-reinforced (structural) layer are 

(k) _ -(k) (k) _ -(k) 
O"xx - Q11 cxx, O"XZ - Q55 {XZ ( 4.6.4) 

where 

Q-(k) _ Q(k) cos4 ()(k) + 2 (Q(k) + 2Q(k)) cos2 ()(k) sin2 ()(k) + Q(k) sin4 ()(k) 
11 - 11 12 66 22 

Q- (k) _ Q(k) cos2 ()(k) + Q(k) sin2 ()(k) 
55 - 55 44 

Q
(k) _ dk) Q(k) _ c(k) Q(k) _ C(k) 
44 - 23' 55 - 13' 66 - 12' (4.6.5) 

The constitutive relation for an actuating (say, a magnetostrictive) layer is 

O"(m) = _1_ (c _ d(rn) H) = Q(m)c - e(m) H 
xx S(rn) xx - xx (4.6.6) 

where H is the magnetic field intensity, s(rn) is the compliance of the mth 
magnetostrictive layer 

s(m) _ 1 _ 1 
- E(rn) - Q(rn) (4.6.7) 

and d(m) is the magneto-mechanical coupling coefficient, E(rn) being the modulus of 
the magnetostrictive layer (e(rn) = Q(rn)d(rn)). 
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Velocity feedback control 

Considering velocity proportional closed-loop feedback control, the magnetic field 
intensity H is expressed in terms of coil current I(x, t) as 

H(x, t) = kcI(x, t) 

and I(t) is related to the velocity Wo by 

awo 
I(x, t) = c(t)Tt 

( 4.6.8) 

( 4.6.9) 

where kc is the coil constant, which can be expressed in terms of the coil width be, 
coil radius r c, and number of turns ne in the coil by 

and c(t) is the control gain. 

Equations of motion 

(4.6.10) 

U sing Hamilton's principle (or the dynamic version of the principle of virtual 
displacements), we obtain 

where all the terms involving [ . 16 vanish on account of the assumption that all 
variations and their derivatives are zero at t = 0 and t = T. Various symbols 
introduced in Eq. (4.6.11) are defined as 

Mxx = c1Mxx - C3Pxx , Qx = Cl Qx - 3C3Rx 

Mxx = -coMxx - C3 Pxx, Qx = (1 - co)Qx - 3C3Rx (4.6.12) 
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where (1II1xx, Qx, Pre", Rx) denote the conventional and higher-order stress resultants 

{ 
Mxx} _ j { Z } d _ {Dl1E~~ + Fl1E~:~ } _ {B} 8wo - 3 a xx z - (1) P) 
Pxx A Z·· FllExx + H l1 E;;x E ot 

x_I dz _ A551xz + D551xz 
{ 

Q 
} {} { 

(0) (2) } 

x i z D551xz + F551xz 
R - 2 axz - (0) (2) 

The equations of motion are 

The primary and secondary variables of the formulations are 

Primary Variables : 
8wo 

¢ wo, 
Ox 

, 

Secondary Variables : Vx , PrJ;, Alxx 

where 
- oAlx :]; .. OWo v: =Q. +--+K3rh+Kl-

x x Ox . 'f' ox 

4.6.3 Analytical Solution 

( 4.6.13a) 

(4.6.13b) 

(4.6.14) 

(4.6.15a) 

( 4.6.15b) 

(4.6.16) 

(4.6.17) 

( 4.6.18a) 

(4.6.18b) 

(4.6.19) 

First we write the equations of motion (4.6.16) and (4.6.17) in terms of the 
displacement variables (wo, ¢) by expressing lIfrx, Qx, Pxx , and ReD [see Eqs. 
(4.6.13a,b) and (4.6.12)]. We have 
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(4.6.20) 

(4.6.21) 

This completes the development of the governing equations in terms of the 
displacements (wo, ¢). Of course, the equations can be specialized to any of the 
three theories. 

Here we discuss the Navier's solution of these equations for the case of simply 
supported boundary conditions. Assuming solution of the form 

n7rX 
wo(x, t) = W(t) sin - , 

a 

rmx 
¢(x, t) = X(t) cos-

a 

and substituting into Eqs. (4.6.20) and (4.6.21), we obtain 

[~~~ ~~:] {i} + [Z~~ Z~:] {t} 

where the coefficients Sij = Sji and Mij = Mji are defined by 

(4.6.22) 

(4.6.23) 
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523 = [-coc1Dll + COC3F ll - Cl C3 F ll + (C3)2 Hll] (na7f
) 3 

+ [(1- co)clA55 - 3(1 - Co + CdC3D55 + 9(C3)2 F55] C~7f) 

533 = [(cd2Du - 2CIC3Fll + (C3)2Hll] (na7fr 
+ (cd2 A55 - 6CIC3D55 + 9(c:~)2 H5 

M22 = [(co)2h +2coc:314 + (C3)2h] (na7fr +10 

M 23 = [-2cOClh + (co - ct)c314 + (c3) 216] (na7f
) 

A 2 2 
M33 = c1h - 2CIC314 + (C3) h 

622 = _ (coB + C3E) (na7r
) 2 

62:3 = 0, 632 = (cIB - C3E) (na7r
) , 633 = 0 ( 4.6.24) 

Equation (4.6.24) can be specialized to various theories as follows (only non-zero 
coefficients are listed): 

Euler-Bernoulli beam theory (EBT) (co = 1, Cl = C3 = 0) 

Timoshenko beam theory (TBT) (co = 0, Cl = 1, C3 = 0) 

Reddy beam theory (RBT) (co = 0, Cl = 1, C3 = ~) 

M 23 = [-C314 + (C3)2h] (na7r
) 

M33 = h - 2c314 + (C3)2 h, 622 = -C3E (na7r
) 2 

623 = 0, 632 = (B - C3E) (na7r
) , 633 = 0 

(4.6.25) 

( 4.6.26) 

( 4.6.27) 
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For vibration control, we assume q = 0 and solution of the ordinary differential 
equations in Eq. (4.6.23) in the form 

W(t) = Woe At
, X(t) = Xoe At (4.6.28) 

and obtain, for non-trivial solution, the result 

(4.6.29) 

for the Euler-Bernoulli beam theory, and 

~231 = 0 
833 ( 4.6.30) 

for the Timoshenko and third-order beam theories, where 

( 4.6.31) 

Equation (4.6.31) gives two sets of eigenvalues. A typical eigenvalue can be expressed 
as A = -0; + iWd' The lowest imaginary part (Wd) corresponds to the transverse 
motion, and we can write 

( 4.6.32) 

In arriving at the solution (4.6.32), the following initial conditions were used: 

Wo(x,O) = 0, wo(x,O) = 1, ¢(x,O) = 0, ¢(x,O) = 0 (4.6.33) 

The actuation stress is O"d = -EmdH. 

4.6.4 Numerical Results 

Numerical studies were carried out to analyze damped natural frequencies, damping 
coefficients, and the vibration suppression time, using the three theories [29]. 
Different lamination schemes were used to show the influence of the position of 
magnetostrictive layer from the neutral axis on the vibration suppression time. A 
time ratio relation between the thickness of the layers and the distance to the neutral 
axis of the laminated composite beam is also found. All values of the material and 
structural constants are indicated in the tables. The material properties used are 
the same as those used in [32]. 

The numerical values of various coefficients (namely, the inertial and 
magnetostrictive coefficients) based on different lay-ups and material properties 
[CFRP, Graphite-Epoxy (AS), Glass-Epoxy and Boron-Epoxy] are listed in Tables 
4.6.1 and 4.6.2. Table 4.6.2 also shows the damping coefficients and natural 
frequencies for different materials and lay-ups. The damping and frequency 
parameters for transverse modes n = 1 to n = 5 are shown in Table 4.6.3, and 
they are compared with the results obtained by Krishna Murty et al. [32] using 
the Euler--Bernoulli beam theory (EBT). There is some difference between the 
numerical 
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Table 4.6.1: Coefficients for Different Lamination Schemes and Materials 
(from Reddy and Barbosa [30]) 

Material Lay-up Dll (103 ) Fll 00 2) Hll (10 7) A" (109 ) D"OO') F" (10 3) 
[±45/m/0/90ls 3.739 5.246 9.333 6.620 5.185 6.902 

[45/m/-45/0/90]s 3.552 4.891 8.793 6.620 6.179 8.792 
CFRP [m/±45/O/90ls 3.303 4.069 6.679 6.620 7.506 13.168 

[m/904]s 1.432 2.567 5.063 6.620 7.506 13.168 
[m/04] , 7.015 7.927 11.189 6.620 7.506 13.168 

Gr.-Ep (AS) [±45/m/0/90]s 3.954 5.629 10.053 7.974 6.399 8.881 
Gl.-EP [+45/m/0/90]s 2.535 3.700 6.589 7.614 6.173 8.384 
Br.-Ep [±45/m/0/90]s 5.730 8.259 14.865 7.066 5.634 7.569 

CFRP : EJ J=138.6 GPa, E22=8.27 GPa, Gla=G2.1=0.6 E 22. G,,=4.12 GPa , VIFO.26, p=1824 kg.m3 
Graphite-Epoxy (AS): E ll=137.9 GPa, E22=8.96 GPa, GI2=GI3=7.10 GPa, G2F6.21 GPa, VI2=0.30, p=1450 kg.m-3 

Glass-Epoxy: Ell=53.78 GPa, E22=17.93 GPa,GI2=G13=8.96 GPa, G23=3.45 GPa , v12=0.25, p=1900 kg.m-·1 

Boron-Epoxy: Ell=206.9 GPa,E22=20.69 GPa, GI2= G13=6.9 GPa, G2:F4.14 GPa, v12=0.30,p=1950 kg.m-3 

Table 4.6.2: Mass Inertias and Magnetostrictive Coefficients, and Parameters 
a and cod for Various Laminates 

Material Lay-up 10 r, 00 4) 14 00-9) 16 -13 -£ 00-4) -u ± Wdn(rad/s) 
00-14 ) 

[+45/m/0/90]s 33.092 2.461 2.907 4.508 22.128 1.438 3.30+ 104.85 
[45/m/-45/0/90]s 33.092 3.352 4.600 7.084 30.979 3.872 4.62+102.15 

CFRP [m/+45/0/901s 33.092 4.540 8.521 17.171 39.830 8.165 5.94+98.42 
[m/9041s 33.092 4.540 8.521 17.171 39.830 8.165 5.94+64.65 
[m/04]S 33.092 4.540 8.521 17.171 39.830 8.165 5.94+143.57 

Gr.-Ep [+45/m/0/90] , 30.100 2.196 2.471 3.696 22.128 1.438 3.63+ 113.06 
Gl.-EP [+45/m/0/90], 33.700 2.514 2.995 4.674 22.128 1.438 3.24+85.54 
Br.-Ep [±45/m/0/90]s 34.100 2.550 3.054 4.782 22.128 1.438 3.20±127.90 

Table 4.6.3: Comparison of the Damping and Frequency Parameters a and COd as 
Predicted by Various Theories (see Reddy and Barbosa [30]) 

-u ± Wdn (rad/s) - Lay-up [±45/m/0/90]s 
Mode Murty et al EBT TBT RBT 

1 3.29±104.88 3.30±104.85 3.30±104.82 3.30±104.82 
2 13.19±419.50 13.20±419.37 13.17±418.90 13.16±418.80 
3 29.70+943.88 29.68±943.40 29.53±941.05 29.48±940.52 
4 52.86±1678.83 52. 73±1676. 72 52.27±1669.32 52.10±1667.68 
5 82.59+2621.87 82.34±2619.02 81. 22±260 1. 04 80.80±2597.09 

CFRP: Ell=138.6 Gpa, E22=8.27 GPa, G12=4.12 GPa, G1a=G2:F0.6 E22. V1FO.26, p=1824 kg.m-a 
Magnetostrictive layer: Em=26.5 GPa, pm=9250 kg.m a , dk=1.67xlO-8m/A, c(t).Rc=lO· Vm=O, a=l m 

Table 4.6.4: Damping and Frequency Parameters a and COd for Various 
Lamination Schemes 

-u + Wdn (rad/s) - mode 1 
Lay-up Murty et al EBT TBT RBT 

[45/m/-45/0/90]s 4.60+ 102.17 4.62+102.15 4.62+ 102.12 4.62+102.11 
[m/±45/0/90]s 5.90±98.44 5.94±98.42 5.94±98.39 5.93±98.38 

[m/9041s 5.90+64.65 5.94+64.65 5.94+64.64 5.94+64.64 
[m/O,l, 5_90±l43_58 5_94+ 143_57 1)_93+143.49 5.93+ 143.44 

CFRP :Ell=138.6 GPa E22=8.27 GPa G1F4.12 GPa G13=G2a=0.6 E22• v12=0.26, p=1824 kg.m-' 
Magnetostrictive layer: Em=26.5 Gpa, pm=9250 kg.m" dk=1.67xlO-'m/A, c(t).Rc=104, Vm=O, a=l m 
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results predicted by the three theories only in the higher modes. Table 4.6.4 shows 
the influence of the position of the magnetostrictive layer in the z-direction and the 
influence of the lamination scheme in the damping and frequency parameters. The 
value of a increases when the magnetostrictive layer is located further away from 
the x-axis, indicating faster vibration suppression. The lay-up [m/904ls represents 
the softest beam and the lay-up [m/04ls the stiffest beam. 

A comparison of the fundamental transverse and axial modes, obtained using the 
three theories show that there is no significant difference between the results. The 
uncontrolled and controlled motions at the midpoint of the beam, as predicted by 
RBT, are shown in Figures 4.6.2-4.6.5 for the first mode when the actuating layer 
(m) is placed at different distances from the midplane of the laminate. These figures 
show that the vibration suppression time decreases when the distance to the neutral 
axis is increased, and it remains nearly the same in the laminates with different 
stiffness. Figures 4.6.6 shows that the vibration suppression time decreases very 
rapidly for higher modes. Figure 4.6.7 shows the controlled motion of the beam, as 
predicted by EBT and RBT, for mode n = 5. Clearly, the difference between the 
predictions of the two theories is not significant. 

4.7 Closing Remarks 

In this chapter analytical solutions are developed for laminated beams and plate 
strips in cylindrical bending using the classical and first-order shear deformation 
theories. Analytical solutions are presented for static bending, natural vibration, 
and buckling problems under a number of boundary conditions. 

A unified formulation for laminated beams with embedded actuating layers is 
presented. The formulation includes the Euler-Bernoulli, Timoshenko, and Reddy 
third-order beam theories as special cases. Analytical solution for the simply 
supported beam is presented to bring out the effects of the material properties 
of a lamina, lamination scheme, and placement of the actuating layers on vibration 
suppression. 

When closed-form solutions can be derived, they are preferred over the series 
solutions. However, when exact closed-form solutions cannot be developed, the series 
solutions are the best alternative. When analytical solutions cannot be derived at 
all, numerical solutions based on the finite element method (see Chapters 9 and 10) 
can be used to determine the solutions. 

Problems 

4.1 Consider a simply supported laminated beam under point loads Fo at x = a/4 and x = 
3a/4 (the so-called jour-point bending). Use the symmetry about x = a/2 to determine 
the deflection wo(x) using the classical beam theory. (Ans: The maximum deflection is 
W max = llFoa3/384E~xlyy.) 

4.2 Determine the static deflection of a clamped laminated beam under uniformly distributed load 
qo and a point load Fo at the midspan using the classical beam theory. 

4.3 Show that the critical buckling load of a clamped-free laminated beam using the classical beam 
theory is given by 
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Figure 4.6.2: Comparison of uncontrolled and controlled maximum deflection (at 
midpoint of the beam) for (±45/m/O/90)s laminate. 
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Figure 4.6.6: Controlled motion of the laminated beam (±45/m/O/90)s, as 
predicted by RBT, for modes n = 1 and n = 2. 
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4.4 Show that the characteristic equation governing buckling of a clamped-hinged laminated beam 
using the classical beam theory is given by 

sin)..a - )..acos)..a = 0 

4.5 Show that the characteristic equation governing natural vibration of a clamped-free laminated 
beam using the classical beam theory is given by 

cos )..a cosh )..a + 1 = 0 

4.6 Show that the characteristic equation governing natural vibration of a clamped-hinged 
laminated beam using the classical beam theory, when rotary inertia is neglected, is 

sin )..a cosh )..a - cos )..a sinh )..a = 0 

4.7 Show that the characteristic equation governing natural vibration of a hinged-free laminated 
beam using the classical beam theory, when rotary inertia is neglected, is the same as that for 
a clamped-hinged beam. 

4.8 Derive the characteristic equation governing natural vibration of a clamped-hinged laminated 
beam using the classical beam theory, when rotary inertia is not neglected. 

4.9 Show that Eqs. (4.3.lOa,b) can be reduced to the single equation 

Eb I d4wo = '(x) _ ( E~xlyy ) d
2
ij 

xx yy dx 4 q KGLbh dx2 

This equation shows that the deflection of the Timoshenko beam theory can be obtained 
from that of the classical beam theory by replacing the load ij [see Eq. (4.2.lOb)] with a 
equivalent load given by the right-hand side of the above equation. Although the effect of 
shear deformation is zero when the load variation is linear or less, this effect will come through 
the boundary conditions. 

4.10 Show that the equations governing the stability of a laminated beam according to the 
Timoshenko theory can be expressed as 

(1) 

b dX 0 
Exx1yy dx - bNxx W = K1x + K2 (2) 

Combine the above two equations to arrive at 

d2W )..2 
--2 +).. 2W + NO (K 1 X + K 2) = 0 
dx b xx 

(3) 

Show that the general solution of Eq. (3) is 

1 1 
W(x)=clsin)..x+c2cOS)..X+C3X+C4; c3=-bNO K 1 , c4=-bNO K2 (4) 

xx xx 

4.11 Show that the solution to the equations governing the bending of a hinged-fixed beam according 
to the Timoshenko beam theory, under uniformly distributed transverse load, is given by 

(1) 

(2) 
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4.12 Show that the characteristic equation governing the buckling load of a hinged-fixed beam 
according to the Timoshenko beam theory is given by 

( 
>..2gb I ) 

>..a cos >..a - sin >..a 1 + G:x 
YY 

K xzbh 

Ans: The boundary conditions give 

wo(O) = 0 gives c2 + c4 = 0 

=0 

<Px(O) = 0 gives (1 - Kb~::rbh) )..Cl + C3 = 0 

wo(a) = 0 gives cl sin >..a + c2 cos >..a + c3a + c4 = 0 

d1: (a) = 0 gives >..2 (1 - Kb~:xbh) (Cl sin >..a + C2 cos >..a) = 0 

In addition, note that 

1 bN2x 
KGb bh xz 

1 

(1) 

(2) 

(3) 

(4) 

(5) 

4.13 Determine the critical buckling load of a clamped-free laminated beam using the Timoshenko 
beam theory. 

4.14 Show that the characteristic equation governing natural vibrations of a clamped-free beam 
according to the Timoshenko beam theory, when rotary inertia is neglected, is given by 

>.. (~~ + ~~ ~~ ) + fl (1 - ~~ ~~) sin >..a sinh fla - >.. (1 + ~~) cos >..a cosh fla = 0 (1) 

Rl = (3iow2 + KG~zbh - )..2 E~xlyy, R2 = (3iow2 + KG~zbh + li2 E~"Iyy 
'22 b '22 b 

51 = low - >.. KGxzbh, 52 = low + fl KGxzbh (2) 

4.15 Show that the characteristic equation governing natural vibrations of a clamped-hinged beam 
according to the Timoshenko beam theory is given by 

5 11 cos )..a sinh fla + 5 22 sin >..a cosh fla = 0 

511 = >.. ((3iow2 + KG~zbh - )..2 E~xlyy) 

5 22 = fl ((3iow2 + KG~zbh + fl2 E~Jyy) 

(1 ) 

(2) 

4.16 Derive the equations of equilibrium for cylindrical bending using the principle of virtual 
displacements, oW = 0, where 

oW = r {N 0 [dUO ~ (dWO)2] N 0 (dVo) 
) 0 xx dx + 2 dx + xy dx 

Use the laminate constitutive equations (4.4.13a), (4.4.13c), and (4.4.14a) to express the 
resulting Euler-Lagrange equations in terms of the displacements and the thermal stress 
resultants. These equations are a static version of those in Eqs. (4.4.1). 
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4.17 Consider the equations of equilibrium of cross-ply laminates in cylindrical bending in the 
absence of thermal effects: 

Show that the Navier solution of these equations for the simply supported boundary conditions 
is given by 

() B ll " Qrn () All" Qrn . Uo x = -D ~ -3-cosamx, Wo x = -D ~ -4-S1namX 
am am 

m=l rn=l 

where D = AllDll - Brl and am = "';,". The load q(x) is also expanded in sine series with 
coefficient Qm. 

4.18 For the cylindrical bending problem of cross-ply plates (see Problem 4.17), show that (a) the 
stresses in the kth layer are given by 

and (b) the transverse stresses from the 3-D equations of equilibrium are given by 

where Gk and Hk are constants to be determined such that the stress boundary conditions on 
(Jxz and (Jzz at z = ±h/2 and the stress continuity conditions at the interfaces are satisfied. 

4.19 Use the total potential energy functional 

1 b d Wo 0 dwo 2 2 l
a 

[ (2)2 2 1 II(wo) ="2 0 Exx1yy dx2 - bNxx ( dx) - Iobw Wo dx 

to construct a one-parameter Ritz solution to determine the natural frequency of vibration, w, 
of a simply supported laminated beam with compressive load N~x. Use algebraic polynomials 

for the approximate functions. (Ans: w = (1/a)J(1O/Io)[(12Egxlyy/a2b) - Ngxl.) 

4.20 Repeat Problem 4.19 for a laminated beam with clamped boundary condition at x = 0 and 
free at x = a (i.e., cantilever beam). (Ans: w = (l/a) J(5/3IO) [(12Egx 1yy/a2b) - 4Ngxl.) 

4.21 Use the total potential energy functional 

II( ) - r [All (dUO)2 A duo dvo A66 ( dVO)2 
Uo,Vo,Wo - 1

o 
2 dx + 16 dx dx + 2 dx 

2 (2)2 1 d Wo duo dvo Dll d Wo --- (Bll - + B 16-) + -- --- - qwo dx 
dx2 dx dx 2 d:'C2 

to construct a one-parameter (for each variable) Ritz solution of (uo,vo,wo) for a simply 
supported plate strip. Use algebraic polynomials for the approximate functions. (Ans: 
a1 = -Bqoa2/12AD, b1 = -Cqoa2/12AD, Cl = -qoa2/24D.) 
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4.22 Repeat Problem 4.21 for a plate strip with clamped boundary conditions at x = 0 and free 
boundary conditions at x = a. (Ans: a1 = Bqoa2 /6AD, b1 = Cqoa2 /6AD, C1 = qoa2/12D.) 

4.23 Use the total potential energy functional 

I1( ) -1a [All (dUO)2 A duo dvo A66 ( dVO)2 N~x ( dWO)2 Uo,Vo,Wo - -- -- + 16---- + -- -- - -- --
o 2 dx dx dx 2 dx 2 d:r 

d2wo (B duo B dVo) DJ1 ( d2wo) 2] d 
- dx2 11 d:r; + 16 d:r + -2- dx2 :r 

to construct a one-parameter (for each variable) Ritz solution to determine the critical 
buckling load Ncr of a plate strip with clamped boundary conditions at x = 0 and free 
boundary conditions at :r = a. Use algebraic polynomials for the approximate functions. 
(Ans: Ncr = 3D/(2 ) 

4.24 Use the total potential energy functional 

I1( ) -1" [All ( d1LO)2 A duo dvo A66 ( dVO)2 N~:r ( dWO)2 U(),VO,WO - -- -- + 16---- + -- -- - -- --
o 2 dx dx dx 2 dx 2 dx 

d2wo (B duo B dV()) Dll ((Pwo) 2 I()w
2 2] i. 

- dJ;2 11 dX + 16 dx + -2- d:r2 - ~wo L.L 

to construct a one-parameter (for each variable) Ritz solution to determine the natural 
frequency of vibration, w, of a simply supported plate strip with edge compressive 
load N2x. Use algebraic polynomials for the approximate functions. (Ans: w = 

(1/a)J(1O/Io)[(12D/a2 ) - N~U·) 

4.25 Repeat Exercise 4.24 for a plate strip with clamped boundary condition at .7: = 0 and free at 
x = a. (Ans: w = (1/a)J(20/3Io )[(3D/o2) - N2rl.) 

4.26 Repeat Exercise 4.25 for cylindrical bending of a plate strip using the first-order shear 
deformation theory but neglecting rotary inertia. 

4.27 Consider the buckling of a uniform beam according to the Tirnoshenko beam theory. The total 
potential energy functional for the problem can be written as 

1 r [ (dCPx ) 2 (dWo ) 2 0 (dwo) 2] I1(w() , CPr) = '2 io D dX + 5 dx + CPx - N xx dx d:r 

where wo(x) is the transverse deflection, CP.r is the rotation, D is the fiexural stiffness. 5 is the 
shear stiffness. aud N~x is the axial compressive load. Determine the critical buckling load 
of a beam clamped at one end and simply supported at the other end. Use one-parameter 
Rayleigh-Ritz approximation for each variable. 

4.28 Consider a laminated beam of length L, flexural stiffness E I =constant, and subjected to 
uniformly distributed transverse load q(x) = qo. Suppose that the beam is subjected to the 
following geometric boundary conditions 

(a) 

and force boundary conditions 

~(Eld2WO) =Q1, 
dx dx 

x=O 
(

Eld2WO). =Q2 
dJ: 

x=O 

-~ ( E1 d
2

W
o ) =Q3, 

dx dx 
:J:=L 

_(Eld2Wo) =Q4 
dx 

:r=L 

(b) 
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Here (U1,U2) and (U3,U4) denote the transverse deflections and rotations (clockwise) at the 
left and right ends, respectively, and (Q1, Q3) and (Q2, Q 4) are the associated shear forces and 
bending moments at the same points. Note that Ui and Qi are introduced into the formulation 
to have the convenience of specifying a geometric or force boundary condition. 

Assume Ritz approximation of the form (the exact solution of the homogeneous equation, 
Eld4wo/dx4 = 0 suggests this polynomial) 

(c) 

and express the constants C1, C2, C3, and C4 in terms of U1, U2, U3, and U4 using the geometric 
boundary conditions (a) and rewrite (c) in the form 

(d) 

Define the functions 'Pi(X) (i = 1,2,3,4) that you derived. These functions can serve as the 
approximation functions for the Rayleigh-Ritz method (see the next exercise). (Ans: 'Pi are 
the same as the Hermite cubic interpolation functions given in Section 10.2.) 

4.29 (Continuation of Problem 4.28) Substitute the approximation 

4 

wo(x) = L Uj'Pj(X) 
j=1 

(a) 

into the total potential energy functional associated with the Euler-Bernoulli beam theory 

1L ( )2 1 d2wo 
II(wo) = 2" 0 EI dx2 

L 4 

dx -1 q(x)wo(x) dx - L QjUj 
o j=1 

(b) 

and express it in the form 

4 4 4 

II(u1,U2,U3,U4) = LL ~KijUiUj - L(qiUi + QjUj) (c) 
i=1 j=1 j=1 

(a) Define and evaluate the coefficients Kij of the stiffness matrix and qi of the force vector 
when EI = constant and q(x) = qo, a constant, and (b) use the total potential energy principle 
to determine the four-parameter Ritz solution for the problem. In particular, show that 

[K]{u} = {q} + {Q} (d) 

(Ans: The stiffness matrix [KJ and force vector {q} are the same as those given in Section 10.2 
for the Euler-Bernoulli beam element.) 

4.30 Since Eq. (d) of Problem 4.29 is valid for any boundary conditions, it can be used to determine 
solutions (which turn out to be exact) even for indeterminate beams. In particular, determine 
the displacement in the spring that supports the right end of a beam when the left end is fixed 
and the beam is subjected to uniformly distributed transverse load qo. 

4.31 Equations (4.3.12b) and (4.3.13b) for ¢x and Wo of the Timoshenko beam theory suggest that 
they can be approximated with quadratic and cubic polynomials 

Rewrite the constants ai in terms of the values of ¢x at x = 0, x = 0.5L, and x = L and obtain 

(a) 
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where <PI = .px(O) etc. Show that 1/;i(X) (i = 1,2,3) are the quadratic Lagrange interpolation 
functions derived in Section 10.3. 

4.32 Use Eq. (a) of Problem 4.31 and Eq. (a) of Exercise 4.29 to express the total potential energy 
functional in terms of Uj and <P j : 

(a) 

where Pj (j = 1,2,3) are the moments corresponding to the rotations <Pj. Then use the total 
potential energy principle to derive the Ritz equations for the problem. 

4.33 The deflection, bending moment, and shear force of the Timoshenko beam theory can be 
expressed in terms of the corresponding quantities of the Euler--Bernoulli beam theory (see 
[27,28]). In order to establish these relationships, we use the following equations of the two 
theories: 

(la-c) 

where Ks is the shear correction coefficient, and superscripts E and T on variables refer to 
the Euler-Bernoulli and Timoshenko beam theories. Show that 

'I x 2 
'I 1 - C2T - C 3 x - C4 

dw E x2 
Dxx.pT(x) = -Dxx d: + CIT + C2 x + C3 

M;x(x) = M;;,(x) + C1x + C2 , Q~(x) = Q~(x) + C I (2) 

where C I , C2 , C3 , and C4 are constants of integration, which are to be determined using the 
boundary conditions of the particular beam. 

4.34 Show that for simply supported beams all C i of Problem 4.33 are zero. 

4.35 Show that for cantilevered beams all C i except C4 = M!x(O)Dxx/(AxzK.q) of Problem 4.33 
are zero. 

4.36 Consider bending of a beam of length L, clamped (or fixed) at the left end and simply 
supported at the right, and subjected to a uniformly distributed transverse load qQ. The 
boundary conditions of the Euler-Bernoulli and Timoshenko beam theories for the problem 
are as follows: 

EBT: 
dw E 

wcf(O) = wcf(L) = d: (0) = M:;'(L) = 0 

TBT: w6(0) = w6(L) = .pT(O) = M;x(L) = 0 

Show that the constants of integration in Problem 4.33 are given by 

(1) 

(2) 
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5 

Analysis of Specially Orthotropic 
Laminates Using CLPT 

5.1 Introduction 

The governing equations of composite laminates according to various laminate 
theories were developed in Chapter 3. These equations can be solved either 
analytically or numerically for the generalized displacements and strains. Stresses 
can be determined using either the constitutive equations or the 3-D equilibrium 
equations expressed in terms of stresses. Analytical solutions were developed in 
Chapter 4 for certain one-dimensional problems, namely laminated beams and 
cylindrical bending of laminates. Analytical solutions can also be developed for 
rectangular laminates with certain lamination schemes and boundary conditions. 

In this chapter we develop analytical solutions of specially orthotropic plates, 
i.e., plates for which the bending-stretching coupling coefficients Bij and bending
twisting coefficients D 16 and D 26 are zero, using the classical laminate theory. 
The analysis of specially orthotropic laminates is greatly simplified because the 
bending deformation is uncoupled from the extensional deformation and the fact that 
D 16 = D 26 = O. This class of laminates will be used to gain a basic understanding 
of the response. Although most laminates of practical interest do not qualify as 
specially orthotropic plates because of the presence of bending-twisting coupling 
terms D 16 and D 26 , they may represent reasonable approximations to more complex 
laminates. In the subsequent chapters, the solutions obtained for more complicated 
laminates will be compared with those of the specially orthotropic plates to assess 
their behavior. 

The solution methods used here are the Navier method, the Levy method with the 
state-space approach, and the Ritz method. The Navier solutions can be developed 
for a rectangular laminate when all four edges of the laminate are simply supported. 
The Levy solutions can be developed for plates with two opposite edges simply 
supported and the remaining two edges having any possible combination of boundary 
conditions: free, simple support, or fixed support. The Ritz method can be used to 
determine approximate solutions for more general boundary conditions, as long as 
we can find suitable approximation functions for the problem. 
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The equation of motion governing bending deflection Wo of a specially orthotropic 
plate can be deduced from Eq. (3.3.47) by omitting the nonlinear terms, bending
stretching terms, and bending-twisting terms. We have 

[ 
04wO 04wo 04wO 1 

- Dll ox4 + 2 (D12 + 2D66 ) ox20y2 + D22 oy4 + q 

xx xy yy A Wo A Wo A Wo 
(0

2MT 02MT 02MT) 02 02 02 

- ox2 + 2 oxoy + oy2 + Nxx ox2 + 2Nxy oxoy + N yy oy2 

.. (02wo 02wo) 
= Iowo - h ox2 + oy2 (5.1.1) 

Equation (5.1.1) must be solved, in conjunction with appropriate boundary 
conditions [see Eq. (3.3.34)] and initial conditions of the problem, for the desired 
response. The boundary conditions at any point on the boundary are of the form 

Wo or Vn == Qn + oMnsos (5.1.2) 

and 

(5.1.3) 

where Qn and Mnn are defined in Eqs. (3.3.31b) and (3.3.29b), respectively. 
In this chapter, we wish to determine static deflections and stresses, frequencies 

of natural vibration, and buckling loads under in-plane compressive or shear loads 
of specially orthotropic plates. We seek exact solutions whenever possible, and 
approximate solutions using the Ritz method when exact solutions cannot be 
developed. 

5.2 Bending of Simply Supported Rectangular Plates 
5.2.1 Governing Equations 

Here we consider the static bending in the absence of thermal effects and in-plane 
forces. Equation (5.1.1) for this case reduces to 

04wo 04wo 04wo 
Dll ox4 + 2 (D12 + 2D66) ox20y2 + D22 oy4 = q (5.2.1) 

The simply supported boundary conditions on all four edges of the rectangular plate 
(see Figure 5.2.1) can be expressed as 

Wo(x,O) = 0, wo(x, b) = 0, wo(O, y) = 0, wo(a, y) = 0 

Mxx(O, y) = 0, Mxx(a, y) = 0, Myy(x,O) = 0, Myy(x, b) = 0 

(5.2.2a) 

(5.2.2b) 

where the bending moments are related to the transverse deflection by the equations 

( 
02wo 02wo) 

Mxx = - Dll ox2 + D12 oy2 

( 
02wO 02wo) 

Myy = - D12 ox2 + D22 oy2 

02wo 
Mxy = - 2D66 oxoy (5.2.3) 
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at y=O 

( wo=Myy=O 

~ I ~ a 
r" 

:~:x<a at x=O I 

wo=O I I b wo=O 

Mxx=O L..fil 
I~ Mxx=O 

I I - - - - -- - - -<-, 
Y 

at y=b 

wo=Myy=O 

Figure 5.2.1: Geometry, coordinate system, and simply supported boundary 
conditions for a rectangular plate. 

and a and b denote the in-plane dimensions along the .1:- and y-coordinate directions 
of the rectangular laminate. The origin of the coordinate system is taken at the 
lower left corner of the midplane (see Figure 5.2.1). 

5.2.2 The Navier Solution 

In the Navier method the displacement Wo is expanded in a double trigonometric 
(Fourier) series in terms of unknown parameters. The choice of the trigonometric 
functions in the series is restricted to those which satisfy the boundary conditions 
of the problem. The load q(x, y) is also expanded in double trigonometric series. 
Substitution of the displacement and load expansions into the governing equation 
should result in an invertible set of algebraic equations among the parameters of 
the displacement expansion. Otherwise, the Navier solution cannot be developed 
for the problem. The simply supported boundary conditions in Eq. (5.2.2) admit 
the Navier solution for specially orthotropic rectangular laminates. 

The boundary conditions in Eq. (5.2.2) are satisfied by the following form of the 
transverse deflection 

00 00 

wo(x,y) = L L Wmn sinax sin(3y (5.2.4 ) 
n=l m=l 

where a = m7r / a and (3 = n7r /b, and W mn are coefficients to be determined such 
that the governing equation (5.2.1) is satisfied everywhere in the domain of the 
plate. We assume that the load can also be expanded in the series form as 

00 00 

q(x,y) = L L Qmnsinax sin(3y (5.2.5a) 
n=l m=l 
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where 

Qmn = ~fob foa q(x,y) sinax sinf3y dxdy (5.2.5b) 

Substitution of the expansions (5.2.4) and (5.2.5) into Eq. (5.2.1) yields 

~~1 {-Wmn [Dn a4 + 2(D12 + 2D66)a2f32 + D22f34] + Qmn} sinax sinf3y = 0 

(5.2.6) 
Since the equation must hold for every point (x, y) of the domain 0 < x < a and 
o < y < b, the expression inside the curl brackets (or braces) should be zero for 
every m and n. This yields 

W - Qmn (527 ) mn - .. a 
dmn 

4 

dmn = :4 [Dn m4s4 + 2(D12 + 2D66)m2n2s2 + D22n4] (5.2.7b) 

where s denotes the plate aspect ratio, s == b/a. Then the solution in Eq. (5.2.4) 
becomes 

(Xl (Xl Q 
Wo (x, y) = L L d mn sin ax sin f3y 

n=l m=l mn 
(5.2.8) 

The load coefficients Qmn for various types of loading [see Eq. (5.2.5b)] are listed 
in Table 5.2.1. The effect of thermal moments can be easily incorporated into the 
calculation. 

For example, the Navier solution for a sinusoidally distributed transverse load 

7fX . 7fy 
q(x, y) = qo sin - sIn-

a b 
(5.2.9) 

is a one-term solution (Qmn = qo and m = n = 1), and therefore it is a closed-form 
solution. For other types of loads, the Navier solution is a series solution, which 
can be evaluated for a sufficient number of terms in the series. In particular, for 
uniformly distributed load q(x, y) = qo, a constant, we have 

16qo 
Qmn = -2 - for m, n, odd 

7f mn 
(5.2.10) 

For a point load Qo located at (xo, yo), the load coefficients are given by [q(x, y) = 
Qoo(x - Xo, y - yo)] 

Q 
_ 4Qo . m7fXo 

mn - -b- sm --
a a 

The bending moments can be calculated from 

(Xl (Xl 

. n7fYo 
sm--

b 

Mxx = L L (Dna2 + D12f32) Wmn sin m;x sin n;y 
n=l m=l 

(Xl (Xl 

Myy = L L (D12a 2 + D22f32) Wmn sin m;x sin n;y 
n=l m=l 

(Xl (Xl 

'" '" m7fX n7fJj Mxy = -2 ~ ~ af3D66 Wmn cos -- cos--
n=lm=l a b 

(5.2.11) 

(5.2.12a) 

(5.2.12b) 

(5.2.12c) 
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Table 5.2.1: Coefficients in the double trigonometric series expansion of loads in 
the N avier method. 

Load q(x, y) 

Uniform load, 
q = qo 

Hydrostatic load, 
q(x, y) = qO~ 

Point load, 
q(x, y) = Qo at (xo, YO) 

Line load, 
q(x,y) = go at x = xo 

y 

x 

y 

x 

y 

x 

x 

Coefficients Qmn 

Q _ 16qo 
rnn - Jr2 rnn 

(m,n=1,3,5,···) 

Q _ 8qo cos m7r 
mn - 7r2mn 

(m,n= 1,3,5",,) 

Q = 4Qo sin m7rXo sin n7rYo 
mn ab a b 

(m,n=1,2,3,···) 

Q = 8qo sin m7rXo 
mn ?Tan a 

(m = 1,3,5",,; n = 1,2,3", .) 
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The in-plane stresses can be computed from Eqs. (4.2.12a) 

{ 

(Jxx } (k) [Ql1 
(Jyy = -z Q12 

(Jxy 0 

8~~ ~ 1 (k) { ~~~ } 

o Q66 2~to 
oxoy 

{ 

( Q(k) 0;2 + Q(k) (32) sin m7rX Sin!.':!!JL} 
00 00 11 12 a b 

= Z L L Wmn (Qi~)a2 + Q~~) (32) sin m;x sin!Ef!-

n=lm=l -2Q-(k)0;(3 cos m7rX cos!.':!!JL 
66 a b 

(5.2.13) 

The maximum normal stresses occur at (x, y, Z) = (a/2, b/2, h/2), and the shear 
stress is maximum at (x, y, z) = (a, b, -h/2) and other three corners. 

The interlaminar stresses are identically zero when computed from the 
constitutive equations in the classical laminate theory. However, they can be 
computed using the 3-D stress equilibrium equations [see Eqs. (4.2.13)] for any 
Zk S Z S Zk+1: 

(k) = -1 f)(Jxx f)(Jxy z ((k) (k») 
(Jxz ~ + ~ 

Zk uX uy 

(k) = -1 f)(Jxy f)(Jyy z ((k) (k») 
(Jyz ~ + ~ 

Zk uX uy 

z ((k) (k») (k) = -1. f)(Jxz f)(Jyz 
(Jzz ~ + ~ 

Zk uX uy 
(5.2.14) 

(k) (k) (k) (k) where the stresses (Jxx, (Jxy, and (Jyy are known from Eq. (5.2.13), and C i 
are functions to be determined using the boundary conditions, (Jxz(x, y, -h/2) = 
(Jyz(x, y, -h/2) = (Jzz(x, y, -h/2) = 0 and continuity of stresses at layer interfaces. 
We obtain 

where 

00 00 

(k) '" '" (k) m7rX n7ry (k 1) 
(Jxz = -X(z) L L T12 Wmn cos -a- sin -b- + (Jxz- (x, y, Zk) 

n=l m=l 
00 00 

(k) y( ) '" '" T(k)W . m7rX n7ry (k-1)( ) 
(Jyz = - Z L L 13 mn sm -a- cos -b- + (Jyz x, y, Zk 

n=l m=l 
00 00 

(k) '" '" (k) . m7rX . n7ry (k-1)( ) 
(Jzz = -Z(z) L L T33 Wrnn sm -a- sm -b- + (Jzz x, y, Zk 

n=l m=l 

(5.2.15a) 

(
Z2 z2) 

X(z) = Y(z) = ; k , 
Zk Z 2 2 

[ 
3 1 Z(z)= 3+6(Z -3zk ) (5.2.15b) 
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(5.2.15c) 

For single-layer plates, the expressions in Eq. (5.2.15a) can be simplified to 

~ zz = - ~~ { [1 + (2: r]- 3 [1 + (2:) ] } x 

(Xl (Xl L L r(l)w sin m7rX sin n7ry 
n=lm=l 33 mn a b 

(5.2.16) 

In integrating the stress-equilibrium equations it is assumed that the stresses 
(~xz, ~yz, ~zz) are zero at z = h/2. Because of the assumptions of the laminate 
plate theory, ~ zz = -q at z = -h/2. 

Table 5.2.2 contains the nondimensionalized maximum transverse deflections and 
stresses of square laminates under various types of loads. For the case of mechanical 
loading, the deflection and stresses are nondimensionalized as follows: 

(jyy = ~yy(~,~,~) (a~:o); (jxy = ~xy(a, b, -~) (a~:o) 

(jxz = ~xz(o,~, 0) (a~o); (jyz = ~yz(~, 0, 0) (a~J (5.2.17) 

For the thermal load case, the nondimensionalized quantities are defined as 

A 2 _ a b h ( (3a ) 1 
w = wo(O,O)(3 x 10 ; ~x'r = ~:EX(-' -, -) - ; (3 = J 

2 2 2 E2 <XITl W 

(j yy = ~ yy ( ~, ~, ~) (~:) ; (j xy = ~ J;y ( a, b, - ~) (~:) (5.2.18) 

The mechanical load consists of only the transverse load q(x, y), and the thermal 
load consists of linear temperature distribution through the laminate thickness, 
!)'T = ZT1(X,y). Both q and Tl are assumed to be sinusoidal, uniform, or point 
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functions. In the case of uniform and point source distribution, the first ten terms 
of the double trigonometric series are evaluated. 

Plots of nondimensionalized maximum transverse deflection wand normal stress 
(jxx as a function of the plate aspect ratio alb are shown in Figures 5.2.2 and 
5.2.3, respectively, for symmetric cross-ply (0/90/90/0) laminates under uniformly 
distributed (UDL) and sinusoidally distributed (88L) loads. The material properties 
of the lamina are taken to be: Ed E2 = 25, G12 = G 13 = 0.5E2, and V12 = 0.25. 
For uniformly distributed load, the maximum deflection and (negative) stress occur 
for an aspect ratio around 1.5, whereas for sinusoidally distributed load the maxima 
are reached around alb = 2.5. 

Figures 5.2.4 and 5.2.5 show the distributions of the maximum in-plane normal 
stresses (jxx and (jyy, respectively, through the thickness for laminates (0/90/0) and 
(0/90/90/0) under sinusoidally distributed transverse load, and Figure 5.2.6 shows 
the distribution of the maximum transverse shear stresses through the thickness for 
the two laminates (a/b = 1, E1 = 25E2, G 12 = G 13 = 0.5E2, V12 = 0.25). 

Table 5.2.2: Transverse deflections and stresses in specially orthotropic square 
laminates subjected to various types of mechanical and thermal 
loads (Ed E2 = 25, G12 = G13 = 0.5E2' G 23 = 0.2E2, V12 = 0.25, 
0:1 = 30:2, To = 0); all laminates are of the same total thickness. 

Laminate Mechanical Thermal 

W axx ayy o-xy 
-t C7xz w axx ayy o-xy 

SSL* 

0° 0.4312 0.5387 0.0267 0.0213 0.4398 9.1263 CJ.l172 0.0272 0.0450 
(0° /90° /0°) 0.4312 0.5387 0.0267 0.0213 0.3951 9.1263 CJ.l172 0.0272 0.0450 

UDL(19) 

0° 0.6497 0.7866 0.0244 0.0463 0.7758 13.246 1.3135 0.0430 0.1893 
(0° /90° /0°) 0.6660 0.8075 0.0306 0.0425 0.7191 13.4863 1.3463 0.0521 0.1811 

CPL(49) 

0° 2.3231 6.7317 1.0119 0.0409 1.8148 6.7273 0.0913 0.0178 19.394 
(0° /90° /0°) 2.1298 6.1582 0.7025 0.0558 1.5076 7.1570 0.0230 0006 18.810 

* SSL=Sinusoidal load; UDL=Uniformly distributed load; CPL=Central point load; the number 
in parentheses denotes the number of terms used in the double Fourier series to evaluate the 
series. The transverse shear stress C7xz is the maximum at (x,y,z) = (0,b/2,0), C7yz is the 
maximum at (x,y,z) = (a/2,0,0), and the transverse normal stress C7zz is the maximum at 
(x, y, z) = (a/2, b/2, h/2). 

t From equilibrium equations (mechanical load). 
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UDL 

SSL 

Simply supported, rectangular 
(0/90/9010) laminates 
UDL = Uniformly distributed load 
SSL = Sinusoidally distributed load 
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Figure 5.2.2: Nondimensionalized maximum transverse displacement w 
wo(E2h3 /a4 qo) versus plate aspect ratio (a/b) of symmetric cross
ply (0/90/90/0) laminates. 
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Figure 5.2.3: Nondimensionalized maximum normal stress (o-xx) versus plate 
aspect ratio (a/b) of symmetric cross-ply (0/90/90/0) laminates. 
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Figure 5.2.4: Variation of nondimensionalized maximum normal stress (o-xx) 
through the thickness (z/h) of square cross-ply laminates under 
sinusoidally distributed load. 
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Figure 5.2.5: Variation of nondimensionalized maximum normal stress (o-yy) 
through the thickness (z/h) of square cross-ply laminates under 
sinusoidally distributed load. 
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Figure 5.2.6: Variation of nondimensionalized maximum transverse shear 
stresses, (j yz and (j xz, through the thickness (z / h) of square cross
ply laminates. The stresses are the same in both laminates. 

5.3 Bending of Plates with Two Opposite Edges 
Simply Supported 

5.3.1 The Levy Solution Procedure 

Consider a rectangular plate with simply supported edges along y = 0, band 
subjected to a transverse load q. The other two edges at x = 0, a, can each be 
free, simply supported, or clamped, independent of the other. For such problems, 
the Navier solution cannot be developed. However, the idea of the Navier method 
can be applied with respect to the simply supported boundary conditions at y = 0, b 
to reduce the partial differential equation (5.2.1) to an ordinary differential equation 
with respect to the coordinate x, which may then be solved exactly or approximately. 
This procedure is known as the Levy method. 

The solution to the problem of a rectangular plate with two opposite edges simply 
supported and the other two edges having arbitrary boundary conditions can be 
represented in terms of single Fourier series as 

(Xl 

wo(x,y) = L Wn(x) sin(3y (5.3.1) 
n=l 

Similarly, the load is represented as 
(Xl 

q(x, y) = L Qn(x) sin(3y (5.3.2a) 
n=l 
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where Qn(x) are given by (see Table 5.3.1) 

2 rb 

Qn(x) = b J
o 

q(x, y) sinf3y dy (5.3.2b) 

Table 5.3.1: Coefficients in the single trigonometric series expansion of loads in 
the Levy method. 

Load q(x) 

Uniform load, 
q = qo 

Hydrostatic load, 
q(x) = (qoyjb) 

Point load, 
q(x) = Qo at (xo, YO) 

Line load, 
q(x) = qo at y = Yo 

x 

z 

x 

y 

x 

x 

y 

Coefficients Qn 

Q _ 4qo 
n - 7rn 

(n = 1 3 5 ... ) , , , 

Q = ~(_1)n+l 
n n7r 

(n=1,2,3···) 

Q - ~ Sl·n n7rYo 
n - b b 

(n = 1 2 3 ... ) , , , 

Qn = 2go{5(x - xo) sin n~yo 

(n=1,2,3,···) 
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The assumed solution in Eq. (5.3.1) satisfies the simply supported boundary 
conditions on edges y = 0, b. In the case of uniformly distributed load of intensity 
qo, the coefficients Qn are given by 

Q n (x) = 4
qo , n = 1, 3, ... 

nJr 
(5.3.3) 

Substituting Eqs. (5.3.2a) and (5.3.1) into Eq. (5.2.1), we obtain 

(5.3.4) 

Since the result must hold for any y, it follows that the expression in the square 
brackets must be zero: 

(5.3.5) 

The ordinary fourth-order differential equation (5.3.5) can be solved either 
analytically or by an approximate method. Analytically, Eq. (5.3.5) can be solved 
directly or by the so-called state-space approach used in control theory (see [11,12]). 
As for approximate methods, the Ritz, finite difference, and finite element methods 
are good candidates. Here we discuss direct analytical solution, analytical solution 
by the state-space approach, and approximate solution by the Ritz method. 

5.3.2 Analytical Solutions 

The general form of the analytical (exact) solution to the fourth-order differential 
equation (5.3.5) consists of two parts: homogeneous and nonhomogeneous (or 
particular) solutions. The homogeneous solution is of the form 

W~(X) = C exp (AX) (5.3.6) 

where A denotes a root of the algebraic equation 

(5.3.7) 

Since there are four roots, the solution (5.3.5) can be written as a linear combination 
of functions of these four roots. The true form of the solution depends on the nature 
of the roots, i.e., real or complex and equal or distinct. We consider three cases .. 

Case 1: Roots are real and distinct 

When (D12 + 2D66? > D l1 D 22 , the roots are real and unequal: 

(A1)2 = (-A2)2 = ~:1 [D12 + 2D66 - J (D12 + 2D66)2 - DllD22] 

(A3)2 = (-A4)2 = (32 [D12 + 2D66 + J(D 12 + 2D66)2 - DllD22] 
Dl1 

(5.3.8) 
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The homogeneous part of the solution is of the form 

W~(x) = An cosh AIX + Bn sinh AIX + en cosh A3X + Dn sinh A3X 

Case 2: Roots are real and equal 

When (D12 + 2D66)2 = DllD22, the roots are real but equal 

_ 2 (32 
Al = A2 = -A3 = -A4 = A, A = - (D12 + 2D66 ) 

Dl1 

and the homogeneous part of the solution is of the form 

W~(x) = (An + Bnx) cosh AX + (en + Dnx) sinh AX 

Case 3: Roots are complex 

(5.3.9) 

(5.3.10) 

(5.3.11) 

When (D12 + 2D66)2 < Dll D22 , the roots are complex and they appear in complex 
conjugate pairs Al ± iA2 and -AI ± iA2 (i = yCT, Al > 0, A2 > 0): 

(32 
(Ad

2 = 2Dll [VDll D22 + (D12 + 2D66 )] 

(32 
(A2)2 = 2Dl1 [VDl1D22 - (D12 + 2D66 )] 

The homogeneous part of the solution is of the form 

W~(x) = (AncoSA2X + BnsinA2X)coshAIX 

+ (en cos A2X + Dn sin A2X) sinh AIX 

(5.3.12) 

(5.3.13) 

The particular solution of the fourth-order differential equation (5.3.5) in the 
general case in which Qn is a function of x can be determined using the method of 
undetermined coefficients (see Pipes and Harvill [10]). When Qn is a constant the 
particular solution is a constant k, and it is determined by substituting it into Eq. 
(5.3.5). We obtain kD22(34 = Qn. Hence, the particular solution becomes 

Qn ' 
Wh(x) = D22(34 == Qn (5.3.14) 

The four constants An, B n, en, and Dn in Eqs. (5.3.9), (5.3.11), and (5.3.13) 
can be determined using the four boundary conditions associated with the edges 
x = 0, a (in addition to the simply supported boundary conditions on the edges 
y = 0, b). Note that the particular case (i.e., Case 1, Case 2, or Case 3) in a problem 
is dictated by the plate stiffnesses, Dij . Here we illustrate the procedure for simply 
supported and clamped boundary conditions in the case of real and distinct roots. 
The solution in this case is given by 

00 

wo(x, Y) = L (An cosh AI X + Bn sinh AIX + en cosh A3X 
n=1 

(5.3.15) 
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In the following discussion we assume that the applied transverse load is uniformly 
distributed. 

Simply supported plate 

The simply supported boundary conditions on edges x = 0, a are 

(0.3.16) 

Using (5.3.15) in (5.3.16), we obtain 

An + Cn + Qn = 0 

An cosh Ala + Bn sinh Ala + Cn cosh A3a + Dn sinh A3a + Qn = 0 

Dll (A? An + A~Cn) - D12 (An + Cn + Qn) ;32 = 0 

Dll (AnA? cosh Ala + BnA? sinh Ala + CnA~ cosh A3a + DnA~ sinh A3a) 

-D12 (An cosh Ala + Bn sinh Ala + Cn cosh A3a + Dn sinh A3a + Qn) ;32 = 0 

where Qn = Qn/;34 D22 . By virtue of the first two equations, the coefficients of D12 
in the last two equations are identically zero. The four equations can be expressed 
in matrix form as 

o 
sinh Ala 

o 
A? sinh Ala 

1 

The determinant of the 4 x 4 coefficient matrix in Eq. (5.3.17) 
At)2 sinh A] a sinh A3a. The solution of the matrix equation yields 

A A~ A A} (1 - cosh Ala) 
An =-Qn(\2_\2) ' Bn=-Qn,. 1 \ (\2_\2) 

A3 Al sIn lAla A3 Al 

A A? D _ Q AI (1- coshA3a) 
Cn =Qn (A~ _ At)' n - n sinh A3a (A} - An 

Simply supported at y=O,b and clamped at x=O,a 

For clamped boundary conditions on edges x = 0, a, we require 

{)wo 
-{) =0 

x 
1110 = 0, 

which yield 

(5.3.18) 

(5.3.19) 

[ 

1 
cosh Al a 

Al si~hAla 

o 
sinh Ala 

Al 
Al cosh Ala 

1 
cosh A:la 

o 
A3 sinh A3a 

{
An} {Qn} ~: ~ - 1" 

(5.3.20) 
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The solution of the matrix equation (5.3.20) is 

An = Q;~3 [(AI sinh A3a - A3 sinh Al a) sinh A3a 

+ Al (cosh Ala - coshA3a) (coshA3a - 1)] 

Bn = Q~~3 [A3 sinh A3a (cosh Ala - 1) + Al sinh Ala (1 - cosh A3a)] 

Al 
Cn = - (An + Qn), Dn = - A3 En 

where En is the determinant of the coefficient matrix 

En = - (A3 sinh Ala - Al sinh A3a) (AI sinh Ala - A3 sinh A3a) 

+A1A3 (coshA3a - coshA1a)2 

(5.3.21) 

(5.3.22) 

An alternative method of solving Eq. (5.3.5) is provided by the state-space 
approach [12]. The approach involves writing a higher-order ordinary differential 
equation as a first-order matrix equation, and its solution is obtained using matrix 
methods in terms of the eigenvalues of the matrix operator. In the present case, 
the linear ordinary differential equation in (5.3.5) with constant coefficients can be 
expressed in the form of a single, first-order matrix differential equation 

{Z'} = [T]{Z} + {F} 

{Z} = { ~~ }, [T] = [ ~ 
W)), C 

n 1 

The general solution of Eq. (5.3.23) is given by 

Z(x) = e Tx (K + foX e-T~ F(~) d~) 
== G(x)K + H(x) 

Here e Tx denotes the matrix product 

(5.3.23) 

(5.3.24) 

(5.3.25) 

(5.3.26) 

(5.3.27) 

Here [E] is the matrix of distinct eigenvectors of matrix [TJ, [E]-l denotes its inverse, 
Aj (j = 1,2,3,4) are the eigenvalues associated with matrix [T], and {K} is a vector 
of constants to be determined using the boundary conditions of the problem. 
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As an example, consider the case of simply supported boundary condition at 
x = 0 and clamped boundary condition at x = a. The simply supported boundary 
conditions (5.2.2a,b) at x = 0 imply [see Eq. (5.3.1)] 

(5.3.28a) 

The clamped boundary conditions (5.3.19) at x = a imply 

Wn(a) = 0, W~(a) = 0 (5.3.28b) 

These four conditions in turn yield, in view of Eq. (5.3.26), the following four 
nonhomogeneous algebraic equations among Ki (i = 1,2,3,4): 

4 

4 

L G 1j (0)Kj + H 1(0) = 0 
j=1 

L (Du G3j (0) - jJ2 DI2Glj(0)) K j + DUH3(0) - D12jJ2 HI (0) = 0 
j=1 

4 

L G 1j (a)Kj + Hl(a) = 0 
j=1 

4 

L G2j (a)Kj + H2(a) = 0 
j=1 

(5.3.29) 

These equations can be solved for the four constants. In general, the procedure is 
algebraically complicated, and therefore all calculations, i.e., matrix multiplication, 
determination of eigenvalues and constants K i , and evaluation of the solution, are 
made using a computer. 

Table 5.3.2 contains numerical results for three-layer, cross-ply (00 /900 /00
), 

square laminates under uniformly distributed transverse load. The lamina material 
properties used are El = 19.2 msi, E2 = 1.56 msi, G 12 = 0.82 msi, and 1/12 = 0.24. 
The transverse deflection and stresses are nondimensionalized as follows: 

o-yy = CTyy ( a/2, b/2, h/6) ( ~2 ) x 10 
a qo 

x 10 

(5.3.30) 

The notation SF, for example, is used to denote a plate with edge x = 0 is simply 
supported (S) and edge x = a is free (F); of course, edges y = 0, b are simply 
supported. 
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Table 5.3.2: Nondimensional center deflections (w) and in-plane normal stresses 
(iTxx and iTyy) of symmetric cross-ply (00 /900 /00

) square plates 
subjected to uniform distribution of transverse load and for various 
boundary conditions. 

Variable SS se ee FF FS Fe 

w 1.206 0.544 0.280 10.920 5.992 2.376 
axx 7.251 4.082 2.787 0.195 3.778 1.685 
o-yy 1.938 0.651 0.185 21.597 11.621 4.313 

5.3.3 Ritz Solution 

Equation (5.3.5) can also be solved using the Ritz method. In the Ritz method, we 
seek solution of (5.3.5) in the form 

N 

Wn(X) ~ L Cj!pj(X) 
j=l 

(5.3.31) 

where !pj(x) are approximation functions that must meet the continuity and 
completeness conditions and satisfy the homogeneous form of the geometric 
boundary conditions [see Eq. (1.5.2)]. The parameters Cj are then determined 
by requiring that the weak form of Eq. (5.3.5) be satisfied: 

fa [ d2Wn d28Wn 2 dWn d8Wn 
0= io Dll dx2 dx2 +2 (D12 + 2D66 ) (3 ~~+ 

D 22(34Wn8Wn - Qn8Wn 1 dx (5.3.32) 

where 8Wn denotes the virtual variation in Wn 

N 

8Wn(x) ~ L Dei !pi(X) (5.3.33) 
i=l 

Substituting (5.3.31) and (5.3.33) into (5.3.32), we obtain 

Since the above expression must hold for all arbitrary values of 8Ci, it follows that 
the expression in the curly bracket must be zero. We have 

N 

0= L Aijcj - Fi or [A]{c} = {F} 
j=l 

(5.3.35a) 
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where 

fa [ d
2

cpj d
2

cpi 2 dcpj dCPi 4 1 
Aij = Jo Du dx2 dx2 + 2 (D12 + 2D66 ) (3 dx dx + D22(3 CPjCPi dx 

Fi = fa QnCPi dx (5.3.35b) Jo 
Equation (5.3.35a) represents a set of N algebraic equations among Ci. 

As an example, we consider the case in which the edges x = 0, a are clamped. 
The geometric boundary conditions are given by Eq. (5.3.19): 

awo 
Wo = 0, - = 0 (5.3.36) ax 

Hence, the approximation functions CPi must be selected such that CPi = 0 and 
(dcpddx) are zero atx = 0, a. 

If an algebraic polynomial is to be selected, one may begin with the five-term 
complete polynomial 

CPl(X) = Ko + K1x + K2X2 + K3X3 + K4X4 

and determine four of the five constants Ki in terms of the remaining constant using 
the four boundary conditions. The constant is arbitrary and may be set to unity. 
We obtain 

The ith function can be written as 

cpi(X) = (~r+l (1 - ~r ' i=l,2, ... ,n (5.3.37) 

For the choice of CPi(X) in (5.3.37), we have 

fa cpo dx = a (_1 __ 2 + _ 1 ) 
Jo t i + 2 i + 3 i + 4 

fa . . dx _ a ( 1 _ 4 6 _ 4 1) 
Jo CPtCPJ - i + j + 3 i + j + 4 + i + j + 5 i + j + 6 + i + j + 7 

fa dCPi dcpj dx = ~ [(i + l)(j + 1) _ 2(i + l)(j + 2) + (j + l)(i + 2) 
J 0 dx dx a i + j + 1 i + j + 2 

(i + 1) (j + 3) + 4 (i + 2) (j + 2) + (i + 3) (j + 1) 
+ i+j+3 

_ 2 (i + 2) (j + 3) + (i + 3) (j + 2) (i + 3) (j + 3)] 
i+j+4 + i+j+5 

fa d
2

cpi d
2

cpj dx = ~ [ij(i.+ 1!(j + 1) _ 2(i + l)(j + 1) i(j + 2~ + ~i + 2)j 
Jo d.x2 dx2 a3 Z + J - 1 Z + J 

i(i + l)(j + 2)(j + 3) + 4(i + l)(i + 2)(j + 1)(j + 2) 
+ i+j+1 

j(i + 2)(i + 3)(j + 1) (i + 2)(i + 3)(j + 2)(j + 3) 
+ i+j+1 + i+j+3 

-2(i + 2)(· 2) (i + l)(j + 3) + (i + 3)(j + 1)] 
J+ i+j+2 

(5.3.38) 
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For N = 1, Eq. (5.3.35a) gives 

and the solution (5.3.1) becomes 

[ 
2]2 00 

Wo (x, y) ~ ( ~) - (~) E CI ( n ) sin (Jy (5.3.39a) 

with (J = mf /b and 

(5.3.39b) 

The center deflection is given by 

(5.3.40) 

For a symmetric cross-ply laminate (0/90/0) with ply properties E1 = 19.2 msi, 
E2 = 1.56 msi, G12 = 0.82 msi, and 1/12 = 0.25, the bending stiffnesses, for h = 0.01, 
are Dll = 1.5528, D12 = 0.031347, D22 = 0.18531, and D6G = 0.068333 lb-in. For 
uniformly distributed load qo, we have (s = a/b) 

4qo 
c1(n) = 30mf (1.24224 + 0.06317n2s 2 + 0.02865n4s4) 

for n = 1,3,5, .... For a square plate, the maximum deflection becomes 

a b qoa4 
4 

wO(2' 2") ~ 16 (0.03181 - 0.003424 + 0.001509 - ... ) qoa 

The series converges slowly unless we also increase the number of parameters in the 
x-coordinate [see Eq. (5.3.31)]. The "exact" solution for a square laminate under 
uniformly distributed load is 

(5.3.41) 

whereas the one-term (n = 1 and N = 1) solution predicted by Eq. (5.3.40) is 
0.001988qoa4 . The two-term solution (n = 1,3 and N = 1) is 0.001774qoa4 . 

Other choices of 'Pi (x) are provided by the eigenfunctions W (x) of beams 
developed in Chapter 4 [see Eq. (4.2.46a)]. For example, for clamped boundary 
conditions, we use the eigenfunctions of a beam with clamped ends. From Eq. 
(4.2.46a) and Table 4.2.3, we have 

(5.3.42a) 
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dxi = Ai [COSAiX - COShAiX + CYi (sinhAix + sin AiX)] 

where Ai are the roots of the characteristic equation (4.2.59) 

(5.3.42b) 

(5.3.43) 

and 
sinh Aia - sin Aia cosh Aia - cos Aia 

CYi= = -------------
cosh Aia - cos Aia sinh Aia + sin Aia 

(5.3.44) 

Clearly, !.pi and (d!.pd dx) are zero at x = 0, a. Recall from Table 4.2.3 [also see Eq. 
(4.2.60)] that the roots Ai of the characteristic equation (5.3.43) are given by 

(5.3.45) 

The corresponding values of CYi are 

CYI = 1.0178, CY2 = 0.99922, CYi = 1 for i > 2 (5.3.46) 

Hence, the first two eigenfunctions are 

4.73x 4.73x (4. 73x 4. 73X) 
!.pI (X) = sin --- - sinh --- + 1.0178 cosh --- - cos ---

a a a a 
7.853x 7.853x (7.853X 7.853X) 

!.p2(X) = sin - sinh + 0.9992 cosh - cos ----
a a a a 

(5.3.47) 

For N = 1, Eq. (5.3.35a) yields 

cl(n) = 0.84555Qna4 [518.53135Du + 12.7442 (D12 + 2D66 ) (mr)2s2 

+ 1.035965D22 (n7r)4 s4rl (5.3.48) 

For the symmetric cross-ply laminate considered above, the center deflection 
(Xl (a/2) = 1.61637) predicted for n = 1 is 0.002009qoa4 compared to the exact 
solution of 0.001795qoa4. 

5.4 Bending of Rectangular Plates with Various 
Boundary Conditions 

5.4.1 Virtual Work Statements 

The Navier and Levy type solutions do not exist for rectangular plates with all four 
edges clamped or when two parallel edges are not simply supported. Therefore, 
an approximate method must be utilized to determine solutions of these plates. 
In this section, we discuss applications of the Ritz method to determine the 
bending deflections of specially orthotropic rectangular plates with various boundary 
conditions. 
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The virtual work statement (or weak form) and the total potential energy 
expressions for a specially orthotropic rectangular plate are [see Eq. (3.3.19)] 

(5.4.1) 

and 

(5.4.2) 

The above expressions should be appended with appropriate terms due to any 
additional applied edge forces and moments. 

5.4.2 Clamped Plates 

Consider a rectangular plate with all edges clamped and subjected to distributed 
transverse load q(x, y). The boundary conditions associated with the clamped plate 
are 

Wo = 0 and oWo = 0 at x = 0, a ax 

Wo = 0 and oWo = 0 at y = 0, b oy 

We assume the Ritz approximation in the form 

m n 

Wo (x, y) ::::::; W mn (x, y) = L L Cij lPij (x, y) 
j 

(5.4.3a) 

(5.4.3b) 

(5.4.4) 

whe;'e the approximation functioIl::> lPij satisfy all the (homogeneous) geometric 
boundary conditions in Eqs. (5.4.3a,b). For this problem, therefore, both 
the Galerkin and Ritz methods give the same solution for the same choice of 
approximation functions. 

In view of the rectangular geometry and clamped boundary conditions, the 
approximation functions lPij(X, y) can be expressed as a tensor product of the one
dimensional functions given in Eq. (5.3.37) or (5.3.42a): 

(5.4.5) 



ANALYSIS OF SPECIALLY ORTHOTROPIC PLATES 267 

where 

or 

(
X)i+l ( X)2 

Xi(X) = ~ 1 - ~ 

(y)j+l ( y) 2 
1j(y) = b 1 - b 

Xi (x) = sin .AiX - sinh .AiX + Cl:i (cosh .AiX - cos .AiX) 

Yj (y) = sin .AjY - sinh .AJY + Cl:J (cosh .AJY - cos .AJY) 

(5.4.6) 

(5.4.7) 

for i = 1,2,,'" m; j = 1,2"", n. The parameters .Ai and Cl:i are defined in Eq. 
(5.3.43) and (5.3.44), respectively. 

Substituting Eq. (5.4.4), with ipij given by Eq. (5.4.5), and 

into Eq. (5.4.1), we obtain 

m n 

bwo = L L bcpqippq 
p q 

O=LL LLCij r Dlld:2Yj~Yq+4D66dddd rn n {rn n lnb a [ d2 Xi d2 Xp dXi dYj dXp dYq 

p q i j 0 Jo X X X Y X Y 

( 
d21j d2 Xp d2 Xi d2Yq ) 

+ D12 Xi dy2 dX2 Yq + dX2 YjXp dy2 

d2 y d2y] 
+ D22 X i----fXp d 2

q 
dxdy 

dy y 

-lb la 

qXpYq dXdY}bcpq (5.4.8a) 

Since the statement should hold for any arbitrary variations bcpq , the expression 
inside the curly bracket should be zero for all p, q = 1,2, .. -: 

-~~{lbia[ d
2

X iy d
2
Xpv D dXidYjdXpdYq 

O-~~ D ll-- '--L,+4 66-------
. . o. 0 dX2 J dx2 q dx dy dx dy 
t J 

( 
d2y d2 X d2 X d2y ) 

+ D12 Xi dyi dx2P Yq + dX2 t Yj Xp dy2
q 

d
2
Yj d

2
y q ] } 

+ D22 X i dy2 Xp dy2 dxdy Cij 

-lb la 

qXpYq dxdy (5.4.8b) 

Equation (5.4.8b) represents m x n algebraic equations among the coefficients 
Cij. Note that all integrals in (5.4.8b) are line integrals, and they involve evaluating 
five different integrals 
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(5.4.9a) 

As an example we consider the algebraic functions in (5.4.6) with m = n = 1 
and q = qo (uniformly distributed load). The integrals in Eq. (5.4.9a) for this case 
are given by 

foa Xl dx = 3aO' r XIXI dx = ~, fa dXI dXI dx = _2_ 
Jo Jo 630 Jo dx dx 105a 

fa d2 X I 2 fa d2 X I d2 X I 4 
Jo Xl dx2 dx = -105a' Jo dx2 dx2 dx = 5a3 

(5.4.9b) 

Substituting the integral values into (5.4.8b), we obtain 

0= [(5~3) (6~0) Dll + 4D66 (1~5a) (1~5b) + 2Dl2 ( - 1025a ) ( -1~5b) 
+ (6~0) (5~3) D22] Cll - (3~) (;0) qo 

or 

(5.4.10) 

and the one-parameter solution becomes 

4 [ 2] 2 [ 2] 2 

(
49) qoa ~ - (~) t - (t) 

Wll(x,y) = -
8 7Dll + 4(D12 + 2D66)s2 + 7D22S4 

(5.4.11) 

where s = alb denotes the plate aspect ratio. The maximum deflection occurs at 
x = a/2 and y = b/2: 

a b qoa4 

Wll ( -, -) = 0.00342--------=..:.-------
2 2 Dll + 0.5714(DI2 + 2D66)s2 + D22S4 

(5.4.12) 

The algebra involved in evaluating the integrals in Eq. (5.4.9a) is quite tedious 
for the choice of approximation functions in (5.4.7). An algebraic manipulator (e.g., 
Maple or Mathematica) may be used to evaluate them. For m = n = 1, the 
functions in (5.4.7) are given by 

4.73x . 4.73x (4. 73x 4. 73X) 
XI(x) = sin -- - smh -- + 1.0178 cosh -- - cos--

a a a a 
4.73y 4.73y (4.73Y 4.73Y ) 

YI (y) = sin -b- - sinh -b-- + 1.0178 cosh -b- - cos -b- (5.4.13a) 

and substitution into (5.4.9b) gives 

lo
a loa loa dXI dXI dx __ 12.7442 

O 
Xl dx = 0.84555a, 0 XIX! dx = 1.035966a, 

o dx dx a 
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f a

xI 
d

2 Xl dx = _ 12.7442 
~ dx 2 a 

fa d2 Xl d2 Xl dx = 518.531348 
, Jo dx2 dx2 a3 

(5.4.13b) 

Then Eq. (5.4.8b) becomes 

[
537.181b 324.829 537.181a ] 

a3 Dll + ab (D12 + 2D66 ) + b3 D22 cu = 0.715qoab (5.4.14) 

The maximum deflection is given by (XI(aI2) = YI(bI2) = 1.6164) 

(5.4.15) 

where s = alb denotes the plate aspect ratio. For an isotropic square plate 
(alb = 1, Dll = D22 = Dl2 + 2D66 = D), the maximum deflection (5.4.15) becomes 

whereas Eq. (5.4.12) gives 

The "exact" solution (see Timoshenko and Woinowsky-Krieger [6]) is 

5.4.3 Approximation Functions for Other Boundary Conditions 

Here we discuss the approximation functions 'Pij = Xi(x)Yj(y) required in the Ritz 
approximation (5.4.4) of specially orthotropic rectangular plates with a variety of 
boundary conditions (see Hearman [8]). The choice is restricted to the products of 
eigenfunctions (see Table 4.2.3) of beams with corresponding boundary conditions. 

Clamped at x = 0, a and simply supported at y = 0, b 

where .Ai are the roots of the characteristic equation 

and 
sinh .Aia - sin .Aia 

CXi= 
cosh .Aia - cos .Aia 

(5.4.16a) 

(5.4.16b) 

(5.4.16c) 
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Clamped at x = 0, free at x = a, and simply supported at y = 0, b 

(5.4.17a) 

where Ai are the roots of the characteristic equation 

(5.4.17b) 

and 

(5.4.17c) 

Free at x = 0, a and simply supported at y = 0, b 

(5.4.18a) 

where Ai are the roots of the characteristic equation 

(5.4.18b) 

and 

(5.4.18c) 

Simply supported at x = ° and y = 0, b, and clamped at x = a 

(5.4.19a) 

where Ai are the roots of the characteristic equation 

(5.4.19b) 

Simply supported at x = ° and y = 0, b, and free at x = a 

(5.4.20a) 

where Ai are the roots of the characteristic equation 

(5.4.20b) 
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Clamped at x = 0, and free at x = a and Y = 0, b 

Xi (x) = sin AiX - sinh AiX + CXi (cosh AiX - cos AiX) 

lj(y) =sinfLjY + sinh/LjY - (3·i (coshfLjY + COSfLjY) 

where Ai and fLj are the roots of the characteristic equations 

and 

(5.4.21a) 

(5.4.21b) 

(5.4.21c) 

Clamped at x = 0, simply supported at Y = 0, and free at x = a and Y = b 

Xi (x) = sin AiX - sinh AiX + (ti (cosh AiX - cos AiX) 

lj(y) =sinhfLjb sinfLjY - sinfLjb sinh/LjY 

where Ai and fLj are the roots of the characteristic equations 

and 
sinh Aia + sin Aia 

Qi= 
cosh Aia + cos Aia 

(5.4.22a) 

(5.4.22b) 

(5.4.22c) 

Similarly, one can construct the approximation functions for any combination of 
fixed, hinged, and free boundary conditions on the four edges of a rectangular plate. 
Of course, the most difficult part is to evaluate the integrals of these functions as 
required in Eq. (5.4.8b). One may use a symbolic manipulator, such as Mathematica 
or Maple, to evaluate the integrals. When general laminated plates are considered, 
products of the beam eigenfunctions can still be used for the approximation of the 
transverse deflection with appropriate functions for the in-plane displacements. In 
general, the Ritz method for general rectangular laminates with arbitrary boundary 
conditions is algebraically more complicated than a numerical method, such as the 
finite element method. 

5.5 Buckling of Simply Supported Plates Under 
Compressive Loads 

5.5.1 Governing Equations 

When a plate is subjected to in-plane compressive forces, Nxx < 0, Nyy < 0, and 

NXY = 0, and if the forces are sufficiently small, the equilibrium of the plate is stable 
(see Figure 5.5.1). The plate remains flat until a certain load is reached. At that 
load, called the buckling load, the stable state of the plate is disturbed and the plate 
seeks an alternative equilibrium configuration accompanied by a change in the load
deflection behavior. The phenomenon of changing the equilibrium configuration at 
the same load and without drastic changes in deformation is termed bifurcation. 
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The load-deflection curve for buckled plates is often bilinear. The magnitude of the 
buckling load depends, as will be shown shortly, on geometry, material properties, 
as well as on the buckling mode shape. Here we determine the critical buckling 
loads of simply supported specially orthotropic plates using the N avier method. 

For the buckling analysis, we assume that the only applied loads are the in-plane 
forces and all other mechanical and thermal loads are zero. Since the pre buckling 
deformation Wo is that of an equilibrium configuration, it satisfies the equilibrium 
equations, and the equation governing buckling deflection w3 is given by (see Section 
4.2.3) 

84w3 i:)4w3 84w3 A 82w3 A 82w3 
Dn 8x4 + 2 (D12 + 2D66) 8x28y2 + D22 8y4 = Nxx 8x2 + N yy 8y2 (5.5.1) 

For simplicity, we will omit the superscript "b" on buckling deflection w3. We wish 
to determine a nonzero deflection Wo that satisfies Eq. (5.5.1) when the in-plane 
forces are 

N
A 

I\T N
A 

k I\T k = ~yy xx = -lVQ, yy = - iVQ, " 

Nxx 

(5.5.2) 

and the edges are simply supported. 

5.5.2 The Navier Solution 

As in the case of bending, we select an expansion for Wo that satisfies the boundary 
conditions in Eq. (5.2.2) 

Wo (x, y) = W mn sin ax sin {3y 

Substituting Eq. (5.5.3) into Eq. (5.5.1), we obtain (for any m and n) 

o ={ - [Dna4 + 2(D12 + 2D66)a2{32 + D22{34] + (a2 + k(32)No} 

x W mn sin ax sin {3y 

------
I Y Lx 1 
+ b t 
+ a t 
-"-~~~~~A 

N,0 t t t t t t t t t t t t j N
xy 

yy 

(5.5.3) 

(5.5.4) 

Figure 5.5.1: Buckling of a plate under in-plane compressive edge forces (Nxx = 
o A 0 

-Nxx, N yy = -Nyy ). 
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Since the equation must hold for every point (x, y) of the domain for nontrivial Wo 
(i.e., Wmn t- 0), the expression inside the curl brackets should be zero for every m 
and n. This yields 

where 
m7r 

a=-, 
a 

f3 = n7r 
b 

(5.5.5a) 

(5.5.5b) 

Thus, for each choice of m and n there corresponds a unique value of No. The 
critical buckling load is the smallest of No (m, n). For a given laminate this value 
is dictated by a particular combination of the values of m and n. We investigate 
critical buckling loads of various laminates next. 

5.5.3 Biaxial Compression of a Square Laminate (k = 1) 

For a square laminate subjected to the same magnitude of compressive load on both 
edges (i.e., biaxial compression with k = 1), Eq. (5.5.5a) yields 

7I.T ( ) = (7r2
) [Du m4 + 2(D12 + 2D66)m2n2 + D22n4] 

iVo m, n 2 2 2 
a m +n 

(5.5.6) 

Now suppose that Dll ::::: D22 . Then Dum2 increases more rapidly than the decrease 
in D22/m2 with an increase of m. Thus, the minimum of No occurs when m = 1: 

(5.5.7) 

The buckling load is a minimum when n is the nearest integer to the real number R 

Du D12 + 2D66 
R2 = -1 + VI + Ml - 2M2 , Ml = D

22
' M2 = D22 (5.5.8) 

For example, for modulus ratios of Ml = 10 and M2 = 1, we obtain R = J2 or 
n = 1. Hence, the critical buckling load becomes 

(5.5.9) 

For modulus ratios of Ml = 12 and M2 = 1, we obtain R = 1.52 or n = 2, and the 
critical buckling load becomes 

(5.5.10) 

For an isotropic (Dll = D22 = D, D12 = vD, and 2D66 = (1 - v)D) square 
plate under biaxial compression, the buckling can be calculated from Eq. (5.5.6): 

(5.5.11) 
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and the critical buckling load occurs at m = n = I, and it is equal to 

(5.5.12) 

5.5.4 Biaxial Loading of a Square Laminate 

When the edges x = 0, a are subjected to compressive load Nxx = -No and the 
edges y = 0, b are subjected to tensile load Nyy = kNo, Eq. (5.5.5a) becomes 

(5.5.13) 

for n 2 < m 2 jk. For example, when k = 0.5, the minimum buckling load occurs at 
m = 1 and n = 1. For the isotropic material properties used in Section 5.5.3, we 
have 

(5.5.14) 

5.5.5 Uniaxial Compression of a Rectangular Laminate (k = 0) 

When k = 0 (Nyy = 0), we have 

a
2 

[ (m7r)4 (m7r)2 (n7r)2 (n7r)4] No(m, n) = m2 7r2 Dl1 ----;;: + 2(D12 + 2D66 ) ----;;: b + D22 b 

7r 4 2 2 4 a 2 [ (b) 2 ( ) 2] = m 2b2 Dl1m ~ + 2(D12 + 2D66)m n + D22n b (5.5.15) 

An examination of the expression in Eq. (5.5.15) shows that the smallest value of 
No, for any m, occurs for n = 1: 

iVO m 1 - -- m -- - + 2 + - -7\T ( ) _ 7r
2
D22 [ 2Dl1 (b)2 (D12 + 2D66 ) 1 (a)2] 

, b2 D22 a D22 m 2 b 
(5.5.16) 

The critical buckling load is then determined by finding the minimum of No = No(m) 
in Eq. (5.5.16) with respect to m. We have 

dNo 
-=0 
dm 

. 4 D22 (a)4 
gIves m = Dl1 b (5.5.17) 

The second derivative of No with respect to m can be shown to be positive. Since 
the value of m from Eq. (5.5.17) is not always an integer, the minimum buckling 
load cannot be predicted by substituting the value of m from Eq. (5.5.17) into Eq. 
(5.5.16). The minimum value of No is given by Eq. (5.5.16) when m is the nearest 
integer value given by Eq. (5.5.17). Since the value ofm depends on the ratio of the 



ANALYSIS OF SPECIALLY ORTHOTROPIC PLATES 275 

principal bending stiffnesses as well as plate aspect ratio, we must investigate the 
variation of No with aspect ratio alb for different values of m for a given laminate. 

As an example, consider a laminate with D1l1 D22 = 10 and alb = 1. 778. Then 
we have 

with 

7['2D [ (b)2 1 (a)2] No(m) = T 10m
2 ~ +2+ m 2 b 

m 4 = D22 (5:)4 = 0.1 X (1.778)4 = 0.9994 ~ 1 
Dll b 

In fact, for aspect ratios (alb) less than 2.66, we have 

m 4 = D22 (5:)4 = 0.1 X (2.66)4 or m = 1.496 
Dll b 

(5.5.18a) 

(5.5.18b) 

(5.5.19) 

Thus the closest integer is m = 1. The critical buckling load of a laminate with 

is given by 

_ 2 [ ( b) 2 ( a) 2] D22 Ncr = N o(l, 1) = 7[' 10 ~ + 2 + b b'2 

For various aspect ratios, we have 

a 
- = 1· b . 

a 
- = 2' b . 

7['2 D22 
Ncr = 13----z;2 ; 

7['2 D22 
Ncr = 8.5----z;2 ; 

a 
- = 1.5 : 
b 

a 
- = 2.5: 
b 

7['2 D22 
Ncr = 8.69-

b
-
2 

-

7['2 D22 
Ncr = 9.85----z;2 

(5.5.20) 

(5.5.21) 

It can be shown that if the laminate aspect ratio alb is greater than 2.66 but 
less than 4.44, the buckling load is the minimum for n = 1 and m = 2 [using Eq. 
(5.5.17)]. For example, for alb = 3, we have from Eq. (5.5.21) 

109 7['2 D22 7['2 D22 
No(l, 1) = 9-b-2 - ~ 12.11----z;2 

3137['2 D22 7['2 D22 
No(1,2) = 36 ----z;2 ~ 8.69----z;2 = Ncr 

7['2 D22 
No(1,3) = 13----z;2 

Thus, for aspect ratios between 2.66 and 4.44, the plate buckles into two half
waves in the x-direction (and one half-wave in the y-direction). Thus larger 
aspect ratios lead to higher modes of buckling. Figure 5.5.2 contains a plot of the 
nondimensionalized buckling load No = N ob2 I ( 7['2 D 22 ) versus plate aspect ratio a I b 
for laminates whose material properties are D111 D22 = 10, (D12 +2D66 ) = D 22 . For 
aspect ratios less than 2.5, the plate buckles into a single half-wave in the x-direction 
(see Figure 5.5.3). As the aspect ratio increases, the plate buckles into more and 
more half-waves in the x-direction. Note that intersections of two consecutive modes 
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correspond to certain aspect ratios (see Figure 5.5.3). Thus, for each of these aspect 
ratios, there are two possible buckled mode shapes. The No versus a/b curve gets 
flatter with the increasing aspect ratio, and it approaches the value 

(5.5.22) 

which is obtained from Eq. (5.5.16) after substituting for m 2 from Eq. (5.5.17). For 
the data in Eq. (5.5.20), this limiting value of the critical buckling load is 

(5.5.23) 

For a square isotropic plate (Dll = D22 = D, D12 = I/D, and 2D66 = (1-I/)D), we 
have m = 1 [from Eq. (5.5.17)], and the critical buckling load from Eq. (5.5.16) is 

(5.5.24) 

Table 5.5.1 shows the effect of plate aspect ratio and modulus ratio (anisotropy) 
on the critical buckling loads N = N ob2/(Jr2D22) of rectangular laminates (0/90)8 
under uniform compression (k = 0) and biaxial compression (k = 1). In all cases 
the critical buckling mode is (m, n) = (1,1), except for a/b = 0.5 and k = 1, for 
which case the modes are (1,1), (1,2), (1,2), (1,2), and (1,3) for modulus ratios 5, 
10, 20, 25, and 40, respectively. The nondimensionalized buckling load increases as 
the modulus ratio increases. 

Table 5.5.1: Effect of plate aspect ratio and modulus ratio on the 
nondimensionalized buckling loads N of rectangular laminates 
(0/90)8 under uniform compression (k = 0) and biaxial compression 
(k = 1) (Ed E2 varied, G 12 = G13 = 0.5E2, G 23 = 0.2E2 , 1/12 = 
0.25; all layers of equal thickness). 

k a El =5 10 20 25 40 b E2 

0.5 13.900 18.126 21.878 22.874 24.590 
0 1.0 5.650 6.347 6.961 7.124 7.404 

1.5 5.233 5.277 5.310 5.318 5.332 

0.5 11.120 12.694 13.922 14.248 14.766 
1.0 2.825 3.174 3.481 3.562 3.702 
1.5 1.610 1.624 1.634 1.636 1.641 

Figure 5.5.4 shows plots of nondimensionalized critical buckling load N 
N ob2 / (Jr2 D22) as a function of the plate aspect ratio, a/b, for two different materials: 

Material 1: E1 = 25E2, G12 = G13 = 0.5E2, 1/12 = 0.25 
Material 2: E1 = 40E2, G12 = G13 = 0.6E2, 1/12 = 0.25 

There is a mode change around a/b > 2.2 from (1,1) to (1,2). 
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Figure 5.5.4: Nondimensionalized uniaxial critical buckling load (N) versus plate 
aspect ratio (a/b) of symmetric cross-ply laminate (0/90)05 for two 
different modular ratios. 

5.6 Buckling of Rectangular Plates Under 
In-Plane Shear Load 

5.6.1 Governing Equation 

In this section we consider buckling of specially orthotropic rectangular plates 
under in-plane shear load, Ngy- The problem does not permit the Navier solution; 

therefore, we use a variational method to solve the problem. When Nxx = Nyy = 0 
and Nxy = Ngy (see Figure 5.5.1), the governing equation (5.5.1) takes the form 

a4wo a4wo a4wo 0 a2wo 
D1l-a 4 + 2 (D12 + 2D66) a 2a 2 + D 22 -a 4 = 2Nxy -a a (5.6.1) 

x x y y x y 

5.6.2 Simply Supported Plates 

When the plate is simply supported on all its edges and subjected to in-plane shear, 
the Navier solution does not exist because the cross derivative term involving Ngy 
will have a different coefficient (cos ax cos (3y) than the rest of the expression in Eq. 
(5.6.1). Hence, we will seek the solution by a variational method. 

Since the expression given in Eq. (5.5.3) for Wo satisfies the geometric boundary 
conditions of the problem, the same functions are admissible in the Ritz method: 

N M 

wo(x,y) ~ WMN = L L Cmn sinax sin{3y (5.6.2) 
n=l m=l 
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where 0: = m7r I a and (3 = n7r lb. Since the approximation functions 

. m7rX . n7ry 
ipmn (x, y) = sm -a- SIn -b- (5.6.3) 

also satisfy the natural boundary conditions of the problem, the Ritz and Galerkin 
solutions are the same. Thus, substitution of Eq. (5.6.2) in the total potential 
energy functional for the Ritz method 

1 b a fpwo fpwo fpwo 82wo 
( )2 ( )2 

II ( wo) = "2 10 10 [Dll 8x2 + 2D12 8X2 8y2 + 4D66 8x8y 

8 Wo 0 8wo 8wo 
( 

2 ) 2 

+ D22 8y2 - 2N;cy (8x 8y)] dxdy (5.6.4) 

or the weighted-integral statement for the Galerkin method 

rb ra 
[ 84wo 84wo 84wo 0 82wo] 

0=.10 10 Dll 8x4 + 2 (D12 + 2D66 ) 8x28y2 + D22 8y4 - 2Nxy 8x8y ippq dxdy 

(5.6.5) 
would lead to the same equations for the coefficients cmn . Using the Galerkin 
method, we obtain 

N M b a{ 
o = ~ T~l 10 10 [ Dll 0: 

4 + (D12 + 2D66 ) 0:
2 

(32 + D22(34] ipmn 

-20:(3N~y cos o:x cos (3Y}Cmnippq dxdy 

Using the identities 

we arrive at 

lo
a . m7rX 
sm--

o a { 

0, m i=- n n7rX 
sin-- dx = 

a a 
2' m=n 

j. " \ d __ [cos('\ - fL)X cos(,\ + fL)X] 
sm /\X cos fLx x - (,\ _ fL) + (,\ + fL) 

(5.6.6) 

(5.6.7) 

ab [ (P7r)4 (P7r)2 (q7r)2 (q7r)4] 0=4 Dll --;;: + (D12 + 2D66 ) --;;: b + D22 b Cpq 

(5.6.8a) 

where 

lo
b loa m7rX n7ry p7rX q7ry 

S(mn)(pq) = cos -- COS -- sin -- sin -b- dxdy 
o 0 a b a 

(
4ab) pq 2 2 2 2 

= -2 (2 2)( 2 2) for P i=- m and q i=- n 7r P -m q-n 
(7.6.8b) 
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and the coefficients are zero when p = m, p ± m even, or when q = n, q ± n even. 
The set of mn homogeneous equations (5.6.8a) define an eigenvalue problem 

(5.6.9) 

which has a nontrivial solution (i.e., Cmn =1= 0) when the determinant of the coefficient 
matrix is zero. Note that [AJ is a diagonal matrix while [SJ is a nonpositive-definite 
matrix; hence, the solution of (5.6.9) requires an eigenvalue routine that is suitable 
for nonpositive-definite matrices. It is found that the solution of (5.6.9) converges 
very slowly with increasing values of M and N (see [3,7]). 

5.6.3 Clamped Plates 

The total potential energy expression for the clamped rectangular plate under in
plane shear load N~y is 

(5.6.10a) 

The minimum total potential energy principle requires that bTl = O. We have 

We assume a Ritz approximation of the form 

where 

with 

or 

m n 

wo(x, y) ~ Wmn(x, y) = L L Cij !.pij(X, y) 
i=1 j=1 

(
X)i+1 (X)2 (y)J+1 ( y)2 Xi(X) = ~ 1 - ~ ,Yj(y) = b 1 - b 

Xi (x) = sin AiX - sinh AiX + CXi (cosh AiX - cos AiX) 

Yj (y) = sin AjY - sinh AjY + O:j (cosh AjY - cos AjY) 

(5.6.10b) 

(5.6.11a) 

(5.6.11b) 

(5.6.12) 

(5.6.13) 
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for i = 1,2,···, m; j = 1,2,···, n. The parameters Ai and CYi of Eq. (5.6.13) are 
defined in Eq. (5.3.45) and (5.3.46), respectively. Substituting Eq. (5.6.11) into Eq. 
(5.6.10b) we obtain 

When functions in Eq. (5.6.13) are used, at least two terms should be used 
because the coefficient of N~y is zero for m = n = 1; other coefficients are zero for 
m = 1, n = 2 and m = 2, n = 1. Using the approximation 

(5.6.15a) 

with [see Eq. (5.3.47)] 

4.73x 4.73x (4.73X 4.73X) Xl (x) = sin -- - sinh -- + 1.0178 cosh -- - cos --
a a a a 

7.853x 7.853x (7.853X 7.853X) X2(X) = sin - sinh + 0.9992 cosh - cos ---
a a a a 

4.73y 4.73y (4.73Y 4.73Y ) 
Y1(y) = sin -b- - sinh -b- + 1.0178 cosh -b- - cos -b-

7.853y 7.853y (7.853Y 7.853Y ) 
Y2(y) =sin -b- - sinh -b- + 0.9992 cosh -b- - cos -b-

(5.6.15b) 

we obtain 

[
537.181b 324.829 537.181a ] 0 

a3 Dll + ab (D12 + 2D66 ) + b3 D22 Cll - 23.107 NxyC22 = 0 

[
3791.532b 4227.255 3791.532a ] 0 

a3 D ll + ab (D12 + 2D66) + b3 D22 C22-23.107NxyCll=0 

or in matrix form 

where 

537.181 324.829 537.181 
all = a4 Dll + a2b2 (D12 + 2D66 ) + b4 Dn, 

(5.6.16a) 

23.107 
a12 =-

ab 

3791.532 D 4227.255 ( ) 3791.532 
a22 = a4 11 + a2b2 D12 + 2D66 + b4 D22 (5.6.16b) 
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For a nontrivial solution, the determinant of the coefficient matrix should be zero, 
aUa22 - a12a12(N~y)2 = O. Solving for the buckling load N~y, we obtain 

(5.6.17) 

The ± sign indicates that the shear buckling load may be either positive or negative. 
For an isotropic square plate, we have a = band Du = D22 = (D12 + 2D66) = D, 

and the shear buckling load predicted by Eq. (5.6.17) is 

(5.6.18) 

whereas the "exact" critical buckling load is 

(5.6.19) 

The two-term Ritz solution (5.6.18) is over 21% in error. 
This concludes the discussion of shear buckling of rectangular plates. The 

variational solutions presented here for buckling under in-plane shear are only for 
illustrative purposes. More than two-term variational approximations are required 
to obtain accurate buckling loads. Once again, a symbolic manipulator proves to be 
effective in evaluating the integrals in the variational methods. 

5.7 Vibration of Simply Supported Plates 
5.7.1 Governing Equations 

For natural vibration, all applied loads and the in-plane forces are set to zero in Eq. 
(5.1.1) 

(5.7.1a) 

where 
L L 

fo = L P6k) (Zk+l - Zk), h = ~ L P6k) (Zr+l - zr) 
k=l k=l 

(5.7.1b) 

where L denotes the total number of layers in the laminate. 

5.7.2 Solution 

We assume a periodic solution of the form 

(5.7.2) 
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where'i = A and w is the frequency of natural vibration. Substituting (5.7.2) in 
(5.7.1a), we obtain (for any m and n) 

{DUa4 + 2(D12 + 2D66)a2(32 + D22(34 - w2 [fo + (a2 + (32) h]} 
X Wrnn sin ax sin (3y = 0 (5.7.3) 

Since the equation must hold for every point (x, y) of the domain 0 < x < a and 
o < y < b, the expression inside the braces should be zero for every m and n. This 
yields 

(5.7.4) 

where 

io = fo + h [ c:~) 2 + (nb~) 2] (5.7.5) 

For different values of m and n there corresponds a unique frequency Wrnn and a 
corresponding mode shape 

o . m~x . n~y 
wo(x,y) = Wrnnsm-

a
- sm-

b
- (5.7.6) 

where W~,n is the amplitude of the vibration mode (m, n). For square laminates, 
Eq. (5.7.4) reduces to 

(5.7.7) 

When the rotatory inertia h is not zero, it is not simple to find the lowest natural 
frequency (fundamental frequency). The rotary inertia has the effect of reducing 
the frequency for any m and n. 

When the rotary inertia h is neglected, the frequency of a rectangular specially 
orthotropic laminate reduces to 

(5.7.8) 

and for a square plate we have 

4 

W;'n = f:b4 [Dum4 + 2(D12 + 2D66)m2n2 + D22n4] (5.7.9) 

The fundamental frequency occurs at m = n = 1: 

(5.7.10) 
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For a rectangular isotropic plate, when the rotary inertia is neglected, the 
frequency equation (5.7.8) becomes 

(5.7.11) 

and the fundamental frequency is given by 

(5.7.12) 

Nondimensionalized frequencies, wmn = W mn (b2 /7[2) V phi D22 , of specially 
orthotropic square laminates are presented in Table 5.7.1 for modulus ratios 
Ed E2 = 10,20 (G 12 = G13 = 0.5E2, G23 = 0.2E2, V12 = 0.25). The results 
presented in Table 5.7.1 are for m, n = 1,2,3, and for the case in which the 
rotary inertia is neglected. The first four frequencies for an orthotropic (00

) 

plate correspond to the modes, (m, n)=(l,l), (1,2), (1,3), and (2,1), whereas for 
symmetric cross-ply plates the first four frequencies are provided by the modes: 
(m, n)=(l,l), (1,2), (2,1), and (1,3). Table 5.7.2 contains nondimensionalized 
fundamental frequencies of symmetric (0/90)8 laminates for various aspect ratios 
and modulus ratios. The fundamental frequency increases with modular ratio. The 
effect of including rotary inertia is to decrease the frequency of vibration, and the 
effect is negligible for this case. Figure 5.7.1 shows a plot of nondimensionalized 
fundamental frequency Wl1 as a function of plate aspect ratio for symmetric (0/90)8 
graphite-epoxy laminate (Ed E2 = 40, G12 = G13 = 0.5E2, V12 = 0.25). 

Table 5.1.1: Nondimensionalized fundamental frequencies of symmetric cross
ply laminates according to the classical plate theory (wmn = 
W mn (b2 /7[2) V phi D22). 

m n 0° W /90°)5 

1 1 3.672 2.519 
1 2 5.996 4.986 
1 3 10.648 9.783 
2 1 13.075 8.515 

10 2 2 14.690 10.077 
2 3 18.181 13.783 
3 1 28.868 18.704 
3 2 30.258 19.911 
3 3 33.053 22.674 

1 1 4.847 2.638 
1 2 6.781 4.917 
1 3 11.111 9.637 
2 1 18.193 9.354 

20 2 2 19.388 10.554 
2 3 22.153 13.826 
3 1 40.539 20.752 
3 2 41.542 21.578 
3 3 43.623 23.746 
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Figure 5.7.1: N ondimensionalized fundamental frequency Wll as a function of 
plate aspect ratio alb for symmetric (0/90)8 laminate. 

Table 5.7.2: N ondimensionalizcd fundamental frequencies LUll of symmetric 
cross-ply laminates (0/90)8 according to the classical plate theory. 

Without Rotary Inertia With Rotary Inertia 

alb E[ = 10 
E2 

20 30 40 10 20 30 

0.5 8.515 9.355 9.716 9.917 8.513 9.353 9.714 
1.0 2.519 2.638 2.691 2.721 2.519 2.638 2.691 
1.5 1.531 1.536 1.538 l.539 1.531 1.536 1.538 
2.0 1.246 1.229 1.221 1.216 1.246 1.229 1.221 
2.5 1.138 1.119 1.110 1.105 1.138 1.119 1.110 
3.0 1.087 1.071 1.063 1.059 1.087 1.071 1.063 

5.8 Buckling and Vibration of Plates with Two 
Parallel Edges Simply Supported 

5.S.1 Introduction 

40 

9.916 
2.721 
1.539 
1.216 
1.105 
1.059 

The Levy method can be used to determine natural frequencies and critical buckling 
loads of rectangular laminates for which two (parallel) opposite edges are simply 
supported and the other two edges have any boundary conditions, as described 
in Section 5.3 for bending analysis. For other combinations of fixed, hinged, and 
free boundary conditions on the edges of rectangular plates, one may use the Ritz 
method with the approximation functions suggested in Section 5.4.3. 
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Consider a rectangular laminate with in-plane dimensions a and b and total 
thickness h. The laminate coordinate system (x, y, z) is taken such that -a/2 ~ x ~ 
a/2, ° ~ y ~ b, -h/2 ~ z ~ h/2 (see Figure 5.8.1). Here we assume that the edges 
y = 0, b are simply supported, and the other two edges each have simply supported, 
clamped, or free boundary conditions. The equation governing buckling under in
plane normal forces and natural vibration of a specially orthotropic laminated plate 
is given by Eq. (5.1.1): 

(5.8.1) 

Recall that in the Levy method the partial differential equation (5.8.1) is reduced 
to an ordinary differential equation in x by assuming solution in the form of a single 
Fourier series 

wo(x,y) = Wn(x) sin{3y, {3 = nb
7r 

which satisfies the simply supported boundary conditions 

(5.8.2) 

(5.8.3) 

on edges y = 0, b. The ordinary differential equations obtained in the Levy method 
can be solved either by direct integration or by means of the state-space approach. 
We discuss both procedures in the following sections. 

y 

T 
b 

1 
simply supported 

edges 

·x 

Figure 5.8.1: Geometry and coordinate system of a rectangular plate used in the 
Levy method. 
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5.8.2 Buckling by Direct Integration 

Here we consider buckling under uniaxial compressive forces 

A A 0 
N xx = 0, N yy = -Nyy (5.8.4 ) 

Substituting (5.8.2) and (5.8.4) into the governing equation (5.8.1) with the inertia 
terms zero, for any y, we obtain 

We assume the general solution of Eq. (5.8.5) in the form 

where Ai are the roots of the characteristic equation 

and they are given by 

(AI)2 = ~:l [J (D12 + 2D66)2 + Dll (N8y - D22) + (D12 + 2D66 )] 

(A2)2 = ~:l [V(D12 + 2DGG)2 + Du (N8y - D22) - (D12 + 2D(6)] 

(5.8.5) 

(5.8.6) 

(5.8.7) 

(5.8.8) 

where N~y = N~y/ (32. The constants An, Bn, Cn, and Dn must be determined using 
the boundary conditions at x = 0, a. 

For clamped boundary conditions on edges x = 0, a, for example, we require 

Wn =0, 
dWn 
-=0 

dx 
(5.8.9) 

which yield the eigenvalue problem 

[ 1 ° 1 

o 1 gn~{D 0 Al ° A2 
cosh Ala sinh Ala cos A2a sin A2a 

Al sinh Ala Al cosh Ala -A2 sin A2a A2 cos A2a 

(5.8.10) 

For a nontrivial solution, An i- 0, Bn i- 0, Cn i- 0, and Dn i- 0, we set the 
determinant of the coefficient matrix in (5.8.10) to zero. We have [ef. Eq. (4.2.58)] 

(5.8.11) 

Since Al and A2 contain the buckling load N~y, Eq. (5.8.11) can be used, in theory, 
to determine the critical buckling load of the plate. However, the complexity of 
(5.8.11) makes it less useful in readily computing the buckling loads. 
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5.8.3 Vibration by Direct Integration 

Here we consider natural vibration of a specially orthotropic plate. For periodic 
motion, we assume that 

wo(x, y, t) = wo(x, y)eiwt (5.8.12) 

where i = A and w is the frequency of natural vibration. Then the amplitude 
of vibration Wo is approximated as in Eq. (5.8.2). Substituting (5.8.2) and (5.8.12) 
into the governing equation (5.8.1), with the in-plane forces zero, for any y and t we 
obtain 

or 

(5.8.14a) 

where 

Equation (5.8.14a) is of the same form as Eq. (4.2.44), and the procedure described 
in Section 4.2.4 can be used to determine the natural frequencies for various 
boundary conditions on edges x = 0, a. 

5.8.4 Buckling and Vibration by the State-Space Approach 

As explained in Section 5.3, the governing differential equation in (5.8.1) can be 
reduced, with Eq. (5.8.2), to a system of a first-order matrix differential equation 

{Z'} = [T]{Z} (5.8.15) 

where 

{Z} = { ~;} , [T] = [ ~ 
Will C 

m 1 

(5.8.16) 

(
4 2A) [2 A] f3 D22 - f3 N yy 2f3 (D12 + 2D66) - N xx 

C 1 = - ---'--------'---, C2 = -=--------------=-
D11 D11 

(5.8.17) 

for buckling analysis and 

(5.8.18) 

for free vibration analysis. Here Wm denotes the frequency of vibration of the mth 
mode, 10 = Io + {J2 I2 , and i = A. 
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The solution of Eq. (5.8.15) is given by 

Z(x) = eAxK (5.8.19) 

and the vector K of constants is to be determined from the boundary conditions. 
Substitution of Eq. (5.8.19) into the set of boundary conditions (expressed in terms 
of Zi) results in a homogeneous system of equations 

[M]{K} = {O} (5.8.20) 

For a nontrivial solution, the determinant of the coefficient matrix in (5.8.20) should 
be zero: 

(5.8.21) 

The roots of the above equation are the squares of the frequencies of natural 
vibration, or, in the case of buckling, they denote the buckling loads. 

The Levy type solution procedure is used to evaluate the natural frequencies 
and critical buckling loads under uniaxial compression of specially orthotropic 
rectangular laminates. The lamina material properties used are 

Numerical results for the nondimensionalized fundamental frequencies and critical 
buckling loads under uniaxial compression 

of square, symmetric, cross-ply laminates are presented in Table 5.8.1 for various 
ratios of principal moduli of the material. Note that the nondimensionalized 
frequencies and buckling loads are the same for any odd number of layers n = 
3,5,7"" (with the total thickness of all laminates being the same). Table 5.8.2 
contains numerical results for various boundary conditions (see [16]). As before, the 
notation SF, for example, is used to indicate that edge x = a/2 is simply supported 
(S) and edge x = -a/2 is free (F). 

Table 5.8.1: Nondimensionalized fundamental frequencies and critical buckling 
loads under uniaxial compression of simply supported symmetric 
cross-ply square plates as a function of the modulus ratio. 

Laminate ~=3 
E2 

10 20 30 40 

Fundamental Frequencies, W = W (a:) J p/ E2 

(0/90/0)n 7.5357 10.650 13.948 16.605 18.891 
(0/90/90/0) 7.5357 10.650 13.948 16.605 18.891 

Uniaxial Critical Buckling Loads, N = N~xb2 / E2h:3 

(0/90/0)" 5.754 11.492 19.712 27.936 36.160 

(0/90/90/0) 5.754 11.492 19.712 27.936 36.160 
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Table 5.8.2: Nondimensionalized fundamental frequencies and critical buckling 
loads under uniaxial compression of symmetric cross-ply (0° /90° /0°) 
square plates for various boundary conditions and modulus ratios. 

E J SS SC CC FF 
E2 

Fundamental Frequencies, W = W ( a:) J pi E2 

10 10.650 15.199 21.118 3.294 
20 13.948 20.610 29.166 3.721 
30 16.605 24.870 35.431 4.106 
40(1)* 18.891 28.501 40.743 4.457 
40(2) 26.938 34.533 45.233 17.827 
40(3) 46.208 51.192 59.023 40.113 

Biaxial Critical Buckling Loads, N = N$xb2 I E 2h 3 

10 5.746 9.353(2) 13.468(2) 1.123 
20 9.591(2)t 14.026(2) 21.709(3) 1.420 
30 12.147(2) 18.703(2) 28.081(3) 1.722 
40 14.704(2) 23.381(2) 34.454(3) 2.025 

* Denotes the mode number m. 
t Mode m in which the lowest buckling load occurs (otherwise, m = 1). 

5.9 Transient Analysis 
5.9.1 Preliminary Comments 

FS FC 

4.088 5.419 
4.443 6.515 
4.770 7.445 
5.076 8.269 

18.473 19.789 
40.761 41.505 

1.661 3.202 
1.978 4.683 
2.288 6.142 
2.596 7.595 

In this section we will develop transient solutions to specially orthotropic plates. 
Recall that in the static bending analysis of plates we developed the analytical 
solutions using the Navier method, the Levy method, and the Ritz method. The 
same methods can also be used to approximate the spatial variations of the transient 
solutions of plates. The resulting ordinary differential equations in time can be 
solved exactly when possible or numerically using a time-integration method. Here 
we consider simply supported plates to illustrate these ideas (see Reddy [21]). 

5.9.2 Spatial Variation of the Solution 

The equation of motion governing bending deflection Wo of a specially orthotropic 
plate, assuming no applied in-plane and thermal forces, is [see Eq. (5.1.1)] 

[ 
{)4WO {)4wo {)4wo] 

- D1l-a 4 + 2 (D12 + 2D66 ) () 2{) 2 + D22 -{) 4 + q(x, y, t) 
x x y y 

.. ({)2 WO ()2wo) = Iowo - h {)x2 + ()y2 (5.9.1) 

Suppose that the plate is simply supported with the boundary conditions 

Wo(x, 0, t) = 0, wo(x, b, t) = 0, wo(O, y, t) = 0, wo(a, y, t) = ° for t 2: ° 
Mxx(O, y, t) = 0, Mxx(a, y, t) = 0, Myy(x, 0, t) = 0, Myy(x, b, t) = ° for t 2: ° 

(5.9.2) 
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and assume that the initial conditions are 

awo 
wo(x, y, 0) = do(x, y), 75t(x, y, 0) = vo(x, y) for all x and y (5.9.3) 

where do and Vo are the initial displacement and velocity, respectively. 
We assume the following expansion of the transverse deflection to satisfy the 

boundary conditions (5.9.2) for any time t 2: 0 

00 00 

wo(x,y,t) = L L Wmn(t) sinoox sin(3y (5.9.4) 
n=l m=l 

where a = (m7f ja) and (3 = (n7f jb). Similarly, we assume that the transverse load, 
initial displacement, and initial velocity can be expanded as 

00 00 

q(x, y, t) = L L Qmn(t) sinoox sin(3y (5.9.5) 
n=lm=l 

00 00 

do(x, y) = L L Dmn smoox sin(3y (5.9.6) 
n=lm=l 

00 00 

vo(x, y) = L L Vmn smoox sin(3y (5.9.7) 
n=lm=l 

where, for example, Qmn are given by 

4 {b {a 
Qmn(t) = ab 10 10 q(x, y, t) sinoox sin(3y dxdy (5.9.8) 

Substituting the expansions (5.9.4) and (5.9.5) into Eq. (5.9.1), we obtain 

f f {Wmn [Dl1oo4 + 2(D12 + 2D66)oo2(32 + D22f34] 
n=l m=l 

Since the above expression must hold for all x and y, it follows that 

or 

where 

Wmn [Dlloo4 + 2(D12 + 2D66)oo2(32 + D22(34] 

+ [10 + 12 (002 + (32)] Wmn - Qmn = 0 

Kmn =Dl1 oo4 + 2(D12 + 2D66)oo2(32 + D 22 {34 

Mmn =10 + h (002 + (32) 

(5.9.9) 

(5.9.lOa) 

(5.9.10b) 

(5.9.lOc) 
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5.9.3 Time Integration 

The ordinary differential equation (5.9.10a) can be solved either exactly or 
numerically. The numerical time integration methods will be discussed in the 
subsequent chapters. To solve it exactly, we first write Eq. (.5.9.10a) in the form 

(5.9.11) 

The solution of Eq. (5.9.11) is given by 

Wmn(t) = C1e.\.l
t + C2 e.\.2

t + W~n(t) (5.9.12) 

where Cl and C2 are constants to be determined using the initial conditions, W~n(t) 
is the particular solution 

(5.9.13a) 

with rl(t) = e.\.lt and r2(t) = e.\.2 t , and Al and A2 are the roots of the equation 

\2 + Kmn = 0', \ . \ . . 111 V Kmn A Al = -2jL, A2 = 2jL, 2 = V -~, jL = --
Mmn Mmn 

(5.9.13b) 

The solution becomes 

Wmn(t) = A cos jLt + BsinjLt + W~n(t) (5.9.14a) 

(5.9.14b) 

Once the load distribution, both spatially and with time, is known, the solution can 
be determined from Eq. (5.9.14a). 

For a step loading, Qmn(t) = Q?nnH(t), where H(t) denotes the Heaviside step 
function, Eq. (5.9.14a) takes the form 

W mn (t) = A cos jLt + B sin jLt + _1_ Q~,n 
Kmn 

Using the initial conditions (5.9.3), we obtain 

Thus the final solution (5.9.4) is given by 

00 00 [ V; QO 1 wo(x, y, t) = L L Dmn cos jLt + mn sin jLt + K mn (1 - cos jLt) 
n=lm=1 jL mn 

(5.9.15a) 

(5.9.15b) 

sin ax sin (3y 

(5.9.16) 
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The coefficients Q~n are given in Table 5.2.1 for various types of distributions. The 
same holds for Drnn and Vrnn. 

It should be noted that the procedure outlined above is valid irrespective of 
how one arrives at Eq. (5.9.10b); e.g., Eq. (5.9.lOb) could have been obtained 
using the Ritz method or other methods. The exact solution of the differential 
equation (5.9.10b) can also be obtained using the Laplace transform method. Once 
the solution Wo is known, stresses can be computed using Eqs. (5.2.13). 

Figure 5.9.1 contains plots of the nondimensionalized center deflection w = 

wo(E2 h3 /a4 qo) as a function of time for a simply supported (88-1) symmetric cross
ply (0/90/0) laminate (hI = h3 = h/4, h2 = h/2; Ed E2 = 25, G 12 = G 13 = 0.5E2, 
VI2 = 0.25; a = b = 25 em, h = 5 em) under a step loading that is sinusoidally 
distributed (88L) or uniformly distributed (UDL) over the plate surface. It is 
assumed that the plate motion ensues from rest, i.e., do = 0 and Vo = O. The solution 
is plotted to show one complete wavelength. The dashed curve corresponds to the 
solution when the rotary inertia is neglected. The rotary inertia has the effect of 
increasing the wavelength slightly. Figure 5.9.2 contains plots of nondimensionalized 
center normal stress ijxx = O"xx(h2 /a 2qo) as a function oftime for the same laminates. 
Note that the stress variation for the uniformly distributed load case is not as smooth 
as for the sinusoidally distributed load case. 

5.10 Closure 

In this chapter analytical and Ritz solutions for bending, buckling, natural vibration, 
and transient response of specially orthotropic plates are presented. In most 
cases, the numerical determination of actual solutions require evaluation of a series 
solution, solution of a transcendental equation, or determination of eigenvalues (in 
the state-space approach). Thus, even the "exact" solutions become approximate 
because of the truncation of an infinite series or round-off errors in the solution of 
nonlinear equations. The analytical solutions developed herein serve to help one 
understand, at least qualitatively, the behavior of laminated plates. 

Problems 

5.1 Determine the displacement field of a simply supported plate strip under a concentrated (line) 
load Fo at the center using the Navier solution method. 

5.2 Derive the Navier solution of a simply supported rectangular plate under the following 
temperature distribution 

T(x, y, z) = To(x, y) + ZT1 (x. y) 

where To and Tl are known functions of x and y only, which can be expanded in double 
Fourier series in the same way as the mechanical loading q(x. y). 

5.3 Derive the expressions for transverse shear stresses from 3-D equilibrium equations when the 
plate is subjected to the temperature distribution of the form given in Problem 5.2. Assume 
that To and T1 can be expanded in double sine series. 

5.4 Determine the constants An, En, en, and Dn in the Levy solution (5.3.15) of a specially 
orthotropic rectangular plate with simply supported edges at y = 0, b and x = fL, and clamped 
at x = O. Assume uniformly distributed transverse load. 
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Figure 5.9.1: Nondimensionalized maximum transverse deflection (w) versus time 
for a simply supported symmetric cross-ply (0/90)8 laminate. 
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Figure 5.9.2: Nondimensionalized maximum normal stress (o-xx) versus time for 
a simply supported symmetric cross-ply (0/90)8 laminate. 
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5.5 Determine the constants An, En, Cn, and Dn in the Levy solution (5.3.15) of a specially 
orthotropic rectangular plate with simply supported edges at y = 0, b, clamped at x = 0, 
and free at :r = a. Assume uniformly distributed transverse load. The boundary conditions for 
t.he free edge are 

M = 0 V = Q. 8Jvlxy = 8Mxx 2 8Mxy = 0 
xx , x - x + 8 8 + 8 y x y 

These boundary conditions can be expressed in terms of the transverse deflection as 

5.6 Determine the constants An, En, Cn, and Dn in the Levy solution (5.3.15) of a specially 
orthotropic rectangular plate with simply supported edges at y = 0, b and x = a, and free 
at x = O. Assume uniformly distributed transverse load. 

5.7 Use the following one-parameter Ritz approximation to determine the deflection of a simply 
supported rectangular plate: 

wo(x, y) "" c1x(a - x)y(b - y) 

2 b2 
Ans: The parameter C1 is given by C1 = ~(ltRll with 

5.8 Show that the one-parameter Galerkin solution with the algebraic functions in Eq. (5.4.6) is 
also given by Eq. (5.4.11). 

5.9 Use one-parameter Ritz approximation of the form 

Wo (x, y) "" Cll (1 - cos 2:X) (1 _ cos 2~Y) 

to determine the deflection of a rectangular plate with clamped edges and subjected to uniformly 
distributed transverse load. 

5.10 Verify the result in Eq. (5.4.14). 

5.11 Verify the result in Eq. (5.6.16). 

5.12 Determine the critical buckling load of a rectangular orthotropic plate simply supported on 
edges y = 0, b and clamped on edges x = 0, a using the one-parameter Ritz approximation of 
the form 

() ( 271'X) . n71'y 
Wo x, Y = Cll 1 - cos a sin -b-

5.13 Determine the critical buckling load of a rectangular orthotropic plate simply supported on edges 
Y = 0, b and x = 0, and clamped on edge x = a using the one-parameter Ritz approximation of 
the form 

(X) ( x ) 2 . rmy 
WO(·T, y) = Cll a 1 - a sm -b-

5.14 Determine the transient response of simply supported specially orthotropic plate under 
transverse loading (a) q(x,y,t) = qoH(t-to) and (b) q(x,y,t) = qo8(t-to), where H(t) denotes 
the Heaviside step function and 8(t) is the Dirac delta function. 

5.15 Solve Eq. (5.9.10) using the Laplace transform method. 
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6 

Analytical Solutions of Rectangular 
Laminated Plates Using CLPT 

6.1 Governing Equations in Terms of Displacements 

In this chapter analytical solutions of antisymmetric cross-ply and angle-ply 
laminated plates based on the classical laminated plate theory (CLPT) are 
developed. The Navier method, the Levy method with the state-space approach, 
and the Ritz method are used, depending on the boundary conditions. In all 
cases considered in this chapter, the von Karman nonlinear terms in the strain
displacement relations are omitted. Before we begin with the derivation of the exact 
solutions, it is useful to express the governing equations in terms of the generalized 
displacements of the theory. 

The linear equations of motion of the classical laminated plate theory (CLPT) 
can be obtained from Eqs. (3.3.45)-(3.3.47) by setting the nonlinear terms to zero: 

(6.1.1) 

(6.1.2) 
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(6.1.3) 

where NT and MT denote thermal resultants defined in Eq. (3.3.41), and Nxx , Nxy , 
and Nyy denote the applied edge forces (see Figure 6.1.1). 

Equations (6.1.1)-(6.1.3) can be cast in differential operator form as1 

° m13] {UO
} {a} {l[} 

m23 ?o = ° + f~ 
m33 Wo q h 

where coefficients Cij are defined by 

C11 = A 11 d; + 2A16dxdy + A66d~ 
C12 = A 16d; + (A12 + A66)dxdy + A26d~ 
C13 = - [Bl1d~ + 3B16d;dy + (B12 + 2B66)dxd~ + B26d~] 
C22 = A66d; + 2A26dxdy + A22d~ 
C23 = - [B16d~ + (B12 + 2B66)d;dy + 3B26dxd~ + B22d~] 
C33 = D11d~ + 4D16d~dy + 2(D12 + 2D66)d;d~ + 4D26dxd~ + D22d~ 

[ , 2' '2] - Nxxdx + 2Nxydxdy + Nyydy 

(6.1.4) 

(6.1.5a) 

Figure 6.1.1: A plate with applied edge forces (Nxx = -Ngx, Nyy = -NEy). 

1 In order to make the coefficient matrices [C] and [M] symmetric, the third equation is 
multiplied with a negative sign. 
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coefficients mij and iT are defined by 

(6.1.5b) 

(6.1.5c) 

and d~, d1, and d~ denote the differential operators 

. fJi . [Ji di = ~ 
d~ = axi ' d~ = ayi' t ati (i = 1,2,3,4) (6.1.5d) 

Note that the thermal forces and moments, (NIx, N(;y, N'Iy) and (MIx, M(;y, MJ;;), 
are known in terms of the temperature distribution and material coefficients as 
defined in Eqs. (3.3.41a,b). 

6.2 Admissible Boundary Conditions for 
the Navier Solutions 

In the Navier method the generalized displacements are expanded in a double 
trigonometric series in terms of unknown parameters (see Section 5.2.2). The choice 
of the functions in the series is restricted to those which satisfy the boundary 
conditions of the problem. Substitution of the displacement expansions into the 
governing equations should result in a unique, invertible, set of algebraic equations 
among the parameters of the expansion. Otherwise, the Navier solution cannot be 
developed for the problem. 

The Navier solutions can be developed for rectangular laminates with two sets of 
simply supported boundary conditions. Even for these boundary conditions, not all 
laminates permit the Navier solution. We will determine which lamination schemes 
permit such solutions. The geometry, laminate coordinate system, and the two types 
of simply supported boundary conditions are shown in Figure 6.2.1. The two types 
of boundary conditions are given below. 

Simply Supported (SS-l): The displacement boundary conditions are 

u(x, 0, 0, t) = 0, u(x, b, 0, t) = 0, v(O, y, 0, t) = 0, v(a, y, 0, t) = ° 
w(x, 0, 0, t) = 0, w(x, b, 0, t) = 0, w(O, y, 0, t) = 0, w(a, y, 0, t) = ° 
aul = ° a ' 

Z (x,O,O,t) 
~~ I = 0, ~v I = 0, ~~ I = ° 

(x,b,O,t) Z (O,y,O,t) (a,y,O,t) 

(6.2.1) 
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The boundary conditions associated with stress components (for a plate theory) are 

h h 

JC: ~xx(O,y,z,t)dz = 0, 
2 

h 

JC: ~XX(a,y,z,t)dz = 0 
2 

h 

JC: ~yy(X, 0, Z, t) dz = 0, 
2 

h 

JC: ~yy(X, b, z, t) dz = 0 
2 

JC: Z~Xx(O, y, Z, t) dz = 0, 
2 

It 

h 

12 z~xx(a, y, z, t) dz = 0 
It -2 
h 

JC2
l.!. Z~yy(X, 0, Z, t) dz = 0, 
2 

JC: Z~yy(X, b, z, t) dz = 0 
2 

y t.- a ------t·1 

at x=O and x=a 

vo=wo= a~o = 0 

Nxx = Mxx =0 

at x=O and x=a 

uo=wo= a~o = 0 

Nxy=Mxx =0 

, - - -- - - .. , , , , , , SS-l , , , , 
L.. ________ __ , 

at y=O and y=b 

uo=wo= a~o = 0 

Nyy = Myy =0 

, ----------. , , , , , , SS-2 I 
I , , 

I L.. __________ 

aty=O andy=b 

vo=Wo=a~o=O 
Nxy=Myy =0 

T 
b 

L 
x 

T 
b 

L 
x 

(6.2.2) 

Figure 6.2.1: Types of simply supported boundary conditions, 88-1 and 88-2, 
used in the analytical solutions of rectangular laminated plates. 
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Shnply Supported-2 (SS-2): The displacement boundary conditions are 

u(O, y, 0, t) = 0, u(a, y, 0, t) = 0, v(x, 0, 0, t) = 0, v(x, b, 0, t) = ° 
w(x, 0, 0, t) = 0, w(x, b, 0, t) = 0, w(O, y, 0, t) = 0, w(a, y, 0, t) = ° 
~u I = 0, ~u I = 0, ~v I = 0, ~v I = ° 

Z (x,O,O,t) z (x,b,O,t) Z (O,y,O,t) Z (a,y,O,t) 

The boundary conditions associated with stress components are 
h i: axy(O, y, z, t) dz = 0, 
2 

h i 2
!!c axy(x, 0, z, t) dz = 0, 
2 

h i 2
!!c zaxx(O, y, z, t) dz = 0, 
2 

h i: axy(a,y,z,t)dz = ° 
2 

h i: axy(x,b,z,t)dz = ° 
2 

h i: zaxx(a,y,z,t)dz = ° 
2 

h h 

(6.2.3) 

i: zayy(x, 0, z, t) dz = 0, i 2
!!c zayy(x, b, z, t) dz = ° (6.2.4) 

2 2 

In Eqs. (6.2.1)-(6.2.4), a and b denote the in-plane dimensions along the x and y 
directions of a rectangular laminate. The origin of the coordinate system is taken 
at the lower left corner of the midplane, as shown in Figure 6.2.1. 

As will be shown in the following sections, the Navier solutions using SS-
1 boundary conditions can be obtained only for laminates whose stiffnesses 
A 16 , A 26 , B 16 , B26, D 16, D26, and A45 are zero. Thus, the Navier solutions for the 
SS-1 boundary conditions can be developed for laminates with a single generally 
orthotropic layer, symmetrically laminated plates with multiple specially orthotropic 
layers, and antisymmetric cross-ply laminated plates. Similarly, the Navier solutions 
using S8-2 boundary conditions can be obtained only for laminates whose stiffnesses 
A 16 , A 26 , B 11 , B 12 , B 22 , B 66 , D 16 , D 26, and A45 are zero, i.e., for laminates with a 
single generally orthotropic layer, symmetrically laminated plates with multiple 
specially orthotropic layers, and antisymmetric angle-ply laminated plates. 

6.3 Navier Solutions of Antisymmetric Cross-Ply 
Laminates 

6.3.1 Boundary Conditions 

The stress boundary conditions in Eqs. (6.2.2) imply, in view of Eq. (3.3.2), the 
following 8S-1 boundary conditions on the displacements and stress resultants of 
the classical laminate theory: 

UO(x, 0, t) = 0, 

wo(x, 0, t) = 0, 

8wo I = ° 8 ' x (x,O,t) 

UO(x, b, t) = 0, 

wo(x, b, t) = 0, 

8wol a =0, 
x (x,b,t) 

VO(O, y, t) = 0, 

wo(O, y, t) = 0, 

8wol a =0, 
y (O,y,t) 

vo(a, y, t) = ° 
wo(a, y, t) = ° 
8wo I = ° 
8y (a,y,t) 

(6.3.1) 
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Nxx(O, y, t) = 0, Nxx(a, y, t) = 0, Nyy(x, 0, t) = 0, Nyy(x, b, t) = ° 
Mxx(O, y, t) = 0, Mxx(a, y, t) = 0, Myy(x, 0, t) = 0, Myy(x, b, t) = ° (6.3.2) 

The displacement boundary conditions of 88-1 in (6.3.1) are satisfied by assuming 
the following form of the displacements 

00 00 

uo(x, y, t) = L L Umn(t) cos ax sin (3y (6.3.3a) 
n=l m=l 

00 00 

vo(x,y,t) = L L Vmn(t) sin ax cos(3y (6.3.3b) 
n=l m=l 
00 00 

wo(x, y, t) = L L Wmn(t) sinax sin(3y (6.3.3c) 
n=l m=l 

where a = mn:/a and (3 = nn:/b and (Umn , Vmn , W mn ) are coefficients to be 
determined. To see if the boundary conditions (6.3.2) on the stress resultants are 
also satisfied, we substitute expansions (6.3.3) into the expressions for N xx , Nyy 
N xy , M xx , M yy , and Mxy given in Eqs. (3.3.43) and (3.3.44): 

ouo ovo ( ouo ovo ) 
N xx = All ox + A12 oy + A16 oy + ox 

o2wo o2wo o2wo T 
- Bll ox2 - B12 oy2 - 2B16 oxoy - N xx 

00 00 

= L L [-aAllUmn - (3A12Vmn + (Blla2 + B 12 fP) W mn] f(x,y) 
n=l m=l 
00 00 

+ L L [A16 ((3Umn + aVmn ) - 2a(3B16W mnl g(x, y) - N'Ix (6.3.4a) 
n=l m=l 

ouo oVo (ouo oVo ) 
N yy = A12 ox + A22 oy + A 26 oy + ox 

o2wo o 2wo o2wo T 
- B12 ox2 - B22 oy2 - 2B26 oxoy - N yy 

00 00 

= L L [-aA 12Umn - (3A22Vmn + (B12a2 + B22B2) W mn] f(x, y) 
n=lm=l 
00 00 

+ L L [A26 ((3Umn + aVmn ) - 2a(3B26W mnl g(x, y) - NJ'y (6.3.4b) 
n=l m=l 

ouo oVo (ouo oVo ) 
N xy = A16 ox + A 26 oy + A66 oy + ox 

o2wo o 2wo o2wo T 
- Bl6 ox2 - B 26 oy2 - 2B66 oxoy - N xy 

00 00 

= L L [-aA 16Umn - (3A26 Vmn + (B16 a2 + B26(32) W mn] f(x,y) 
n=l m=l 
00 00 

+ L L [A66 ((3Umn + aVmn ) - 2a(3B66W mnl g(x, y) - N~ (6.3.4c) 
n=l m=l 
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OUO OVO ( OUO OVO ) 
Mxx = Bll ax + B12 ay + B16 ay + ax 

o2wo o2wo o2wo T 
- Du ax2 - D12 ay2 - 2D16 axay - l'vlxx 

00 00 

= L L [-aBllUmn - (3B12 v'nn + (Du a2 + D 12{'P) Wmn] f(x, y) 
n=1 m=1 
00 = 

+ L L [B16 ((3Umn + aV,nn) - 2n(3D16 Wmnl g(x, y) - AlIx (6.3.5a) 
n=1 m=1 

= 00 

= L L [-aBI2 Umn - (3B22Vmn + (D12a2 + D22(32) W mn ] f(x,y) 
n=l m=l 
00 00 

+ L L [B26 ((3Umn + aVmn ) - 2a{3D26 Wmnl g(x, y) - M'[;y (6.3.5b) 
n=1 rn=1 

OUO OVo ( OUO OVo ) 
Mxy = B I6 ox + B 26 ay + B66 oy + ox 

02wo 02wo 02wo T 
- D16 ox2 - D 26 oy2 - 2D66 oxoy - Mxy 

00 00 

= L L [-aBI6 Umn - (3B26 Vmn + (D16a2 + D26(32) Wrnn] f(x, y) 
n=1 rn=1 
00 00 

+ L L [B66 ({3Umn + aVmn ) - 2a(3D66W rnnl g(x, y) - MJIJ (6.3.5c) 
n=1 rn=l 

where 
f(x,y) = sin ax sin(3y, g(x,y) = cos ax cos(3y (6.3.6) 

Note that the boundary conditions in Eq. (6.3.2) on the stress and moment 
resultants N xx , N yy , lvIxx , and Myy can be satisfied only if the laminate stiffnesses 
A16,A26,BI6,B26,DI6,D26 are zero (because g(x,y) #- 0 for x = O,a or y = O,b); 
in addition, the thermal force and moment resultants must satisfy the boundary 
conditions in Eq. (6.3.2). Thus, the Navier solutions for rectangular laminated 
plates with SS-l boundary conditions may exist only when the laminate stacking 
sequences are such that 

N'Ix(O, y, t) = N;'y(a, y, t) = N'[;y(x, 0, t) = N'[;y(x, b, t) = 0 

M'Ix(O, y, t) = M'Ix(a, y, t) = M'[;y(x, 0, t) = M~(:r, b, t) = 0 

(6.3.7a) 

(6.3.7b) 

(6.3.7c) 
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From Section 5.2.2, it follows that plates with a single generally orthotropic 
layer, symmetrically laminated plates with multiple specially orthotropic layers, and 
antisymmetric cross-ply laminated plates, which include the former cases as special 
cases, admit the Navier solutions for the SS-1 boundary conditions. Although the 
Navier solutions cannot be developed for general laminates, i.e., with no restrictions 
on laminate stiffnesses, approximate or numerical solutions may be constructed, as 
shown later in this chapter or in subsequent chapters. 

6.3.2 Solution 

Substitution of Eqs. (6.3.3) and (6.3.7) into Eqs. (6.1.1)-(6.1.3) yields 

~ fJ -(Alla
2 + A66;32) Umn - (A12 + A66 ) a;3Vmn 

+ (Blla3 + 1312a;32) Wmn - 10Umn + haWmn 1 cos ax sin,6y 

= (ON'Ix + ONIy) 
ax oy 

; f1 [ -(A12 + A66 ) a,6Umn - (A66 a2 + A22;32) Vmn 

+ (B12a2;3 + B22;33) Wmn - 10 Vmn + h;3Wmn 1 sin ax cos;3y 

= (aNI,; + ON?;;) 
ax oy 

; fJ (Bll a 3 + 1312a,62) Umn + (B12a
2

;3 + B22;33) Vmn 

- (Dlla4 + 2D12a2,62 + D22,64) Wmn 

( 2' 2') - a Nxx +,6 N yy Wmn 

(6.3.8a) 

(6.3.8b) 

+ h oU mn + h;3V mn - (10 + h (a2 + ,62) ) W mn 1 sin ax sin ,6y 

(
02MT o2MT 02MT) 

= ox;x + 2 oxo;y + oyi
Y 

- q(x, y) (6.3.8c) 

where 
(6.3.9) 

Note that the edge shear force Nxy is necessarily zero (otherwise, the Navier solution 
does not exist). In addition, for the class of lamination schemes admissible here, 
inertia h must be zero. 

An examination of Eqs. (6.3.8) shows that the mechanical force q and thermal 
forces and moments of Eqs. (6.3.8a-c) should also be expanded in the same form as 
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their counterparts on the left side of the equality in Eqs. (6.3.8a-c). For example, 
the left side of Eq. (6.3.8c) has the form 

CXl CXl 

L L C~n sin ax sin f3y , 
n=l rn=l 

m7r 
a=~ , 

a 
f3 = n7r 

b 

where C~", is the expression in the square bracket of Eq. (6.3.8c). Hence, the right 
side of Eq. (6.3.8c), which consists of the transverse load and thermal moments, 
should also be expanded in double sine series. Thus, q(x, y, t) must be expanded as 

CXl CXl 

q(x, y, t) = L L Qmn(t) sinax sinf3y (6.3.10a) 
n=l m=l 

4 ra rb 

Qmn(t) = ab Jo Jo q(x, y, t) sin ax sin f3y dxdy (6.3.10b) 

Since the thermal moments MIx, M~, and MJ'y are defined in terms of the same 
temperature increment flT(x, y, t) but they enter Eq. (6.3.8c) with different 
derivatives, it is expected that not all of them will contribute to the solution. If 
the temperature increment is expanded as 

CXl CXl 

tlT(x, y, z, t) = L L Tmn(z, t) sin ax sinf3y (6.3.11a) 
n=l'm=l 

Tmn(z, t) = a: foa fob tlT(x, y, z, t) sin ax sin f3y dxdy (6.3.11b) 

then we have from Eq. (3.3.41a,b) 

(6.3.12a) 

(6.3.12b) 

(6.3.13a) 

(6.3.13b) 

Thus we have 

If = aN'Ix + aN~ 
ax ay 

CXl CXl 

= L L [aN~n(t) cos ax sinf3y + f3N!n(t) sinax COSf3y] (6.3.14a) 
n=l m=l 
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00 00 

= L L [aN~m(t) cos ax sin(3y + (3N'/nn(t) sin ax cos(3y] (6.3.14b) 
71=1 m=1 

82AfT 82 AfT 82AfT 
fT = xx + 2 xy + yy 

3 8x2 8y8x 8y2 

= ~ f1 [- (a2 Af:nn(t) + (32 Af'/nn(t)) sin ax sin (3y 

+ 2a(3Af!n (t) cos ax cos (3y] (6.3.14c) 

This particular expansion of temperature distribution necessarily requires that N;;m 
and Af!n be zero because they must be of the form [see Eqs. (6.3.8a-c)] 

00 00 

if = L L f:nn(t) cos ax sin(3y 
n=1m=1 

00 00 

If = L L f'/nn (t) sin ax cos (3y 
71=1 m=1 

00 00 

if = L L f!n(t) sin ax sin(3y (6.3.15) 
n=1m=1 

This requirement places a restriction on the lamination scheme in order for the 
N avier solution to exist in the presence of temperature changes. The lamination 
scheme must be such that 

N rZk+1 
{ N1~n } L J" [Q](k){&}(k)Tmn(z, t) dz = N?nn 

~1 ~ 0 
(6.3.16a) 

N rzk+ 1 { Af~n } L J" [Q](k){&}(k)Tmn(z, t) z dz = Af;nn 
k=1 Zk 0 

(6.3.16b) 

For single-layer plates with a generally orthotropic layer, symmetrically laminated 
plates with multiple specially orthotropic layers, and antisymmetric cross-ply 
laminated plates, the conditions in Eq. (6.3.16a,b) are automatically satisfied. In 
order to include N~m and Af~n' the temperature distribution should be expanded 
in a double cosine series. Then N:nn, N?'nn, Afinn' and Af?'nn must be zero. 

Substituting the expansions (6.3.lOa) and (6.3.14) with N!n = Af!n = 0 into 
Eq. (6.3.8), we obtain expressions of the form 

00 00 

L L amn(t) cos ax sin(3y = 0 
71=1 m=1 

00 00 

L L bmn(t) sin ax cos(3y = 0 
71=1 m=1 

00 00 

L L cmn(t) sin ax sin(3y = 0 (6.3.17) 
n=1m=1 
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where amn , bmn , and Cmn are coefficients whose explicit form will be given shortly. 
Since Eqs. (6.3.17) must hold for any m, n, x, and y, it follows that amn = 0, bmn = 
0, and Cmn = 0 for every m and n. The explicit forms of the coefficients amn , bmn , 
and Cmn are given by 

bmn == - (A12 + A 66 ) af3Umn - (A66a2 + A22(32) Vmn 

+ (B12a2f3 + B 22(33
) Wmn - f3N'/'nn - IoVmn + hf3Wmn = 0 

Cmn = B l1 a + B 12af3 Umn + B 12 a 13 + B22f3 Vmn _ ( 3 - 2) ( - 2 3) 

- (Dua4 + 2D12a2 f32 + D22(34
) Wmn + Qmn 

21 22 (2' 2') +a M mn +f3 Mmn- a N xx +f3 N yy Wmn 

+ hnUmn + hf3Vmn - (10 + h(a2 + (32
)) Wmn = 0 

or in matrix form 

where (;ij and mij are 

(;11 = (Aua2 + A66(32) 

(;12 = (A12 + A66)af3 

(;13 = -Bl1 a 3 
- (B12 + 2B66)af32 

(;22 = (A66a2 + A22(32) 

(;23 = -(B12 + 2B66)a2f3 - B 22 f3 3 

(;33 = Dua4 + 2(D12 + 2D66)a2f32 + D22f34 

mu = m22 = 10 

m33 = (10 + h(a
2 + (32

)) 

_ 2 ' 2 ' 
833 = a Nxx + 13 N yy 

and a = m7f/a and 13 = n7f/b. 

(6.3.18a) 

(6.3.18b) 

(6.3.18c) 

(6.3.19) 

(6.3.20) 

Equations (6.3.19) provide three second-order differential equations in time 
among the three variables Umn , Vrnn, and Wmn for any fixed values of m and n. 
For transient (i.e., time dependent) response, the differential equations in time can 
be solved either exactly or approximately. 
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6.3.3 Bending 

The static solution can be obtained by solving the algebraic equations resulting from 
Eqs. (6.3.19) by setting the time derivative terms to zero: 

(6.3.21) 

which can be solved for the coefficients Umn , Vmn , and Wmn in terms of the 
coefficients Qmn, Ninn, N;;'n, Minn, and M;;,w Then the final solution is given by 
Eqs. (6.3.3a-c). 

Equations (6.3.21) can be solved using Cramer's rule or by the method of static 
condensation. The latter allows the elimination of a selected set of variables and 
retains a desired set of variables. The method is useful in later discussions of this 
book, and therefore it is described here. First, the column of unknowns is subdivided 
into two parts, {~I} and {~2 }, according to what is to be eliminated and what is to 
be retained. Suppose that we wish to eliminate the coefficients associated with the 
in-plane displacements and retain those associated with the transverse deflection. 
Then Eq. (6.3.21) can be written as 

(6.3.22) 

where 

(6.3.23a) 

{pI} _ { -aN/nn } {p2} _ Q 2MI {32 Lr2 - -(3N;;'n' - mn + a mn + lVl mn (6.3.23b) 

Equation (6.3.22) represents a pair of two matrix equations: 

Solving Eq. (6.3.24a) for {~I}, which is to be eliminated, we obtain 

(6.3.25) 

Then substituting the result into (6.3.24b), we obtain 

(6.3.26a) 

or 
(6.3.26b) 
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where 

[k 22 ] = [K22]_ [KI2]T[K11rl[KI2] 

{p2} = {F2} _ [KI2f[K11]-I{Fl} (6.3.26c) 

This procedure of eliminating (or condensing out) a subset of unknowns is known in 
structural mechanics as the method of static condensation. The calculation involves 
solving for {~2} first, and then, if desired, solving for {~1} next using Eq. (6.3.25). 

Using the definitions (6.3.23) in (6.3.26) we obtain (when 833 = 0) 

(6.3.27a) 

where 
A A al A a2 

amn = C33 + c13- + C23-
ao ao 

ao = C11 C22 - C12C12 

al = C12C23 - C13C22 

a2 = C13C12 - Cll C23 (6.3.27b) 

Solution of Eq. (6.3.27a) for each m, n = 1,2, ... gives (Umn , Vmn , Wmn ), which can 
then be used to compute the solution (uo,vo,wo) from Eq. (6.3.3). If there are no 
thermal loads, the solution becomes 

(6.3.28) 

Note that for antisymmetric cross-ply laminates, B66 = 0 and the coefficients in Eq. 
(6.3.27a) can be simplified. 

6.3.4 Determination of Stresses 

The in-plane stresses in each layer of a laminate are calculated from constitutive 
relations in Eq. (3.3.12a). Accounting for only mechanical and thermal effects, we 
obtain 

rxr [qll Q12 
016 r ({ EXX} {axx } ) O"yy Q12 Q22 Q26 Eyy - a yy ~T 

O"xy Q16 Q26 Q66 2Exy 2axy 

[qll Q12 016 r { E~x - °xx To } 
Q22 

- 0 
Q12 Q26 Eyy - a yy To 
Q16 Q26 Q66 2(E~y - a xy To) 

[011 Q12 016 r { Eix·· oxxT, } 
+ z (-b2 Q22 

- 1 
(6.3.29a) Q26 Eyy - a yyTl 

Q16 Q26 Q66 2(E~y - axyTd 
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where temperature increment t::.T is assumed to be of the form 

00 00 

t::.T(x, y, z, t) = L L (T:;'n + zT;'n) sin ax sin;3y (6.3.29b) 
m=1 n=1 

The in-plane stresses of a simply supported (SS-l) cross-ply laminate (i.e., when 
Q16 = Q26 = 0 and a xy = 0) are then given by 

{ 

CTxx } (k) 

CTyy 
CTxy 

o 1 (k) { (R:::::n + zS~Xn) sin ax sin;3y } 
o (Rr:tn + zS~n) sin ax sin;3y 

Q66 (R';l!n + zS~,rn) cos ax cos;3y 
(6.3.30a) 

(6.3.30b) 

The maximum normal stresses occur at (x, y, z) = (a/2, b/2. -h/2), and the shear 
stress is maximum at (x, y, z) = (a, b, -h/2). 

The transverse stresses in a laminate can be determined using the 3-D equilibrium 
equations [see Eqs. (5.2.14)] for any Zk ::; Z ::; Zk+1 

z ((k) (k)) 
(k) = -1 8CTxx 8CTxy 

CTxz 8 + 8 
Zk X Y 

(k) = -1 8CTxy 8CTyy 
z ((k) (k)) 

CTyz 8 + 8 
Zk X Y 

Z ((k) (k)) 
(k) = -1 8 CTxz 8CTyz 

CTzz 8 + 8 
Zk X Y 

(k) dz + C1 (x, y) 

(k) dz+C2 (x,y) 

(k) dz+C3 (x,y) (6.3.31) 

where CTi"2, CTW, and CTW are known from Eq. (6.3.29), and Ci(k) are functions to be 
determined using the boundary conditions 

CTxAx, y, -h/2) = CTyAx, y, -h/2) = CTzz(X, y, -h/2) = 0 (6.3.32) 

and continuity of stresses at layer interfaces: 

(k)( ) _ (k+1)( ) CTxz X,y,Zk+1 -CTxz X,y,Zk+1 
(k)( ) _ (k+1)( ) CTyz x, y, zk+1 - CTyz x, y, Zk+1 

(k)( ) _ (k+1)( ) CTzz x, y, Zk+1 - CTzz x, y, Zk+1 (6.3.33) 

Substituting for the in-plane stresses from Eq. (6.3.30) into Eq. (6.3.31) and 
integrating with respect to z, we obtain 

{ 
CTxz }(k) = (z _ Zk) {Axz }(k) + (z2 - Z~) {Bxz }(k) + {C1 }(k) 
CTyz Ayz 2 Byz C2 

(6.3.34a) 
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where 

A(k) _ [Q(k)( 0 ) (k)( 0 ) (k)( 0 
xz - - 11 Exx - OOxxTO ,x + Q 12 Eyy - OOyyTO ,x + 2Q16 Exy - OOxyTO),x 

Q (k)( 0 ) Q(k)( 0 ) (k)( 0 ) ] + 16 Exx - OOxxTO ,y + 26 Eyy - OOyyTO ,y + 2Q66 Exy - OOxyTO ,y 

B (k) _ [Q(k) ( 1 ) Q(k) ( 1 ) Q(k) ( 1 ) 
xz - - 11 Exx - OOxxT1 ,x + 12 Eyy - OOyyT1 ,x + 2 16 Exy - OOxyT1 ,x 

Q (k)( 1 ) Q(k)( 1 ) Q(k)( 1 ) ] + 16 Exx - OOxxT1 ,y + 26 Eyy - OOyyT1 ,y + 2 66 Exy - OOxyT1 ,y 

A (k) _ [Q(k)( 0 ) Q(k)( 0 ) Q(k)( 0 ) yz - - 16 Exx - OOxxTO ,x + 26 Eyy - OOyyTO ,x + 2 66 Exy - OOxyTO ,x 

Q (k) ( 0 ) (k) ( 0 ) (k) ( 0 ) ] + 12 Exx - OOxxTO ,y + Q 22 Eyy - OOyyTO ,y + 2Q26 Exy - OOxyTO ,y 

(k) _ [Q(k)( 1 ) Q(k)( 1 ) Q(k)( 1 ) Byz - - 16 Exx - OOxxTl ,x + 26 Eyy - OOyyT1 ,x + 2 66 Exy - OOxyT1 ,x 

Q (k)( 1 ) Q(k)( 1 ) Q(k)( 1 ) ] + 12 Exx - OOxxTl ,y + 22 Eyy - OOyyT1 ,y + 2 26 Exy - OOxyTl ,y 

(6.3.34b) 

and a comma followed by x or y denotes differentiation. The boundary conditions 

(6.3.32) yield ci1
) = C~l) = O. The interface continuity conditions (6.3.33) result in 

(k+1) _ (k)( ) (k+1) _ (k)( ) C1 - O'xz x, y, zk+1, C2 - O'yz x, y, zk+l (6.3.35) 

for k = 1,2" .. ,n, where n denotes the number of layers. 
Substitution of the displacement and temperature expansions from Eqs. (6.3.3a

c) and (6.3.14a-c) into Eq. (6.3.34b) yields the following expressions for interlaminar 
transverse shear stresses: 

(k-l)(, ) 
+O'xz X,Y,Zk 

OOOO[ 1 ] O'~~)(x,y,z) = L L (z - Zk)C~~ + 2(z2 - z~)V~~ sinoox cospy 

m=l n=l 

+ 0'~~-1) (x, y, Zk) (6.3.36a) 

h (0) ( . ) _ (0) ( ) _ were O'xz X,Y,Zl - 0, O'yz X,Y,Zl - 0 and 

A (k) (2 -(k) p2Q- (k)) ( - (k) Q- (k)) 
mn = 00 Q11 + 66 Umn + oop Q 12 + 66 Vrnn 

- - 0 
+ 00 (Q11 00xx + Q1200yy) Tmn 
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B(k) - _ [a3Q-(k) + a (.12 (Q-(k) + 2Q-(k))] w 
mn - 11 fJ 12 66 mn 

- - 1 + a (Q11 a xx + Q12a yy) T mn 

v~~ = - [a2{3 (Q~~) + 2Q~~)) + (33Q~~)] Wmn 

- - 1 + {3 (Q12 a xx + Q22a yy) T mn (6.3.36b) 

The maximum of CYxz occurs at (x, y, z) = (0, b/2, 0), and the maximum of CYyz occurs 
at (x, y, z) = (a/2, 0, 0). 

The transverse normal stress is given by 

x sin ax sin (3y (6.3.37) 

where the functions £$;~ are determined using the boundary and interface continuity 
conditions. We obtain 

£(1) = _ h
2 

(aA(l) + (.IC(1)) + h
3 

(aB(l) + (.IV(l)) 
mn 4 mn fJ mn 24 mn fJ mn 

£$;;;1) = £$;~ _ Zk+1 (Zk;l - Zk) (aA~~ + (3C~~) 

_ Zk+1 (Z~:l _ z;) (aB~~ + (3V~~) 
2 

_ Zk+1 (aA(k+1) + (.IC(k+1)) 
2 mn fJ mn 

z3 
_ k+1 (aB(k+1) + (.IV(k+1)) 

3 mn fJ mn (6.3.38) 

fork=l,2,···,n. 
The bending moments can be calculated from Eqs. (6.3.5a-c) 

o 1 { R;;n sin ax sin {3y } 
o Rr/tn sin ax sin {3y 

B66 R:;;tn cos ax cos {3y 

o 1 { S;;n sin ax sin {3y } 
o Sl?¥n sin ax sin {3y 

D66 S::l!n cos ax cos {3y 
(6.3.39) 
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For the definitions of R's and 5's, see Eq. (6.3.30b). The maXImum values of 
Mxx and lvlyy occur at (x, y) = (a/2, b/2), and the maximum of l'vlxy occurs at 
(x, y) = (0,0). 

The following nondimensionalizations are used in presenting the numerical 
results: 

_ ( E2 h 
3 

) _ ( h 
2 

) W = wo(a/2, b/2) -4- ; O"xx = O"xx(a/2, b/2, z) -2-
a qo a qo 

(6.3.40a) 

jjyy = O"yy(a/2, b/2, z) ( ~2 ); jjxy = O"xy(a, b, z) ( ~2 ) 
a qo a go 

(6.3.40b) 

Tables 6.3.1 and 6.3.2 contain nondimensionalized deflections and stresses for 
antisymmetric cross-ply laminates (all B ij , except for Bll = -B22, are zero, and 
A 16 = A26 = D 16 = D 26 = 0) under various types of mechanical loads. For 
comparison, results of symmetric laminates are also included. From these results 
it is clear that, for the same laminate thickness, antisymmetric cross-ply laminates 
with four or more layers are more desirable than two-layer laminates due to the 
reduction in deflections as well as stresses. The difference between two-layer and 
four- or eight-layer laminates is due to the bending-stretching coupling coefficients 
B ij , which are dominant in the case of two layers. As the number of layers increase, 
the Bij decrease and the laminate essentially behaves like a specially orthotropic 
plate. 

The effect of stacking sequence on nondimensionalized maximum deflection 
w x 102 and in-plane normal stress -jjxx(a/2, b/2, -h/2) of (0/90)k and (0/90hs 
laminates under uniformly distributed transverse load can be seen from the results 
presented in Table 6.3.3. The following notation is used: (0/90h = (0/90/0/90) 
and (0/90hs = (0/90/0/90)s, The material properties used are G 12 = G1:3 = 0.5E2, 
G23 = 0.2E2, and V12 = 0.25, and the series is evaluated using m, n = 1,3, ... ,30. 

Table 6.3.1: Transverse deflections and stresses in composite laminates 
subjected to sinusoidally distributed transverse load (Ed E2 = 25, 
G 12 = G 13 = 0.5E2, G23 = 0.2E2, V12 = 0.25). 

Laminate 

o 
(0/90/0) 
(0/90) 
(0/90b 
(0/90)4 

'W x 102 

0.4312 
0.4312 
1.0636 
0.5065 
0.4479 

(b/a = 1)* 

a-xx CTyy a:ry 

0.5387 0.0267 0.0213 
0.5387 0.0267 0.0213 
0.0843 0.7157 0.0525 
0.0357 0.4868 0.0250 
0.0296 0.4950 0.0221 

(b/a = 3)t 

w x 102 o-xx -ayy (7J:Y 

0.4859 0.6016 0.0087 0.0080 
0.5034 0.6233 0.0090 0.0083 
2.4628 1.6411 0.2065 0.0417 
1.0850 1.0332 0.1267 0.0181 
0.9519 1.0425 0.1269 0.0158 

* axx (a/2,b/2,h/2), ayy (a/2,b/2,h/2), and axy (a,b,-h/2) = -a ey (a,b,h/2). For square 
antisymmetric cross-ply laminates, we have 

a"" (a/2, b/2, ±h/2) = Ofayy (a/2, b/2, Ofh/2). 

t aXJ(a/2, b/2, -h/2), ayy (a/2, b/2, h/2), and axy(a, b, -h/2). 



314 MECHANlCS OF LAMINATED COMPOSITE PLATES AND SHELLS 

Table 6.3.2: Transverse deflections and stresses in square laminates subjected to 
uniformly distributed transverse load (UDL) or central point load 
(CPL) (Ed E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, V12 = 
0.25; m, n = 1,3"",20 are used to evaluate the series). See the 
foot note (*) of Table 6.3.1 for stress locations. 

UDL CPL 

Laminate W x 102 axx ayy axy w x 102 axx ayy axy 

(0/90) 1.6955 0.1268 1.0761 0.0933 4.6664 0.8019 6.8217 0.1932 
(90/0) 1.6955 1.0761 0.1268 0.0933 4.6664 6.8217 0.8019 0.1932 
(0/90h 0.8085 0.0541 0.7367 0.0442 2.2105 0.3298 4.4952 0.0932 
(0/90)4 0.7150 0.0449 0.7496 0.0391 1.9536 0.2728 4.5553 0.0825 

Table 6.3.3: Effect of lamination scheme on the deflections w x 102 (first row) 
and stresses o-xx (second row) in square laminates subjected to 
uniformly distributed load (UDL). 

[(0/90h]* [(0/90)ks]t 

k E, = 5 
E2 

10 15 20 25 E, = 5 
E2 

10 15 20 25 

1 3.071 2.529 2.169 1.902 1.695 2.273 1.435 1.047 0.824 0.680 
0.503 0.714 0.867 0.984 1.076 0.569 0.704 0.765 0.801 0.824 

2 2.440 1.620 1.214 0.971 0.809 2.282 1.445 1.057 0.833 0.687 
0.500 0.619 0.678 0.713 0.737 0.568 0.704 0.767 0.803 0.827 

4 2.321 1.487 1.094 0.865 0.715 2.283 1.447 1.058 0.834 0.688 
0.523 0.641 0.697 0.729 0.750 0.565 0.700 0.763 0.799 0.823 

* ~CTxx(z = ~h/2) = CTyy(Z = h/2). t ~ CTxx(Z = ~h/2) = CTxx(Z = h/2). 

For the (0/90)k (antisymmetric cross-ply) laminates, both heterogeneity and 
anisotropy ratio influence the deflections, which decrease as the number of layers is 
increased. For (00 /900 hs laminates, heterogeneity has little effect on deflections and 
stresses. The anisotropy ratio affects deflections and stresses; deflections decrease 
and stresses increase with increasing value of Ed E 2. Also, for antisymmetric 
laminates the deflections decrease and stresses increase with the number of layers 
for a fixed anisotropy ratio. 

Figures 6.3.1 through 6.3.4 show the effect of bending-stretching coupling and 
plate aspect ratio on the transverse deflection w = woE2h3/(qob4) and normal 
stresses 0- = [h2 /(qob2)]0"(a/2, b/2, zo) for a fixed z = zoo The material properties 
used are Ed E2 = 25, G12 = G13 = 0.5E2, and V12 = 0.25. The magnitude of 
deflections and stresses of symmetric laminates (0/90/90/0) are about two to three 
times that of antisymmetric (0/90/0/90) laminates for alb > 1. For the uniformly 
distributed load there corresponds an aspect ratio, around alb = 2.25 for (0/90h 
and alb = 3.5 for (0/90)s, for which the deflection is the maximum of all aspect 
ratios. 
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Figure 6.3.1: Nondimensionalized center transverse deflection (w) versus plate 
aspect ratio (a/b) of simply supported (88-1) laminates. 
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Figure 6.3.2: Nondimensionalized normal stress (Cfxx (a/2, b/2, -h/2)) versus 
plate aspect ratio (a/b) for simply supported (88-1) laminates. 
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Figure 6.3.3: Nondimensionalized normal stress (o-yy(a/2, b/2, h/2)) versus plate 
aspect ratio (a/b) of simply supported (88-1) laminates. 
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Figure 6.3.4: Nondimensionalized normal stress (o-yy(a/2, b/2, -h/2)) versus 
plate aspect ratio (a/b) for simply supported (88-1) laminates. 
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The effect of coupling is to increase the deflections and stresses. The coupling 
coefficients Bij decrease in magnitude (hence the effect of coupling decreases) with 
the increase in the number of layers (for the same total thickness of the plate) 
in antisymmetric cross-ply laminates. The nondimensionalized center deflection 
iJj = woE2h3/(qob4) versus the aspect ratio alb is shown in Figure 6.3.5 for (0/90)k 
(k = 1,2,3,4) laminates under sinusoidal transverse loading (E1 = 25E2, G 12 = 
G13 = 0.5E2, G23 = 0.2E2, 1/12 = 0.25). The nondimensionalized deflections of the 
six-layer and eight-layer plates approach the limiting case of an orthotropic plate. 

The dependence of the coupling effect on the modulus ratio is illustrated in 
Figure 6.3.6, where the maximum nondimensionalized deflection is plotted against 
the modulus ratio Ed E2 (G 12 = G 13 = 0.5E2, and 1/12 = 0.25) for the sinusoidal 
load. The solution rapidly approaches that of an orthotropic plate for increasing 
number of layers. 

Figures 6.3.7 and 6.3.8 show the distribution of the nondimensionalized maximum 
normal stress and transverse shear stress 

computed using the 3-D equilibrium equations, through the thickness of two
layer and eight-layer antisymmetric cross-ply laminates under sinusoidal loading 
(alb = 1, alh = 100, E1 = 25E2, G 12 = G 13 = 0.5E2, 1/12 = 0.25). The two-layer 
plates experience larger stresses than eight-layer plates, and the stress concentration 
is reduced in the latter. Thus, the effect of the bending-stretching coupling present 
in two-layer plates on stresses is to increase the magnitude of stresses. 

6.3.5 Buckling 

For buckling analysis, we assume that the only applied loads are the in-plane forces 

(6.3.41) 

and all other mechanical and thermal loads are zero. From Eq. (6.3.19) we have 
the eigenvalue problem 

(6.3.42) 

where Cij are the coefficients defined in Eq. (6.3.20). For a nontrivial solution, 
Umn -1= 0, Vmn -1= 0, and Wmn -1= 0, the determinant of the coefficient matrix in 
(6.3.42) should be zero: 

or 

Cll C12 
C12 C22 
C13 C23 

C13 
C23 = 0 

C33 - No(oo2 + k(32) 

m7r 
00=

a 
(3 = n7r 

b 

(6.3.43) 

(6.3.44a) 
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Figure 6.3.5: Nondimensionalized center transverse deflection versus aspect ratio 
for simply supported cross-ply laminates. 
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where 

I 

C1l 

dmn = ~12 
C13 

(6.3.44b) 

Alternatively, using the static condensation procedure described in Eqs. (6.3.22)
(6.3.26), we obtain 

Since W mn # 0, we obtain 

(6.3.45) 

Clearly, for each pair of m and n, there is a unique value of No. The critical 
buckling load is the smallest of all No = No(m, n): 

min 
Ncr = {No(m,n)} 

l:Sm,n:Soo 
(6.3.46) 

Since Cij depend on m and n, No (m, n) is a complicated function of both m and n 
and no simple conclusions can be drawn about the mode (m, n) at buckling. 

Antisymmetric cross-ply laminates have special stiffness characteristics given in 
Eq. (6.3.7a). Hence the buckling load for antisymmetric cross-ply laminates is given 
by Eq. (6.3.44a) or (6.3.45) with coefficients Cij from Eq. (6.3.20). 

For specially orthotropic plates, neither shear-twist coupling nor bending
extension coupling exists (C13 = C23 = 0), and therefore Umn and Vmn are zero 
prior to onset of buckling. Therefore, we have (cf. Eq. (5.5.5a)) 

(6.3.47a) 

(6.3.47b) 

Table 6.3.4 shows the effect of stacking sequence, plate aspect ratio, and 
modulus ratio on nondimensionalized critical buckling loads N = Ncr (b2 /,lf2 D22) 
of rectangular laminates under uniform compression (k = 0) as well as biaxial 
compression (k = 1). The following material properties were used: material 1: 
Ed E2 = 25, G12 = G13 = 0.5E2, V12 = 0.25; and material 2: Ed E2 = 40, 
G 12 = G13 = 0.5E2, V12 = 0.25. In all cases (also see Figures 6.3.9 through 6.3.11) 
the critical buckling mode is (m, n)=(l,l), except for the antisymmetric cross-ply 
laminate, with aspect ratio alb = 1.5, in uniform compression. In the latter case, 
the mode is (2,1). The nondimensionalized buckling load increases for symmetric 
laminates whereas it decreases for antisymmetric laminates as the modulus ratio 
increases. 



ANALYTICAL SOLUTIONS OF RECTANGULAR LAMINATES USING CLPT 321 

Table 6.3.4: Effect of lamination scheme, aspect ratio, and modulus ratio on the 
nondimensionalized buckling loads N of rectangular laminates under 
uniform compression and biaxial compression (material 1). 

(0/90)as == (0° /90° /0° /90°) (0/90)8 == (0° /90° /90 0 /0°) 

a. ~=5 10 20 25 40 E1 = 5 10 20 25 40 b E2 E2 

Uniaxial compression (k = 0) 

0.5 4.705 4.157 3.828 3.757 3.647 13.900 18.126 21.878 22.874 24.590 
1.0 2.643 2.189 1.923 1.866 1.778 5.650 6.:347 6.961 7.124 7.404 
1.5 2.955 2.487 2.211 2.152 2.061 5.233 5.277 5.310 5.318 15.332 

Biaxial compression (k = 1) 

0.5 3.764 3.325 3.062 3.005 2.917 11.120 12.694 13.922 14.248 14.766 
1.0 1.322 1.095 0.962 0.933 0.889 2.825 3.174 3.481 3.562 3.702 
1.5 1.009 0.860 0.773 0.754 0.725 1.610 1.624 1.634 1.636 1.641 

The mode number is (m, n) = (1,1) for all cases, except for the following: (a) (0° /90 0 h, alb = 1.5 
and k = 0: mode is (2,1); (b) (0° /9( 0 )s, alb = 0.5 and k = 1: modes are (1,1), (1,2). (1,2), (1,2), 
and (1,3) for modulus ratios 5, 10, 20, 25, and 40, respectively. 
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Figure 6.3.9: Nondimensionalized buckling (N) load versus plate aspect 
ratio (a/b) for simply supported (88-1) antisymmetric cross-ply 
laminates (O/90)n under uniaxial compression. 
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Figure 6.3.10: Nondimensionalized buckling load (N) versus modulus ratio 
(Ed E 2 ) for antisymmetric cross-ply laminates (O/90h under 
uniaxial compression. 
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Figure 6.3.11: Nondimensionalized biaxial buckling load (N) versus plate aspect 
ratio (a/b) for antisymmetric cross-ply laminates (O/90)n (n = 
1,2,3) under biaxial compression (k = 1). 
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6.3.6 Vibration 

For free vibration, all applied loads and the in-plane forces are set to zero, and we 
assume a periodic solution of the form 

(6.3.48) 

where i = A and w is the frequency of natural vibration. Then Eq. (6.3.19) 
reduces to the eigenvalue problem 

o 1) { U~m} { 0 } A~, ~~n = 0 
m33 Wmn 0 

~131 2 [mll 
C23 - W 0 
1333 0 

(6.3.49) 

For a nontrivial solution, U~m i- 0, ~~m i- 0, W~m i- 0, the determinant of 
the coefficient matrix in (6.3.49) should be zero, which yields the characteristic 
polynomial 

_p)..3 + q)..2 _ r).. + s = 0 (6.3.50) 

where A = w 2 is the eigenvalue and 

1 ''''11 
0 

o 1 1 "11 
1312 

C," I 
p= 0 ii~22 o , S = :12 1322 C2:3 

0 0 m3:3 C13 1323 1333 

1 Cll 0 

o 1 1'''" 

1312 o 1 1 mll 
0 

c'" 1 q = ~12 rh22 0+6 (;22 0+6 rh22 (;23 

C13 0 m33 0 C23 m33 0 ° C33 

1011 
C12 

o lie" 6 
0131 1 m" 

C12 ""I r = :12 C22 
A

O + ~12 ii~22 C2:3 + 0 C22 C2:3 

C13 C23 m33 C13 0 C33 0 C23 C33 

(6.3.51) 

The real positive roots of this cubic equation give the square of the natural frequency 
Wmn associated with mode (m, n). The smallest of the frequencies is called the 
fundamental frequency. In general, Wll is not the fundamental frequency; the 
smallest frequency might occur for values other than m = n = 1. 

If the in-plane inertias are neglected (i.e., ii~l1 = m22 = 0), and irrespective of 
whether the rotary inertia is zero, Eq. (6.3.50) takes the same form as Eq. (6.3.43) 
with N o (a2 + k(32) replaced by w2m33' Hence, from Eq. (6.3.43) we have 

(6.3.52) 

Note that if the in-plane inertias are not neglected, the eigenvalue problem cannot 
be simplified to a single equation even if the rotary inertia is zero. 

N ondimensionalized frequencies, wmn = Wrnn (b2 / Jr2) j ph / D 22 , of specially 
orthotropic and antisymmetric cross-ply square laminates are presented in Table 
6.3.5 for modulus ratios Ed E 2=10 and 20 (G 12 = G 13 = 0.5E2, G23 = 0.2E2, 1/12 = 
0.25). All layers are of equal thickness. Results are presented for m. n = 1,2,3, and 
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for the case in which the rotary inertia is neglected. The fundamental frequency 
increases with modular ratio. As noted earlier, the effect of including rotary inertia 
is to decrease the frequency of vibration. Note that the first four frequencies for 
an orthotropic (0°) plate correspond to the modes, (m, n)=(l,l), (1,2), (1,3), and 
(2,1), whereas for antisymmetric cross-ply plates they are (m, n)=(l,l), (1,2), (2,1), 
and (2,2). For symmetric cross-ply plates the first four frequencies are provided by 
the modes: (m, n)=(l,l), (1,2), (2,1), and (1,3). Also, we note that Wmn = Wnm for 
antisymmetric laminates. 

Table 6.3.5: Nondimensionalized frequencies w of cross-ply laminates according 
to the classical plate theory. 

m n (0) (0/90) (0/90h (0/90), 

EdE2 = 10 

1 1 3.672 1.183 1.479 1.545 2.519 
1 2 5.996 3.174 4.077 4.274 4.986 

3 10.648 6.666 8.698 9.136 9.783 
2 1 13.075 3.174 4.077 4.274 8.515 
2 2 14.690 4.733 5.918 6.179 10.077 
2 3 18.181 7.927 10.034 10.494 13.783 
3 1 28.868 6.666 8.698 9.136 18.704 
3 2 30.258 7.927 10.034 10.494 19.911 
3 3 33.053 10.650 13.317 1:3.904 22.674 

EdE2 = 20 

1 1 4.847 0.990 1.386 1.469 2.638 
1 2 6.781 2.719 3.913 4.158 4.917 
1 3 11.111 5.789 8.456 8.998 9.637 
2 1 18.193 2.719 3.913 4.158 9.354 
2 2 19.388 3.959 5.547 5.877 10.554 
2 3 22.153 6.702 9.507 10.088 13.826 
3 1 40.539 5.789 8.456 8.998 20.752 
3 2 41.542 6.193 9.507 10.088 21.578 
3 3 43.623 8.908 12.481 1:3.224 23.746 

Figure 6.3.12 shows a plot of fundamental frequency w versus aspect ratio alb for 
symmetric (0/90)8 cross-ply and antisymmetric (0/90h cross-ply laminates. The 
material properties used are Ed E2 = 40, GI2 = G13 = 0.6E2, and l/12 = 0.25. 
Figure 6.3.13 shows the effect of coupling between bending and extension on 
the fundamental frequencies of antisymmetric cross-ply laminates. The material 
properties used are Ed E2 = 25, G I2 = G I3 = 0.5E2, and l/12 = 0.25. With an 
increase in the number of layers, the frequencies approach those of the orthotropic 
plate. The bending-stretching coupling has the effect of lowering the vibration 
frequencies. For example, the two-layer plate has vibration frequencies about 40 
percent lower than those of eight-layer antisymmetric laminate or orthotropic plate 
with the same total thickness. 
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Figure 6.3.12: Nondimensionalized fundamental frequency (w) versus plate aspect 
ratio (a/b) for cross-ply laminates. 
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6.4 Navier Solutions of Antisymmetric Angle-Ply 
Laminates 

6.4.1 Boundary Conditions 

The SS-2 boundary conditions in Eqs. (6.2.7) imply the following conditions on the 
generalized displacements and stress resultants of the classical laminate theory: 

UO(O, y, t) = 0, 

wo(x, 0, t) = 0, 

awo I = ° a ' x (x,O,t) 

uo(a, y, t) = 0, 

wo(x, b, t) = 0, 

awo I = ° a ' x (x,b,t) 

vo(x, 0, t) = 0, 

wo(O, y, t) = 0, 

awo I = ° a ' y (O,y,t) 

vo(x, b, t) = ° 
wo(a, y, t) = ° 
awo I = ° 
ay 

(a,y,t) 

Nxy(O, y, t) = 0, Nxy(a, y, t) = 0, Nxy(x, 0, t) = 0, Nxy(x, b, t) = ° 

(6.4.1a) 

Mxx(O, y, t) = 0, Mxx(a, y, t) = 0, Myy(x, 0, t) = 0, Myy(x, b, t) = ° (6.4.1b) 

The displacement boundary conditions in (6.4.1a) are satisfied by assuming the 
following form of the displacements 

00 00 

uo(x, y, t) = L L Umn(t) sin ax cos 13y (6.4.2a) 
n=l m=l 

00 00 

vo(x, y, t) = L L Vmn(t) cos ax sinj3y (6.4.2b) 
n=lm=l 

00 00 

wo(x, y, t) = L L Wmn(t) sin ax sin (3y (6.4.2c) 
n=l m=l 

where a = (m7r fa) and j3 = (n7r /b). Substituting the expansions (6.4.2) into the 
expressions for N xx , N yy , N xy , M xx , M yy , and M xy , we obtain 

00 00 

= L L (aA l1 Umn + j3A12Vmn - 2B16aj3Wmn ) cos ax cosj3y 
n=l m=l 
00 00 

+ L L [-AUi ((3Umn + aVmn ) + (Blla2 + B12j32) W mn] sin ax sin(3y 
n=lm=l 

auo avo (auo avo) 
N yy = A12 ax + A22 ay + A 26 ay + ax 

a2wo a2wo a2wo 
- B12-- - B22-- - 2B26--

ax2 ay2 axay 
00 00 

= L L (aA 12 Umn + j3A22Vrnn - 2B26aj3Wmn ) cos ax cosj3y 
n=lrn=l 
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x cx:; 

+ L L [-A26 ((3Umn + aVmn ) + (B12a2 + B22(32) W mn] sin ax sin(3y 
n=1 m=1 

cx:; cx:; 

= L L [aA l6 Umn + (3A26Vrnn - 2a(3B66W mnJ cos ax cos(3y 
n=1 m=1 

CXJ CXJ 

+ L L [-A66 ((3Umn + aVmn ) + (B16 a2 + B26(32) Wrnn] sin ax sin(3y 
n=l1'n=1 

CXJ CXJ 

= L L [aBllUmn + (3B12Vmn - 2a(3D16W mnJ cosax cos(3y 
n=1 m=1 

CXJ CXJ 

+ L L [-B I6 ((3Umn + aVrnn) + (Dlla2 + D12(32) W mn] sinax sin(3y 
n=I1'n=1 

CXJ CXJ 

= L L [aB12Umn + (3B22Vrnn - 2a;::3D2GWmnJ cos ax cos(3y 
n=1 m=1 

CXJ CXJ 

+ L L [-B26 ((3Umn + aVmn ) + (D12a2 + D22(32) W mn] sinax sin(3y 
n=l m=l 

CXJ CXJ 

= L L [aBl6 Umn + (3B26 Vmn - 2a(3D66W mnJ cos ax cos{3y 
n=I1'n=1 

CXJ CXJ 

+ L L [-B66 ((3Umn + a Vrnn) + (D16 a2 + D26(32) Wmn] sin ax sin (3y 
n=l m=1 

(6.4.3) 

Note that the boundary conditions in (6.4.1b) on the stress resultants N xy , Alx3:, and 
Myy can be satisfied only if the laminate stiffnesses A 16 , A 2G , B ll , B I2 , B22, B GG , D I6 , 

and D 26 are zero. Thus, the Navier solutions for rectangular laminated plates with 
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SS-2 boundary conditions exist only when the stacking sequences are such that 

(6.4.4) 

In addition, for dynamic problems, we must have h = O. Thus plates with a single 
generally orthotropic layer, symmetrically laminated plates with multiple specially 
orthotropic layers, and antisymmetric angle-ply laminated plates admit the Navier 
solutions for the SS-2 boundary conditions. 

6.4.2 Solution 

Substitution of Eq. (6.4.2) into Eqs. (6.2.1)-(6.2.3) yields 

(6.4.5a) 

.. ] (aNI aNT) 
- fa Vmn cos ax sin (3y = ax y + a:Y (6.4.5b) 

f f [ (3B16a2 (3 + B 26(33) Umn + (B16 a3 + 3B26a (32) Vmn 
n=1m=1 

- (Dl1a4 + 2(D12 + 2D66)a2(32 + D22(34) Wmn 

( 2A 2A) ( 22)"]' - a N xx + (3 N yy Wmn - fa + h(a + (3) Wmn smax sin(3y 

(6.4.5c) 

Note that the edge shear force Nxy is necessarily zero. In addition, inertia h is 
zero. If the transverse load and thermal resultants are expanded as before [see Eqs. 
(6.3.10)-(6.3.13)]' then it follows from Eq. (6.3.14) that N-fnn' N~n' and M~n must 
be zero. If the temperature field is expanded in double cosine series, N~n' M-fnn' 
and M~n must be zero. 

Equations (6.4.5) can be expressed in matrix form as 

[Cll C12 C13 ]{ Umn} ["'11 0 o ]{ U.mn } 
C12 C22 C23 Vmn + 0 m22 o Vmn 
C13 C23 C33 + 833 Wmn 0 0 m33 Wmn 

{ 0 } { -~N~n } { nN,~m } = 0 + -aN6 or (3N~n ( 6.4.6) 
Qmn a 2 M-fnn + 3~ M~n -2a(3M~n 
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where 

1311 = A11a2 + A66;32 

1312 = (A12 + A66)a;3 

1313 = -(3B16a2 + B26;32);3 

1322 = A66a2 + A22;32 

1323 = -(B16a2 + 3B26;32)a 

1333 = Dlla4 + 2(D12 + 2D66)a2;32 + D22;34 
_ 2 A 2 A 

833 = a N xx +;3 N yy 

mll = m22 = fo 

m33 = fo + h(a2 + ;32) 

(6.4.7a) 

(6.4. 7b) 

(6.4.7c) 

and a = m7r/a and ;3 = n7r/b. The second column of thermal forces in Eq. (6.4.6) 
are valid for the case in which the temperature field is expanded in double cosine 
series. 

6.4.3 Bending 

The static solution can be obtained by setting the time derivative terms in Eq. 
(6.4.6) to zero: 

(6.4.8) 

Using the static condensation procedure presented in Eqs. (6.3.22)-(6.3.26), we can 
determine the solution to Eq. (6.4.8) (when 833 = 0) as 

(6.4.9a) 

where 

A A a1 A a2 
amn =C33 + C13 - + C23 -, aO = Cll 1322 - 1312 1312 

aO aO 
a1 =1312 1323 - 13131322, a2 = 1313 1312 - 13111323 (6.4.9b) 

Solution of Eq. (6.4.9a) for each m, n = 1,2, ... gives (Urnn , Vrnn , WrnnJ, which can 
then be used to compute the solution (uo, vo, wo) from Eq. (6.4.2a-c). If there are 
no thermal loads, the solution becomes 

(6.4.9c) 
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6.4.4 Determination of Stresses 

The stresses in each layer of an antisymmetric angle-ply laminate can be calculated 
from [see Eq. (6.3.29)] 

(6.4.10) 

({ 
EXX} {axx} ) (Xl (Xl { aUmn gmn - axxT~nfmn } 
Eyy - a yy 6.T = L L f3Vmn gmn - ayyT~nfmn 

2Exy 2axy m=l n=l - (f3Umn + aVmn + 2axyT~n) fmn 

(Xl (Xl { (a
2
W mn - nxxT~n) fmn } 

+ L L Z (f32Wmn - nyyT~n) fmn 
m=l n=l -2af3Wmn gmn - 2axyT~nfmn 

(6.4.11a) 

f mn = sin ax sin f3y, gmn = cos ax cos By (6.4.11 b) 

Note that the in-plane stresses in angle-ply laminates will have nonzero contributions 
from Q6i. Also, the maxima of (O"xx,O"yy) occur at (a/2, b/2), and they have 
contributions from E~y, Eix, and Ety. The values of shear stress O"xy at (0,0) 
and (a/2, b/2) may be comparable, and relative maximum depends on the specific 
laminate construction. 

The transverse stresses are determined as described in Section 6.3.4. For the 
isothermal case, we obtain 

O"~~)(x,y,Z)= f= f= [(Z-Zk).A~~+~(z2_z~)B~~] +O"~~-l)(x,y,Zk) 
m=l n=l 

O"~~)(x,y,Z)= f= f= [(Z-Zk)C~~+~(z2-z~)D~~] +O"~~-l)(x,y,Zk) 
m=l n=l 

(6.4.12a) 

O"~Oj(x, y, zI) = 0, O"~~)(x, y, Zl) = 0 (6.4.12b) 

where 
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The maxima of (Jxz and (Jyz occur at (x, y) = (0, b/2) and (x, y) = (a/2,0), 
respectively, although their values at (x, y) = (a/2,0) and (x, y) = (0, b/2), 
respectively, are not zero. The location of the maximum value through the thickness 
depends on the lamination scheme. 

The bending moments in an antisymmetric angle-ply laminate can be calculated 
from Eq. (6.4.3), and it is given by the expression 

r""} 00 00 [ 0 

0 RI'] { "Umn co, ax cos Ily } 
Myy = L L 0 0 B 26 ,BVmn cos ax cos,By 
Mxy m=1 n=1 B 16 B 26 o - (,BUmn + a Vmn ) sin ax sin,By 

CXJ CXJ [DII D12 o ] { Q'Wmn sinlH sinlly } 
+ LL D12 D22 o ,B2Wmn sin ax sin,By (6.4.13) 

m=1 n=1 0 0 D66 - 2a,BW mn cos ax cos,By 

Note that the locations of the maximum values of M xx , M yy , and Mxy cannot be 
determined in the general case. However, when the coupling coefficients are zero, 
maximum values of Mxx and Myy occur at (x, y) = (a/2, b/2), and the maximum of 
Mxy occurs at (x, y) = (0,0). 

The effect of bending-extension coupling and the dependence of the coupling on 
the modulus ratio can be seen from the deflections if; = Wo (E2h3 / qob4

) and stresses 
o-xx = (Jxx(a/2, b/2, h/2)(h2 /QOb2) presented in Table 6.4.1 for antisymmetric angle
ply laminates (-45/45)k for k = 1,2, and 4, and subjected to sinusoidal load (first 
line) and uniformly distributed load (second line). All laminates are of the same 
total thickness, and the layer properties are: Ed E2 varied, G12 = G13 = 0.5E2, 
G23 = 0.2E2, [/12 = 0.25. The series for uniform load is evaluated using m, n = 
1,3, ... ,21 terms. Note that with increasing number of layers the laminate solution 
does not tend towards the orthotropic plate solution. 

Table 6.4.1: Effect of lamination scheme on the transverse deflections if; and 
stresses 0-xx in square angle-ply laminates (-45/45) k. 

Laminate 11) x 102 Load (j xx 

~ =1 
E2 10 20 30 40 E, = 1 

E2 10 20 30 40 

0° 2.639 0.908 0.523 0.367 0.283 SSL 0.174 0.462 0.524 0.549 0.563 
4.172 1.412 0.795 0.548 0.415 UDL 0.251 0.693 0.772 0.795 0.801 

It 2.887 1.117 0.757 0.577 0.467 SSL 0.190 0.217 0.242 0.256 0.265 
4..')77 1.759 1.190 0.906 0.732 UDL 0.278 0.308 0.340 0.358 0.370 

2 2.887 0.636 0.345 0.237 0.181 SSL 0.190 0.153 0.147 0.145 0.144 
4.577 0.999 0.542 0.372 0.283 UDL 0.278 0.214 0.205 0.201 0.199 

4 2.887 0.574 0.304 0.207 0.157 SSL 0.190 0.151 0.146 0.144 0.143 
4.577 0.902 0.477 0.324 0.245 UDL 0.278 0.211 0.202 0.199 0.197 

t Denotes k in the laminate (-45/45) k. 
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Figure 6.4.1 contains a plot of the nondimensionalized deflection ill versus 
plate aspect ratio for simply supported (88-2) antisymmetric angle-ply laminates 
(-45/45)k under sinusoidal load. Figure 6.4.2 contains ill as a function of the 
lamination angle B for square laminates (-B/B)k under sinusoidal load. The material 
properties used are Ed E2 = 25, G 12 = G 13 = 0.5E2, and V12 = 0.25. Clearly, 
the bending-extension coupling is quite significant for two-layered plates, but the 
coupling decreases very rapidly as the number of layers is increased. Lastly, 
nondimensionalized transverse deflections as a function of the modulus ratio for 
square laminates under sinusoidal transverse load are presented in Figure 6.4.3. 
The effect of coupling is significant for all modulus ratios except for those close to 
unity. 

Figures 6.4.4 and 6.4.5 show the plots of nondimensionalized transverse 
shear stresses O'xz(O, b/2, z) = O'yz(a/2, 0, z) and O'xz(a/2, 0, z) = O'yz(O, b/2, z), 
respectively, for two-layer and eight-layer antisymmetric angle-ply laminates (-
45/45/-45/-··) under sinusoidally distributed transverse load (a/b = 1, El = 25E2, 
G 12 = G13 = 0.5E2, V12 = 0.25). Unlike in anti symmetric cross-ply laminates, the 
stress O'xz is not zero at (x, y) = (a/2, 0), although small in magnitude compared to 
that at (x, y) = (0, b/2). Note that through-thickness variations are significantly 
altered when the number of layers are increased (for the same total laminate 
thickness). The parabolic type variation shown in Figure 6.4.4 is consistent with 
that of an orthotropic plate. 
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5 

Figure 6.4.1: Nondimensionalized maximum transverse deflection (ill) versus 
plate aspect ratio (a / b) for antisymmetric angle-ply (-45/45)n 
(n = 1,2,3,4) laminates under sinusoidal load. 
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modulus ratio (Ed E2 ) for antisymmetric angle-ply (-45/45)71 (n = 
1,2,4) laminates under sinusoidal load. 
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6.4.5 Buckling 

For buckling analysis, we assume that the only applied loads are the in-plane forces 
and all other mechanical and thermal loads are zero: 

ffex = -No, N yy = -kNo , (6.4.14) 

From Eq. (6.4.6) we have 

[ 

~11 C12 

C12 C22 

C13 C2:3 

(6.4.15) 

where Cij are the coefficients defined in Eq. (6.4.7a). Setting the determinant of the 
coefficient matrix in (6.4.15) to zero, we obtain 

(6.4.16) 

Clearly, for each pair of m and n, there is a unique value of No. The critical buckling 
load is the smallest of all No = No(m, n). Since Cij depend on m and n, No(m, n) 
is a complicated function of both m and n and no conclusions can be drawn about 
the mode (m, n) at buckling. 

For specially orthotropic laminates (i.e., a plate made up of a single specially 
orthotropic layer or a laminate consisting of specially orthotropic layers that are 
symmetrically arranged about the laminate middle surface), the only nonzero 
stiffnesses are All, A 12 , A 22 , A 66 , D ll , D 12 , D22 , and D66. Thus, neither shear or 
twist coupling nor bending-extension coupling exists. For biaxial compressive in
plane loading, the buckling load is given by Eq. (6.3.45). The specially or'tlwtropic 
solution for antisymmetric angle-ply laminates is the one that corresponds to the 
case in which A 16 , A 26 , B 16 , B 26 , D 16 , and D26 are zero. 

Table 6.4.2 contains nondimensionalized buckling loads (N = N cr b2 / E2h:3) of 
antisymmetric angle-ply laminates under uniaxial and biaxial in-plane compressive 
loads. The material properties used for a typical lamina are G 12 = 0.5E2, and 
lIl2 = 0.25. The buckling mode is (1,1), except for uniaxial compression with aspect 
ratio equal to 1.5. 

Plots of nondimensionalized critical buckling loads versus plate aspect ratio 
(a/b) for simply supported (SS-2) angle-ply laminates (45/-45)k under uniaxial 
compressive in-plane loads are presented in Figure 6.4.6 for Ed E2 = 40, G12 = 
G1:{ = O.SE2 , and lI12 = O.2Ei. The buckling mode associated with the critical 
buckling load is (m, n) = (1,1) for alb :s: 1.4, (m, n) = (2,1) for 1.5 :s: alb :s: 2.4, 
(m, n) = (3, 1) for 2.5 :s: alb :s: 3.4, (m, n) = (4,1) for 3.5 :s: alb :s: 4.4, and 
(m, n) = (5,1) for 4.5 :s: alb :s: 5. The effect of bending-stretching coupling is the 
most for two-layer laminates, and the orthotropic solution is rapidly approached as 
the number of plies is increased. 
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Table 6.4.2: Effect of coupling, plate aspect ratio, and modulus ratio on 

the nondimensionalized critical buckling load, N = Ncr E~~3 , 
of rectangular laminates under uniform compression and biaxial 
compression (Ed E2 varied, G 12 = G13 = 0.5E2, V12 = 0.25). 

(45/-45) (45/-45)4 

a lOt 20 25 40 10 20 b 

Uniaxial compression (k = 0) 

0.5 12.633 18.140 20.825 28.809 23.746 43.841 
1.0 9.060 13.373 15.475 21.713 17.637 33.320 
1.5* 9.603 23.963 16.285 22.779 18.565 34.909 

Biaxial compression (k = 1) 

0.5 11.893 14.518 16.660 23.045 18.999 35.076 
1.0 4.530 6.692 7.738 10.856 8.813 16.660 
1.5 3.129 9.021 5.270 7.353 6.001 11.251 

t Modulus ratio. 

* Mode is (2,1) for this row (a/b = 1.5); for all other cases, the mode is (1,1). 
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Figure 6.4.6: N ondimensionalized buckling load (N 
aspect ratio (a / b) of antisymmetric 
uniaxial compressive edge load. 
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= Ncr E2h3 ) versus plate 

angle-ply laminates under 
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Nondimensionalized critical buckling loads versus the lamination angle for 
uniaxial compression (k = 0) and biaxial compression (k = 1) antisymmetric 
angle-ply square laminates are shown in Figures 6.4.7 and 6.4.8, respectively, for 
E1 = 40E2 , G12 = 0.5E2, and V12 = 0.25. The plots shown in Figure 6.4.8 are 
symmetric about e = 45°. Note that, once again, the bending-stretching coupling 
severely reduces the buckling load for the two-layer plate. The effect is negligible 
for eight or more layers. The buckling load is the maximum for e = 45°. 

6.4.6 Vibration 

For free vibration Eq. (6.4.6) reduces to the eigenvalue problem 

~13l 2 [mll 
C23 - W 0 
C33 0 

o l) { U~n} { 0 } o v'~n = 0 
m33 W~n 0 

(6.4.17) 

where Cij and mij are defined in Eq. (6.4.7). Setting the determinant of the 
coefficient matrix in (6.4.17) to zero, we obtain the cubic characteristic polynomial 

_p)..3 + q)..2 _ r).. + s = 0 (6.4.18) 

in the eigenvalue).. = w2 , where 

I ri," 0 

m~,I I ell C12 C13 i 
p= 0 m22 s = :12 C22 C23 

0 0 C13 C23 C33 

I CIl 
0 

o 1 1'''-11 
C12 o 1 I r1'11 

0 
GIl I 

q = :12 rn22 0+0 C22 0+6 m22 C23 

C13 0 m33 0 C23 m3:~ 0 0 C33 

I e11 C12 
o I I ell 

6 
Cre I I ruu C12 e'1 I 

r = :12 C22 o + C12 m22 cn + 0 C22 C23 (6.4.19) 
C13 C23 m33 C13 0 C33 0 C23 C33 

If the in-plane inertias are neglected (i.e., mll = m22 = 0), Eq. (6.4.17) yields 

(6.4.20) 

Note that w is a function of the mode numbers (m, n) because the coefficients Cij 

depend on m and n, as shown in Eq. (6.4.7a). 
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Figure 6.4.7: Nondimensionalized buckling load (N) versus lamination angle 
(B) of antisymmetric angle-ply square laminates under uniaxial 
compressive edge load (k = 0). 

Figure 6.4.8: Nondimensionalized buckling load (N) versus lamination angle 
(B) of antisymmetric angle-ply square laminates under biaxial 
compressive edge loads (k = 1). 
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Nondimensionalized fundamental frequencies w = w(b2 /7r2 ) vi ph/ D22 of graphite
epoxy composites with Ed E2 = 40, G12 / E2 = 0.5,1/12 = 0.25 and a/b = 1 are shown 
as a function of lamination angle in Figure 6.4.9. The bending-stretching coupling 
due to the presence of B 16 and B 26 has the effect of lowering the frequencies. 
The coupling is the maximum for two-layer plates, and it rapidly decreases with 
increasing number of layers. At () = 450

, the fundamental frequency of the two-layer 
plate is about 40 percent lower than that of the eight-layer laminate. The same 
conclusions hold for results presented in Figures 6.4.10 and 6.4.11. The effect of 
coupling is significant for all modulus ratios, and the difference between the two
layer solution and orthotropic solution increases with modulus ratio. 

6.5 The Levy Solutions 
6.5.1 Introduction 

The Levy method can be used to solve the governing equations of various plate 
theories for rectangular laminates for which two (parallel) opposite edges are simply 
supported and the other two edges can have any boundary conditions. Here we 
describe the Levy solution procedure for cross-ply and antisymmetric angle-ply 
laminates using the classical laminate plate theory (CLPT). However, details are 
presented for only cross-ply laminates. 

Consider a rectangular laminate which has an even number of orthotropic layers 
with principal material directions alternating at 00 and 900 to the laminate axes 
(i.e., antisymmetric cross-ply laminate). The planar dimensions are taken to be a 
and b, and the total thickness h. The laminate coordinate system (x, y, z) is taken 
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Figure 6.4.9: Nondimensionalized fundamental frequency versus lamination 
angle (()) of antisymmetric angle-ply square laminates. 



340 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

300 

250 
Ie 
>; 
u c 200 C1l 
;::l 
0< 
C1l 

ol:: 
C3 150 ...., 
c 
C1l 

S 
CIS 

'"C 
100 c 

;::l 
~ 

50 

0 

0.0 

All laminates have the 
same total thickness 

orthotropic plate 

(-45/45) 

(-45/45h 

1.0 2.0 3.0 

Plate aspect ratio, a I b 
4.0 5.0 

Figure 6.4.10: Nondimensionalized fundamental frequency (0) versus plate aspect 
ratio (alb) of antisymmetric angle-ply laminates. 

30.0 

25.0 

Ie 
>; 20.0 
U 
C 
C1l 
;::l 
0< 
C1l 

ol:: 15.0 
C3 ...., 
c 
C1l 

S 10.0 CIS 
'"C 
C 
;::l 
~ 

5.0 

orthotropic plat~ ./ ./ ./ 
./ 

/ 

/. 
/. 

/. 
/. (-45/45)2 

/. 

All laminates have the 
same total thickness 

o 5 10 15 20 25 30 35 40 45 50 
Modulus ratio, EIIE2 

Figure 6.4.11: Nondimensionalized fundamental frequency (0) versus modulus 
ratio Ed E2 of antisymmetric angle-ply square laminates. 



ANALYTICAL SOLUTIONS OF RECTANGULAR LAMINATES USING CLPT 341 

such that to be a and b, and the total thickness h. The laminate coordinate system 
(x, y, z) is taken such that -a/2 :s: x :s: a/2, ° :s: y :s: b, -h/2 :s: z :s: h/2, as shown 
in Figure 6.5.1. Here we assume that the edges y = 0, b are simply supported, 
and the other two edges can each have arbitrary boundary conditions (e.g., simply 
supported, clamped, or free). The type of the boundary conditions for the classical 
laminate plate theory were derived in Section 5.3 [see Eq. (3.3.34)]. Note that only 
one quantity in each of the following pairs should be specified on the boundary: 

(6.5.1) 

where n refers to the normal and s to the tangential directions at the boundary 
point. 

The simply supported boundary conditions on edges y = 0, b (n = ~y, s = 
~x, Un = VO, Us = uo, etc.) are expressed as follows: 

Uo = 0, N yy = 0, Wo = 0, Myy = ° (6.5.2) 

One of the following three types of boundary conditions may be used on the 
remaining two edges, x = ~~ (n = ~x and s = ~y): 

Simply supported (S): 

N xx = 0, Vo = 0, Wo = 0, Mxx = ° 
Clamped (C): 

° ° oWo = ° Uo = ,Vo = 0, Wo =, -
ox 

Free (F): 

N ° N ° v: == oMxx + 2 0Mxy 
= ° M ° xx =, xy = 'x ox oy 'xx = 

T 
b 

1 - -
~-

y 

simply supported edge 
(same at y=O) 

Figure 6.5.1: The coordinate system used in the Levy solution. 

(6.5.3) 

(6.5.4) 

(6.5.5) 
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The basic idea of the Levy method is to seek a solution that satisfies the boundary 
conditions along the simply supported edges exactly, and thereby reduce the two
dimensional problem to a one-dimensional problem with respect to the coordinate x. 
This results in ordinary differential equations in x, which involve usually second- or 
higher-order derivatives of the unknown coefficients of the displacement expansion. 
These ordinary differential equations are then solved using the so-called state-space 
approach (see Brogan [2] or Franklin [3]). 

For the case of antisymmetric cross-ply laminates, we have 

(6.5.6) 

Consequently, from Eqs. (6.2.1)-(6.2.3), we have the following equations of motion 
of the classical laminate theory for the isothermal case: 

fJ2uo fJ2uo fJ2vo 
All fJx2 + A66 fJy2 + (A12 + A 66 ) fJxfJy 

[ 
fJ3wo fJ3wo 1 .. fJwo 

- Bll fJx3 + (B12 + 2B66 ) fJxfJy2 = louo - h fJx (6.5.7) 

(6.5.8) 

(6.5.9) 

6.5.2 Solution Procedure 

In the Levy type procedure, we assume the following representation of the 
displacements: 

00 

uo(x, y, t) = L Um(x, t) sin (3y 
m=l 

00 

vo(x, y, t) = L Vm(x, t) cos (3y 
m=l 

00 

wo(x, y, t) = L Wm(x, t) sin(3y (6.5.10a) 
m=l 
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where (3 = (m7r/b). The transverse load is expanded as 

00 

q(x, y, t) = L Qm(x, t) sin(3y (6.5.lOb) 
m=l 

where (Urn, Vm , W rn ), and Qm denote amplitudes of (uo,vo,wo), and q, respectively. 
These expansions satisfy the simply supported (88-1) boundary conditions (6.5.2) 
on edges y = 0, b. 

The stress resultants derived from the displacement field (6.5.10a) are given by 

00 

Nxy = L ((3A66Urn + A66V~ - 2(3B66W~L) cos(3y 
rn=l 

~ (' 2 ") . Myy = ~ B 12 Um - (3B22Vm + (3 D22Wm - D 12 W m sm(3y 
rn=l 

00 

Mxy = L ((3B66 Um + B66V~ - 2(3D66W~L) cos(3y 
m=l 

(6.5.11) 

The boundary conditions in (6.5.3)-(6.5.5) on edges x = ~a/2 require that 
(Um, V;n, Wm) and their derivatives with respect to x satisfy the following boundary 
conditions: 

Simply supported (AllDll - Brl =f. 0): 

(6.5.12) 

Clamped: 
(6.5.13) 
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Free: 

(6.5.14a) 

(6.5.14b) 

(6.5.14c) 

(6.5.14d) 

Substituting Eq. (6.5.10) into Eqs. (6.5.7)-(6.5.9), expressing the results in 
terms of the highest derivatives U~, V;, and W;;:', and substituting for U~ and V; 
into the expression for W;;:', we obtain (when Nxy = 0) 

/I ""!.... , 
Um = C1Um + C2Vm - C3Wm + C4Wm + D1Um - D2Wm 

V; = -C5U:n + C6Vm - C7Wm + CsW~ + D3Vm - D4Wm 
w ' U 

Wm = CgUm + ClO Vrn + C11 Wm + C12Wm + CoQm 

+ D5U:n + D6Vm + D7Wm + DsW~ 

The coefficients C i appearing in Eqs. (6.5.15) are 

where 

C1 = e2
, C2 = e3

, 
e1 e1 

C5 = e3 , C6 = e7 , 

lO4 
C3 = -, 

e1 

C7 = es , 

C4 = e5 
e1 

Cs = 109 

e6 e6 e6 e6 

Cg = [-e4 + e5C1 + (eg - e5C2)C5] Co 
C lO = [es - (eg - e5C2)] Co, Co = (e13)-1 

C11 = [-e11 - (eg - e5C2)C7] Co 

C12 = [e12 - e5C3 - (eg - e5C2)Cs] Co 
d1 d2 d1 d3 

D1 = -, D2 = -, D3 = -, D4 = -
e1 e1 e6 e6 

D5 = (e5 D1 - d2)CO, D6 = [d3 + (e5C2 - eg)D3] Co 

D7 = [-d4 + (eg - e5C2)D4] Co, Ds = (d5 - lO5 D2)Co 

(6.5.15a) 

(6.5.15b) 

(6.5.15c) 

(6.5.16a) 

lO1 = A 11 , lO2 = (32 A 66 , e3 = (3(A12 + A66 ), lO4 = (32(B12 + 2B66), lO5 = B11 

e6 = A66 , lO7 = (32 A 22 , es = (33 B 22 , eg = (3(B12 + 2B66 ), elO = D11 

(
4 2A) 2 A 

e11 = (3 D22 + (3 Nyy , e12 = 2(3 (D12 + 2D66 ) + N xx , e13 = elO - lO5 C4 

d1 = 10, d2 = h, d3 = h(3, d4 = 10 + (32 h, d5 = h (6.5.16b) 

The linear system of ordinary differential equations in (6.5.15) with constant 
coefficients can be expressed in the form of a single, first-order, matrix differential 
equation 

{Z'} = [T]{Z} + {F} (6.5.17) 
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where 
Um 0 
U' 

m D 1Um - D2W~ 
Vm 0 
v:' 

.. .. 

{Z} = m , {F} = D3Vm - D4W m (6.5.18a) 
Wm 0 

I 

Wrn 0 
Wm 0 
Will Qm rn 

0 1 0 0 0 0 0 0 
C1 0 0 C2 0 -C3 0 C4 

0 0 0 1 0 0 0 0 

[T] = 0 -C5 C6 0 -C7 0 C8 0 
(6.5.18b) 

0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 C9 ClO 0 C11 0 C 12 0 

and 
A •• , •• •• •• " 

~=~~+~~+~~+~~+~~ (6.5.18c) 

Next, we discuss the solution of Eq. (6.5.17) separately for bending, vibration, 
and buckling problems. In each case, we solve Eq. (6.5.17) or its special cases. 

Bending 

In the case of static bending, all variables are independent of time. Equations 
(6.5.17) and (6.5.18) hold with 

(6.5.19) 

In addition, Nxx and Nyy appearing in the definition of the coefficients e12 and e11 

are assumed to be zero. 
The solution of Eq. (6.5.17), z' = TZ + F, when T is independent of x, is given 

by (see Franklin [3], Chapter 3) 

(6.5.20a) 

where e Tx represents the matrix product 

[ 

eAIX eA2x 0 1 
eT :r = [E] 

o cA8X 

[E]-1 (6.5.20b) 

[E] denotes the matrix of distinct eigenvectors of the matrix [T], [Er 1 denotes its 
inverse, Ai (i = 1,2,3, ... 8) are the eigenvalues associated with matrix [T], and K 
is a vector of constants to be determined from the boundary conditions (6.5.12) 
(6.5.14). 
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Substitution of Eq. (6.5.20a) into any combination of boundary conditions 
(6.5.12)-(6.5.14) on edges x = ~a/2 yields a nonhomogeneous system of equations 

[M]{K} = {R} (6.5.21) 

which can be solved for the vector {K}. For example, consider the case in which the 
edge x = -a/2 is clamped and the edge x = a/2 is free. For uniformly distributed 
load (static bending case), the solution (6.5.20) can be written as 

[ eA" 

1 0 0 - Al 

eA2x 1 

{Z} = [E] ". J [EJ-
1 
{K) + [10] 

- A2 
[E]-l{F} 

0 eA8X 
0 1 

- A8 

== [G(x)]{K} + {H(x)} (6.5.22) 

Now the components of the matrix [M] and vector {R} in Eq. (6.5.21) can be 
defined in terms of the coefficients Gij and Hi, evaluated at x = -a/2 and x = a/2, 
as described below. 

The clamped boundary condition at x = -a/2 requires [see Eq. (6.5.13)] that 

M lj = Glj ( -a/2), M 2j = G3j ( -a/2), M3j = G5j ( -a/2), M4j = G6j( -a/2) 
(6.5.23a) 

The free boundary condition at x = a/2 requires [see Eqs. (6.5.14a-c)] that 

M5j = A l1 G2j (a/2) - ,6A12G3j (a/2) +,62 B12G5j(a/2) - B l1 G7j (a/2) 

M6j = ,6A66G lj (a/2) + A66G4j(a/2) - 2,6B66G6j(a/2) 

M7j = 6 lGlj (a/2) + 6 2G4j (a/2) + 6 3G6j (a/2) + 6 4GSj (a/2) 

MSj = Bl1G2j (a/2) - ,6B12G3j(a/2) +,62 D 12G5j (a/2) - D l1 G7j (a/2) 

(6.5.23b) 
A 2 A 

G l = Gl B l1 - ,6 B 66 , C2 = G2B l1 - ,6(B12 + B 66 ) 
A 2 A 

G3 = -C3Bll +,6 (D12 + 2D66), C4 = C4 B l1 - Dl1 (6.5.23c) 

Similarly, the coefficients Ri are defined by 

Rl = -Hl (-a/2), R2 = -H3(-a/2), R3 = -H5(-a/2), R4 = -H6(-a/2) 

R5 = Al1H2(a/2) - ,6A12H3(a/2) +,62 B12H5(a/2) - Bl1H7(a/2) 

R6 = ,6A66 HI (a/2) + A66H4(a/2) - 2,6B66H6(a/2) 

R7 = 6 l Hl (a/2) + 6 2H4(a/2) + 63H6(a/2) + C4Hs(a/2) 

Rs = B ll H2(a/2) - ,6B12H3(a/2) +,62 D12H5(a/2) - DllH7(a/2) (6.5.24) 

Natural Vibration 

In the case of natural vibration, the applied mechanical loads (Qm, Nxx , Nyy ) are 
assumed to be zero, and the solution is of the form 

u(x, y, t) =Um(x) sin,6y eiwrnt 

v(x, y, t) = Vm(x) cos,6y eiwrnt 

w(x, y, t) = W m(x) sin,6y eiwrnt (6.5.25) 
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where Wm denotes the frequency of vibration of the mth mode, and i = R. 
Equation (6.5.15) becomes 

{Z' (x)} = [A]{Z(x)} (6.5.26a) 

with 
0 1 0 0 0 0 0 0 
c\ 0 0 C2 0 -63 0 C4 
0 0 0 1 0 0 0 0 

[AJ = 0 -C5 6 6 0 -67 0 Cs 0 
0 0 0 0 0 1 0 0 

(6.5.26b) 

0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 6 9 610 0 6 11 0 6 12 0 

where 

A 2 
C1 = C1 - D 1w , 

A 2 
C3 = C3 - D 2w , 

A 2 
C6 = C6 - D3W 

A 2 
C7 = C7 - D 4w , 

A 2 
C9 = C9 - D5W , 

A 2 
C10 = C10 - D6W 

A 2 
C11 = C11 - D 7w , 

A 2 
C12 = C12 - Dsw (6.5.26c) 

The solution of Eq. (26a) is given by 

Z(x) = eAxK (6.5.27) 

and the vector K of constants is determined from the boundary conditions. 
Substitution of Eq. (6.5.27) into the set of boundary conditions results in a 
homogeneous system of equations 

[M]{K} = {O} (6.5.28) 

For a nontrivial solution, the determinant of the coefficient matrix in (6.5.28) should 
be zero: 

(6.5.29) 

The roots of the above equation are (the squares of) the frequencies of natural 
vibration. 

Buckling 

In the case of buckling, the applied mechanical load Qm is zero, and Nxx and Nyy 

are determined. The solution is assumed to be of the form 

u(x, y) =Um(x) sin(3y 

v(x,y) =Vrn(X)Cos(3y 

w(x,y) =WrrJx)sin(3y 

The operator equation for this case is 

{Z' (x)} = [T]{Z} 

(6.5.30) 

(6.5.31) 
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where [T] is the matrix defined in Eq. (6.5.18b). Note that the buckling loads 
enter the matrix through the coefficients Cu and C12 , which contain eu and e12, 

respectively [see Eqs. (6.5.16a) and (6.5.16b)]. The solution of Eq. (6.5.31) is given 
by 

(6.5.32) 

and the vector K of constants is determined from the boundary conditions. 
Substitution of Eq. (32) into the set of boundary conditions results in a homogeneous 
system of equations 

[M]{K} = {O} (6.5.33) 

For a nontrivial solution, the determinant of the coefficient matrix in (6.5.33) should 
be zero. The roots of this equation are the buckling loads, Nxx and Nyy . 

Computational Issues 

Some comments are in order on the numerical solution of Eq. (6.5.22). Due to 
the sparse nature of matrix [T] or [AJ, the matrix [M] appearing in Eqs. (6.5.21), 
(6.5.28), and (6.5.33) is often ill-conditioned and results in computer overflow or 
underflow. This can be overcome (see, for example, Nosier and Reddy [4]) by 
rewriting Eq. (6.5.22) as 

{Z(x)} = [E] 

=[E] (6.5.34a) 

and 
[M]{K} + {F} = {O}, {K} = [E]-l{K} (6.5.34b) 

The matrix [M] is not ill-conditioned and therefore can be easily inverted to solve 
for {K} and {K} = [E]{K}. It should be noted that, while {K} and [M] are 
real-valued, {K} and [M] are complex-valued arrays. 

Another source of difficulty in the numerical evaluation of the eigenvalues of the 
matrix [T] or [A] is due to the fact their diagonals have zero entries. This can be 
circumvented by adding a nonzero constant to all diagonal elements (i.e., add -e[I]). 
The eigenvalues of the original matrix [T] or [A] are obtained from the eigenvalues 
of the modified matrix by subtracting the same nonzero constant. The eigenvectors 
in both cases are the same. 

6.5.3 Antisymmetric Cross-Ply Laminates 

Here we present numerical results obtained with the Levy method and the state
space solution approach. Khdeir and his colleagues developed solutions for static 
and dynamic (natural vibration as well as transient response) analyses and buckling 
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of rectangular composite laminates with various lamination schemes and boundary 
conditions. The reader may consult the papers cited in the bibliography for detailed 
derivations and additional numerical results. 

The notation used for rectangular laminates with different boundary conditions 
on edges x = ±a/2 is as follows (see Figure 6.5.1). The notation SF, for example, is 
used to denote a plate for which edge x = -a/2 is simply supported (S) and edge 
x = a/2 is free (F). Since edges y = 0, b are always simply supported, we also use 
the notation SSSF to denote SF. Thus SS is used in place of SSSS, SC in place of 
SSSC, CC in place of SSCC, and so on. 

Bending 

The following lamina properties, typical of graphite-epoxy material, are used in all 
numerical examples presented here: 

(6.5.35) 

The loading, in all cases, is assumed to be sinusoidal 

q(x,y) = qo cos ax sin{3y (6.5.36) 

where a = (m7r/a) and {3 = (n7r/b). 
In the tables and figures, the results for deflections and stresses are presented in 

the following nondimensional form: 
3 E2h 2 

ill = wo(O, b/2)-b4 x 10 (6.5.37a) 
go 

b h h2 b h h2 

ifxx = -O"xx(O, -, --)-2- X 10, ifyy = O"yy(O, -, - )-b2 X 10 
2 2 b qo . . 2 2 go 

(6.5.37b) 

where h is the total thickness of the laminate and go is the intensity of the distributed 
transverse load. For the coordinate system used in the nondimensionalization, one 
should refer to Figure 6.5.I. 

Figures 6.5.2 and 6.5.3 contain plots of ill versus Ed E2 for two-layer 
antisymmetric rectangular (b/a = 2) laminates (G 12 = G13 = 0.5E2, V12 = 0.25) 
under various boundary conditions on edges x = ±a/2, showing the effect of material 
orthotropy on the deflections. The degree of orthotropy has less influence on the 
deflections for large ratios of E1 to E 2 . Table 6.5.1 contains numerical results of 
deflections and stresses for two- and ten-layer laminates. 

Numerical results for deflections and stresses of cross-ply laminates subjected to 
sinusoidal distribution of temperature 

T(x,y,z) = zT1 (x,y) = ZT1 cos ax sin{3y (6.5.38) 

arc presented in Table 6.5.2. The material properties used are the same as those in 
Eq. (6.5.35), with a2 = 3a1. The following nondimensionalizations are used: 

1 
ill = wo(O, b/2) a

1
T

1
b2 x 10 (6.5.39a) 

b h 1 
ifxx = O"xx(O, 2' -"2) a

l
T

1
bE

2 
x 10 (6.5.39b) 

b h 1 
ifyy = -O"yy(O, 2' "2) a

l
Tl

bE
2 x 10 (6.5.39c) 
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Figure 6.5.2: Nondimensionalized maximum transverse deflection (w) versus 
modulus ratio (E l / E2 ) for antisymmetric cross-ply (0/90) 
laminates (b/a = 2) subjected to sinusoidal load. 
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Figure 6.5.3: Nondimensionalized maximum transverse deflection (w) versus 
modulus ratio (Ed E2) for antisymmetric cross-ply (0/90) 
laminates (b/a = 2) subjected to sinusoidal load. 
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Table 6.5.1: Nondimensionalized center deflectionti (ill) and in-plane normal 
stresses (0-xx and 0-yy) of antisymmetric cross-ply square plates 
subjected to sinusoidal distribution of transverse load and for 
various boundary conditions. 

No. of Variable SS se ee FF FS Fe 
Layers 

2 11.) l.064 0.664 0.429 l.777 l.471 0.980 
ax;r 7.157 5.660 4.800 2.403 4.442 3.042 
jj Y'Y 7.157 4.483 2.914 11.849 9.837 6.560 

10 w 0.442 0.266 0.167 0.665 0.579 0.380 
axx 5.009 3.829 3.167 1.725 2.986 1.865 
(7yy 5.009 3.025 1.911 7.480 6.531 4.284 

Table 6.5.2: Nondimensionalized center deflections (ill) and in-plane normal 
stresses (o-xx and o-yy) of cross-ply square plates subjected to 
sinusoidal distribution of temperature distribution and for various 
boundary conditions. 

Laminate Variable SS se cc FF FS 

0 w 1.0312 0.4543 0.2443 2.2935 1.6067 

(0/90) w 1.1504 0.7183 0.4681 l.2639 1.2152 
{7yy 0.6148 5.1916 8.8393 2.1091 1.4684 

(0/90b w l.0331 0.6222 0.3914 1.0681 1.0546 

(0/90/0) w 1.0312 0.4635 0.2512 1.6645 1.3800 
o-xx 0.0526 11.1264 15.2675 1.4489 0.8217 

Vibration and Stability 

The Levy type solution procedure is used to evaluate the natural frequencies 
and critical buckling loads of antisymmetric cross-ply rectangular laminates. The 
following material properties are used in the analysis (material 2): 

(6.5.40) 

Numerical results for the nondimensionalized fundamental frequencies of square, 
antisymmetric, cross-ply laminates (0/90/0/ ... ) are presented in Table 6.5.3 for 
various boundary conditions, number of layers, and ratio of principal moduli of the 
material. The fundamental frequencies increase with increasing orthotropy Ed E2 
as well as number of layers. Similar results for critical buckling loads are also 
presented in the same table. Results for fundamental frequencies and buckling loads 
are presented for various boundary conditions and aspect ratios in Table 6.5.4. The 
natural frequencies increase with an increase in the aspect ratio as well as the number 
of layers. 
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Table 6.5.3: Effect of degree of orthotropy of the individual layers on the 
dimensionless fundamental frequency, w = w(b2 Ih)J pi E2 , and 
critical buckling loads, fir = N xx (b2 I E 2 h3

) (k = 0), of simply 
supported antisymmetric square laminates (E1 I E2 = varied, 
G 12 = G 13 = 0.6E2, G23 = 0.5E2, V12 = 0.25). 

No. of EdE2 
Layers 

3 10 20 30 40 

Natural Frequencies (Wl1) t 

2 6.977 8.031 9.204 10.227 11.154 
7.034 8.097 9.278 10.310 11.244 

4 7.353 9.987 12.826 15.141 17.145 
7.413 10.068 12.931 15.264 17.285 

8 7.443 10.422 13.589 16.147 18.352 
7.505 10.507 13.701 16.279 18.502 

10 7.455 10.473 13.678 16.264 18.492 
7.516 10.559 13.790 16.397 18.643 

Critical Buckling Loads (k = 0) 

2 5.034 6.703 8.816 10.891 12.957 
4 5.574 10.295 16.988 23.675 30.359 
8 5.709 11.192 19.031 26.870 34.710 

10 5.725 11.300 19.277 27.254 35.232 

t Fundamental frequencies obtained with (first row) and without (second row) rotary inertia. 

When rotary inertia is included, the nondimensionalized frequencies depend on the ratio a/h; the 

frequencies are reported for a/h = 10. 

Table 6.5.4: Dimensionless fundamental frequencies, w = w(b2Ih) JpIE2 , 

and uniaxial critical buckling loads, fir = N xx (b2 I E 2 h 3
), of 

antisymmetric cross-ply plates with various boundary conditions 
(E1 = 40E2, G 12 = G 13 = 0.6E2, G23 = 0.5E2, V12 = 0.25). 

No. of 
Layers 

b/a 

Natural Frequencies (Wl1)t 

2 
10 

2 

10 
2 

10 

1 
1 
2 

2 
3 
3 

Critical Buckling Loads (k = 0) 

2 
10 

1 
1 

FF 

7.267 
12.680 

7.267 
12.680 

7.267 
12.680 

5.425 
16.426 

FS 

7.636 
12.906 

8.677 
13.569 
10.153 
14.606 

6.003 
17.023 

t Frequencies with rotary inertia included (a/h = 10). 

FC 

8.228 
13.779 
13.915 
22.876 
25.769 
43.616 

6.968 
19.389 

SS 

11.154 
18.492 
30.468 
52.292 
63.325 
111.58 

12.957 
35.232 

SC 

14.223 
23.971 
45.554 
79.371 
96.451 
159.65 

21.116 
59.288 

CC 

18.543 
31.709 
64.832 
113.80 
137.71 
159.95 

31.280 
89.770 
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6.5.4 Antisymmetric Angle-Ply Laminates 

The Levy solutions in conjunction with the state-space approach can also be 
obtained for antisymmetric angle-ply laminated plates. In this section numerical 
results of bending, free vibration, and in-plane compressive buckling of rectangular 
laminates are presented (see Khdeir [18]). 

Bending 

Nondimensionalized deflections, ill wo(O, b/2)E2h3 / QOb4 X 102 , of square, 
antisymmetric angle-ply laminates (45/-45/45/ -45) for various boundary conditions 
and uniformly distributed load of intensity qo are presented in Table 6.5.5. The 
material properties used are the same as those presented in Eq. (6.5.40). As one 
might expect, plates with a combination of free and simply supported boundary 
conditions deflect the most and those with simply supported and clamped boundary 
conditions deflect the least. Table 6.5.6 contains results for two- and ten-layer 
antisymmetric angle-ply laminates as a function of the lamination angle and for 
different boundary conditions. The material properties used in this case are 

E1 = 19.2 X 106 psi (132.38 CPa), E2 = 1.56 X 106 psi (10.76 CPa), V12 = 0.24 

G12 = G 13 = 0.82 X 106 psi (5.65 CPa), G23 = 0.523 X 106 psi (3.61 CPa)(6.5.41) 

It is clear that the bending-stretching coupling is the most significant for two-layer 
laminates, and its effect is to make the laminate more flexible and hence deflects 
more than the ten-layer plates, for which the coupling is negligible. 

Table 6.5.5: Effect of orthotropy on dimensionless deflections ill of a (45/ 
45/45/-45) square laminated plate. 

EdE2 ss se ee FF FS Fe 

2 3.2142 2.2144 l.5308 10.470 6.23:36 4.4460 
10 l.0000 0.7467 0.5578 5.5710 2.3451 l.747:3 
20 0.5418 0.4120 0.3133 3.6574 l.3432 l.0104 
30 0.3718 0.2847 0.2179 2.7376 0.9433 0.7121 

Table 6.5.6: Effect of ply angle (B) and number of layers (n) on dimensionless 
deflection ill of a square plate [( B / -B / B / ... / -B); material properties 
are as given in Eq. (6.5.41)]. 

() n SS se ee FF FS Fe 

30 2 l.6185 l.2996 l.0352 4.3732 2.6983 2.2162 
10 0.8187 0.6898 0.5786 2.2621 1.3936 1.1913 

45 2 l.5807 1.1675 0.8628 7.8765 3.5696 2.6432 
10 0.7391 0.5590 0.4229 4.7291 1.8069 1.3554 

60 2 l.6184 l.0218 0.6657 12.3713 4.7491 2.8627 
10 0.8187 0.5188 0.3364 1O.3m5 2.7365 1.6:391 
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Vibration and Buckling 

Numerical results for nondimensionalized frequencies, w = w~ J p/ E2 , and 

dimensionless uniaxial buckling loads, if = N xx E~~3' are presented for various 
laminates in Tables 6.5.7 through 6.5.13. The material used in all these cases is 
assumed to be a high modulus graphite epoxy with the properties listed in Eq. 
(6.5.40): 

The fundamental frequencies presented are for the case in which rotary inertia is 
neglected. The parametric effects of the lamination angle, plate aspect ratio, and 
boundary conditions on frequencies and buckling loads can be seen from the results 
presented in these tables. 

Table 6.5.7: Effect of in-plane orthotropy ratio on dimensionless fundamental 
frequency w of a (45/-45/45 F45) square laminated plate. 

EdE2 SS se ee FF FS Fe 

2 7.02 8.39 10.24 3.44 4.24 4.62 
10 12.54 14.43 16.90 4.65 6.78 7.38 
20 17.02 19.43 22.53 5.72 8.92 9.70 
30 20.53 23.37 27.00 6.60 10.62 11.55 
40 23.53 26.73 30.83 7.37 12.08 13.14 

Table 6.5.8: Effect of ply angle (0) and number of layers (n) on dimensionless 
fundamental frequency w of a square laminate (0/-0/0/ ... /-0). 

e n SS se ee FF FS Fe 

30 2 14.24 15.44 17.00 7.58 9.35 9.69 
10 23.95 25.59 27.58 12.37 15.38 15.84 

45 2 14.64 16.75 19.48 5.12 7.79 8.48 
10 25.47 28.91 33.32 7.89 13.03 14.17 

60 2 14.24 17.74 22.31 3.47 6.26 7.54 
10 23.95 29.86 37.62 4.32 9.92 11.96 

Table 6.5.9: Effect of aspect ratio dimensionless fundamental frequency w 
w a

; Jp/E2 of a (45/-45/45/-45) square laminated plate. 

alb SS se ee FF FS Fe 

1 23.57 26.73 30.83 7.37 12.08 13.14 
2 53.74 69.75 90.73 6.32 19.80 25.47 
3 98.87 138.20 189.13 5.61 28.39 42.95 
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Table 6.5.10: Dimensionless frequency wm for various mode numbers (m) of (45/-
45/45/-45) square laminated plate. 

m 

1 
2 
3 
4 
5 

ss 

23.53 
53.74 
98.87 

160.35 
238.72 

se ee 

26.73 30.83 
56.10 58.88 

100.70 102.76 
161.82 163.43 
239.93 241.25 

FF FS Fe 

7.37 12.08 13.14 
31.89 37.32 37.91 
73.58 79.12 79.48 

132.42 137.92 138.16 
208.39 213.78 213.95 

Table 6.5.11: Effect of plate aspect ratio (a/b) and number of layers (n) 
on uniaxial buckling load of simply supported angle-ply (45/-
45/45/. .. ) laminates; N = N xx (b2lrr2 D22)' 

alb mode n=2 n=4 n=6 n=8 

0.5 (1,1) 3.2071 8.0934 8.9980 9.3150 
1.0 (1,1) 2.4014 6.2045 6.9088 7.1552 
1.5 (2,1 ) 2.5231 6.4901 7.2247 7.4819 
2.0 (2,1) 2.4014 6.2045 6.9088 7.1552 
2.5 (3,1) 2.4495 6.3173 7.0336 7.2843 
3.0 (3,1) 2.4014 6.2045 6.9088 7.1552 

Table 6.5.12: Effect of in-plane orthotropy ratio on dimensionless uniaxial 
buckling loads N = Ncrb2/lS2h3 of a (45/-45/45/-45) square 
laminated plate. 

EdE2 SS se ee FF FS Fe 

2 4.988 7.126 9.512 1.199 1.819 2.166 
10 15.923 21.106 26.278 2.190 4.660 5.521 
20 29.333 38.234 46.823 3.313 8.054 9.532 
30 42.715 55.321 67.320 4.415 11.421 13.513 
40 56.088 72.396 87.803 5.509 14.780 17.484 

Table 6.5.13: Effect of ply angle (e) and number of layers (n) on dimensionless 
uniaxial buckling loads N = NCTb2/E2h3 of a square plate [(e/-
e /e j. .. I-e)]. 

() n SS se ee FF FS Fe 

30 2 20.543 24.158 29.269 5.822 8.857 9.520 
10 58.135 66.322 77.065 15.499 23.972 25.412 

45 2 21.709 28.423 34.963 2.654 6.150 7.283 
10 65.714 84.707 102.596 6.300 17.189 20.332 

60 2 19.564 23.834 29.547 1.221 3.975 5.756 
10 52.945 64.103 79.619 1.889 9.977 14.501 
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6.6 Analysis of Midplane Symmetric Laminates 
6.6.1 Introduction 

In the previous sections of this chapter we considered analytical solutions of bending, 
vibration, and buckling of antisymmetric cross-ply and angle-ply rectangular 
laminates. In these laminates, in general, the bending-stretching coupling stiffnesses 
Bij were not zero, but the bending-twisting coupling stiffnesses D16 and D 26 were 
zero. In this section we consider laminates that are symmetric in both geometry and 
material properties about the middle plane. In such symmetric laminates, we have 
Bij = 0 and D16 and D 26 are not zero. The specially orthotropic plates considered in 
Chapter 5 are a special case of symmetric laminates. Laminates containing multiple 
generally orthotropic layers (i.e., orthotropic layers whose principal material axes 
are not parallel to the plate axes) that are symmetrically placed about the midplane 
fall into the class of symmetric laminates. 

An example of symmetric laminates is provided by the class of regular symmetric 
angle-ply laminates, (0/-0/0), 0 s 0 S 90 with equal thickness layers. The regular 
symmetric angle-ply laminates should contain an odd number of plies. A more 
general example of symmetric angle-ply laminate is provided by (30/-60/15/-60/30) 
with thicknesses hI = h5, h2 = h4, and the midplane of the plate coincides with the 
midplane of the 15° ply. For symmetric angle-ply laminates the coupling terms 
A 16 , A 26 , D 16 , and D26 are proportional to l/N, where N is the total number of 
layers in the laminate. Thus the coupling stiffnesses are the largest when N = 3 for 
symmetric angle-ply laminates, and they decrease with increasing N. 

The symmetric angle-ply laminates, with Bij = 0 and small A 16 , A 26 , D 16 , 

and D 26 , offer both analysis simplifications and practical advantages over more 
general laminates. For example, symmetric angle-ply laminates offer more shear 
stiffness than cross-ply laminates. Even when A 16 , A26 , D 16 , and D 26 are small, 
they influence the laminate behavior significantly. 

6.6.2 Governing Equations 

The governing equations of motion of symmetric laminates according to the classical 
laminate theory can be obtained from (3.3.45)-(3.3.47) by setting Bij = 0 and 
h = O. For linear analysis, we obtain 

(6.6.1) 

(6.6.2) 
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(6.6.3) 

where Nxx , Nyy , and Nxy are the applied edge forces. 
Clearly the first two equations governing (uo, vo) are uncoupled from the third 

equation governing Woo In the absence of any in-plane loads, the first two equations 
yield zero in-plane displacements everywhere. Because of the presence of the 
bending-twisting coupling stiffnesses, the Navier solutions of Eq. (6.6.3) cannot 
be developed, forcing us to use the Ritz, Galerkin, or the finite element method. 
In the following sections we discuss the Ritz solutions for symmetrically laminated 
plates. 

6.6.3 Weak Forms 

We can use the Ritz method to determine an approximate solution to the bending, 
buckling, and natural vibrations of symmetric laminates. The weak form or the 
statement of the principle of minimum total potential energy for bending, buckling, 
and natural vibration problems is given below. For bending, the virtual work done 
to applied edge forces and moments should be added to the expression 

(6.6.4) 

where w denotes the frequency of natural vibration. For bending we set all terms 
involving the in-plane edge forces and frequency of vibration to zero. We set q = 0 
and w = 0 for buckling analysis, and q = 0 and Nxx = Nyy = Nxy = 0 for natural 
vibration. 
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6.6.4 The Ritz Solution 

We begin with the Ritz approximation of the form 

where 

M N 

WO(X, y) ~ WMN(X, y) = L I>ij 'Pij(X, y) 
i=1 j=1 

(6.6.5) 

(6.6.6) 

and Xi and Yj denote any admissible approximation functions for the problem. The 
choice is dictated by the essential (or geometric) boundary conditions ofthe problem. 
Substitution of Eq. (6.6.5) into Eq. (6.6.4) results in the following equations: 

for p = 1,2" ", M and q = 1,2" ", N. 

6.6.5 Simply Supported Plates 

Recall from Eq. (5.2.4) that the choice of the double sine series 

. . 
. urx . J7ry 

'Pij(X, y) = Xi(X)Yj(y) == sm - sln-
a b 

(6.6.7) 

(6.6.8) 
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satisfies the simply supported (SS-1) boundary conditions. Substituting (6.6.8) into 
(6.6.7) we obtain 

M N [lb la ( 
0= L L if in A ijpq sin D:i X sin (3jY sin D:pX sin (3qY 

i=l j=l 0 0 

+ B ijpq cos D:iX cos (3jY cos D:pX cos (3qY 

- Cijpq cos D:iX cos (3jY sin D:pX sin (3qY 

- Dijpq sin D:i X sin (3jY cos D:pX cos (3qY) dxdy 1 Cij 

- fob foa q( X, y) sin D:pX sin (3qY dxdy 

+ Nyy sin D:iX cos (3jY sin D:pX cos (3qY 

+ 2N~y (sin D:iX cos (3jY cos D:pX sin (3qY 

+ cos D:iX sin (3jY sin D:pX cos (3qY) ] dxdy }Cij 

M N { lb la 
- L L in in w

2 [10 sin D:i X sin (3jY sin D:pX sin (3qY 
i=l j=l 0 0 

+ h (cos D:iX sin (3jY cos D:pX sin (3qY 

+ sin D:iX cos (3jY sin D:pX cos (3qY) 1 dxdy } Cij 

h iw (3 jw d were D:i = Ii' j = b' an 

Aijpq =Du D:TD:~ + D12 ((3;D:~ + D:T (3n + D22(3; (3~ 
Bijpq =4D66 D:i(3jD:p(3q 

Cijpq =2 (D16D:i(3jD:~ + D 26 D:i(3j(3n 

D ijpq =2 ( D16D:T D:p(3q + D26(3; D:p(3q ) 

Suppose that the load q(x, y) is also expanded in double sine series 

M N 

q(x,y) = LLQijsinD:ix sin(3jY 
i=l j=l 

In view of the integral identities 

la { 0, io sin D:i X sin D:jX dx = y: 

2 ' 

ii=j 

Z = J 

(6.6.9) 

(6.6.10) 

(6.6.11) 

(6.6.12a) 
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j
.a {O, i i= j 

COS D:iX COS D:jX dx = 
o a . . 

2' z =] 

a { 0, i = j and i + j even 

10 COSD:i X sinD:jxdx = 2' ,; -#]. 
~,o and i +]. odd 
J -~ 

(6.6.12b) 

(6.6.12c) 

Eq. (6.6.9) can be simplified. In particular, when D 16 = D26 = 0, Eq. (6.6.9) gives 
the Navier solutions presented in Chapter 5. When D 16 and D26 are nonzero, the 
one-term Ritz solution does not exist for a general symmetric laminate, because the 
solution does not contain the stiffness terms D16 and D26 due to the vanishing of 
the integrals. Thus the double sine series solution is incomplete, and it can only give 
an approximate solution to the symmetrically laminated plates when many terms 
in the series are used. 

As reported by Ashton and Whitney [5], for a square plate with D22 = 
O.IDl1, D12 + 2D66 = 1.5Dl1 , and D16 = D 26 = -0.5Dl1, the maximum deflection 
under uniformly distributed load, obtained with M = N = 7 in the series, is 

qoa4 
wo(a/2, a/2) = 0.00425-

Dl1 
(6.6.13) 

For the same case, when D16 and D26 are neglected the maximum deflection is 

qoa4 

wo(a/2, a/2) = 0.00324-
Dl1 

(6.6.14) 

Thus, the deflection is underpredicted by 23.76% when the bending-twisting coupling 
is neglected. 

Similarly, it is found that the orthotropic plate solutions for buckling loads and 
natural frequencies of vibration are overpredicted in comparison to the solutions 
obtained with the bending-twisting coupling in place. In general, the task of 
computing the Ritz solutions is algebraically complicated, and many terms have 
to be included to obtain accurate results. 

6.6.6 Other Boundary Conditions 

Equation (6.6.7) is also valid for other boundary conditions. Only the choice of the 
approximation functions Xi and 1j is different for different boundary conditions. 
As discussed in Section 5.4.3, the eigenfunctions of the Euler-Bernoulli beams can 
be used for these functions (see Eq. (4.2.46a) and Table 4.2.3; also see [22,23]). 
For example, for a symmetric laminate with all edges clamped, we can use the 
eigenfunctions of a beam with both ends clamped: 

Xi (x) = sin 'xiX - sinh 'xiX + D:i (cosh 'xiX - cos 'xiX) 

1j (y) = sin AjY - sinh AjY + D:j (cosh AjY - cos AjY) (6.6.15) 

for i = 1,2,,,,, M ; j 
characteristic equation 

1,2, ... ,N. The parameters Ai are the roots of the 

(6.6.16) 
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and 
sinh Aia - sin Aia cosh Aia - cos Aia 

Qi = (6.6.17) 
cosh Aia - cos Aia sinh Aia + sin Aia 

We will not consider the topic of solving symmetrically laminated plates for 
bending deflections, buckling loads, and vibration frequencies by the Ritz method 
further in this book. Interested readers may consult [19-23]. 

6.7 Transient Analysis 
6.7.1 Preliminary Comments 

Here we discuss the procedures to determine the transient response of composite 
laminates. The equations of motion can be solved using analytical solution methods, 
such as the state-space approach (see Khdeir and Reddy [24-26]). Here we discuss 
a method which takes advantage of the static solution form for spatial variation and 
which uses a numerical method to solve the resulting differential equations in time 
(see Reddy [27]). 

As described in Section 5.9, there are two major steps in the solution process: 
(1) assume a spatial variation of the displacements and reduce the governing partial 
differential equations to a set of ordinary differential equations in time, and (2) solve 
the ordinary differential equations exactly if possible or numerically. The first step is 
amply illustrated in the preceding sections of this chapter. For example, the Navier 
solution method can be used to determine the spatial variation of the transient 
solution. The only difference is that the coefficients of the double Fourier series 
are assumed to be functions of time. Thus a typical dependent variable ¢(x, y, t) is 
expanded as [see Eq. (6.3.3)] 

CXJ CXJ 

¢(x, y, t) = L L Tmn(t)Fmn(x, y) 
rn=l n=l 

where Fmn are suitable functions that satisfy the boundary conditions and Tum are 
coefficients to be determined such that ¢(x, y, t) satisfies its governing equation. The 
choice of a separable solution form as above implies that the general spatial variation 
is independent of time, and its amplitude may vary with time. 

6.7.2 Equations of Motion 

For simply supported cross-ply and antisymmetric angle-ply laminates, the Navier 
solution method can be used to reduce the governing equations of motion to 
differential equations in time. These are given by Eq. (6.3.19) for antisymmetric 
cross-ply laminates and by Eq. (6.4.6) for antisymmetric angle-ply laminates. In 
the absence of thermal effects and applied in-plane forces, these equations are of the 
form 

[ ell C12 
C1.1 1 { Tfmn} ["'" 

0 
o ]{ Tfmn} { () } C12 C22 C23 Vmn + 0 m22 o Vmn = 0 (6.7.1) 

CB C2:3 C33 l11mn 0 0 m3:3 l11mn Qmn 

or 
[M]{Li} + [K]{b.} = {F} (6.7.2) 
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where the superposed dot denotes differentiation with respect to time, and 

{ 
Umn} 

{~} = Vmn , 
Wmn 

{F} = { ~ } 
Qmn 

(6.7.3) 

The coefficients Cij and mij of Eq. (6.7.1) are defined in Eqs. (6.3.20) and (6.4.7), 
respectively, for the two classes of laminates. 

Equation (6.7.1) is subjected to the initial conditions 

uo(x, y, 0) = db(x, y), vo(x, y, 0) = d6(x, y), wo(x, y, 0) = d~(x, y) (6.7.4a) 

iLo(x, y, 0) = v6(x, y), vo(x, y, 0) = v6(x, y), wo(x, y, 0) = v5(x, y) (6.7.4b) 

We assume that the functions di and vi (i = 1,2,3) can also be expanded in the 
double Fourier series in the same way as the corresponding displacements. Then we 
have 

'1' 1'2' 2'3' 3 ~mn = Umn(O) = Vmn , ~mn = Vmn(O) = Vmn , ~mn = Wmn(O) = Vmn (6.7.5) 

where D~n and V~n are the coefficients in the Fourier expansion of the ith initial 
displacement and velocity, respectively. 

6.7.3 Numerical Time Integration 

The set of three equations in (6.7.2), for any fixed m and n, can be solved exactly 
using either the Laplace transform method or the modal analysis methods. Both 
methods are algebraically complicated and require the determination of eigenvalues 
and eigenfunctions, as in the state-space method. Therefore we will not attempt 
them here. Alternatively, we seek numerical solutions to Eq. (6.7.2) using the 
well-known family of Newmark's integration schemes for second-order differential 
equations (see Reddy [27]). In this numerical integration method, the time 
derivatives are approximated using difference approximations (or truncated Taylor's 
series), and therefore solution is obtained only for discrete times and not as a 
continuous function of time. 

In the Newmark method, the function (of time) and its first derivative are 
approximated using Taylor's series and only terms up to the second derivative are 
included: 

. 1 2" 
{~(ts+d} = {~(ts)} + 8ts{~(ts)} + 2(8ts) {~(ts+y)} 

{Li(ts+d} = {Li(ts)} + 8ts{Li(ts+a)} 
{Li(ts+a)} = (1 - a){Li(ts)} + a{Li(ts+1)}, 0::; a ::; 1 (6.7.6) 

where 8t is the time increment, 8ts = ts+1 - ts, and ts is the current time and ts+1 
is the next time at which we seek the solution. We assume that the solution at time 
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ts is known. Substituting the third equation into the first two in Eq. (6.7.6) and 
sol ving for {A}, we obtain 

{A}s+l = {A}s + al {A}s + a2{Ah+1 

{ A } s+ 1 = a3 ( { 6. } s+ 1 - {6.} s) - a4 { A } s - a5 { A } s (6.7.7) 

where 

and {. h, for example, denotes the value of the enclosed vector at time ts. 
The parameters a and I are selected such that the error introduced in the 

approximation (6.7.6) does not grow unboundedly as the scheme is applied at each 
time step to determine the solution at the next time. When the error introduced is 
bounded (hence the solution is bounded), such schemes are said to be numerically 
stable schemes. Sometimes, there is a restriction on the size of the time step that 
would make the error remain bounded. In such cases, the scheme is said to be 
conditionally stable. All schemes for which I 2': a 2': 1/2 are unconditionally stable. 
Schemes for which I < a and a 2': 0.5 are conditionally stable, and the stability 
condition is 

(6.7.9) 

where W max denotes the maximum frequency of the discrete eigenvalue problem 
associate with Eq. (6.7.2): 

(6.7.10) 

The critical time step can also be expressed in terms of the period of vibration, 
T = 27r /w. It should be noted that the frequencies of vibration for different modes, 
axial, bending, torsional, and shear modes, are different. The critical time step for 
the element is the smallest of the critical time steps calculated using the maximum 
frequency of each mode of vibration. 

The Newmark family contains several well-known schemes as special cases. The 
following choices of a and I define some of the widely used schemes: 

1 
a=-

2 ' 
1 

a=-
2 ' 
1 

a=-
2 ' 
1 

a=-
2 ' 
3 

a=-
2 ' 
3 

a=-
2 ' 

1 
1= "2' the constant-average acceleration method (stable) 

1 
I = 3"' the linear acceleration method (conditionally stable) 

1 
I = 6' the Fox-Goodwin scheme (conditionally stable) 

I = 0, the central difference method (conditionally stable) 

8 
1= [;' the Galerkin method (stable) 

1=2, the backward difference method (stable) (6.7.11) 



364 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

Premultiplying the second equation in (6.7.7) with [Mls+l and using Eq. (6.7.2) 
at t = ts+l to replace [M]s+l {Ah+l' we obtain 

(6.7.12) 

[k] = [K]s+l + a3[M]s+1 

{F} = {F}s+l + [M]s+l (a3{~}S + a4{Li}s + a5{Ah) (6.7.13) 

An alternative form of Eq. (6.7.12) is given by 

(6.7.14a) 

where 

- 1 
[K] = [M]s+l + -[K]s+l 

a3 

{F} = {F}s+l - [K]s+l ({~}s + a4 {Li}s + °5 {A}s) 
a3 03 

(6.7.14b) 

where a3, a4, and a5 are defined in Eq. (6.7.8) in terms of the time step t5t and 
the parameters a and ,. Note that for the central difference scheme b = 0), it is 
necessary to use Eq. (6.7.14a). 

Equation (6.7.12) or (6.7.14a) represents a system of algebraic equations among 
the (discrete) values of {~(t)} at time t = ts+l in terms of known values at time 
t = ts. Thus the values ~1 (t) = Umn(t), ~2(t) = Vmn(t), and ~3(t) = Wmn(t) 
are determined at time t = tl, t2, ... , ts, ... by a repeated solution (or marching in 
time) of Eq. (6.7.12). At the first time step (i.e., s = 0), the values {~}o = {~(O)} 
and {Li}o = {Li(O)} are known from the initial conditions (6.7.5) of the problem. 
However, {A}o = {A(O)} is not known at time t = O. Thus, the Newmark method 
is not a self-starting scheme. Although Eq. (6.7.2) is not valid for t = 0, it is used 
to determine {A}o at t = 0: 

{A}o = [Mr 1 {{F} - [K]{~}o} (6.7.15) 

The transient solution, for example, for the transverse deflection at time ts, s > 0, 
is given by (Wmn(ts) = ~~n(ts)) 

CXl CXl 

wo(x, y, ts) = L L Wmn(ts) 
m=l n=l 

6.7.4 Numerical Results 

. m7rX . m7ry 
Sln--Slll--

a b 
(6.7.16) 

Several examples of applications of the methodology described in this section are 
presented here. In all of the numerical examples, zero initial conditions were 
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assumed. The following data (in dimensional form) were used m all of the 
computations: 

a = b = 25 cm, h = 1 cm (a/b = 1, a/h = 25) 

p = 8 x 10-6 N_s2 /cm4
, E2 = 2.1 X 106 N/cm2 

E1 = 25E2, G12 = G13 = 0.5E2, V12 = 0.25 (6.7.17) 

The values of Ct and I in the Newmark integration scheme are taken to be 0.5, which 
correspond to constant-average acceleration method. 

The effect of the time step on the accuracy of the solution was investigated 
using a simply supported antisymmetric cross-ply (0/90) laminate under uniformly 
distributed step loading. Table 6.7.1 shows the nondimensionalized center transverse 
deflection, W = wo(E2 h3 /qoa4 ) x 102 , at selective times for three different time steps: 
8t = 5,20, and 50ILS (J-LS = 1O-6s). The effect of larger time step is to reduce the 
amplitude and increase the period. Plots of the nondimensionalized center deflection 
versus time for the same problem are shown in Figure 6.7.1. For all time steps below 
lOlLS, the difference is not noticeable on the graphs. In all the following examples, 
6t = 5J-Ls is used. 

8tt 

5 
20 
50 

Table 6.7.1 Nondimensionalized center transverse deflections (w) in simply 
supported (SS-l) cross-ply (0/90) laminates subjected to uniformly 
distributed transverse load (h = 1cm, Ed E2 = 25, E2 = 2.1 X 106 

N/cm2
, G12 = G13 = 0.5E2, G23 = 0.2E2, v12 = 0.25). 

t = lOot 200 300 400 500 600 700 800 900 

0.452 1.655 2.931 3.451 2.880 1.628 0.460 -0.003 0.511 
0.372 1.568 2.862 3.404 2.943 1.796 0.530 -0.051 0.467 

0.271 1.379 2.603 3.372 3.095 2.061 0.774 0.043 0.274 

t Denotes time in microseconds ({is). 

Figures 6.7.2 through 6.7.5 contain nondimensionalized transverse deflections 
and normal and shear stresses in two-layer and eight-layer antisymmetric cross
ply (0/90/0/···) square plates under suddenly applied transverse load. The 
nondimensionalizations used are the same as listed in Eq. (6.3.39), except that 
the nondimensionalized deflection plotted in the figures is w = wo(E2h3 /qoa4 ) x 102 

(note the multiplicative factor). The normal stress axx = CTxx (h2 /qob2 ) presented in 
Figure 6.7.4 is computed at z = -h/2, which is larger than that at z = h/2 (see 
Figure 6.7.3). The effect of coupling on the transient response can be seen from 
the two-layer and eight-layer results. It has the effect of increasing the amplitude 
as well as the period. The maximum deflections and stresses for the static case are 
summarized next. 
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Figure 6.7.1: N ondimensionalized center transverse deflection (w) versus time 
(t) for simply supported (88-1) antisymmetric cross-ply (0/90) 
laminates subjected to uniformly distributed step loading; see Eq. 
(6.7.14) for the data. 
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Figure 6.7.3: Nondimensionalized normal stress (o-xx) versus time (t) for simply 
supported (88-1) two-layer and eight-layer antisymmetric cross-ply 
(0/90) laminates. 
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Figure 6.7.4: Nondimensionalized normal stress (o-xx at the bottom of the 
laminate) versus time (t) for simply supported (88-1) two-layer 
and eight-layer antisymmetric cross-ply (0/90) laminates. 
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Laminate (0/90), SSL: 

w = 1.064, fixx(a/2, b/2, h/2) = 0.084 

fixx(a/2, b/2, -h/2) = -0.716, fixy(a, b, -h/2) = ()'053 

Laminate (0/90), UDL: 

w = 1.695, fixx(a/2, b/2, h/2) = 0.127 

fixx(a/2, b/2, -h/2) = -1.076, fixy(a, b, -h/2) = 0.093 

Laminate (0/90/0/-· .), UDL: 

w = 0.715, fixx(a/2, b/2, h/2) = 0.045 

fixx(a/2, b/2, -h/2) = -0.749, fixy(a, b, -h/2) = 0.039 

(6.7.18) 

(6.7.19) 

(6.7.20) 

Note that the maximum transient transverse deflection of (0/90) laminate under 
UDL, which occurs at t = 400 p,s, is 2.035 times that of the static deflection. 
Similarly, the stresses are also about 2.035 times that of the static stresses. 

Figures 6.7.6 through 6.7.8 contain nondimensionalized transverse 
deflections and shear and normal stresses in two-layer and eight-layer antisymmetric 
angle-ply (0/90/0/ ... ) square plates under suddenly applied transverse load. The 
same observations made for cross-ply laminates also apply for angle-ply plates. The 
angle-ply plates, for the same material and geometric dimensions, have smaller 
maximum deflections, stresses, and periods of oscillation. The maximum static 
deflections and stresses are given below. 

Laminate (-45/45), UDL: 

w = 1.028, fixx(a/2, b/2, h/2) = 0.351, fixy(a, b, -h/2) = 0.442 (6.7.21) 

Laminate (-45/45/-45/-· .), UDL: 

w = 0.386, fixx(a/2, b/2, h/2) = 0.201, fixy(a, b, -h/2) = 0.264 (6.7.22) 

The maximum transient deflection for the two-layer plate is 2.114 and it occurs at 
t = 305 p,s; it is about 2.056 times that of the static deflection. In the case of 
eight-layer laminate, the maximum transient deflection is 0.7988 and it occurs at 
t = 190 p,s; it is 2.7 times that of the static deflection. 
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Figure 6.7.5: Nondimensionalized shear stress (o-xy) versus time (t) for simply 
supported (88-1) two-layer and eight-layer antisymmetric cross-ply 
(0/90) laminates. 
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6.8 Summary 

In this chapter analytical solutions for bending, buckling under in-plane compressive 
loads, and natural vibration of rectangular laminates with various boundary 
conditions were presented based on the classical laminate theory. The N avier 
solutions were developed for two classes of laminates: antisymmetric cross-ply 
laminates and antisymmetric angle-ply laminates, each for a specific type of simply 
supported boundary conditions, 88-1 and 88-2, respectively. The Levy solutions 
with the state-space approach were developed for these classes of laminates when 
two opposite edges are simply supported with the other two edges having a 
variety of boundary conditions of choice. A discussion of symmetrically laminated 
plates, which are characterized by nonzero bending-twisting coupling terms, is also 
presented. For such laminates, one must use approximate methods, such as the Ritz 
method or the finite element method because the Navier solutions do not exist for 
symmetric laminates. The Ritz solutions for symmetric laminates are discussed in 
some detail. Lastly, a transient solution procedure for antisymmetric cross-ply and 
angle-ply laminates is presented. In this procedure, the solutions are assumed to 
be products of functions of spatial coordinates (x, y) only and functions of time t 
only (i.e., separation of variables). The spatial functions are the same as those used 
in the static case, and the time variation is determined using the Newmark time 
integration scheme. 

Numerical results were presented for static bending, buckling, natural vibration, 
and transient response of antisymmetric cross-ply and angle-ply laminates. The 
presence of bending-extensional coupling in a laminate generally reduces the effective 
stiffnesses and hence increases deflections and reduces buckling loads and natural 
frequencies. The coupling also increases the period of oscillation in the transient 
problems. The coupling is the most significant in two-layer laminates, and it 
decreases gradually as the number of layers is increased for fixed total thickness. 

The presence of twist-curvature coupling in a laminate also has the effect of 
increasing deflections, decreasing buckling loads, and decreasing natural frequencies. 
The coupling dies out as the number of layers is increased for fixed total thickness. 

The effects of bending-stretching coupling and twist-curvature coupling on 
deflections, buckling loads, and natural frequencies of general laminates, for example, 
unsymmetric laminates, can only be assessed by specific studies. 8uch laminates can 
be analyzed only with approximate methods of analysis. 

In general, the bending-twisting coupling in symmetrically laminated plates 
has the effect of increasing deflections and decreasing buckling loads and natural 
frequencies of vibration. Analysis of such laminates by the Ritz method is 
characterized by slow convergence. 

Problems 

6.1 Verify Eq. (6.2.4) by casting Eqs. (6.2.1)-(6.2.3) in operator form. 

6.2 Verify Eq. (6.3.19) by substituting expansions (6.3.3) into Eqs. (6.2.1)-(6.2.3) and assuming 
that conditions in Eqs. (6.3.7) hold. 

6.3 Verify the solution in Eq. (6.3.27). 



372 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

6.4 Derive the expressions for transverse shear stresses from 3-D equations of equilibrium for the 
case of isothermal, antisymmetric cross-ply laminates. 

6.5 Derive the expressions for transverse shear stresses from 3-D equations of equilibrium for the 
non isothermal case of antisymmetric angle-ply laminates when the temperature distribution 
is of the form 

t:..T(x, Y, z) = To(x, y) + ZT1 (x, y) 

Assume that both To and T1 can be expanded in double sine series (similar to the mechanical 
load). 

6.6 Verify Eq. (6.4.6) by substituting expansions (6.4.2) into Eqs. (6.2.1)-(6.2.3) and assuming 
that conditions in Eqs. (6.4.4) hold. 

6.7 Verify the solution in Eq. (6.4.9). 

6.8 Verify the expressions in Eq. (6.5.11) by substituting expansions (6.5.10) into the definitions 
of the resultants in Eqs. (3.3.43) and (3.3.44). 

6.9 Verify Eqs. (6.5.15). 

6.10 Consider antisymmetric angle-ply rectangular laminates with edges x = 0 and x = a simply 
supported and the other two edges, y = ±b/2, having arbitrary boundary conditions. Assume 
solution of the form 

uo(x,y,t) = L Um(y)sinax 
m=l 

00 

vo(x,y,t) = L Vm(y) cos ax 
m=l 

00 

wo(x,y,t) = L Wm(y) sin ax (1) 

m=l 
and load expansion in the form 

00 

q(x,y) = L Qm(y)sinax (2) 

m=l 
where a = m7f / a. Show that the equations of equilibrium of the classical laminated plate 
theory for such laminates (without any applied in-plane loading) can be reduced to the 
following ordinary differential equations 

U;:, = C1 Urn + C2 V~ + C3 W~ + C4 W;:" 

V';; = C5U~ + C6Vm + C7W m + CsW;:' 

W:;:' = CgU;" + ClQVm + C l1 W m + C 12W;:' + C 13Qm (3) 

where the primes indicate differentiation with respect to y, and the coefficients Ci are defined 
as 

C1 = -eI/e2, C2 = -e3/e2, C3 = -e4/e2, C4 = -e5/e2 

C5 = -e6/es, C6 = -e7!es, C7 = -eg/es, Cs = -elO/es 

C _ ( e1 e16 e6e17 e3e6e16 ) (e5e16 )-1 9 - e14 - -- - -- + --- -- - e13 
e2 es e2eS e2 

(4) 
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and the coefficients e; are defined as 

el = _a2 All, e2 = A 66 , e3 = -a(A12 + A66), e4 = 3a2 B 16 

C5 = -B26 , e6 = -ea, e7 = _a2 A 66 , es = A22 

eg=a3B 16 , elO=-3aB26 , eu=a4D ll , e12=-2a2(D12+ 2D66) 

e13 = D 22 , C14 = e4, e15 = -eg, e16 = e5, e17 = -elO (5) 

6.11 Repeat Exercise 6.10 for the case of biaxial buckling. All definitions in Problem 6.10 hold 
with exception of ell and e12, which are modified as 

ell = a 4 Dll - a 2 N~x 

e12 = -2a2(D12 + 2D66 ) + N~y 

where N2x and NEy are the in-plane compressive forces. 

6.12 Repeat Exercise 6.10 for the case of free vibration. All definitions in Exercise 6.10 hold with 
exception of ell, which is modified as (when 12 = 0) 

where Wm is the frequency of vibration associated with mode m. 

6.13 Defining the state vector Z(y) as 

Z5 = Wm , Z6 = W:n , Z7 = W~, Zs = W~: 
express Eqs. (3) of Problem 6.10 as a first-order matrix equation of the form 

Z' = TZ+F 

where the matrix T and the column vector F are given by 

0 1 0 0 0 0 0 0 

Cl 0 0 C2 0 C3 0 C4 
0 0 0 1 0 0 0 0 

T= 
0 C5 C6 0 C7 0 Cs 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 Cg ClO 0 Cll 0 C12 0 

F = {O, 0, 0, 0, 0, 0, 0, C13 Qm}T 

(1) 

(2) 

(3) 

(4) 

6.14 Consider a symmetrically laminated rectangular plate under the transverse load q(x, y). The 
governing equation for static bending analysis is given by 

The weak form (or the virtual work statement) of the same equation is given by Eq. (6.6.4), 
without the in-plane force and inertial terms. Show that the Ritz solution of the form 

N 

wQ(x, y) "'" L C;(Pi(x, y) (1) 
;=1 
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requires the solution of the algebraic equation 

[R]{c} = {q} (2) 

where 

(3) 

6.15 Consider a symmetrically laminated rectangular plate with simply supported edges. The 
boundary conditions are given by 

wo(x,O) = 0, wo(x,b) = 0, wo(O,y) = 0, wo(a,y) = ° 
Mxx(O,y) = 0, Mxx(a,y) = 0, Myy(x,O) = 0, Myy(x,b) = ° 

where the bending moments are related to the transverse deflection by the equations 

Find a two-parameter Ritz approximation using algebraic polynomials. Note that the one
parameter approximation, wo(x, y) "'" clxy(a - x)(b - y) does not give a solution for the case 
in which D16 and D 26 are not zero. 

Ans: For the approximation of the form 

the Ritz coefficients are given by 

[ 
ab5 a3b3 a5b] 

Rll =2 Dll15 + 2(D12 + 2D66)-g- + D2215 

[ 
a2b7 a4 b4 a7b2 a3b5 a5b3 ] 

R12 = Dll60 + 2(D12 + 2D66 ) 36 + D2260 - 2Dl!i60 - 2D2660 

[ 
a3b7 a 5b5 a7b3 a4b6 a6b4 ] 

R22 =4 Dll 105 + 2(D12 + 2D66 ) 225 + D22 105 + D1610 + D2610 

a3 b3 a7 b7 

ql =q036' q2 = qo (105)(105) 
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7 

Analytical Solutions of Rectangular 
Laminated Plates Using FSDT 

7.1 Introduction 

The classical laminate plate theory is based on the Kirchhoff assumptions, in which 
transverse normal and shear stresses are neglected. Although such stresses can be 
post computed through 3-D elasticity equilibrium equations, they are not always 
accurate. The equilibrium-derived transverse stress field is sufficiently accurate for 
homogeneous and thin plates; they are not accurate when plates are relatively thick 
(i.e., o/h < 20). In the first-order shear deformation theory (FSDT), a constant 
state of transverse shear stresses is accounted for, and often the transverse normal 
stress is neglected. The FSDT allows the computation of interlaminar shear stresses 
through constitutive equations, which is quite simpler than deriving them through 
equilibrium equations. It should be noted that the interlaminar stresses derived from 
constitutive equations do not match, in general, those derived from equilibrium 
equations. In fact, the transverse shear stresses derived from the equilibrium 
equations are quadratic through lamina thickness, as was shown in Chapter 6 for 
CLPT, whereas those computed from constitutive equations are constant. 

The more significant difference between the classical and first-order theories is 
the effect of including transverse shear deformation on the predicted deflections, 
frequencies, and buckling loads. As noted in Chapter 6, the classical laminate 
theory underpredicts deflections and overpredicts frequencies as well as buckling 
loads with plate side-to-thickness ratios of the order of 20 or less. For this reason 
alone it is necessary to use the first-order theory in the analysis of relatively thick 
laminated plates. In this chapter, we develop analytical solutions of rectangular 
laminates using the first-order shear deformation theory. The primary objective is 
to bring out the effect of shear deformation on deflections, stresses, frequencies, and 
buckling loads. 

To discuss the Navier and other solutions, the equations of motion of the first
order plate theory, Eqs. (3.4.23) through (3.4.27), are expressed in terms of the 
generalized displacements (uo, Va, Wa, CPx and CPy) as 
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_ (ON'Ix ON~) -.l 02uo I 02¢x 
ax + oy - 0 ot2 + 1 ot2 (7.1.1) 

a [OUo aVO (OUo aVo) O¢x O¢y - A 16 - + A 26 - + A66 - + - + B 16 - + B26-ax ax ay ay ax ax ay 

(O¢x O¢y)] a [OUo aVO +B66 -+ - +- A 12-+A22 -oy ax oy ax oy 
+A26 -+- +B12-+ B22-+ B 26 -+-( OUo avo) O¢x a¢y (O¢x a¢y ) ] 

oy ax ax ay oy ax 

(ON~ aN:{y) _ 02vo a2¢y 
- ~ + -----ay - 10 ot2 + It ot2 (7.1.2) 

(7.1.3) 

- B l1 -+B12 -+B16 -+- +Dl1 -+D12 -a [OUo avo (auo aVo) a¢x O¢y 
ax ax oy oy ax o;r oy 

(O¢x a¢y)] a [auo avo +D16 -+ - +- B 16-+B26 -ay ax ay ax ay 

( oUo aVo) o¢x O¢y ( o¢x O¢y ) ] 
+B66 -+- +D16-+D26-+D66 -+-oy ax ax ay oy ax 

- [K A45 (00:0 + ¢y) + K A55 (00: 0 + ¢x) ] 

_ (aMI'x aM~) _ I a2¢x I a2uo 
ax + oy - 2 Ot2 + 1 ot2 (7.1.4) 

(7.1.5) 

where the thermal resultants, (N'Ix, N'(;y, N~) and (M'Ix, M'(;y, M~), are defined in 
Eqs. (3.3.41a,b). 
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7.2 Simply Supported Antisymmetric Cross-Ply 
Laminated Plates 

7.2.1 Solution for the General Case 

The 88-1 boundary conditions for the first-order shear deformation plate theory 
(F8DT) are (Figure 7.2.1): 

uo(X, 0, t) = 0, uo(x, b, t) = 0, vo(O, y, t) = 0, vo(a, y, t) = ° 
wo(x, 0, t) = 0, W)(x, b, t) = 0, wo(O, y, t) = 0, wo(a, y, t) = ° 
cPx(x, 0, t) = 0, cPx(x, b, t) = 0, cPy(O, y, t) = 0, cPy(a,y,t) =0 (7.2.1a) 

Nxx(O, y, t) = 0, Nxx(a, y, t) = 0, Nyy(x, 0, t) = 0, Nyy(x, b, t) = ° 
Mxx(O, y, t) = 0, Mxx(a, y, t) = 0, Myy(x, 0, t) = 0, Myy(x, b, t) = 0(7.2.1b) 

The boundary conditions in (7.2.1b) are satisfied by the following expansions 

CXl CXl 

uo(x, y, t) = L L Umn(t) cos ax sin,By 
n=l m=l 

CXl CXl 

vo(x, y, t) = L L Vmn(t) sin ax cos f3y 
n=lm=l 

CXl CXl 

Wo (x, y, t) = L L W mn ( t) sin ax sin f3y 
n=l m=l 

CXl CXl 

cPx(x, y, t) = L L Xmn(t) cos ax sin f3y 
n=l m=l 

CXl CXl 

cPy(x,y,t) = L L Ymn(t) sin ax cosf3y 

where a = m7r/a and f3 = n7r/b. 

at x=O and x=a 

vo=wo=<Py=O 

Nxx=Mxx =0 

n=l m=l 

+-�-..--- a ----t .. ~1 

y 

,--------1 
1 
I 
I SS-I 

I 
.... _------

at y=O and y=b 

Uo=wo=<Px=O 

Nyy=Myy=O 

1 
1 
1 
I 

I-- X 

b 

1 

(7.2.2a) 

(7.2.2b) 

(7.2.3) 

(7.2.4a) 

(7.2.4b) 

Figure 7.2.1: The simply supported boundary conditions for antisymmetric 
cross-ply laminates using the first-order shear deformation theory 
(88-1). 
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The mechanical and thermal loads are also expanded in double Fourier sine series 

00 00 

q(x, y, t) = L L Qmn(t) sin ax sin (Jy (7.2.5a) 
n=1 m=1 

00 00 

t6.T(x,y,z,t) = L L Tmn(z,t) sin ax sin/Jy (7.2.5b) 
n=1 m=1 

where 

4 ra rb 

Qmn(t) = ab io io q(x, y, t) sin ax sin /Jy dxdy (7.2.6a) 

4 ra rb 

Tmn(z, t) = ab io io t6.T(x, y, z, t) sin ax sin (Jy dxdy (7.2.6b) 

Substitution of Eqs. (7.2.2)-(7.2.5) into Eqs. (7.1.1)-(7.1.5) will show that the 
Navier solution exists only if 

A 16 = 0, A 26 = 0, A45 = 0, B16 = 0, B26 = 0, D16 = 0, D26 = 0, h = 0 

i.e., for the same laminates as those for the classical laminate theory. For such 
laminates the coefficients (Umn , Vmn , Wmn , X mn , Ymn ) of the Navier solution can be 
calculated from 

811 812 0 814 815 

rmn) 812 822 0 824 825 Vmn 
0 0 833 + 833 834 835 Wmn + 

814 824 834 844 845 Xmn 
815 825 835 845 855 Ymn 

ml1 0 0 0 0 

rmn) 1 0 ) rN~n) 0 m22 0 0 0 Vmn 0 /JNmn 
0 0 m33 0 0 Wmn = Qmn - 0 
0 0 0 m44 0 

.. 1 
Xmn 0 aMmn 

0 0 0 0 m55 
.. 2 
Ymn 0 /JMmn 

where 8ij and mij 

811 = (Al1a2 + A66/J2), 812 = (A12 + A 66 )a/J 

814 = (Bl1a2 + B66/J2), 815 = (B12 + B66)a/J 

822 = (A66a2 + A22/J2), 824 = 815 

825 = (B66a2 + B22/J2), 833 = K(A55a2 + A44/J2) 
_ A 2 A 2 
833 = Nxxa + Nyy/J 

834 = KA55a, 835 = KA44/J, 844 = (Dl1a2 + D66/J2 + KA55 ) 

845 = (D12 + D66)a/J, 855 = (D66a2 + D22/J2 + K A44) 

ml1 = la, m22 = la, m33 = la, m44 = h, m55 = h 

(7.2.7a) 

(7.2. 7b) 

(7.2.7c) 

where the thermal coefficients N~n' N;"n, M~n' and M;"n are defined in Eqs. 
(6.3.13a,b). 
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7.2.2 Bending 

The static solution can be obtained from Eqs. (7.2.7) by setting the time derivative 
terms and edge forces to zero: 

811 812 0 814 815 rmn) 1 0 ) rN~n) 812 822 0 824 825 Vmn 0 f3N'/'nn 
0 0 833 834 835 Wrnn = Qrnn - 0 (7.2.8) 

814 824 .934 844 845 Xmn 0 alvl:nn 
815 825 835 845 8.55 Ymn 0 f3lvlr~m 

Solution of Eq. (7.2.8) for each m, n = 1,2, ... gives (Umn , Vmn , W mn , X mn , Yrnn) , 
which can then be used to compute the solution (uo, va, Wo, <Px, <py) from Eqs. (7.2.2)
(7.2.4). Antisymmetric cross-ply laminates have the following additional stiffness 
characteristics [see Eqs. (3.5.29a,b)]: 

B12 = 0, B22 = -Bl1, B66 = 0 (7.2.9) 

Hence, the matrix coefficients in Eq. (7.2. 7b) can be simplified. 
The stresses in each layer can be computed using the constitutive equations 

(see Section 6.3.4). The in-plane stresses of a simply supported (SS-l) cross-ply 
laminated plate (i.e., when Q16 = Q26 = Q45 = 0 and a xy = 0) are then given by 

{

(TXX}(k) 00 00 [Ql1 Q12 
(Tyy = L L Q12 Q22 
(Txy m=1 n=1 0 0 

o 1 (k) { (R;;n + zs~~) sin ax sin f3y } 
o (RYY + zSYY ) sin ax sin f3y rnn mn 

Q66 (R:;!!n + zS~n) cos ax cos f3y 
(7.2.lOa) 

where 

{ 

R;;n } { -aUmn - axxT~n } 
Ryy - _f31T - TO mn - v mn a yy mn , 
R:;!!n f3Urnn + a Vrnn 

(7.2.10b) 

where temperature increment b.T is assumed to be of the form 

00 00 

b.T(x, y, z, t) = L L (T~n + zT~n) sin ax sin f3y (7.2.10c) 
rn=1 n=1 

The transverse shear stresses from the constitutive equations are given by 

o ] (k) { (Yrnn + f3W mn) sin ax cos f3y } 
Q55 (Xrnn + aWmn ) cos ax sinf3y 

(7.2.11) 

Note that the stresses are layerwise constant through the thickness. 
The bending moments are calculated from 

~ 1 { --~~:: :::~: :::~~ } 
B66 (f3Umn + aVmn ) cos ax cosf3y 

r"X } = 00 [Ell B12 
Myy = L L B12 B22 
Mxy m=1n=1 0 0 

o 1 { -aXmn sin ax sin f3y } 
o - f3Yrnn sin ax sin f3y 

D66 (aYrnn+f3Xmn)cosax cosf3y 

00 00 [Dll D12 
+ LL D12 D22 

m=1 n=1 0 0 

(7.2.12) 
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As discussed in Chapter 6, the transverse stresses can also be determined using 
the equilibrium equations of 3-D elasticity. Following the procedure outlined in Eqs. 
(6.3.31)-(6.3.37), we obtain 

OOOO[ 1 ] a~~)(x,y,z) = l=1~ (z - Zk)~~ + 2(z2 - z~)B~~ cos ax sin(3y 

(k-1) ( ) +axz X,y,Zk 

OOOO[ 1 ] a~~)(x,y,z) = L L (z - Zk)C~~ + 2(z2 - z~)D~~ sin ax cos(3y 
m=1 n=1 

(k-1)( ) (7213 ) + ayz x, y, Zk .. a 

(0)( ) (0)( ) where axz x, y, Z1 = ayz x, y, Z1 = 0, and 

A~~ = [( a2Qi~) + (32Q~~)) Umn + 00(3 (Qi~) + Q~~)) Vmn] 

B~~ = [( a2Qi~) + (32Q~~)) Xmn + 00(3 (Qi~) + Q~~)) Ymn] 

C~~ = [00(3 (Qi~) + Q~~)) Umn + (a2Q~~) + (32Q~~)) Vmn] 

D~~ = [00(3 ( Qi~) + Q~~)) Xmn + (a2Q~~) + (32Q~~)) Y mn] (7.2.13b) 

The transverse normal stress can be computed using Eq. (6.3.37) with the 
. (k) B(k) (k) (k) fi d' ( ) coeffiCIents Amn , mn,Cmn , and Dmn de ne III Eq. 5.2.13b. 

Specially orthotropic plates 

Specially orthotropic plates differ from antisymmetric cross-ply laminates in that 
all Bij are zero. Consequently, 814 = 0, 815 = 0, 824 = 0, and 825 = 0. It is clear 
from Eq. (7.2.8) that Umn and Vmn are uncoupled from (Wmn, X mn , Ymn): 

1 ~:: ) = 1 Q~n ) -1 p~k: ) 
Xmn 0 aMinn 
Ymn 0 (3M~n 

811 812 ° ° ° 812 822 0 0 0 

° ° 833 834 835 
0 0 834 844 845 

0 0 835 845 855 

(7.2.14) 

Decoupling the in-plane displacements from the bending displacements, we have 

[ 
~11 
812 

834 

844 

845 

The solution of Eq. (7.2.15a) is given by 

Umn = __ 1_ (822aN~n - 812(3N~n) 
amn 

Vmn = __ 1_ (811(3N~n - s12aN~n) 
amn 

(7.2.15a) 

(7.2.15b) 

(7.2.16) 
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where arnn = 811822 - 812812. The in-plane deflections are identically zero when the 
thermal (and in-plane edge) forces are zero. 

Equation (7.2.15b) can be solved either directly (by inverting the 3 x 3 coefficient 
matrix) or by using the static condensation procedure outlined in Chapter 6 [see 
Eqs. (6.3.22)-(6.3.26)]. Using the latter, we arrive at 

1 [ , A ] 

Wmn = brnn Qmn + Sb304 (aM';'nS55 - /3M'!nnS45) - Sb3~'i (aM';'nS15 - ;1M;'n.'i44) 

Xmn = b~ [bl Wrnn - (aM~n855 - ,6M~n845)] 

Ymn = b~ [b2W rnn + (aM~nS45 - PM~nS44)] (7.2.17a) 

where 

b ' ,b1 ,b2 b 'A " 
mn = 833 + 834 b

o 
+ 835 b

o
' 0 = 844 8 55 - 845 845 

bl = 8458 35 - 8348 55, b2 = 834845 - 844835 

When the thermal forces are zero, the bending deflections are given by 

00 00 

wo(x, y) = L L Wrnn sinax sin,6y 
n=1 rn=1 

00 00 

cPx(x,y) = L L Xrnn cos ax sin(3y 
n=1 m=1 

00 00 

cPy (x, y) = L L Y rnn sin ax cos (3y 
n=1 m=1 

with a = mOJr la, (3 = nJr Ib and 

1 bl 
Wrnn = -b-Qrnn , Xrnn = -b b Qrnn, 

rnn 0 rnn 

The bending moments are given by 

00 00 

Mxx = - L L (D11 aXrnn + D I2 PYrnn ) sinax sinpy 
n=1 rn=1 

00 00 

Myy = - L L (D l2aXrnn + D 22(3Yrnn ) sinax sin(3y 

00 00 

Mxy = D66 L L ((3Xrnn + aYrnn ) cos ax cos (3y 
n=1 rn=1 

The in-plane stresses are given by 

{(

-(k) -(k)) } 
/r (k) Q 11 aXrnn + Q 12 (3Yrnn sin ax sin (3y 
uxx 00 00 

__ -(k) -(k) . . 

{ o-YY} - Z L L (Q12 aXmn + Q 22 (3Yrnn) smax sm(3y 
o-xy n=l rn=1 -(k) 

-Q66 ((3Xmn + aYrnn ) cos ax cos (3y 

(7.2.17b) 

(7.2.18a) 

(7.2.18b) 

(7.2.18c) 

(7.2.19) 

(7.2.20a) 

(7.2.20b) 

(7.2.20c) 

(7.2.21) 
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and the transverse shear stresses are given by 

CTyz = L L ~44 Ymn + J3Wmn SlilaX cosJ3y 
{ }

(k) (Xl (Xl { -(k)( ) . } 

CTxz n=lm=l Q~~)(Xmn+aWmn)Cosax sinJ3y 
(7.2.22) 

The interlaminar stresses, computed using the 3-D stress equilibrium equations, 
are given by 

CT~~) = (z2;z~) (Tg)Xmn+Tg)ymn ) cosax sinJ3Y+CT~~-l)(x,y,Zk) 

CT~~) = (z2; Z~) (Tg)Xmn + Ti;)Ymn ) sinax cosJ3y + CT~~-l)(x,y,Zk) 

CT~~) = [ 1 + ~ (z2 - 3Z~)] (TJ~) Xmn + Ti;)Ymn) sin ax sin J3y 

(k-1) (aCT~~) aCTW) + CTzz (x, y, Zk) + (z - Zk) -----a;;- + -----ay Zk (7.2.23a) 

where 

T(k) _ a 2Q-(k) + a2Q-(k) T(k) _ aa(Q-(k) + Q-(k)) r.(k) _ a2Q-(k) + a2Q-(k) 
11 - 11 fJ 66' 12 - fJ 12 66' 22 - 66 fJ 22 

TJ~) = a3Qi~) + aJ32(2Q~~) + Qi~)), TJ;) = a2J3(Qi~) + 2Q~~)) + J33Q~~) (7.2.23b) 

For single-layer plates, Eqs. (7.2.23a) reduce to 

CTxz = - ~2 [1- (2hZ) 2] (T11 X mn + T12 Ymn) cosax sinBy 

CTyz = - ~2 [1 _ (2:) 2] (T12X mn + T22 Ymn) sinax cos By 

CTzz = :; { [1 + (2:) 3]- 3 [1 + (2hZ) ] } (T31 X mn + T32Ymn) sin ax sinJ3y 

(7.2.24) 

Numerical results for the maximum transverse deflection and stresses of 
symmetric laminates are discussed next. The following nondimensionalizations are 
used to present results in graphical and tabular forms: 

w = Wo (~~:o3), ~xx = CTxx (b~;o) , 

~xy = CTxy (b~;o)' ~xz = CTxz (b~J ' 
~yy = CTyy (b~;o) 

~yz = CTyz (b~J (7.2.25) 

Table 7.2.1 contains the maximum nondimensionalized deflections and stresses 
of simply supported square symmetric laminates (0/90/90/0) and (0/90/0) under 
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sinusoidally distributed load (88L) as well as uniformly distributed load (UDL) and 
for different side-to-thickness ratios (El = 25E2, G 12 = G 13 = O.5E2' G23 = O.2E2, 
V12 = 0.25, K = 5/6). The membrane stresses were evaluated at the following 
locations: o-xx(a/2, b/2, ~), o-yy(a/2, b/2, ~), and o-xy(a, b, -~). The transverse shear 
stresses are calculated using the constitutive equations. For the (0/90/0) laminate, 
O"xz is evaluated at (x, y) = (0, b/2) in layers 1 and 3, and O"yz is computed at 
(x, y) = (a/2,0) in layer 2. 

Table 7.2.1: Effect of transverse shear deformation on nondimensionalized 
maximum transverse deflections and stresses of simply supported 
(88-1) symmetric cross-ply square plates. 

a/h Load jj :rz a-yz 

Orthotropic Plate [O"yy is evaluated at (x,y,z)=(a/2,b/2,h/2)] 

10 

20 

100 

CLPT 

SSL 

UDL 

SSL 
UDL 
SSL 
UDL 
SSL 
UDL 

0.6383 

0.9519 

0.4836 
0.7262 

0.4333 
0.6528 

0.4312 
0.6497 

0.5248 

0.7706 

0.5350 
0.7828 

0.5385 
0.7865 

0.5387 
0.7866 

0.0338 

0.0352 

0.0286 
0.0272 

0.0267 
0.0245 

0.0267 
0.0244 

0.0246 

0.0539 

0.0222 
0.0487 

0.0213 
0.0464 

0.0213 
0.0463 

0.3452 
0.4315 
0.6147 
0.7684 

0.3501 
0.6194 

0.3518 
0.6206 

0.4398 
0.7758 

0.0367 
0.0459t 
0.1529 
0.1911 t 

0.0319 
0.1466 

0.0302 
0.1449 

O.0377t 
0.1811 t 

Symmetric Laminate, (0/90/90/0) 

10 

20 

100 

CLPT 

SSL 

UDL 

SSL 
UDL 
SSL 
UDL 
SSL 
UDL 

0.6627 

l.()250 

0.4912 
0.7694 

0.4337 
0.6833 

0.4312 
0.6796 

0.4989 

0.7577 

0.5273 
0.8045 

0.5382 
0.8420 

0.5387 
0.8236 

0.3614 

0.5006 

0.2956 
0.3968 

0.2704 
0.3558 

0.2694 
0.3540 

0.0241 

0.0470 

0.0221 
0.0420 

0.0213 
0.0396 

0.0213 
0.0395 

0.4165 
0.3181 
0.7986 
0.6081 

0.4370 
0.8305 

0.4448 
0.8420 

0.3393 
0.6404 

0.1292 
0.1807t 
0.3499 
0.5091 t 

0.1087 
0.3228 

0.1008 
0.3140 

0.1382t 
0.4548t 

Symmetric Laminate, (0/90/0) 

10 SSL 0.6693 0.5134 0.2536 0.0252 0.4089 0.0914 
0.3806 0.1108t 

UDL 1.0219 0.7719 0.3072 0.0514 0.7548 0.3107 
0.7014 0.4156t 

20 SSL 0.4921 0.5318 0.1997 0.0223 0.4205 0.0759 
UDL 0.7572 0.7983 0.2227 0.0453 0.7697 0.2902 

100 SSL 0.4337 0.5384 0.1804 0.0213 0.4247 0.0703 
UDL 0.6697 0.8072 0.1925 0.0426 0.7744 0.2842 

CLPT SSL 0.4312 0.5387 0.1796 0.0213 0.3951 0.0823t 
UDL 0.6660 0.8075 0.1912 0.0425 0.7191 0.3791 t 

t O"xz and O"yz calculated from equilibrium equations (at z = 0). 
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The nondimensionalized quantities in the classical laminate theory are 
independent of the side-to-thickness ratio. The influence of transverse shear 
deformation is to increase the transverse deflection. The difference between the 
deflections predicted by the first-order shear deformation theory and classical plate 
theory increases with the ratio h/a. For example, for a/h = 10 and sinusoidal 
loading, the classical plate theory underpredicts deflections by as much as about 
35%, whereas it is only 12% for a/h = 20. 8hear deformation has different effects 
on different stresses. 

Table 7.2.2 contains results for cross-ply laminates (0/90/90/0/90/90/0) and 
(0/90/0/90/0), both laminates of the same total thickness. The material properties 
used are El = 25E2 , G 12 = G 13 = 0.5E2 , G23 = 0.2E2 , V12 = 0.25, and K = 5/6. 
The same nondimensionalization as before [see Eq. (7.2.25)] is used except for the 
following quantities: 

h h2 

o-yy = (fyy(a/2, b/2, - )-b2 3 qo 
h h 

o-xz = (fxz(0,b/2,k = 1,3,5)---b ' o-yz = (fyz(a/2,0,k = 2,4)---b 
qo qo 

(7.2.26) 

Table 7.2.2: Effect of transverse shear deformation on nondimensionalized 
maximum transverse deflections and stresses of simply supported 
(88-1) symmetric cross-ply square plates. 

a/h Load if; O-xx ayy axy (Txz ayz 

Symmetric Laminate, (0/90/90/0/90/90/0) 

10 SSL 0.6213 0.5021 0.4107 0.0221 0.:3459 0.1998 
UDL 0.9643 0.7605 0.6016 0.0422 0.6927 0.4630 

20 SSL 0.4796 0.5276 0.3748 0.0215 0.3617 0.1840 
UDL 0.7575 0.8059 0.5475 0.0396 0.7212 0.4438 

100 SSL 0.4332 0.5382 0.3598 0.0213 0.3683 0.1774 
UDL 0.6896 0.8260 0.5241 0.0381 0.7322 0.4365 

CLPT SSL 0.4312 0.5387 0.3591 0.0213 
UDL 0.6867 0.8270 0.5230 0.0380 

Symmetric Laminate, (0/90/0/90/0) 

10 SSL 0.6277 0.5044 0.3852 0.0226 0.3535 0.1770 
UDL 0.9727 0.7649 0.5525 0.0436 0.6901 0.4410 

20 SSL 0.4814 0.5285 0.3416 0.0217 0.3685 0.1591 
UDL 0.7581 0.8080 0.4844 0.0403 0.7166 0.4188 

100 SSL 0.4333 0.5383 0.3240 0.0213 0.3746 0.1519 
UDL 0.6874 0.8264 0.4559 0.0386 0.7267 0.4108 

CLPT SSL 0.4312 0.5387 0.3232 0.0213 
UDL 0.6844 0.8272 0.4546 0.0385 
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where k denotes the layer number. The first-order theory results are slightly 
different from those of the classical plate theory. The influence of transverse shear 
deformation is less in the case of the laminates presented in Table 7.2.2. Thus, as 
the number of layers is increased, the effect of transverse shear strains on deflections 
and stresses decreases. Figure 7.2.2 clearly shows the diminishing effect of transverse 
shear deformation on deflections, the effect being negligible for side-to-thickness 
ratios larger than 20. 

Table 7.2.3 contains nondimensionalized transverse deflections wand stresses 
[o-xx(a/2, b/2, -h/2) = -o-yy(a/2, b/2, h/2) and o-xz = o-yz] of antisymmetric cross
ply laminates subjected to sinusoidally and uniformly distributed transverse loads. 
The stresses are nondimensionalized as in Eq. (7.2.25). The locations of the 
maximum stresses, computed using the constitutive equations, are as follows: 

h h h 
CJxx ( a/2, b/2, -"2)' CJyy ( a/2, b/2, "2)' CJxy ( a, b, -"2) 

CJxz (0,b/2,k = 1), CJyz (a/2,0,k = n) (7.2.27) 

Table 7.2.3: Effect of transverse shear deformation on nondimensionalized 
maximum transverse deflections and stresses of simply supported 
(SS-l) antisymmetric cross-ply square plates (hk = h/n, E1 = 
25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, 1/12 = 0.25, K = 5/6). 

a/h Load 

Antisymmetric Laminate, (0/90) 

10 

20 

SSL 
UDL 

SSL 

-t 
O"xz 

1.2373 0.7157 0.0525 0.2728 0.3322 
1.9468 1.0715 0.0960 0.5772 0.7250 

1.1070 0.7157 0.0525 0.2728 0.3322 
UDL 1.7582 1.0747 0.0943 0.5802 0.7285 

100 SSL 
UDL 

CLPT SSL 
UDL 

Antisymmetric Laminate, (0/90)4 

10 

20 

100 

SSL 
UDL 

SSL 
UDL 

SSL 

1.0653 0.7157 0.0525 0.2728 0.3322 
1.6980 1.0761 0.0933 0.5813 0.7297 

1.0636 0.7157 0.0525 
1.6955 1.0761 0.0933 

0.3322 
0.7297 

0.6216 0.4950 0.0221 0.2728 0.2480 
0.9660 0.7415 0.0420 0.5787 0.5264 

0.4913 0.4950 0.0221 0.2728 0.2480 
0.7776 0.7468 0.0402 0.5839 0.5311 

0.4496 0.4950 0.0221 0.2728 0.2480 
UDL 0.7175 0.7494 0.0391 0.5857 0.5328 

CLPT SSL 
UDL 

0.4479 0.4950 0.0221 
0.7150 0.7496 0.0391 

0.2479 
0.5330 

t Maximum stresses derived from equilibrium. The reported values are at z = ±h/4 
for (0/90) laminate, and at z = 0 for (0/90)4 laminate. 
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We note that the two-layer laminate exhibits quite different behavior, due to 
bending-extensional coupling, from the eight-layer laminate, and the results for the 
eight-layer laminate are much the same as those of symmetric laminates in Tables 
7.2.1 and 7.2.2. 

Figure 7.2.3 shows the effect of transverse shear deformation and bending
extensional coupling on deflections. The eight-layer antisymmetric cross-ply plate 
behaves much like an orthotropic plate (results are not shown in the figure). 

Figures 7.2.4 through 7.2.7 show plots of maximum normal stresses, 
o-xx(a/2, b/2, z) and o-yy(a/2, b/2, z), and maximum transverse shear stresses, 
o-xz(O, b/2, z) and o-yz(a/2, 0, z), through the thickness of simply supported square 
laminates (0/90/90/0) under sinusoidally distributed transverse load. The material 
properties used are El = 25E2, G 12 = G 13 = 0.5E2, G23 = 0.2E2, V12 = 0.25, 
and K = 5/6. The dashed lines correspond to classical plate theory solutions. In 
Figures 7.2.6 and 7.2.7, stresses computed using the constitutive relations are also 
included. In the case of o-xz, the equilibrium equations predict a stress variation that 
is inconsistent with that predicted by constitutive relations; equilibrium equations 
predict the maximum stress to be at the midplane of the plate, while the constitutive 
equations predict maximum stress in the outer layers. It turns out that (see Pagano 
[6]) the constitutive equations yield, qualitatively, the correct stress variation. 

Table 7.2.4 contains nondimensionalized deflections, w = wo/(cx1T 1b2 ), of simply 
supported plates subjected to the temperature field of the form given in Eq. 
(7.2.10c). The material properties of orthotropic layers are assumed to be El = 
25E2, G 12 = G13 = 0.5E2, G23 = 0.2E2, V12 = 0.25, K = 5/6, and CX2 = 3CX3. The 
results in the table correspond to To = 0 and Tl # O. We note that the effect of 
shear deformation on thermal deflections is negligible. 

7.2.3 Buckling 

For buckling analysis, we assume that the only applied loads are the in-plane forces 

A A Nyy 
N xx = -No, N yy = -kNo, k = -A

Nx~' 
(7.2.28) 

and all other mechanical and thermal loads are zero. From Eq. (7.2.7) we have 

811 812 0 814 815 

l~;n~l!) 812 822 0 824 825 
0 0 833 - No (cx2 + k(32) 834 835 (7.2.29) 

814 824 834 844 845 

815 825 835 845 855 

Following the condensation of variables procedure to eliminate the in-plane 
displacements Umn and Vmn , we obtain 

[833 - No('" + kfl') 834 S35] {~:n~o} 834 844 845 (7.2.30a) 
835 845 855 



ANALYTICAL SOLUTIONS OF RECTANGULAR LAMINATES USING FSDT 389 

0.020 

0.018 

0.016 

l::l 0.014 
d' 
0 

:0 0.012 U 
<J) 

<:;:i 
<J) 

~ 0.010 

0.008 

0.006 

- - - - - - Classical plate theory 
SSL = Sinusoidal load 
UDL = Uniform load 

All laminates are ofthe 
same total thickness 

(0/90/90/0)=(0/90)8, UDL 

(0/90/90/0), SSL 

o 10 20 30 40 50 60 70 80 90 100 

Side-to-thickness ratio, a / h 

Figure 7.2.2: Center transverse deflection (w) versus side-to-thickness ratio 
for simply supported (88-1) symmetric cross-ply (0/90/90/0) 
square laminates subjected to uniformly or sinusoidally distributed 
transverse load; dashed lines correspond to the classical plate 
theory (CLPT) solutions . 
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Figure 7.2.3: Center transverse deflection (w) versus side-to-thickness ratio for 
simply supported (88-1) orthotropic and antisymmetric cross-ply 
(0/90) laminates under sinusoidally distributed transverse load. 
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Figure 7.2.4: Nondimensionalized normal stress (o-xx) versus thickness (z/h) 
for simply supported (88-1) symmetric cross-ply (0/90/90/0) 
laminates. 
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Figure 7.2.5: Nondimensionalized normal stress (o-yy) versus thickness (z/h) 
for simply supported (88-1) symmetric cross-ply (0/90/90/0) 
laminates. 
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Figure 7.2.6: Nondimensionalized shear stress (o-xz) versus thickness (z/h) 
for simply supported (SS-I) symmetric cross-ply (0/90/90/0) 
laminates. 
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Figure 7.2.7: N ondimensionalized shear stress (0-yz) versus thickness (z / h) 
for simply supported (SS-I) symmetric cross-ply (0/90/90/0) 
laminates. 
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Table 7.2.4: Effect of the aspect ratio and side-to-thickness ratio on the 
deflection of simply supported (88-1) plates subjected to 
temperature field that is uniform in the xy-plane and linearly 
varying through the thickness (qo = 0, To = 0, Tl = constant). 

Load 

Isotropict 

SSL 
UDL 

Orthotropic 

SSL 

UDL 

a/h 

10 
10 

10 
20 
100 
CLPT 

10 
20 
100 
CLPT 

Laminate, (0/90) 

SSL 

UDL 

10 
20 
100 
CLPT 

10 
20 
100 
CLPT 

Laminate, (0/90)4 

SSL 

UDL 

10 
20 
100 
CLPT 

10 
20 
100 
CLPT 

Laminate, (0/90/90/0) 

SSL 10 

UDL 

20 
100 
CLPT 

10 
20 
100 
CLPT 

alb = 1 alb = 1.5 alb = 2 alb = 2.5 alb = 3 

0.6586 
0.9575 

1.0440 
1.0346 
1.0313 
1.0312 

1.4603 
1.4409 
1.4334 
1.4331 

1.1504 
1.1504 
1.1504 
1.1504 

1.7213 
1.7269 
1.7293 
1.7294 

1.0343 
1.0343 
1.0343 
1.0343 

1.5498 
1.5607 
1.5661 
1.5664 

1.0421 
1.0343 
1.0313 
1.0312 

1.5452 
1.5357 
1.5318 
1.5316 

0.9119 
1.3097 

2.1129 
2.1128 
2.1127 
2.1127 

3.1321 
3.1339 
3.1343 
3.1344 

1.4673 
1.4613 
1.4592 
1.4591 

2.1446 
2.1394 
2.1377 
2.1376 

1.3000 
1.2837 
1.2776 
1.2773 

1.9026 
1.8862 
1.8801 
1.8799 

1.7130 
1.7339 
1.7419 
1.7422 

2.5733 
2.6169 
2.6343 
2.6350 

1.0537 
1.4798 

3.0623 
3.0758 
3.0804 
3.0806 

4.5966 
4.6243 
4.6342 
4.6346 

1.5186 
1.5091 
1.5058 
1.5057 

2.1100 
2.0965 
2.0918 
2.0916 

1.3113 
1.2870 
1.2783 
1.2779 

1.8166 
1,7816 
1.7690 
1.7685 

1.9680 
1.9858 
1.9923 
1.9925 

2.8961 
2.9352 
2.9500 
2.9507 

1.135.5 
1.5582 

3.6394 
3.6560 
3.6617 
3.6619 

5.4269 
5.4609 
5.4729 
5.4734 

1.5122 
1.5026 
1.4994 
1.4993 

1.9862 
1.9703 
1.9649 
1.9647 

1.2781 
1.2555 
1.2477 
1.2474 

1.6603 
1.6224 
1.6091 
1.6085 

1.9807 
1.9854 
1.9871 
1.9872 

2.804.5 
2.8191 
2.8243 
2.824.5 

1.1855 
1.5938 

3.8883 
3.9002 
3.9042 
3.9044 

5.6987 
5.7239 
5.7327 
5.7330 

1.4984 
1.4898 
1.4869 
1.4868 

1.8796 
1.8649 
1.8600 
1.8598 

1.2469 
1.2280 
1.2216 
1.2214 

1.5334 
1.5002 
1.4886 
1.4881 

1.9227 
1.9193 
1.9181 
1.9181 

2.5921 
2.5877 
2.5859 
2.5859 

tv = 0.3; both CLPT and FSDT solutions are the same and independent of a/h. 
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_ A A b1 A b2 _ A A b1 A b2 
844 =844 - 814 - - 824 -, 845 = 845 - 815- - 825-

bo bo bo bo 
- A A b3 A b4 b A A A A 

855 =855 - 81,5 b
o 

- 825 b
o

' 0 = 811 822 - 812 8 12 

b1 =814822 - 812 8 24, b2 = 811824 - 812814 

b3 =815 8 22 - 812 8 25, b4 = 811825 - 812,915 

Repeating the procedure to eliminate Xmn and Ymn , we obtain 

(7.2.30b) 

(7.2.31) 

Alternatively, we can eliminate Xmn and Yrnn first and then eliminate Urnn and Vrnn 
to obtain an expression equivalent to the one given in Eq. (7.2.31); see next section 
for details. 

Specially orthotropic plates 

For specially orthotropic plates, we have from Eq. (7.2.30b) 814 = 815 = 0 and 
824 = 825 = 0; consequently, b1 = b2 = b3 = b4 = 0 and 544 = ,544, .545 = .545, and 
555 = 855· Equation (7.2.31) takes the form 

(7.2.32) 

Using the definitions of 8ij from Eq. (7.2.7), we can write 

(7.2.33a) 

(7.2.33b) 

(7.2.33c) 

Clearly, when the effect of transverse shear deformation is neglected, Eq. (7.2.33b) 
yields the result (6.3.47a) obtained using the classical plate theory. The expression 
in (7.2.33b) is of the form 

from which it follows that 
A C33 + k1 
C33> --

- 1 + k2 

(7.2.34a) 

(7.2.34b) 

indicating that transverse shear deformation has the effect of reducing the buckling 
load (as long as C33 > 1). 
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No conclusions can be drawn from the complicated expression of the buckling 
load concerning its minimum. Hence, a parametric study is carried out to determine 
the minimum buckling load, which occurs at m = n = 1. For an isotropic plate, the 
critical buckling load becomes 

7r 2 [1 + 3(1-v2);2(h/a)2] 

N m' ~ 1D (;;:) [I + 72(1+")(1;" ),'(hl a)' + 6( 1+" )(3-;)" (hi a)' 1 (7,2,35) 

Table 7.2.5 contains nondimensionalized critical buckling loads of a square 
orthotropic plate and symmetric square laminates (0/90/0), (0/90/0/90/0), 
(0/90/0/90/0/90/0), and (0/90/0/90/0/90/0/90/0) under uniaxial and biaxial 
loadings. In these laminates the 0° layers and 90° layers have the same total 
thickness. For example, in the case of the nine-layer laminate the individual layer 
thicknesses are 0.1, 0.125, 0.1, 0.125, 0.1, 0.125, 0.1, 0.125, and 0.1, respectively. 
The critical buckling loads in all cases occurred in mode (1,1), except for orthotropic 
plates in biaxial compression, for which the mode is (2,1). For the side-to-thickness 
ratio of 10, for example, the classical laminate theory overpredicts the critical 
buckling loads by as much as 48% for orthotropic plates, and the error is less for 
thin plates. 

Figure 7.2.8 shows the effect of transverse shear deformation on critical buckling 
loads of symmetric (0/90/90/0) laminates under uniaxial and biaxial compression 
(a/b = 1; Ed E2 = 25, G 12 = G 13 = 0.5E2, G23 = 0.2E2, V12 = 0.25). The 
effect of shear deformation is clear from the figure. Figure 7.2.9 shows the effect of 
transverse shear deformation and bending-extensional coupling on critical buckling 
loads (a/b = 1; Ed E2 = 25, G 12 = G13 = 0.5E2, G23 = 0.2E2, V12 = 0.25). 
The eight-layer antisymmetric cross-ply plate behaves much like an orthotropic 
plate. Critical buckling loads of two-layer and eight-layer antisymmetric cross-ply 
laminated plates under uniaxial and biaxial loading are presented in Table 7.2.6 for 
modulus ratios Ed E2=10, 25, and 40. The effect of shear deformation on buckling 
loads is not as significant as for deflections. Note that the same critical buckling 
loads are valid for a rectangular laminate with aspect ratio alb = 3, except that the 
mode at critical buckling is (m, n) = (3, 1). 

7.2.4 Vibration 

For free vibration, we set the thermal and mechanical loads to zero, and substitute 

Umn(t) = U~neiwt, Vmn(t) = V~neiwt, Wmn(t) = W~neiwt, 
in Eq. (7.2.7) and obtain 

(7.2.36a) 

where 

811 812 0 814 815 m11 0 0 0 0 
812 822 0 824 825 0 m22 0 0 0 

[5] = 0 0 833 834 835 [M]= 0 0 m33 0 0 
814 824 834 844 845 0 0 0 m44 0 
815 825 835 845 855 0 0 0 0 m55 

(7.2.36b) 
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and {~} T = {U;;'n V~n W;;'n X;;'n Y~n}' The coefficients Sij and mij are defined 
in Eqs. (7.2.7b,c). 

Table 7.2.5: Effect of shear deformation on nondimensionalized critical buckling 
loads, N = Ncr (a2 / E2h3 ), of simply supported (88-1) symmetric 
cross-ply square plates (E1 = 25E2, 
0.2E2, V12 = 0.25, K = 5/6). 

G 12 = G 13 = 0.5E2, G23 = 

a/h 0° Three-ply Five-ply Seven-ply Nine-ply 

Uniaxial Compression (k = 0) 

10 15.874 15.289 16.309 16.535 16.622 
20 20.953 20.628 21.125 21.237 21.281 
25 21.800 21.568 21.917 21.996 22.027 
50 23.046 22.978 23.078 23.101 23.109 

100 23.381 23.363 23·389 23.395 23.397 
CLPT 23.495 23.495 23.495 23.495 23.495 

Biaxial Compression (k = 1) 

10 5.837t 7.644 8.154 8.267 8.311 
20 7.555 10.314 10.562 10.619 10.641 
25 7.839 10.784 10.958 10.998 11.014 
50 8.257 11.489 11.539 11.550 11.555 

100 8.369 11.682 11.695 11.698 11.699 
CLPT 8.407 11.747 11.747 11.747 11.747 

t Mode for orthotropic plates in biaxial compression is (rn, n) = (2,1). 

Table 7.2.6: Effect of shear deformation on nondimensionalized critical 
buckling loads, N = N cr (a2 / E 2h3), of simply supported (88-1) 
antisymmetric cross-ply square plates (G12 = G13 = 0.5E2, G2:l = 
0.2E2, V12 = 0.25, K = 5/6). 

El/E2 = 10 EdE2 = 25 EdE2 = 40 

b/h (0/90) (0/90)4 (0/90) (0/90)4 (0/90) (0/90)4 

Uniaxial Compression (k = 0); mode: (1,1) 

10 5.746 9.158 8.189 16.301 10.381 21.631 
20 6.205 10.380 9.153 20.623 11.980 29.965 

100 6.367 10.843 9.511 22.535 12.601 34.179 
CLPT 6.374 10.864 9.526 22.622 12.628 34.381 

Biaxial Compression (k = 1); mode: (1,1) 

10 2.873 4.579 4.094 8.150 5.190 10.816 
20 3.102 5.190 4.576 10.311 5.990 14.983 

100 3.184 5.422 4.755 11.267 6.300 17.090 
CLPT 3.187 5.432 4.763 11.311 6.314 17.190 
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Figure 7.2.8: Nondimensionalized critical buckling load (N) versus side-to
thickness ratio (a/h) for simply supported (88-1) symmetric cross
ply (0/90/90/0) square laminates. 
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Figure 7.2.9: Nondimensionalized critical buckling load (N) versus side-to
thickness ratio (a/h) for simply supported (88-1) antisymmetric 
cross-ply (0/90)n square laminates. 
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When rotary inertia is omitted, Eq. (7.2.36) can be simplified by eliminating 
Xmn and Ymn (say, using the static condensation method). We obtain the following 
3 x 3 system of eigenvalue problem [ef. Eq. (6.3.49)]: 

~13l 2 [mll 823 - W 0 
833 0 

a 

8ll = 8ll - (814 855 - 815845) 814/800 - (815844 - 814845) 815/800 

812 = 812 - (824 855 - 825 845) 814/800 - (825 844 - 824 845) 815/800 

813 = - (834855 - 835 845) 814/800 - (835 844 - 834845) 815/ 800 

822 = 822 - (824 855 - 825 845) 824/800 - (825 844 - 824 845) 825/800 

823 = 823 - (834 855 - 835 845) 824/800 - (835 844 - 834 845) 825/800 

833 = 833 - (834 855 - 835 845) 834/800 - (835 844 - 834 845) 835/800 

800 = 844 855 - 845 845 

(7.2.37a) 

(7.2.37b) 

If the in-plane and rotary inertias are omitted (i.e., mll = m22 = m44 = m55 = 

a), we have [ef. Eq. (6.3.52)] 

2 1 (_ 8138 22 - 823 8 12 _ 811 823 - 812 8 13 _ ) 
w = -,- 833 - _ _ _ _ 813 - _ _ _ _ 823 

m33 811822 - 812 8 12 811822 - 812 8 12 
(7.2.38) 

If frequencies of in-plane vibration of specially orthotropic laminates or natural 
frequencies of flexural or in-plane vibration of antisymmetric laminates are required, 
one must use Eq. (7.2.37a). 

Specially orthotropic plates 

For specially orthotropic plates, the in-plane displacements are uncoupled from the 
transverse deflection, and therefore the natural frequencies of vibration are given 
by Eq. (7.2.37); Eq. (7.2.38) gives the same frequencies of flexural vibration as Eq. 
(7.2.37a) for this case. 

Table 7.2.7 contains frequencies of isotropic plates. Similar results are presented 
in Tables 7.2.8 and 7.2.9 for symmetric cross-ply laminates. The effect of the shear 
correction factor is to decrease the frequencies; i.e., the smaller the K, the smaller are 
the frequencies. The rotary inertia (RI) also has the effect of decreasing frequencies. 
Figure 7.2.10 shows the effect of transverse shear deformation and rotary inertia on 
fundamental natural frequencies of orthotropic and symmetric cross-ply (0/90/90/0) 
square plates with the following lamina properties: 

The symmetric cross-ply plate behaves much like an orthotropic plate. The effect 
of rotary inertia is negligible in FSDT and therefore not shown in the figure. 
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Table 7.2.7: Effect of shear deformation, rotary inertia. and shear correction 
coefficient on nondimensionalized natural frequencies of simply 
supported (88-1) isotropic square plates (w = w(a2 /h)jp/E; 
v = 0.3, a/h = 10). 

m n 

1 1 

2 1 

2 2 

3 1 

3 2 

4 1 

3 3 

CLPTt 
w/o RI 

5.973 

14.933 

23.893 

29.867 

38.827 

50.744 

53.760 

CLPT 
with RI K 

5.925 2/3 
5/6 
1.0 

14.635 2/3 
5/6 
1.0 

23.144 2/3 
5/6 
1.0 

28.709 2/3 
5/6 
1.0 

36.904 2/3 
5/6 
1.0 

47.558 2/3 
5/6 
1.0 

50.174 2/3 
5/6 
1.0 

FSDT 
w/o RI 

5.773 
5.812 
5.838 

13.769 
13.980 
14.127 
21.103 
21.583 
21.922 
25.682 
26.378 
26.875 
32.153 
33.213 
33.982 
40.150 
41.744 
42.919 
42.051 
43.785 
45.067 

FSDT 
with RI 

5.732 
5.769 
5.794 

13.568 
13.764 
13.899 
20.688 
21.121 
21.424 
25.115 
25.734 
26.171 
31.357 
32.284 
32.946 
39.063 
40.436 
41.427 
40.895 
42.383 
43.461 

t w / 0 RI means without rotary inertia. 

Table 7.2.8: Effect of shear deformation on dimensionless natural frequencies 
of simply supported (88-1) symmetric cross-ply plates (w = 

a/h 

5 

10 

20 

25 

50 

100 

w(a2 /h)j p/ E; E1 = 25E2, G 12 = G13 = 0.5E2, G23 = 0.2E2, 
V12 = 0.25, K = 5/6; rotary inertia is included; the total thickness 
of all 0° layers and all 90° layers is the same, h/2). 

Theory 

FSDT 
CLPT 
FSDT 
CLPT 
FSDT 
CLPT 
FSDT 
CLPT 
FSDT 
CLPT 
FSDT 
CLPT 

8.909 
14.750 
12.452 
15.104 
14.355 
15.197 
14.651 
15.208 
15.077 
15.223 
15.190 
15.227 

Three-ply Five-ply Seven-ply Nine-ply 

8.766 
14.750 
12.227 
15.104 
14.244 
15.197 
14.573 
15.208 
15.055 
15.223 
15.184 
15.227 

9.215 
14.750 
12.633 
15.104 
14.415 
15.197 
14.690 
15.208 
15.087 
15.223 
15.192 
15.227 

9.301 
14.750 
12.720 
15.104 
14.453 
15.197 
14.717 
15.208 
15.095 
15.223 
15.194 
15.227 

9.333 
14.750 
12.754 
15.104 
14.468 
15.197 
14.727 
15.208 
15.098 
15.223 
15.195 
15.227 
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Table 7.2.9: Effect of shear deformation, rotary inertia, and shear correction 
coefficient on nondimensionalized natural frequencies (w 
w(a2/h)jp/E) of simply supported (88-1) symmetric cross-ply 
(0/90/0) square plates (hk = h/3; El = 25E2, G 12 = G 13 = 0.5E2' 
G 23 = 0.2E2, ZJ12 = 0.25). 

a/h rn n CLPT CLPT FSDT FSDT 
w/o RI with RI w/o RI with RI 

10 1 1 15.228 15.104 12.593 12.527t 
12.223 12.163 

1 2 22.877 22.421 19.440 19.203 
18.942 18.729 

1 3 40.299 38.738 32.496 31.921 
31.421 30.932 

2 1 56.885 55.751 33.097 32.931 
31.131 30.991 

2 2 60.911 59.001 36.786 36.362 
34.794 34.434 

1 4 66.754 62.526 48.837 47.854 
46.714 45.923 

2 3 71.522 67.980 45.484 44.720 
43.212 42.585 

100 1 15.228 15.227 15.192 15.191 
15.185 15.183 

1 2 22.877 22.873 22.831 22.827 
22.822 22.817 

1 3 40.299 40.283 40.190 40.174 
40.169 40.153 

2 56.885 56.874 56.330 56.319 
56.221 56.210 

2 2 60.911 60.891 60.342 60.322 
60.230 60.211 

1 4 66.754 66.708 66.466 66.421 
66.409 66.364 

2 3 71.522 71.484 70.919 70.882 
70.801 70.764 

t The first line corresponds to shear correction coefficient of K = 1.0 and the second line 
corresponds to shear correction coefficient of K = 5/6. 

Figure 7.2.11 shows the effect of transverse shear deformation, bending
extensional coupling, and rotary inertia on fundamental natural frequencies of two
layer and eight-layer antisymmetric cross-ply laminates (Ed E2 = 25, G12 = Gn = 
0.5E2, G23 = 0.2E2, ZJ12 = 0.25). The eight-layer antisymmetric cross-ply plate 
behaves much like an orthotropic plate. The effect of rotary inertia is negligible 
in FSDT and therefore not shown in the figure. Table 7.2.10 contains numerical 
values of fundamental frequencies of antisymmetric cross-ply laminated plates for 
various modular ratios. Results for both two-layer and eight-layer laminated plates 
for square and rectangular (a/b = 3) geometries are presented. 
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Table 7.2.10: Effect of shear deformation on nondimensionalized fundamental 
frequencies of simply supported (88-1 ) antisymmetric cross-ply 
square plates (G12 = G 13 = 0.5E2, G23 = 0.2E2, V12 = 0.25, K = 
5/6). 

EdE2 = 10 EdE2 = 25 EdE2 = 40 

b/h Theory (0/90) (0/90)4 (0/90) (0/90)4 (0/90) (0/90)4 

Square Plate (a/b = 1) 

10 FSDT 7.454 9.450 8.900 12.628 10.027 14.562 
CLPT 7.832 10.268 9.566 14.816 11.011 18.265 

20 FSDT 7.802 10.102 9.474 14.241 10.840 17.169 
CLPT 7.906 10.333 9.663 14.910 11.125 18.381 

100 FSDT 7.926 10.344 9.687 14.912 11.150 18.365 
CLPT 7.931 10.354 9.695 14.941 11.163 18.419 

Rectangular Plate (a/b = 3) 

10 FSDT 4.751 6.319 5.952 8.800 6.846 10.269 
CLPT 4.930 6.772 6.324 10.201 7.437 12.738 

20 FSDT 4.908 6.592 6.258 9.819 7.:313 11.990 
CLPT 4.956 6.796 6.360 10.238 7.480 12.783 

100 FSDT 4.962 6.799 6.367 10.231 7.486 12.763 
CLPT 4.964 6.804 6.372 10.249 7.493 12.798 

7.3 Simply Supported Antisymmetric Angle-Ply 
Laminated Plates 

7.3.1 Boundary Conditions 

The boundary conditions in (6.2.7) imply the following 88-2 boundary conditions 
on the generalized displacements and resultants of the first-order laminate theory 
(see Figure 7.3.1): 

uo(O, y, t) = 0, 

wo(x, 0, t) = 0, 

rPx(x, 0, t) = 0, 

uo(a, y, t) = 0, 

wo(x, b, t) = 0, 

rPx(x, b, t) = 0, 

Nxy(O, y, t) = 0, Nxy(a, y, t) = 0, 

Mxx(O, y, t) = 0, Mxx(a, y, t) = 0, 

vo(X, 0, t) = 0, 

wo(O, y, t) = 0, 

rPy(O, y, t) = 0, 

vo(X, b, t) = ° 
wo(a, y, t) = ° 
rPy(a, y, t) = ° (7.3.1a) 

Nxy(x, 0, t) = 0, 

Myy(x, 0, t) = 0, 

Nxy(x, b, t) = ° 
Myy(x, b, t) = ° 

(7.3.1b) 
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Figure 7.2.10: Nondimensionalized fundamental frequency (w) versus side-to
thickness ratio (a/b) for simply supported (88-1), orthotropic and 
symmetric cross-ply (0/90/90/0) laminates. 
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Figure 7.2.11: Nondimensionalized fundamental frequency (w) versus side-to

thickness ratio (a/h) for simply supported (88-1), antisymmetric 
cross-ply (0/90) laminates. 
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Figure 7.3.1: The simply supported boundary conditions for antisymmetric 
angle-ply laminates (SS-2). 

7.3.2 The Navier Solution 

The boundary conditions in (7.3.1) are satisfied by the expansions 

00 00 

Uo (x, y, t) = L L U mn ( t) sin ax cos f3y 
n=1m=1 

00 00 

vo(x, y, t) = L L Vmn(t) cos ax sinf3y 
n=1m=1 

00 00 

wo(x,y,t) = L L Wmn(t) sin ax sinf3y 
n=1 m=1 

00 00 

1Yx(x,y,t) = L L Xmn(t) cos ax sinf3y 
n=1 m=1 

00 00 

1Yy (x, y, t) = L L Ymn(t) sin ax cos f3y 
n=1m=1 

(7.3.2a) 

(7.3.2b) 

(7.3.3) 

(7.3.4a) 

(7.3.4b) 

Substitution of Eqs. (7.3.2a,b), (7.3.3), and (7.3.4a,b) into Eqs. (7.1.1)-(7.1.5) 
shows that the Navier solution exists only if 

A 16 = 0, A 26 = 0, A45 = 0, B11 = 0, B12 = 0, B22 = 0, B66 = ° 
D16 = 0, D26 = 0, It = ° (7.3.5) 

i.e., for antisymmetric angle-ply laminates [see Eq. (3.5.31)]. 

The coefficients Umn , Vmn , Wmn , X mn , Ymn can be determined from the equations 

811 812 ° 814 815 

rmn) 812 822 ° 824 825 Vmn 

° ° 833 + 833 834 835 Wmn + 
814 824 834 844 845 Xmn 
815 825 835 854 855 Ymn 
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m11 
0 
0 
0 
0 

where 

0 0 0 0 

rmn) 1 0 ) rIJN~n) m22 0 0 0 
.. 6 
Vmn 0 -aNmn 

0 m33 0 0 TY."mn = Qmn + _ 0 1 
0 0 m44 0 Xmn 0 aMmn 
0 0 0 m55 

.. 2 
Ymn 0 -(3Mmn 

811 = (A11a2 + A66(32) , 

813 = 0, 814 = 2BI6 a(3, 

822 = (A66a2 + A 22(32), 

824 = 815, 

833 = K(A55a2 + A44(32), 

835 = K A44(3, 

845 = (D12 + D66 )a(3, 

812 = (A12 + A66)a,6 

815 = (B16a2 + B26(32) 

823 = 0 

825 = 2B26a (3 

834 = KA55a 

844 = (D11a2 + D66(32 + K A55) 

855 = (D66a2 + D22(32 + KA44 ) 

(7.3.6) 

(7.3.7) 

and the thermal coefficients are defined in Eqs. (6.3.11)-(6.3.16), and Sij and mij 

are defined in Eqs (7.2.7b,c). Equation (7.3.5) can be specialized for static analysis, 
buckling under in-plane compressive loads, and natural vibration, as was discussed 
for antisymmetric cross-ply laminates. 

The in-plane stresses in each layer can be computed from the equations 

{ 

O"xx }(k) [011 
O"yy = q12 
O"xy Q16 

(7.3.8) 

m7rX . n7ry m7rX n7ry 
fmn = sin -a- sm -b-' 9mn = cos -a- cos -b-

The transverse shear stresses from the constitutive equations are given by 

{ 
O"yz } (k) = f f [q44 q45] (k) { (Ymn + (3W mn) sin ax c~s (3y } 
O"xz Q45 Q55 (Xmn+aWmn)cosaxsm(3y m=1 n=1 

(7.3.10) 

Note that the stresses are layerwise constant through the thickness. 
The transverse stresses can also be determined from the equilibrium equations 

of 3-D elasticity, as discussed before. They are 

O"i~)(x, y, z) = fl E [(z - zk)A~~ + ~(z2 - z~)f3~h] + O"i~-I)(X, y, Zk) 

O"~~)(x,y,z) = fIE [(z - zk)C~h + ~(z2 - Z~)'D~h] + O"~~-I)(x,y,Zk) 
(7.3.11a) 
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where 

-(k) [( 2 -(k) 2 -(k)) (-(k) -(k)) ]. Amn = a Q l1 + (3 Q66 Umn + a(3 Q 12 + Q66 Vmn sm ax cos (3y 

[ 
-(k) ( 2 -(k) 2 -(k)) ] + 2a(3Q16 Umn + a Q16 + (3 Q26 Vmn cos ax sin (3y 

-(k) [( 2 -(k) 2 -(k)) (-(k) -(k))] . Bmn = a Q l1 + (3 Q66 Xmn + a(3 Q 12 + Q66 Ymn cos ax sm (3y 

[ 
-(k) ( 2 -(k) 2 -(k)) ] + 2a(3Q16 Xmn + a Q16 + (3 Q26 Ymn sin ax cos (3y 

-( k) [( 2 - (k) 2 - (k)) - (k) ]. Cmn = a Q16 + (3 Q26 Umn + 2a(3Q26 Vmn sm ax cos (3y 

[ ( 
-(k) -(k)) ( 2 -(k) 2 -(k)) ] + a(3 Q 12 + Q66 Umn + a Q66 + (3 Q22 Vmn cos ax sin (3y 

-(k) [( 2 -(k) 2 -(k)) -(k)]. Dmn = a Q16 + (3 Q26 Xmn + 2a(3Q26 Ymn cosaxsm(3y 

[ ( 
-(k) -(k») ( 2 -(k) 2 -(k)) ] + a(3 Q 12 + Q66 Xmn + a Q66 + (3 Q 22 Ymn sin ax cos (3y 

(7.3.11b) 

7.3.3 Bending 

Table 7.3.1 contains numerical results of nondimensionalized maximum deflections 
and stresses of simply supported (88-2), two-layer and eight-layer antisymmetric 
angle-ply square laminates, (-45/45/-45/-· .), subjected to sinusoidally and 
uniformly distributed loads. The nondimensionalizations and locations of maximum 
quantities are as follows: 

_ E2 h3 
W = wo(a/2, a/2)-b4 ' 

qo 
h h2 

iJyy = (Jyy(a/2, b/2, - )-b2 ' 
2 qo 
h 

iJxz = (Jxz(O, b/2, k)---b ' 
qo 

(7.3.12) 

where k = 1,2,···, n denotes the ply number. Both constitutive and equilibrium 
based transverse shear stresses are included in the table. While the deflections 
are sensitive to the transverse shear deformation, stresses are not. Table 7.3.2 
contains the maximum transverse deflection and in-plane normal stress as a function 
of the modulus ratio of simply supported (88-2) square, antisymmetric, two-layer 
(-45/45) and eight-layer (-45/45/-45/-··) angle-ply laminates (a/h = 10) subjected 
to uniformly distributed load. 

Figure 7.3.2 contains plots of the nondimensionalized transverse deflection versus 
side-to-thickness ratio (a/h) of various angle-ply laminates subjected to uniformly or 
sinusoidally distributed transverse load (a/b = 1; Ed E2 = 25, G 12 = G13 = 0.5E2, 
1/12 = 0.25, K = 5/6). The effect of transverse shear deformation is negligible 
for all values of a/ h greater than 10. For values of a/ h less than 10, the effect is 
quite significant. Figure 7.3.3 contains plots of the nondimensionalized deflection as 
a function of the lamination angle for two- and eight-layer antisymmetric angle
ply laminates (a/h = 10), (-8/8/-8/·· .), subjected to sinusoidally distributed 
transverse load. The effect of bending-stretching is significant in two-layer laminates. 
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Table 7.3.1: Effect of transverse shear deformation on nondimensionalized 
maximum transverse deflections and stresses of simply supported 
(88-2) antisymmetric angle-ply square plates (hi = h/n, El = 
25E2, G12 = G 13 = 0.5E2, G 23 = 0.2E2, 1/12 = 0.25, K = 5/6). 

a/h Load w x 102 o-xx a-xy jj xz -t 
O"xz 

A ntisymmetric Laminate, (-45/45) 

10 SSL 0.8284 0.2498 0.2336 0.2728 0.2143 
UDL 1.2792 0.3476 0.4274 0.5072 0.4238 

20 SSL 0.6981 0.2498 0.2336 0.2728 0.2143 
UDL 1.0907 0.3496 0.4357 0.5065 0.4205 

100 SSL 0.6564 0.2498 0.2336 0.2728 0.2143 
UDL 1.0305 0.3504 0.4417 0.5068 0.4189 

CLPT SSL 0.6547 0.2498 0.2336 0.2143 
UDL 1.0280 0.3504 0.4421 0.4188 

Antisymmetric Laminate, (-45/45)4 

10 SSL 0.4198 0.1445 0.1384 0.2728 0.2487 
UDL 0.6366 0.1957 0.2463 0.5070 0.4960 

20 SSL 0.2896 0.1445 0.1384 0.2728 0.2487 
UDL 0.4483 0.1988 0.2550 0.5050 0.4884 

100 SSL 0.2479 0.1445 0.1384 0.2728 0.2487 
UDL 0.3883 0.2005 0.2630 0.5054 0.4841 

CLPT SSL 0.2462 0.1445 0.1384 0.2487 
UDL 0.3858 0.2006 0.2637 0.4838 

Maximum stress derived from equilibrium. The values reported are at z = ±h/4 for (-45/45) 
laminate, and at z = 0 for the (-45/45)4 laminate; the shear stress derived from constitutive 
relations will have two values at each interface, and the larger of the two is reported. 

Figures 7.3.4 and 7.3.5 contain nondimensionalized maximum transverse shear 
stress distributions through laminate thickness for an eight-layer antisymmetric 
angle-ply square laminate (-45/30/-45/0/0/45/-30/45) subjected to uniformly or 
sinusoidally distributed transverse load. The side-to-thickness ratio is taken to be 
a/h = 10. The material properties used are: E1 = 25E2, G 12 = G 13 = O.5E2, G23 = 
O.2E2, 1/12 = 0.25, K = 5/6. The effect of transverse shear deformation is negligible 
on the stresses. 

7.3.4 Buckling 

Table 7.3.3 contains critical buckling loads of uniaxially and biaxially compressed 
simply supported (88-1) square, antisymmetric angle-ply laminates for various 
modulus ratios and two lamination schemes (-45/45) and (-45/45/-45/-· .). Note 
that for certain modulus ratios, side-to-thickness ratios and lamination schemes, 
the shear deformation theory predicts buckling modes different from the classical 
laminate theory. Figures 7.3.6 and 7.3.7 show the influence of shear deformation, 
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Table 7.3.2: Effect of lamination scheme and shear deformation on the 
transverse deflections and stresses in square antisymmetric angle
ply laminates subjected to uniformly distributed transverse load 
(hn = h/n, Ed E2 varied, G I 2 = G I 3 = 0.5E2, G23 = 0.2E2, VI2 = 
0.25, a/h = 10; m, n = 1,3, ... ,21 in the series are used to calculate 
the solutions for uniform load). 

Theory w* 

10 20 30 40 10 20 30 40 

Orthotmpic Plate 

FSDT 4.480 1.678 1.089 0.856 0.731 0.255 0.681 0.755 0.780 0.791 
CLPT 4.172 1.412 0.795 0.548 0.415 0.251 0.693 0.772 0.795 0.801 

Laminate, (-45/45) 

FSDT 4.829 2.010 1.441 1.157 0.983 0.278 0.307 0.338 0.355 0.365 
CLPT 4.577 1.759 1.190 0.906 0.732 0.278 0.308 0.340 0.358 0.370 

Laminate, (-45/45 h 
FSDT 4.829 1.251 0.792 0.622 0.534 0.278 0.213 0.201 0.196 0.193 
CLPT 4.577 0.999 0.542 0.372 0.283 0.278 0.214 0.205 0.201 0.199 

Laminate, (-45/45)4 

FSDT 4.829 1.153 0.727 0.575 0.496 0.278 0.210 0.198 0.194 0.191 
CLPT 4.577 0.902 0.477 0.324 0.245 0.278 0.211 0.203 0.199 0.198 

number of composite layers (bending-extensional coupling), and the lamination 
angle on critical buckling loads of antisymmetric angle-ply square laminates under 
uniaxial compressive loads (a/b = 1, a/h = 10, Ed E2 = 25, G I2 = G I3 = 0.5E2, 
VI2 = 0.25). The side-to-thickness ratio for the laminates in Figure 7.3.7 is taken to 
be a/h = 10. 

7.3.5 Vibration 

Numerical results of nondimensionalized fundamental frequencies of antisymmetric 
angle-ply laminates (-45/45/-45/-··) are presented in Table 7.3.4 for two different 
materials. Numerical results for two-layer (-45/45) and eight-layer (-45/45)4 plates 
with Ed E2 = 25, GI2 = GI3 = 0.5E2, G23 = 0.2E2, VI2 = 0.25, and K = 5/6 
are given as a function of side-to-thickness ratio in Figure 7.3.8 and as a function 
of lamination angle in Figure 7.3.9. The effect of bending-stretching coupling (Le., 
BI6 and B 26 ), transverse shear deformation (i.e., Exz =1= 0 and Eyz =1= 0), and rotary 
inertia is to lower the fundamental frequencies. As the number of layers increases, 
the coupling decreases. The effect of shear deformation decreases with increasing 
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values of a/ h. This decrease is slower for eight-layer plates than for two-layer plates. 
The effect of rotary inertia is negligible in F8DT, whereas it is significant in CLPT 
only for very thick plates. 

Table 7.3.3: Effect of shear deformation on nondimensionalized critical 
buckling loads, fir = N cr (a2 / E 2h3 ), of simply supported (88-2) 
antisymmetric angle-ply, (-45/45)n, square plates (G12 = G13 = 
0.5E2, G23 = 0.2E2, V12 = 0.25, K = 5/6). 

a/h EdE2 = 10 

n=2 n=8 

Uniaxial Compression (k = 0); mode: (1,1) 

10 7.847 
20 8.727 
100 9.052 
CLPT 9.066 

Biaxial Compression (k = 1); mode: 

10 
20 
100 
CLPT 

t Mode is (2,1). 

3.923 
4.364 
4.526 
4.533 

13.542 
16.397 
17.584 
17.637 

(1,1) 

6.771 
8.199 
8.792 
8.818 

E 1 /E2 = 25 

n=2 

12.231 
14.513 
15.435 
15.476 

6.115 
7.257 
7.717 
7.738 

n=8 

21.082t 
34.990 
40.875 
41.163 

12.067 
17.495 
20.437 
20.581 

E 1 /E2 = 40 

n=2 

15.774t 
19.861 
21.628 
21.709 

7.910 
9.930 

10.810 
10.854 

n=8 

24.514t 
50.644 
63.974 
64.683 

15.336 
25.322 
31.987 
32.341 

Table 7.3.4: Effect of shear deformation on nondimensionalized natural frequencies of simply 
supported (88-2) symmetric angle-ply (-45/45/-45/-") square plates [0 
w(a2 /h)J p/ E2, K = 5/6; rotary inertia is included; mode: (1,1)]. 

Material 1 Material 2 

a/h Theory n=2 n=8 n=2 n=8 

5 F8DT 8.498 10.285 10.799 12.893 
CLPT 11.737 15.708 14.508 17.207 

10 F8DT 10.895 15.388 1.3.629 19.289 
CLPT 12.195 19.986 1.5.087 25.052 

20 F8DT 11.933 18.555 14.815 23.259 
CLPT 12.317 20.113 1.5.242 25.212 

100 F8DT 12.341 20.084 1.5.274 25.176 
CLPT 12.357 20.154 1.5.292 26.398 

Material 1: El = 25E2, G 12 = G 13 = 0.5E2, G23 = 0.2E2, v12 = 0.25. 
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7.4 Antisymmetric Cross-Ply Laminates with 
Two Opposite Edges Simply Supported 

7.4.1 Introduction 

In this section we present the Levy type solutions for bending, natural vibration, 
and buckling of antisymmetric cross-ply laminates. In the interest of brevity, the 
discussion is limited to the bending case. For additional details and for a discussion 
of the free vibration and buckling analyses, the reader may consult References 8 and 
23. 

As described earlier, the Levy solution technique involves choosing a solution 
form that satisfies the simply supported (88-1) boundary conditions on two parallel 
edges of a rectangular laminate, and then the partial differential equations of 
equilibrium are reduced to ordinary differential equations in the coordinate parallel 
to the simply supported edges. The ordinary differential equations are then solved 
using the state-space approach. 

8uppose that the edges y = 0 and y = b are simply supported (88-1), while the 
remaining edges x = a/2 and x = -a/2 have any combination of free, clamped, 
and simply supported boundary conditions (see Figure 7.4.1). We now proceed to 
describe the procedure for bending of cross-ply laminates. For additional details, 
the reader may consult the references at the end of the chapter. 

The equations of equilibrium appropriate for the antisymmetric cross-ply 
laminated plates, according to the first-order shear deformation plate theory, can 
be expressed in matrix form as 

T 
b 

1 
88-1: 

[L]{Ll} = {F} 

y 

at y=O and y=b 

uo=wo=Q>x=O 

N yy = Myy = 0 

(7.4.1) 

Figure 7.4.1: The coordinate system and boundary conditions used on the simply 
supported (88-1) edges for the Levy solutions of rectangular cross
ply laminates using the first-order shear deformation theory. 
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where {~}T = {uo,vo,wo, <Px,<Py}, {F}T = {O,O,q,O,O}, and the coefficients 
Lij = Lji are defined as 

Ln = And; + A 66 d;, L12 = (A12 + A66)dx dy, L 13 = ° 
L14 = Bnd; + B 66 d;, L 15 = (B12 + B66)dx dy, L 23 = ° 
L22 = A66d; + A 22 d;, L 25 = B 22d; + B 66 d;, L24 = L 15 

L33 = - KA55 d; - KA44d;, L34 = - KA55dx, L35 = - KA44dy 

L44 = -KA55 + Dl1d; + D 66 d;, L45 = (D12 + D66)dx dy 

L55 = -K A44 + D 22d; + D66d; (7.4.2) 

and 

(7.4.3) 

Note that the classical plate theory can be obtained as a special case of the first-order 
shear deformation theory by setting 

<Px = - 8wo and <P __ 8wo 
8x y - 8y (7.4.4) 

7.4.2 The Levy Type Solution 

The Levy method, in conjunction with the state-space concept, can be used to 
develop analytical solutions of Eq. (7.4.1) when the plate is simply supported on 
the edges y = 0, b and the remaining edges x = ±a/2 have any boundary conditions. 
The generalized displacements are expressed as products of undetermined functions 
and known trigonometric functions so as to satisfy the simply supported boundary 
conditions at y = 0, b (see Figure 7.4.1): 

Uo = Wo = <Px = N yy = Myy = ° (7.4.5) 

The displacement field is represented as 

1 
uo(x, y) ) 1 Um(x) sin(3y ) 
vo(x,y) 00 Vm(x)cos(3y 
wo(x,y) = L W m(x)sin(3y 
<px(x,y) m=1 Xm(x)sin(3y 
<Py(X, y) Ym(X) cos (3y 

(7.4.6) 

where (3 = mn: /b. It can be easily verified that the boundary conditions (7.4.5) are 
satisfied by the displacement field in (7.4.6). The transverse load is also expanded 
as 

00 

q(x, y) = L Qm sin m:
y 

m=1 

(7.4.7) 
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Substitution of the displacement field (7.4.6) into governing equations (7.4.1) 
results in five ordinary differential equations 

~=~~+~~+~~+~~+~~ 
V~ = C6U:n + C7Vm + CSWm + C9X:n + C10Ym 

W~ = C11 Wm + C12 X:n + C13Ym - Qm/e13 

X~ = C14Um + C15V~ + C16W:n + C17 X m + C1SY~ 
Y~ = C19U:n + C20Vm + C21 Wm + C22 X :n + C23Ym (7.4.8) 

where the primes denote the derivative with respect to x. The coefficients in Eq. 
(7.4.8) are given by 

C1 = (e3 e21 - e5 e19)/eo, C2 = (e3e1s - e2e19)/eo 

C3 = e3e23/eo, C4 = (e3e22 - e6 e19)/eo 

C5 = (e3 e20 - e4e19)/eo, C6 = (ese27 - e1Oe25)/Co 

C7 = (e11e27 - e1Oe2s)/Co, Cs = -e1Oe30/Co 

Cg = (ege27 - e1Oe26)/Co, C10 = (e12e27 - e1Oe2g)/Co 

Cll = -e15/e13, C12 = -e14/ e13 

C13 = -e16/e13, C14 = (e5 e17 - e1 e2I)/eo 

C15 = (e2e17 - e1 e1s)/eo, C16 = -e1 e23/eo 

C17 = (e6 e17 - e1 e22)/eo, CIS = (e4 e17 - e1 e20)/eo 

C1g = (e7e25 - ese24)/CO, C20 = (e7e2S - el1 e24)/CO 

C21 = e7e30/CO, C22 = (e7e26 - ege24)/Co 

C23 = (e7e2g - e12 e24)/CO 

eo = e1e19 - e3e17, Co = e1Oe24 - e7e27 (7.4.9) 

e1 = All, e2 = -;3(A12 + A 66 ), e3 = Bll 

e4 = -;3(B12 + B66), e5 = _;32 A 66 , e6 = _;32 B66 

e7 = A66, es = -e2, eg = -e4 

e10 = B66, el1 = _;32 A 22 , C12 = _;32 B22 

e13 = KA55 , e14 = KA55, C15 = -;32KA44 

e16 = -;3K A 44 , e17 = e3, CIS = e4 

e19 = Dll, e20 = -;3(D12 + D66 ), C21 = _;32 B66 

e22 = _;32 D66 - K A 55 , e23 = -e14, C24 = e10 

e25 = -e4, e26 = -e20, C27 = D66 
e2S = _;32 B 22 , e29 = _;32 D22 - K A44, 1030 = e16 (7.4.10) 

In order to reduce the system of equations (7.4.8) to a system of first-order 
equations (i.e., use the state-space approach), the components of the state vector 
Z (x) are defined as 

~=~, ~=~,~=~, ~=~, ~=~ 
Z6 = W:n, Z7 = x m, Zs = X:n, Zg = Ym, Z10 = Y~ (7.4.11) 
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Using the definitions (7.4.11), the systems of equations (7.4.8) may be converted to 
the form 

Z' = TZ+r (7.4.12) 

where the matrix T is the 10 x 10 matrix 

0 1 0 0 0 0 0 0 0 0 
C1 0 0 C2 0 C3 C4 0 0 C5 

0 0 0 1 0 0 0 0 0 0 
0 C6 C7 0 Cs 0 0 Cg ClQ 0 

[T]= 0 0 0 0 0 1 0 0 0 0 
(7.4.13a) 

0 0 0 0 Cll 0 ° C12 C13 0 
0 ° ° 0 0 0 ° 1 0 0 

C14 ° ° C15 0 C16 C17 0 ° CIS 

° ° ° 0 0 ° ° 0 0 1 
0 C19 C2a ° C2I 0 ° Cn C23 ° 

and the load vector r is defined as 

{r} = {O, 0, 0, 0, 0, -Qm/e13, 0, 0, 0, O} T (7.4.13b) 

2 lob 
Qm(X) = b a 

m7ry 
q(x, y) sin -b- dy (7.4.13c) 

The solution to Eq. (7.4.12) is 

Z = eTX{K + JX e-T( r dO (7.4.14) 
-a/2 

Here K denotes constant column vector, which is to be determined from the 
boundary conditions on edges x = ±a/2. The simply supported (8), clamped (C), 
and free (F) boundary conditions at the edges x = ±a/2 are 

s: Va = Wa = cPy = Nxx = Mxx = 0 
C: Ua = Va = Wa = ¢x = ¢y = 0 

F: N xx = Mxx = Qx = Nxy = Mxy = 0 (7.4.15) 

Boundary conditions in (7.4.15) can be used in (7.4.12) to obtain ten equations for 
the ten constants K i . 

The same procedure can be used to study natural vibration and buckling under 
in-plane compressive forces. The procedure was discussed earlier for the eigenvalue 
problems in Chapter 6, and for additional information see [8,9,15-27]. 

7.4.3 Numerical Examples 

Here we present numerical results for a number of example problems of bending, 
vibration, and buckling of rectangular, cross-ply laminated plates. For the purpose 
of comparison, the following two sets of lamina properties, typical graphite-epoxy 
material, are used: 
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Material 1: El = 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, 1/12 = 0.25 (7.4.16) 

Material 2: El = 40E2, G12 = G13 = 0.6E2, G23 = 0.5E2, 1/12 = 0.25 (7.4.17) 

The shear correction coefficient for the first-order theory is taken to be K = 5/6. 
The notation SC, for example, refers to the boundary conditions used on the edges 
x = ±a/2, while the other two edges (i.e., y = 0, b) are simply supported. 

Bending 

The loading in all cases considered here is assumed to be sinusoidal 

7rX 7ry 
q(x, y) = qo cos -;; sin b (7.4.18) 

In the tables and figures, the results for deflections and stresses are presented using 
the following nondimensional form (see Khdeir and Reddy [23]): 

(
E 2h

3
) 2 W = wo(O, b/2) b4 qo x 10 , i5"xx = -O"xx(O, b/2, -h/2) (b~;O) 10 

i5"yy = O"yy(O, b/2, h/2) (b~;o) 10, i5"yz = O"yz(O,O,O) (b~o) 10 (7.4.19) 

where h is the total thickness of the laminate. 
Figures 7.4.2 and 7.4.3 contain plots of deflections versus side-to-thickness ratio 

b/h of two-layer and ten-layer antisymmetric (0/90/ .. . )even cross-ply laminates 
(a = b/2) with various boundary conditions (see Khdeir and Reddy [23]). The 
material properties used are those listed in Eq. (7.4.16) (i.e., material 1). The 
classical laminate theory always underpredicts deflections because the plate is 
modeled as infinitely stiff through the thickness. Figures 7.4.4 and 7.4.5 contain 
plots of w vs. Ed E2 for the same load, b/h = 10, and a = b/2. As the degree of 
orthotropy increases, the difference between the deflections predicted by the classical 
and the first-order shear deformation theories increases, indicating that the shear 
deformation effect is more significant in anisotropic plates. Tables 7.4.1 through 
7.4.4 contain numerical values of deflections and stresses in square plates obtained 
using the Levy method. 

Table 7.4.1: N ondimensionalized center deflection (w) of antisymmetric cross-
ply square plates with various boundary conditions (Material 1). 

Layers b Theory SS SC CC FF FS FC Ii 

2 5 FSDT 1.758 1.477 1.257 2.777 2.335 1.897 
10 FSDT 1.237 0.883 0.656 2.028 1.687 1.223 

CLPTt 1.064 0.664 0.429 1.777 1.471 0.980 

10 5 FSDT 1.137 1.045 0.945 1.663 1.460 1.258 
10 FSDT 0.615 0.480 0.385 0.915 0.800 0.612 

CLPTt 0.442 0.266 0.167 0.665 0.579 0.380 

t Results are independent of b/h. 
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laminates (Material 1, b/a = 2). 
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Table 7.4.2: N ondimensionalized axial stress (0-xx) of antisymmetric cross-ply 
square plates with various boundary conditions (Material 1). 

Layers b Theory SS SC CC FF FS FC It 

2 5 FSDT 7.157 5.338 3.911 2.469 4.430 2.434 
10 FSDT 7.157 5.494 4.450 2.442 4.435 2.790 

CLPTt 7.157 5.660 4.800 2.403 4.442 3.042 

10 5 FSDT 5.009 3.707 2.275 1.712 2.957 1.343 
10 FSDT 5.009 3.642 2.692 1.723 2.968 1.594 

CLPTt 5.009 3.829 3.167 1.725 2.986 1.865 

Table 7.4.3: N ondimensionalized shear stress (0-yz) of antisymmetric cross-ply 
square plates with various boundary conditions (Material 1). 

Layers b/h SS SC CC FF FS FC 

2 5 2.729 2.297 1.958 3.901 3.390 2.748 
10 2.729 1.993 1.523 3.882 3.383 2.449 

10 5 2.729 2.498 2.248 3.883 3.437 2.951 
10 2.729 2.126 1.708 3.853 3.421 2.605 

Table 7.4.4: N ondimensionalized axial stress (0-yy) of antisymmetric cross-ply 
square plates with various boundary conditions (Material 1). 

Layers b Theory SS SC CC FF FS FC It 

2 5 FSDT 7.157 6.034 5.153 11.907 9.848 8.047 
10 FSDT 7.157 5.109 3.799 11.884 9.847 7.150 

CLPTt 7.157 4.483 2.914 11.849 9.837 6.560 

10 5 FSDT 5.009 4.628 4.212 7.583 6.590 5.706 
10 FSDT 5.009 3.904 3.135 7.533 6.566 5.029 

CLPTt 5.009 3.025 1.911 7.480 6.531 4.284 

t Results are independent of b/h. 

Vibration and Buckling 

The effect of orthotropy and number of layers (i.e., bending-stretching coupling) 
on the fundamental frequencies of simply supported, cross-ply, square laminates 
can be seen from the results presented in Table 7.4.5 (see Reddy and Khdeir [8]). 
The fundamental frequencies increase with an increase in degree of orthotropy and 
number of layers (or decrease of coupling). Similar results for critical buckling loads 
under uniaxial compression are included in Table 7.4.6. 

The effect of transverse shear deformation and boundary conditions on 
the fundamental frequencies of two-layer and ten-layer antisymmetric cross-ply 
laminates (a/h = 10) are examined in Table 7.4.7. The critical buckling loads 
for the same laminates under uniaxial compression are presented in Table 7.4.8. In 
all cases, the classical plate theory overpredicts frequencies and buckling loads. 
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Table 7.4.5: Effect of degree of orthotropy of the individual layers on 
the dimensionless fundamental frequency of simply supported 
antisymmetric cross-ply square laminates: a/h = 5, W 
wJ ph2 / E2 (Material 2). 

Theory Layers 10 20 30 40 

FSDT 
CLPT 

FSDT 
CLPT 

FSDT 
CLPT 

FSDT 
CLPT 

2 

4 

6 

10 

Table 7.4.6: 

0.24834 
0.27082 

0.26017 
0.28676 

0.26228 
0.28966 

0.26335 
0.29115 

0.27757 
0.30968 

0.32898 
0.38877 

0.33673 
0.40215 

0.34053 
0.40888 

0.30824 
0.35422 

0.38754 
0.49907 

0.39771 
0.52234 

0.40255 
0.53397 

0.33284 
0.39335 

0.42479 
0.58900 

0.43531 
0.61963 

0.44023 
0.63489 

0.35333 
0.42884 

0.45083 
0.66690 

0.46105 
0.70359 

0.46577 
0.72184 

Effect of degree of orthotropy of the individual layers on the 
dimensionless critical buckling loads, N = Ncrb2/(E2h3), of simply 
supported (88-1) antisymmetric cross-ply square laminates (a/h = 
10) under uniaxial compression (Material 2). 

Theory Layers E, = 3 
E2 

10 20 30 40 

FSDT 2 4.772 6.247 8.042 9.735 11.353 
CLPT 5.034 6.703 8.816 10.891 12.957 

FSDT 4 5.254 9.255 14.332 18.815 22.806 
CLPT 5.574 10.295 16.988 23.675 30.359 

FSDT 6 5.343 9.789 15.394 20.280 24.577 
CLPT 5.674 10.960 18.502 26.042 33.582 

FSDT 10 5.388 10.060 15.927 21.008 25.450 
CLPT 5.725 11.300 19.277 27.254 35.232 

Table 7.4.7: Effect of number of layers and transverse shear deformation on the 
dimensionless frequencies w = (wb2 /h)(p/ E2)1/2 of antisymmetric 
cross-ply square plates (a/h 10) with various boundary 
conditions (Material 2). 

Layers Theory FF FS FC SS SC CC 

2 FSDT 6.881 7.215 7.741 10.473 12.610 15.152 
CLPT 7.267 7.636 8.228 11.154 14.223 18.543 

10 FSDT 10.900 11.079 11.862 15.779 18.044 20.471 
CLPT 12.680 12.906 13.779 18.492 23.971 31.709 
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Table 7.4.8: Effect of number of layers and transverse shear deformation 
on dimensionless critical buckling loads, N = N cr b2 / E 2 h3 , of 
antisymmetric cross-ply square plates (a/h = 10) with various 
boundary conditions (Material 2). 

Layers Theory FF 

2 FSDT 4.851 
CLPT 5.425 

10 FSDT 12.092 
CLPT 16.426 

FS 

5.351 
6.003 

12.524 
17.023 

FC 

6.166 
6.968 

14.358 
19.389 

SS 

11.353 
12.957 

25.450 
35.232 

SC 

16.437 
21.116 

32.614 
59.288 

7.5 Antisymmetric Angle-Ply Laminates with 
Two Opposite Edges Simply Supported 

7.5.1 Introduction 

cc 

20.067 
31.280 

34.837 
89.770 

As in the case of classical laminate theory, the Levy-type solutions of the first
order theory can be developed for bending, buckling, and natural vibrations of 
antisymmetric angle-ply laminated rectangular plates with two opposite edges 
simply supported and the remaining ones subjected to a combination of clamped, 
simply supported, and free boundary conditions. In this section, we present the 
Levy solution procedure for natural vibration and buckling analyses. 

7.5.2 Governing Equations 

Consider a rectangular laminated plate composed of an even number of identical 
layers having the principal material directions of orthotropy oriented at angles +0 
and -8 with respect to the x-axis of the laminate (i.e., antisymmetric angle-ply 
laminates). The laminates exhibit twisting-extensional coupling, and the differential 
equations (7.1.1)-(7.1.5) associated with the first-order theory take the form 

- A l1 -+A12-+B16 -+- + a [auo avo (a¢x a¢y)] 
ax ax ay ay ax 
- A66 -+- +B16-+B26 - -a [ (auo avo) a¢x a¢y] 
ay ay ax ax ay 

(
aNIx aN'I;;) = .l a2uo 

ax + ay 0 at2 (7.5.1) 

(7.5.2) 
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- B16 -+- +D l1 -+D12- + a [ (auo avo) a</Jx a</Jy] 
ax ay ax ax oy 
a [ouo avo (o</Jx o</Jy ) ] - B 16-+B26-+ D66 -+- -ay ox oy oy ox 

KA (OWo rI-.) _ (OM!x OM~) = I 02</Jx 
55 ax + 'f/x ax + ay 2 at2 

a [auo avo (o</Jx a</Jy ) ] - B 16-+ B26-+ D66 -+- + ox ox oy oy ax 
a [ ( auo avo) a</Jx a</Jy] - B26 -+- +D12-+D22- -ay ay ax ax ay 

(
OWO ) (OM~ OMJy) 02</Jy 

K A44 ay + </Jy - -----a;;- + ----ay = h at2 

The following boundary conditions are considered (see Figure 7.5.1): 

Simply supported (SS-1) at edges x = 0, a: 

Uo = Wo = </Jy = Mxx = N xy = 0 

Simply supported (SS-1) at edges y = ±b/2: 

Vo = Wo = </Jx = Myy = N xy = 0 

at x=O and x=a 

uo=wo=<Py=O 

Nxy=Mxx =0 

P.-------------------~----~~ x 

a -----1 •• 1 

y 

(7.5.3) 

(7.5.4) 

(7.5.5) 

(7.5.6) 

(7.5.7) 

Figure 7.5.1: Boundary conditions used on simply supported edges for the Levy 
solutions of rectangular angle-ply laminates (FSDT). 
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Clamped (C) at edges Y = ±b/2: 

Uo = Vo = Wo = ¢x = ¢y = ° (7.5.8) 

Free (F) at edges Y = ±b/2: 

Myy = Mxy = N yy = Nxy = Qy = ° (7.5.9) 

where the stress resultants can be expressed in terms of the generalized 
displacements are 

(7.5.10) 

7.5.3 The Levy Solution 

Here we present the Levy type solution procedure in conjunction with the state
space concept to determine the compressive buckling loads of rectangular plates 
(a x b). The edges x = 0, a are assumed to be simply supported while the remaining 
edges, Y = ±b/2, having an arbitrary set of boundary conditions. The following 
representation of the displacement field is used: 

Uo(x, y) = L Um(y) sin ax 
rn=l 

00 

vo(x, y) = L Vm(y) cos ax 
rn=l 

wo(x,y) = L Wm(y) sin ax 
m=l 

00 

¢x(x, y) = L Xm(Y) cos ax 
m=l 

¢y(x, y) = L Yrn(Y) sinax (7.5.11) 
rn=l 
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where a = m1f/a. Substitution of Eq. (7.5.11) into Eqs. (7.5.1)-(7.5.5), after 
setting the inertia terms, q, and Nxy to zero, yields a system of ordinary differential 
equations in the y-coordinate. These equations, after some elementary algebraic 
manipulations, can be expressed as 

~=~~+~~+~~+~~+~~ 
V~ = C6U:n + C7Vm + CsWm + CgXm + ClOY~ 
W~ = C11 Wm + C 12 X m + C13Y~ 
X~ = C 14U:n + C 15Vm + Cl6Wm + Cl7Xm + C1SY~ 
Y~ = C 1gUm + C20 V~ + C21 W:n + C22X :n + C23Ym (7.5.12a) 

where the primes indicate differentiation with respect to y, and the constants C i are 
defined as 

Introducing the components of the state vector Z = Z(y) as 

Zl = Um, Z2 = U:n, Z3 = Vm, Z4 = V~, Z5 = Wm 

Z6 = W:n, Z7 = X m, Zs = X:n, Zg = Ym , ZlO = Y~ 

(7.5.12b) 

(7.5.13) 
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Eq. (7.5.12a) may be reduced to the matrix form (Z' = TZ) 

{~~} = [T]{Z} (7.5.14a) 

0 1 0 0 0 0 0 0 0 0 
C1 0 0 C2 0 C3 0 C4 C5 0 
0 0 0 1 0 0 0 0 0 0 
0 C6 C7 0 Cs 0 C9 0 0 ClD 

[T]= 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 C11 0 C12 0 0 C13 

(7.5.14b) 

0 0 0 0 0 0 0 1 0 0 
0 C14 C15 0 C16 0 C17 0 0 CIS 
0 0 0 0 0 0 0 0 0 1 

C19 0 0 C20 0 C21 0 C22 C23 0 

A formal solution to Eq. (7.5.14a) is given by 

Z(y) = eTYK (7.5.15) 

where K is a constant column vector to be determined using the boundary 
conditions. In the present case all eigenvalues of matrix [T] are distinct. In the 
case of repeated eigenvalues, the Jordan canonical form must be used. Equation 
(7.5.15) in conjunction with the boundary conditions yields a homogeneous system 
of equations for the buckling problem 

lD 

'LMijKj = 0, (i = 1,2"",10) 
j=1 

and setting the determinant of [M] to zero 

IMI =0 

(7.5.16) 

(7.5.17) 

allows determination of the buckling loads associated with the rnth mode for the 
boundary conditions at y = ±b/2. 

The above solution procedure is also valid for the free vibration case, except that 
the elements of the operator [T] should be modified to account for the inertia terms. 
In the case of static analysis, the elements of [T] are modified by setting the in-plane 
force terms to zero, and Eq. (7.5.14a) and equations for the determination of the 
constant vector K will be modified accordingly, as discussed in Chapter 6. 

7.5.4 Numerical Examples 

In the examples presented here the two sets of lamina properties given in Eqs. 
(7.4.16) and (7.4.17) are used. The shear correction coefficient for the first-order 
theory is taken to be K = 5/6. The loading in the case of bending is assumed to 
be sinusoidal. The deflections and stresses are nondimensionalized as given in Eqs. 
(7.4.19). 
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Bending 

Table 7.5.1 contains maximum nondimensionalized deflections if) == wo(a/2, 0)E2h3 x 
102/(a4qo) of simply supported, two- and sixteen-layer angle-ply (8/-8/8/-8/ ... ) 
square plates under sinusoidal loading (see Reddy and Chao [10]). The material 
properties used are those of Material 2 listed in Eq. (7.4.17). 

Table 7.5.1: Nondimensionalized deflection if) as a function of number of layers, 
angle, and side-to-thickness ratio for simply supported (SS-2) angle
ply square plates under sinusoidally distributed transverse load. 

a/h () = 5° () = 30° () = 45° 

n=2 n = 16 n=2 n = 16 n=2 n = 16 

5 9.760 9.256 9.568 6.316 9.088 5.938 
4.883 4.454 6.099 2.872 5.773 2.621 

20 3.585 3.172 5.224 2.005 4.944 1.793 
25 3.427 3.105 5.119 1.900 4.844 1.693 
50 3.215 2.806 4.979 1.761 4.711 1.560 

100 3.162 2.754 4.944 1.726 ,i.678 1.527 

Table 7.5.2 contains nondimensionalized deflections if) of angle-ply laminates 
subjected to uniformly distributed transverse load, under various boundary 
conditions (see Khdeir [21]), and with different values of Ed E2 (Material 2). Figure 
7.5.2 shows the effect of side-to-thickness ratio (a/h) on the nondimensionalized 
center deflection of a square antisymmetric angle-ply laminate (45/-45/45/-45) 
under uniformly distributed transverse loading and for various boundary conditions. 
The material properties used are El = 19.2 X 106 psi (132.38 GPa), E2 = 
1.56 X 106 psi (10.76 GPa), G 12 = G 13 = 0.82 X 106 psi (5.65 GPa), G23 = 
0.523 X 106 psi (3.61 GPa), and V12 = 0.25. The effect of the ratio of principal 
moduli (Material 2) on the nondimensionalized center deflection is shown in Figure 
7.5.3 for the same laminate. 

Table 7.5.2: Nondimensionalized deflections of simply supported (SS-2~, four-
layer antisymmetric angle-ply square plates (45/-45/45/-45 under 
uniformly distributed transverse load (Material 2, a/h = 10). 

Theory ~ SS SC CC FF FS FC 
E2 

FSDT 2 3.375 2.423 1.753 10.735 6.447 4.743 
CLPT 3.2]4 2.214 1.531 10.470 6,234 4.446 

FSDT 10 1.160 0.944 0.771 6.049 2.611 2.109 
CLPT 1.000 0.747 0.558 5.571 2.345 1.747 

FSDT 20 0.701 0.602 0.518 4.284 1.623 1.379 
CLPT 0.542 0.412 0.313 3.657 1.343 1.010 

FSDT 30 0.531 0.471 0.417 3.422 1.225 1.075 
CLPT 0.372 0.285 0.218 2.737 0.943 0.712 
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Figure 7.5.2: Nondimensionalized center transverse deflection (w) versus side
to-thickness ratio (a / h) for square, antisymmetric angle-ply (45/-
45/45/ -45) laminates. 
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Figure 7.5.3: Nondimensionalized center transverse deflection Cw) versus 
modulus ratio (Ed E2 ) for square, antisymmetric angle-ply (45/-
45/45/-45) laminates (Material 2, a/h = 10). 
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Vibration and Buckling 

The dimensionless frequencies, w == w(a2 /h)v'(p/E2 ), of antisymmetric angle-ply 
laminates (e / -e / e / ... ), under various boundary conditions and with different 
values of e are presented in Table 7.5.3. Figure 7.5.4 shows the effect of side-to
thickness ratio (a/h) and Figure 7.5.5 shows the effect of the ratio of principal moduli 
on the nondimensionalized fundamental frequencies of a square antisymmetric angle
ply laminate (45/-45/45/-45) for various boundary conditions (see Khdeir [17, 21]). 
The material properties listed in Eq. (7.4.17) were used. The critical buckling 
loads, N = Ncra2 / E2h3, for the same laminates under uniaxial compressive load are 
included in Table 7.5.4. 

30 

45 

60 

go 

30 

45 

60 

Table 7.5.3: Effect of ply angle (e) and number of layers (n) on dimensionless 
fundamental frequency, w, of antisymmetric angle-ply ( e / 
e/e/ ... /-e) square plates (Material 2, a/h = 10). 

n 

2 

10 

2 

10 

2 

10 

Theory SS 

FSDT 12.68 
CLPT 14.24 

FSDT 18.51 
CLPT 

FSDT 
CLPT 
FSDT 
CLPT 

FSDT 
CLPT 
FSDT 
CLPT 

23.95 

13.04 
14.64 

19.38 
25.47 

12.68 
14.24 

18.51 
23.95 

SC 

13.46 
15.44 

19.11 
25.59 

14.23 
16.75 

20.27 
28.91 

14.52 
17.74 

19.82 
29.86 

CC 

14.41 
17.00 

19.81 
27.58 

15.63 
19.48 

21.25 
33.32 

16.57 
22.31 

21.21 
37.62 

FF 

6.95 
7.58 

10.11 
12.37 

4.76 
5.12 

6.57 
7.89 

3.33 
3.47 

3.82 
4.32 

FS 

8.45 
9.35 

12.33 
15.38 

7.13 
7.79 

10.60 
13.03 

5.87 
6.26 

8.53 
9.92 

FC 

8.65 
9.69 

12.48 
15.84 

7.52 
8.48 

10.88 
14.17 

6.70 
7.54 

9.22 
11.96 

Table 7.5.4: Effect of ply angle (e) and number of layers (n) on dimensionless 
critical buckling load, N, of antisymmetric angle-ply (e /-e /e / ... /
e) square plates (Material 2, a/h = 10). 

n 

2 

10 

2 

10 

2 

10 

Theory SS 

FSDT 16.613 
CLPT 20.543 

FSDT 
CLPT 

FSDT 
CLPT 
FSDT 
CLPT 

FSDT 
CLPT 
FSDT 
CLPT 

34.931 
58.135 

17.552 
21.709 

33.173 
65.714 

13.863 
19.564 

23.710 
52.945 

SC 

18.718 
24.158 

37.242 
66.322 

19.443 
28.423 

33.263 
84.707 

14.722 
23.834 

23.759 
64.103 

CC 

21.447 
29.269 

38.920 
77.065 

19.957 
34.963 

33.356 
102.59 

15.598 
29.547 

23.808 
79.619 

FF 

4.99] 
5.822 

10.423 
15.499 

2.327 
2.654 

4.401 
6.300 

1.136 
1.221 

1.492 
1.889 

FS 

7.372 
8.857 

15.520 
23.972 

5.220 
6.150 

11.484 
17.189 

3.543 
3.975 

7.432 
9.977 

FC 

7.739 
9.520 

15.899 
25.412 

5.824 
7.283 

12.092 
20.332 

4.605 
5.756 

8.682 
14.501 
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7.6 Transient Solutions 
Thansient solutions of antisymmetric cross-ply and angle-ply laminates using the first 
order theory can be developed either by the state-space approach or the combination 
of the Navier solution procedure and the Newmark time integration scheme as 
discussed in Section 6.7. The application of the state-space approach to the transient 
analysis of shear deformable theories can be found in the papers of Khdeir and Reddy 
[25~27]. 

The procedure of Section 6.7 is valid here when the coefficient matrices [M] and 
[K] in Eq. (6.7.2) are replaced with those in Eq. (7.2.7a) for cross-ply laminates 
and in Eq. (7.3.5) for angle-ply laminates. The solution vector {~} consists of 
the amplitudes of the five generalized displacements, (uo, va, wo, rPx, rPy). Here we 
present numerical results based on this procedure. 

Figure 7.6.1 shows plots of nondimensionalized center deflection, w 
WO[E2h3 /(qoa4 )]102, versus time for antisymmetric cross-ply laminates (0/90) under 
sinusoidally distributed step loading (see Figure 7.3.1 for the coordinate system used 
here). The material properties used are 

El = 25E2 , E2 = 2.1 X 106 N/cm2
, G 12 = G 13 = 0.5E2, G23 = 0.2E2, l/12 = 0.25 

P = 8 X 10~6 N_s2 /cm4
, alb = 1, b = 25 cm (7.6.1) 

Results obtained with CLPT and FSDT are presented for two values of side-to
thickness ratios, a/h = 10 and 25. The plots in dashed lines correspond to CLPT. 
The effect of shear deformation is to increase the amplitude and period of the waves. 
Similar results are presented in Figure 7.6.2 for uniformly distributed step loading. 
A plot of the deflection under sinusoidal load (obtained with FSDT) is also included 
for comparison. Figures 7.6.3 and 7.6.4 contain the nondimensionalized center 
normal stress axx (a/2, b/2, h/2) and shear stress axy(a, b, -h/2) for the uniformly 
distributed load case (a/h = 10). Note that the effect of shear deformation on the 
amplitude of stresses is negligible; however, it still increases the period. Figures 7.6.5 
and 7.6.6 contain plots of nondimensionalized center deflection for two-layer angle
ply (~45/45) laminates under sinusoidally and uniformly distributed step loadings, 
respectively, for a/h = 10. The same material properties as in Eq. (7.6.1) are used. 
Angle-ply laminates show larger increase in the period due to shear deformation. 
Figure 7.6.7 show a plot of the maximum in-plane displacement (uo or va) versus 
time, while Figures 7.6.8 through 7.6.10 show plots of normal stress at top and 
bottom of the laminate and shear stress at the bottom of the laminate for the uniform 
load case. Lastly, Figures 7.6.11 and 7.6.12 show plots of nondimensionalized 
transverse shear stress axz in two-layer plates (0/90) and (~45/45) under uniformly 
and sinusoidally distributed transverse loads (a/h = 10). 

For cross-ply laminates under uniformly distributed load, the ratio of maximum 
transient deflection to static deflection is found to be Wd/Ws = 2.049 for FSDT, 
whereas it is 2.017 for CLPT. From this, one may conclude that the effect of 
transverse shear is greater on dynamic response than static response in the two
layer cross-ply plates. For angle-ply laminates under uniformly distributed load, the 
ratio of maximum transient deflection to static deflection is found to be 2.041 for 
FSDT, whereas it is 2.062 for CLPT. This indicates that the effect of transverse 
shear is less on dynamic response than on static response in the two-layer angle-ply 
plates. Table 7.6.1 contains the results of transient and static analysis. 
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Figure 7.6.2: Nondimensionalized center transverse deflection (w) versus time 
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laminates. 
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Table 7.6.1: Nondimensionalized deflections and stresses of simply supported 
cross-ply (0/90) and angle-ply (-45/45) square plates under 
uniformly distributed transverse load (Ed E2 = 25, E2 = 2.1 X 106 

psi, G12 = G13 = 0.5E2, G23 = 0.2E2, V12 = 0.25, alb = 1, a = 25 
cm, a/h = 10). 

Theory (0/90) (-45/45) 

iiJ (jxx axy iiJ o-xx 

FSDTt 3.990 0.275 0.181 2.611 0.799 
1.947 0.126 0.096 1.279 0.348 

CLPT 3.421 0.274 0.181 2.120 0.813 
1.695 0.127 0.093 1.028 0.3Eil 

t The first line is the transient solution and the second line is the static solution. 

7.7 Vibration Control of Laminated Plates 
7.7.1 Preliminary Comments 

a;J;Y 

0.832 
0.427 
0.795 
0.442 

The study of smart materials and structures has received considerable attentions 
in recent years. The advantage of incorporating these special types of materials 
into the structure is that the sensing and actuating mechanism becomes part 
of the structure so that one can monitor the structural integrity/health of the 
structure. There are a number of materials that have the capability to be used as a 
sensor or an actuator or both. Piezoelectric materials, magnetostrictive materials, 
electrostrictive materials, shape memory alloys, and electrorheological fluids provide 
examples of such materials. Among these, piezoelectric and magnetostrictive 
materials have the capability to serve as both sensors and actuators. Piezoelectricity 
[36] is a phenomenon in which some materials develop polarization upon application 
of strains. Examples of piezoelectric materials are Rochelle salt, quartz, and lead 
zirconate titanate or PZT (Pb (Zr,Ti) 0 3). Piezoelectric materials exhibit a linear 
relationship between the electric field and strains for low field values (up to 100 
V /mm); and they exhibit nonlinear behavior and hysteresis for large electric fields 
[37]. Furthermore, piezoelectric materials show dielectric aging and hence lack 
reproducibility of strains; i.e., a drift from zero state of strain is observed under 
cyclic electric field conditions. Terfenol-D, a magnetostrictive material [38], has the 
characteristics of being able to produce strains up to 2500 /-Lm and energy density 
as high as 25000 J /m3 in response to a magnetic field. 

There have been a number of studies on vibration control of flexible structures 
using smart materials (see Section 4.6 for references). Beneddou [39] surveyed 
more than 100 papers and discussed the research trends in piezoelectric finite 
element modeling. In this section, control of the transient response of laminated 
composite plates with integrated smart material layers is presented [40,41]. A 
simple negative velocity feedback control is used to actively control the dynamic 
response of the structure through a closed-loop control. The effects of material 
properties, lamination scheme, and placement of the smart material layer on 
deflection suppression are studied [41]. 
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7.7.2 Theoretical Formulation 

The governing equations of motion for FSDT remain the same as before [see Eqs. 
(3.4.23)-(3.4.27)]. The constitutive relations of the kth lamina take the form [see 
Eq. (3.3.12a) and (3.4.17a)] 

(7.7.1) 

(7.7.2) 

where Q~;) are the transformed plane stress-reduced stiffnesses, and e~;) are the 
transformed piezoelectric, electrostrictive, or magnetostrictive coupling moduli of 
kth lamina. 

7.7.3 Velocity Feedback Control 

Considering velocity proportional closed-loop feedback control, the magnetic field 
intensity H is expressed in terms of coil current J(x, y, t) as [see Eqs. (4.6.8)-(4.6.10)] 

awo 
H(x, y, t) = kec(t)Tt (7.7.3) 

where ke is the coil constant, which can be expressed in terms of the coil width be, 
coil radius r e, and number of turns ne in the coil by 

ke = ne (7.7.4) 
. Ib2 + 4r2 Vee 

and c(t) is the control gain. 
In view of the constitutive equations (7.7.1) and (7.7.2), the force and moment 

resultants are related to the strains by 

{ {N} } = [[A] 
{M} [B] 

A45 IYz Y ] { 
(O)} {QM

} 

A55 I~~) - Qr: 

(7.7.5a) 

(7.7.5b) 

where K is the shear correction factor, and the actuation stress resultants {NM} 
and {M M} are defined by 

{Z~} = L l zk

+
1 

{::~} Hz dz 
YY k=m,n-m+l k 

_ "" l zk
+

1 
{ e31 } awo - cke ~ _ -- dz 

k=m,n-m+l Zk e32 at 
(7.7.6) 

(7.7.7) 
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7.7.4 Analytical Solution 

For simply supported plates, we can develop the Navier solution. Here we consider 
the pure bending case (i.e., neglect the in-plane contributions). The equations 
of motion of the first-order theory can be expressed in terms of the generalized 
displacements (uo, va, wo, rPx, rPy) by substituting for the force and moment resultants 
in terms of the generalized displacements. For homogeneous laminates, the equations 
of motion take the form 

(7.7.8) 

(7.7.9) 

(7.7.10) 

The simply supported boundary conditions for the first-order shear deformation 
plate theory (FSDT) are 

rPx(x, 0, t) = 0, rPx(x, b, t) = 0, rPy(O, y, t) = 0, rPy(a, y, t) = ° 
wo(x, 0, t) = 0, wo(x, b, t) = 0, wo(O, y, t) = 0, wo(a, y, t) = ° 

Mxx(O,y,t) = O,Mxx(a,y,t) = O,Myy(x,O,t) = O,Myy(x,b,t) = ° (7.7.11) 

The boundary conditions in Eq. (7.7.11) are satisfied by the following expansions 
00 00 

Wo (x, y, t) = L L W mn ( t) sin ax sin ,By 
n=lm=l 

00 00 

rPx(x,y,t) = L L Xmn(t) cos ax sin,By 
n=l m=l 

00 00 

rPy(x, y, t) = L L Ymn(t) sin ax cos,By (7.7.12) 
n=lm=l 

The mechanical load and magnetostrictive moments are also expanded in double 
Fourier sine series as 

00 00 

qo(x,y,t) = L L Qmn(t)sinaxsin,By 
n=lm=l 
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00 00 

M~(x, y, t) = L L M~n(t) sin ax sin,6y 
n=1m=1 

00 00 

M::: (X, y, t) = L L M~n(t) sin ax sin,6y 
n=1m=1 

where, for example 

Qmn(t) = ~ foa fob q(x, y, t) sin ax sin,6y dxdy 

M~n(t) = ~ foa fob M~(x,y,t)sinaxsin,6y dxdy 

M~n(t) = :b foa fob M::: (x, y, t) sin ax sin,6y dxdy 

Substituting Eq. (7.7.12) into Eqs. (7.7.8)-(7.7.14) we obtain 

[833 8" 8'"j rmn} [0 H]{~} 8 43 844 8 45 Xmn + q43 
5 53 5 54 555 Ymn C53 

[
AI

l3 

0 lJ {n~rr} + 0 M44 
0 0 

833 = K 2A45a,6 + A44,6 + A55a A ( 2 2) 
534 = K (A55a + A45,6) , 535 = K (A45a + A44,6) 

633 = 634 = 635 = 0, M33 = la, M34 = M35 = 0 
A 2 2 A 

8i.14 = Du a + D66,6 + KA55 , 8 45 = (D12 + D66 ) a,6 + KA45 

643 = a£31 , 644 = 645 = 0, M44 = h, M45 = 0, M55 = h 

(7.7.13) 

(7.7.14) 

(7.7.15) 

A 2 2 A A A 

8 55 = D66a + D22,6 + KA44 , C53 = ,6£32, C54 = C55 = 0 (7.7.16) 

where the magnetostrictive coefficients £31 and £32 are defined in Eq. (7.7.7). 
For vibration control, we assume q = 0 and seek solution of the ordinary 

differential equations in Eq. (7.7.15) in the form 

(7.7.17) 

Substituting Eq. (7.7.17) into Eq. (7.7.15), for a non-trivial solution we obtain the 
result 

where 

833 834 835 
843 844 845 = 0 
853 854 855 

(7.7.18) 

(7.7.19) 
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for i, j = 3,4,5. This equation gives three sets of eigenvalues. The lowest one 
corresponds to the transverse motion. A typical eigenvalue can be expressed as }.= 

-a + iWd, so that the damped transverse deflection is given by 

1 nKX . nKy 
wo(x, y, t) = _e-at sinwdt sin -- sm -b-

Wd a 

In arriving at the last solution, the following initial conditions are used: 

wo(X,y,O) = O,wo(x,y,O) = 1,¢(x,y,0)x = ° 
¢x(x, y, 0) = 0, ¢y(x, y, 0) = 0, ¢y(x, y, 0) = ° 

7.7.5 Numerical Results and Discussion 

(7.7.20) 

(7.7.21) 

Numerical results are obtained using the formulation presented above. Numerical 
studies are carried out to obtain the natural frequencies, magnetostrictive damping 
coefficients and the vibration suppression time. Various lamination schemes are used 
to show the influence of the position of the pair of magnetostrictive layers from the 
neutral axis on the vibration suppression time. Also, a time ratio relation between 
the thickness of the layers and the distance to the neutral axis of the laminated 
composite plate is obtained. All values of the composite material and structural 
constants are tabulated, and damped and undamped frequencies are presented in 
the form of figures. 

The plate is taken to be a unit square of 1m x 1 m. The composite lamina 
material properties are listed in Table 7.7.1. Magnetostrictive material properties 
are taken to be 

Em = 26.5 GPa, Vm = 0.0, Pm = 9250 kg-m-3
, dk = 1.67-8 rnA -1, eTc = 104 

(7.7.22) 
The numerical values of various material and structural constants (e.g. moment of 
inertia, magnetostrictive material constants) based on different lamination schemes 
and material properties (CFRP, graphite-epoxy (Gr-Ep)(AS), glass-epoxy (GI-Ep), 
boron-epoxy (Br-Ep)) are listed in Tables 7.7.2 and 7.7.3. Magnetostrictive damping 
coefficients and natural frequencies for various materials and lamination schemes are 
also listed in Table 7.7.3. 

Table 7.7.1: Material constants of various composite materials. 

Material Ell E22 G 13 G23 G12 V12 P 
[CPa] [CPa] [CPa] [CPa] [CPa] [kg m-3] 

CFRP 138.6 8.27 4.96 4.96 4.12 0.26 1824 
Cr-Ep(AS) 137.9 8.96 7.20 6.21 7.20 0.30 1450 
CI-Ep 53.78 17.93 8.96 3.45 8.96 0.56 1900 
Br-Ep 206.9 20.69 6.9 4.14 6.9 0.30 1950 
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Table 7.7.2: Coefficients for different laminates and materials. 

Material Laminate Dll(103) Dd103) D22(103) D66(103) A 44 (107) A55(107) 
[Nm] [Nm] [Nm] [Nm] [N/m] [N/m] 

CFRP [±45/m/0/90]s 3.739 2.221 3.215 2.528 6.62 6.62 
[45/m/ ~ 45/0/90]s 3.552 1.816 3.029 2.257 6.62 6.62 
[m/ ± 45/0/90]s 3.303 1.274 2.78 1.897 6.62 6.62 
[m/904]s 1.432 0.0921 7.015 0.7146 6.62 6.62 
[m/04]s 7.015 0.0921 1.432 0.7146 6.62 6.62 

Gr-Ep(AS) [±45/m/0/90]s 3.954 2.052 3.435 2.53 7.974 7.974 
GI-Ep [±45/m/0/90]s 2.889 1.149 2.729 1.157 7.614 7.614 
Br-Ep [±45/m/0/90]s 5.73 3.538 4.979 3.751 7.066 7.066 

Table 7.7.3: Mass inertia coefficients and parameters ex and Wdr. 

Material Laminate 10 12(10- 4 ) ~£31 ~Q±Wdr 

[kg/m] [kg m] (rad 8- 1) 

CFRP [±45/m/0/90]s 33.09 2.461 22.13 6.588 ± 254.823 
[45/m/ ~ 45/0/90]s 33.09 3.352 30.98 9.224 ± 240.724 
[m/ ± 45/0/90]s 33.09 4.54 39.83 11.861 ± 221.418 
[m/ /904]s 33.09 4.54 39.83 11.866 ± 187.435 
[m/04]S 33.09 4.54 39.83 11.866 ± 187.435 

Gr-Ep(AS) [±45/m/0/90]s 30.1 2.196 22.13 7.244 ± 264.443 
GI-Ep [±45/m/0/90]s 33.7 2.514 22.13 6.474 ± 187.440 
Br-Ep [±45/m/0/90]s 34.1 2.55 22.13 6.388 ± 309.992 

Figure 7.7.1 shows a comparison of uncontrolled and controlled amplitude of 
the center deflection of (m/ ± 45/0/90)8 laminate (m denotes the magnetostrictive 
layer). The value of ex [see Eq. (7.7.20)] increases when the magnetostrictive 
layer is located farther away from the neutral axis, indicating faster vibration 
suppression. This is due to the larger bending moment created by actuating force 
in the magnetostrictive layers. Figure 7.7.2 contains controlled amplitudes of the 
center deflection for modes 1 and 2 for [±45/m/0/90]s laminate. It can be observed 
that attenuation favors the higher modes. 

7.8 Summary 

Analytical solutions for bending, buckling under in-plane compressive loads, natural 
vibration, and transient response of rectangular laminates with various boundary 
conditions are presented based on the first-order shear deformation laminate theory. 
The Navier solutions were developed for two classes of laminates: antisymmetric 
cross-ply laminates and antisymmetric angle-ply laminates, each for a specific type 
of simply supported boundary conditions, 88-1 and 88-2, respectively. The Levy 
solutions with the state-space approach were developed for these classes of laminates 
when two opposite edges are simply supported and other two edges having a variety 
of boundary conditions of choice. 
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Numerical results were presented for static bending, buckling, natural vibration, 
and transient response of antisymmetric cross-ply and angle-ply laminates. The 
bending-extensional coupling and transverse shear deformation in a laminate 
generally reduce the effective stiffnesses and hence increase deflections and reduce 
buckling loads and reduce natural frequencies. The effect of transverse shear 
deformation on transient response is to increase both amplitude and period of 
oscillation. The coupling is the most significant in two-layer laminates, and it 
decreases gradually as the number of layers is increased for fixed total thickness. 

Lastly, numerical results are also presented for vibration suppression of simply 
supported laminated plates with magnetostrictive layers. Additional results can be 
found in [41]. 

In a series of papers, relationships between deflections, buckling loads and 
vibration frequencies predicted by the first-order shear deformation plate theory 
and the classical plate theory of isotropic plates were presented (see [42-45] and 
references therein). Extension of these ideas to composite plates has not been done. 
Analytical solutions for bending, buckling and vibration of stepped laminated plates 
[46] or laminated plates with internal hinge [47,48] must be carried out for various 
types of lamination schemes. 

Problems 

7.1 Show that the solution of Eq. (7.2.15b) is given by 

where 

_ 1 ( 1 2 ) Wrnn --b - al Qrnn - a2aMmn - a3(3Mrnn 
rnn 

835

1 

~45 = 833 a l + 834a2 + 835 a3 
855 

al =844 8 55 - 845 8 45, a2 = 845 8 35 - 834855, a3 = 834 8 45 - 844 835 

a4 =833 8 55 - 835 8 35, a5 = 834 8 35 - 833845, a6 = 833 844 - 834 834 

7.2 Verify the expressions for transverse stresses presented in Eq. (7.2.23). 

(a) 

(b) 

7.3 Formulate the Levy type solution procedure for the natural vibration of antisymmetric cross
ply laminates. In particular, show that the operator [T] in Eq. (7.4.13a) holds with 

e5 = _(32 A66 + low;', e6 = _(32 E66 + IlW;' 

ell = _(32 A22 + low;', e12 = _(32 E22 + IlW;', 

e15 = _(32 K A44 + low;' 

e21 = _(32 E66 + h w;,,, e22 = _(32 D66 - K A55 + 12w;" 

e28 = _(32 En + IlW;'" e29 = _(32 D22 - K A44 + 12W;', 

7.4 Formulate the Levy type solution procedure for the buckling of antisymmetric cross-ply 
laminates under in-plane compressive loads. In particular, show that the operator [T] in 
Eq. (7.4.13a) holds with 

e13 = KA55 + Nxx , e15 = -fP KA44 - (32 Nyy 
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7.5 Verify the expressions for transverse stresses presented in Eq. (7.3.11). 

7.6 Formulate the Levy type solution procedure for the natural vibration of antisymmetric angle
ply laminates. In particular, show that the operator [T] in Eq. (7.5.14b) holds with 

and all other C i are as defined in Eq. (7.5.12b) with Nxx = Nyy = o. 

References for Additional Reading 

1. Khdeir, A. A., Reddy, J. N., and Librescu, 1., "Levy Type Solutions for Symmetrically 
Laminated Rectangular Plates Using First-Order Shear Deformation Theory," Journal of 
Applied Mechanics, 54, 640-642 (1987). 

2. Franklin, J. N., Matrix Theory, Prentice-Hall, Englewood Cliffs, NJ (1968). 

3. Brogan, W. L., Modern Contr'ol Theory, Prentice-Hall, Englewood Cliffs, NJ (1985). 

4. Reddy, J. N., Energy and Variational Methods in Applied Mechanics, John Wiley, New York 
(1984). 

5. Reddy, J. N. (eel.) , Mechanics of Composite Materials. Selected Works of Nicholas J. Pagano, 
Kluwer, The Netherlands (1994). 

6. Pagano, N. J., "Exact Solutions for Rectangular Bidirectional Composites and Sandwich 
Plates," Journal of Composite Materials, 4(1). 20 34 (1970). 

7. Pagano, N. J., and Hatfield, S. J., "Elastic Behavior of Multilayered Bidirectional Composites," 
AIAA Journal, 10(7), 931 933 (1972). 

8. Reddy, .T. N. and Khdeir, A. A., "Buckling and Vibration of Laminated Composite Plates 
Using Various Plate Theories," AIAA Journal, 27(12), 1808--1817 (1989). 

9. Nosier, A. and Reddy, .1. N., "On Vibration and Buckling of Symmetric Laminated Plates 
According to Shear Deformation Theories," Acta Mechanica, 94(3,4), 123 170 (1992). 

10. Reddy, J. N. and Chao, W. C., "A Comparison of Closed-Form and Finite Element Solutions 
of Thick Laminated Anisotropic Rectangular Plates," Nuclear Engineering and Design, 64, 
153-167 (1981). 



446 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

11. Reddy, J. N. and Hsu, Y. S., "Effects of Shear Deformation and Anisotropy on the Thermal 
Bending of Layered Composite Plates," Journal of Thermal Stresses, 3, 475-493 (1980). 

12. Khdeir, A. A., Librescu, L., and Reddy, J. N., "Analytical Solution of a Refined Shear 
Deformation Theory for Rectangular Composite Plates," International Journal of Solids and 
Structures, 23(10), 1447-1463 (1987). 

13. Khdeir, A. A. and Reddy, J. N., "Dynamic Response of Antisymmetric Angle-Ply Laminated 
Plates Subjected to Arbitrary Loading," Journal of Sound fj Vibration, 126(3), 437-445 
(1988). 

14. Khdeir, A. A. and Librescu, L., "Analysis of Symmetric Cross-Ply Laminated Elastic Plates 
Using a Higher-Order Theory: Part I-Stress and Displacement," Composite Structures, 9, 
189-213 (1988). 

15. Khdeir, A. A. and Librescu, L., "Analysis of Symmetric Cross-Ply Laminated Elastic Plates 
Using a Higher-Order Theory: Part II-Buckling and Free Vibration," Composite Structures, 
9, 259-277 (1988). 

16. Khdeir, A. A., "Free Vibration and Buckling of Symmetric Cross-Ply Laminated Plates by an 
Exact Method," Journal of Sound and Vibration, 126(3), 447-461 (1988). 

17. Khdeir, A. A., "Free Vibration of Antisymmetric Angle-Ply Laminated Plates Including 
Various Boundary Conditions," Journal of Sound and Vibration, 122(2), 377-388 (1988). 

18. Sun, C. T. and Whitney, J. M., "On Theories for the Dynamic Response of Laminated Plates," 
AIAA Journal, 11(2), 178-183 (1973). 

19. Khdeir, A. A., "Free Vibration and Buckling of Unsymmetric Cross-Ply Laminated Plates 
Using a Refined Theory," Journal of Sound and Vibration, 128(3), 377-395 (1989). 

20. Khdeir, A. A., "An Exact Approach to the Elastic State of Stress of Shear Deformable 
Antisymmetric Angle-Ply Laminated Plates," Composite Structur·es, 11, 245-258 (1989). 

21. Khdeir, A. A., "Comparison Between Shear Deformable and Kirchhoff Theories for Bending, 
Buckling and Vibration of Antisymmetric Angle-Ply Laminated Plates," Composite Structures, 
13,159-172 (1989). 

22. Khdeir, A. A., "Stability of Antisymmetric Angle-Ply Laminated Plates," ASCE Journal of 
Engineering Mechanics, 115, 952-962 (1989). 

23. Khdeir, A. A. and Reddy, J. N., "Analytical Solutions of Refined Plate Theories of Cross-Ply 
Composite Laminates," Journal of Pressure Vessel Technology, 113(4),570-578 (1991). 

24. Khdeir, A. A. and Reddy, J. N., "Thermal Stresses and Deflections of Cross-Ply Laminated 
Plates Using Refined Plate Theories," Journal of Thermal Stresses, 14(4),419-438 (1991). 

25. Khdeir A. A. and Reddy, J. N. "Exact Solutions for the Transient Response of Symmetric 
Cross-Ply Laminates Using a Higher-Order Plate Theory," Composites Science and Technology, 
34, 205-224 (1989). 

26. Khdeir A. A. and Reddy, J. N. "On the Forced Motions of Antisymmetric Cross-Ply 
Laminates," International Journal of Mechanical Sciences, 31, 499-510 (1989). 

27. Khdeir A. A. and Reddy, J. N. "Dynamic Response of Antisymmetric Angle-Ply Laminated 
Plates Subjected to Arbitrary Loading," Journal of Sound and Vibration, 126,437-445 (1988). 

28. Reddy, J. N., "On the Solutions to Forced Motions of Rectangular Composite Plates," Journal 
of Applied Mechanics, 49, 403-408 (1982). 

29. Srinivas, S. and Rao, A. K., "Buckling of Thick Rectangular Plates," AIAA Journal, 7, 1645 
(1969). 

30. Srinivas, S., Joga Rao, C. V., and Rao, A. K., "An Exact Analysis for Vibration of Simply 
Supported Homogeneous and Laminated Thick Rectangular Plates," Journal of Sound and 
Vibration, 12, 187-199 (1970). 



ANALYTICAL SOLUTIONS OF RECTANGULAR LAMINATES USING FSDT 447 

31. Srinivas, S., Joga Rao, C. V., and Rao, A. K., "Some Results from an Exact Analysis of Thick 
Laminates in Vibration and Buckling," Journal of Applied Mechanics, 37, 868-870 (1970). 

32. Srinivas, S. and Rao, A. K., "Bending, Vibration, and Buckling of Simply Supported 
Thick Orthotropic Rectangular Plates and Laminates," International Journal of Solids and 
Structures, 6, 14631481 (1970). 

33. Srinivas, S. and Rao, A. K., "A Three-Dimensional Solution for Plates and Laminates," 
Journal of Franklin Institute, 291, 469-481 (1971). 

34. Srinivas, S. and Rao, A. K., "Flexure of Thick Rectangular Plates," Journal of Applied 
Mechanics, 40, 298 -299 (1973). 

35. Srinivas, S., "A Refined Analysis of Composite Laminates," Jour'nal of Sound and Vibration, 
30, 495-507 (1973). 

36. Maugin, G.A., Continuum Mechanics of Electromagnetic Solids, North-Holland, Amesterdam, 
The Netherlands (1988). 

37. Uchino, K., "Electrostrictive Actuators: Materials and Applications," Ceramic Bulletin, 65, 
647-652 (1986). 

38. Goodfriend, M. J., and Shoop, K. M., "Adaptive Characteristics of the Magnetostrictive 
Alloy, Terfenol-D, for Active Vibration Control," Journal of Intelligent Material Systems and 
Stmctures, 3, 245-254 (1992). 

39. Benjeddou, A., "Advances in Piezoelectric Finite Element Modeling of Adaptive Structural 
Elements: A Survey," Computers and Stmctures, 76, 347 363 (2000). 

40. Reddy, J. N., "On Laminated Composite Plates with Integrated Sensors and Actuators," 
Engineering Stmctures, 21, 568-593 (1999). 

41. Pradhan, S. C., Ng, T. Y., Lam, K. Y., and Reddy, J. N., "Control of Laminated Composite 
Plates Using Magnetostrictive Layers," Smart Materials and Structures, 10, 1-11 (2001). 

42. Wang, C. M., and Reddy, J. N., "Deflection Relationships Between Classical and Third-Order 
Plate Theories," Acta Mechanica, 130(3-4), 199-208 (1998). 

43. Wang, C. M., Reddy, J. N., and Lee, K. H., Shear Deformation Theories of Beams and Plates. 
Relationships with Classical Solution, Elsevier, UK (2000). 

44. Wang, C. M., Lim, G. T., Reddy, J. N., and Lee, K. H., "Relationships Between Bending 
Solutions of Reissner and Mindlin Plate Theories," Engineering Structures, 23, 838 -849 (2001). 

45. Lim, G. T. and Reddy, J. N., "On Canonical Bending Relationships for Plates," International 
Journal of Solids and Structures, 40, 3039 3067 (2003). 

46. Xiang, Y., and Reddy, J. N., "Buckling and Vibration of Stepped, Symmetric Cross-Ply 
Laminated Rectangular Plates," International Journal of Structural Stability and Dynamics, 
1(3),385 408 (2001). 

47. Gupta, P. R., and Reddy, J. N., "Buckling and Vibration of Or tho tropic Plates with an Internal 
Hinge," International Journal of Stmctural Stability and Dynamics, 2(4), 457-486 (2002). 

48. Xiang, Y., and Reddy, J. N., "Natural Vibration of Rectangular Plates with Internal Line Hinge 
Using the First-Order Shear Deformation Plate Theory," Journal of Sound and Vibration, 263, 
285-297 (2003). 





8.1 Introduction 

8 

Theory and Analysis of 
Laminated Shells 

In the preceding chapters, we studied the theory and the analysis of flat plates. We 
now extend the theory to curved plates and surfaces, better known as shells. Shells 
are common structural elements in many engineering structures, including pressure 
vessels, submarine hulls, ship hulls, wings and fuselages of airplanes, pipes, exteriors 
of rockets, missiles, automobile tires, concrete roofs, containers of liquids, and many 
other structures. The theory of laminated shells includes the theories of ordinary 
shells, flat plates, and curved beams as special cases. Therefore, in the present 
study, we consider the theory of laminated composite shells. 

A number of theories exist for layered anisotropic shells [1-25]. Many of these 
theories were developed originally for thin shells and are based on the Kirchhoff
Love kinematic hypothesis that straight lines normal to the undeformed midsurface 
remain straight and normal to the middle surface after deformation. Other shell 
theories can be found in the works of Naghdi [24,25] and a detailed study of thin 
isotropic shells can be found in the monographs by Ambartsumyan [1-3], Fliigge [6] 
and Kraus [8]. The first-order shear deformation theory of shells, also known as the 
Sanders shell theory [26,27], can be found in Kraus [8]. 

The first analysis that incorporated the bending-stretching coupling (owing 
to unsymmetric lamination in composites) is due to Ambartsumyan [1-3]. In 
his analyses, Ambartsumyan assumed that the individual orthotropic layers were 
oriented such that the principal axes of material symmetry coincided with the 
principal coordinates of the shell reference surface. Thus, Ambartsumyan's work 
dealt with what is now known as laminated orthotropic shells, rather than laminated 
anisotropic shells; in laminated anisotropic shells, the individual layers are, in 
general, anisotropic, and the principal axes of material symmetry of the individual 
layers coincide with only one of the principal coordinates of the shell (the thickness 
normal coordinate). 

Dong, Pister, and Taylor [15] formulated a theory of thin shells laminated of 
anisotropic material that is an extension of the theory developed by Stavsky [28] 
for laminated anisotropic plates to Donnell's shallow shell theory (see Donnell [17]). 
Cheng and Ho [29] presented an analysis of laminated anisotropic cylindrical shells 
using FlUgge's shell theory [6]. A shell theory for the unsymmetric deformation of 
nonhomogeneous, anisotropic, elastic cylindrical shells was derived by Widera and 
Chung [30] by means of the asymptotic integration of the elasticity equations. For 
a homogenous, isotropic material, the theory reduces to Donnell's equations. 
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All of the theories listed above are based on Kirchhoff-Love's hypotheses, in 
which the transverse shear deformation is neglected. These theories, known as the 
Love's first-approximation theories (see Love [22]), are expected to yield sufficiently 
accurate results when (1) the radius-to-thickness ratio is large, (2) the dynamic 
excitations are within the low-frequency range, and (3) the material anisotropy is not 
severe. However, the application of such theories to layered anisotropic composite 
shells could lead to 30% or more errors in deflections, stresses, and frequencies. 

The effects of transverse shear deformation and transverse isotropy, as well 
as thermal expansion through the thickness of cylindrical shells, were considered 
by Gulati and Essenberg [31] and Zukas and Vinson [32]. Whitney and Sun 
[33] developed a shear deformation theory for laminated cylindrical shells that 
includes both transverse shear deformation and transverse normal strain as well 
as expansional strains. Reddy [34] presented a generalization of the Sanders shell 
theory [26] to laminated, doubly-curved anisotropic shells. The theory accounts for 
transverse shear strains and the von Karman (or Sanders) nonlinear strains. For 
additional references and applications to composite shells, see Bert [35,36]. 

Following this introduction, three basic set of equations, namely, the kinetic 
(equilibrium), kinematic (strain-displacement) and constitutive (Hooke's law), are 
derived in the next section. In Section 8.3, analytical solutions of the static equations 
for some cases will be discussed. The finite element models of shells will be 
considered in Chapters 9 and 10. 

8.2 Governing Equations 
8.2.1 Geometric Properties of the Shell 

Figure 8.2.1a shows a uniform thickness, laminated curved shell, where (6,6, () 
denote the orthogonal curvilinear coordinates such that 6 and 6 curves are the 
lines of curvature on the middle surface ( = 0). The position vector of a point 
(6,6,0) on the middle surface is denoted by r, and the position of an arbitrary 
point (6,6,() is denoted by R (see Figure 8.2.1b). The square of the distance ds 
between points (6, 6, 0) and (6 + d6, 6 + d6, 0) is determined by 

(dS)2 = dr . dr = ar(d6)2 + a~(d6)2 
or 

dr = gl d6 + g2 d6 , gO' = o~O" 9O'{3 = gO' . g{3 

(8.2.1a) 

(8.2.1b) 

where the vectors gl and g2 are tangent to the 6 and 6 coordinate lines, 9O'{3 
(a, (3 = 1,2) is called the surface metric tensor and aO' (a = 1,2) are 

aO' = V9O'O', (no sum on a) (8.2.2) 

Note that gl . g2 = 0 when the lines of principal curvature coincide with the 
coordinate lines. 

The unit vector normal to the middle surface can be determined from 

(8.2.3) 
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Further, we have the Weingarten-Gauss relations 

(a) 

(b) 

(c) 

8n ga ( ) --;::;-- = -, (no sum on 0:) theorem of Rodrigues 
uf,a Ra 

~1 

~3 

R2 

dS l = a l (1 + ~l Jd~l = Ald~l 
R1 

dS 2 = a2l1 + --=-ld~2 = A z d~2 
R2 ) 

451 

(8.2.4) 

Figure 8.2.1: Geometry of a doubly-curved laminated shell. (a) Shell geometry. 
(b) Position vectors of points on the midsurface and above the 
midsurface. (c) A differential element of the shell (dBl and dB2 
denote the arc lengths). 
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(Codazzi conditions) (8.2.5) 

The values of the principal radii of curvature of the middle surface are denoted by 
RI and R2 (see Figure 8.2.1c). In general, n, RI and R2 are functions of 6 and 6. 

The position vector R of a point at a distance ( from the middle surface can be 
expressed in terms of rand n by (see Figure 8.2.1 b ) 

R=r+(n (8.2.6) 

By differentiation we have 

(8.2.7) 

and using Eq. (8.2.4) we obtain 

(8.2.8a) 

and 
(8.2.8b) 

Hence, the square of the distance dS between points (6,6, () and (6 + d6, 6 + 
d6, (+ d() is given by 

(8.2.9a) 

in which 
(8.2.9b) 

and AI, A2, and A3 are the Lame coefficients (see Fig. 8.2.1c) 

(8.2.10) 

Note that vector G n is parallel to the vector gO'. In view of the Codazzi conditions 
(8.2.5) and Eq. (8.2.10), it can be shown that the following relations between the 
derivatives of aa and Aa hold: 

1 oal 1 oA2 
---

a2 06' Al 06 

From Figure 8.2.1c the elements of area of the cross sections are 

dSld( = Al d6d( = al (1 + ~l) d6 de, 

dS2d( = A2 d6d( = a2 (1 + ~2) d6 d( 

(8.2.11) 

(8.2.12) 
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An elemental area of the middle surface (( = 0) is determined by (see Figure 8.2.2a) 

dAo = dr1 X dr2· n = (:;1 X :;2 . n) d6 d6 = a1 a2 d6 d6 

and an elemental area of the surface at ( is given by (see Figure 8.2.2b) 

dAC; = dRI x dR2 . n = (~~ x ~~ . n) d6 d~2 = AIA2 d6 d6 

The volume of a differential element above the midsurface is given by 

Middle surface 

~I ~2 

(a) 

Surface at +1.;; 

~I x3 ~2 

~3 dA( =AI A2 d~l d~2 

~l X2 

Xl 
(b) 

(8.2.13) 

(8.2.14) 

(8.2.15) 

Figure 8.2.2: Surface area elements of a doubly-curved shell. (a) Area element 
on the midsurface. (b) Area element on a surface at +(. 
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8.2.2 Kinetics of the Shell 

Next, we introduce the stress resultants acting on a shell element. The tensile force 
measured per unit length along a 6 coordinate line on a cross section perpendicular 
to a 6 coordinate line (see Figure 8.2.1c) is 0"11 dS2 . The total tensile force on 
the differential element in the 6 direction can be computed by integrating over the 
entire thickness of the shell: 

h/2 [ h/2 J 0"11 dS2 d( = a2 J 0"11 

-h/2 -h/2 

(8.2.16) 

where h is the total thickness of the shell, ( = -h/2 and ( = h/2 denote the bottom 
and top surfaces of the shell, and N11 is the membrane force per unit length in 6 
direction, acting on a surface perpendicular to the 6-coordinate (see Figure 8.2.3): 

Similarly the moment of the force 0"11 dS2 about the 6-axis is 

~l 

All resultants on these sides 
are equal but with opposite 
signs to those on the parallel 
edges 

Figure 8.2.3: Stress resultants on a shell element. 

(8.2.17a) 

(8.2.17b) 
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Similarly, the remaining stress resultants per unit length (see Figure 8.2.3) can be 
defined as follows (0"1 = 0"11, 0"2 = 0"22, 0"6 = 0"12, 0"4 = 0"23, 0"5 = 0"13): 

0"1 (1 + ~) 
N11 0"2 (1 + AJ 
N22 

0"6 (1 + ~) 
N12 h/2 
N21 / 0"6 (1 + AJ 

d( (8.2.18) 
M11 (0"1 (1 +~) 
M22 -h/2 

M12 (0"2 (1 + AJ 
Jlvhl (0"6 (1 + i:) 

(0"6 (1 +~) 
Note that for shells, in general, N a (3 f- N/3a and Ma(3 f- M(3a for a f- {3 (a, (3 = 1,2). 
However, for shallow shells, one can neglect (j Rl and (/ R2 and obtain N a (3 = N(3a 

and Mar] = M(3a, as in a plate theory. The shear forces Qi are defined by 

(8.2.19) 

where Ks is the shear correction factor. 

8.2.3 Kinematics of the Shell 

The linear normal and engineering shear strain components in an orthogonal 
curvilinear coordinate system are given by (no sum on repeated indices; see [37]) 

(8.2.20a) 

(i f- j) (8.2.20b) 

where 

(8.2.21) 6 = (, Al = a] (1 + ~J, A2 = a2 (1 + ~J, A3 = a3 = 1 

Substituting equation (8.2.21) into (8.2.20a,b) and making use of conditions (8.2.10) 
and (8.2.11), one obtains 
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(8.2.22) 

In developing a moderately thick shell theory we make certain assumptions (as 
we did in the case of plates). They are outlined below [6,8,9,14]: 

1. The transverse normal is inextensible (i.e., E3 ~ 0). 

2. Normals to the reference surface of the shell before deformation remain 
straight but not necessarily normal after deformation (a relaxed Kirchhoff-Love 
hypothesis) . 

3. The shell deflections are small and strains are infinitesimal. 

4. The transverse normal stress is neglible so that the plane stress assumtion can 
be invoked. 

Consistent with the assumptions of a moderately thick shell theory, we assume 
the following form of the displacement field: 

Ul (6,6, (, t) = uo(6, 6, t) + (cPt (6,6, t) 
u2(6, 6, (, t) = vo(6, 6, t) + ((/>2(6,6, t) 
u3(6, 6, (, t) = wo(6, 6, t) (8.2.23) 

in which (uo, vo, wo) are the displacements of a point (6, 6, 0) on the midsurface of 
the shell, and ((Pt, ¢2) are the rotations of a normal to the reference surface. 

Substituting the displacement field into the strain-displacement relations 
(8.2.22), we obtain 

(8.2.24) 

where 
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(8.2.25) 

8.2.4 Equations of Motion 

The displacement field (8.2.23) can be used to derive the governing equations of 
the first-order shear deformation theory of shells laminated of orthotropic layers by 
means of Hamilton's principle (or the dynamic version of the principle of virtual 
displacements). We have 

rT 
DL dt == rT 

[DK - (DU - DV)] dt = 0 
.fo .fo 

(8.2.26) 

where DK denotes the virtual kinetic energy, DU the virtual strain energy, and DV 
the virtual potential energy due to the applied loads. To write the expressions for 
these virtual energies, let n denote the midsurface and f its boundary, with fIn 
being the boundary normal to the ~n coordinate (and circle on the integral implies 
that it includes the total boundary of the shell. Then we have 

DK = Iv P (Ul DUI + U2 DU2 + U3 DU3) dV 

h/2 

= L .I p [ ( uo + ( ¢l) (DUO + ( D¢l) + (vo + (¢2) (Dvo + ( D¢2 ) 
-h/2 

+ Wo DWO] AlA2 d6 d6 d( 

= L [Io (uo Duo + Vo Dvo + Wo Dwo) + h (¢l Duo + uo D¢l + ¢2 Dvo + 1)0 D¢2 ) 

+ h (¢l D¢l + ¢2D¢2) ] al a2 d6 d6 (8.2.27) 

h/2 

DU = Iv O'ij Deij dV = L .I O'ij Deij A1A2 d6 d6 d( 
-h/2 

= .k [Nll De~ + Mll De~ + N22 Deg + lv122 DE~ + N12 DW~ + M12 Dwi 

+ N21 Dwg + M21 DW~ + Q2 De~ + Q1 De~] a1 a2 d6 d6 

DV = r (1 +~) (1 +~) qDwO a1a2 d6 d6 .frl 2Rl 2R2 

+ 1 (Nll Duo + .&111 D¢;l + N12 Dvo + M12 D¢;2 + Ql Dwo ) a2 d6 Jr2 
+ 1 (N22 Dvo + M22 D¢;2 + N2l Duo + M2l D¢;l + Q2 DWo) a1 d6 Jr 1 

(8.2.28) 

(8.2.29) 
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where q is the transverse load on the upper surface (( = h/2) of the shell, 
(No:{3, Mo:{3, Qo:) are the stress resultants defined in Eqs. (8.2.18) and (8.2.19), p 
is the mass density, and Ii are the mass inertias 

h/2 

Ii = J P (1 + ~J (1 + ~J (()i de, (i = 0,1,2) (8.2.30) 

-h/2 

A caret 0 on the stress resultants indicate that they are specified quantities. 
To derive the Euler-Lagrange equations (or equations of motions of the shell) from 

Eq. (8.2.26), we substitute the expressions for bK, bU and bV, and then integrate 
the expressions by parts (or use the Green-Gauss theorem) to relieve the varied 
generalized displacements (buo, bvo, bwo, b(Pl, bch) of any derivatives with respect to 
6,6 and t: 

T 

o = - J 10 [ (louo + h ~1 ) buo + (lovo + h ~2) bvo + low08wo 
o 

+ (huo + h~l) bcPl + (hvo + h~2) bch ] a1 a2 d6 d6 dt 

+ 10 [(louo + h¢l) 8uo + (lovo + h¢2) bvo + low08wo 

+ (huo + h¢l) 8(Pl + (hvo + h¢2) b¢2]: a1 a2 d6 d6 

+ J 10 [(a2 N U ),18uo - N11 a1,2 8vo - N11 a~:2 8wo 
o 

a1 a2 + (a1 N 22 ) 2bvO - N22 a21 8uO - N 22--8wO , , R2 

+ (a2 N12),18vO + N12 a1,2 8uo + (a1 N2d,28uO + N21 a2,1 8vo 

+ (a2 M11 ),I8¢1 - M11 a1,2 8¢2 + (a1 M22b8¢2 - M22 a2,18¢1 

+ (a2 M 12 ),l b¢2 + M12 a1,2 8¢1 + (a1 M21b8¢1 + M21 a2,1 8¢2 
a1 a2 + (a2 QI),18wo - Q1 a1 a2 8¢1 + Q1 ~8uo 

a1 a2 ] + (a1 Q2b8wo - Q2 a1 a2 8¢2 + Q2 R2 8vo - q a1a2 d6d6 dt 

T 

+ J i2 [(N11 - N11) 8uo + (N12 - N12) 8vo + (M11 - M11) 8¢1 
o 

T 

+ J tl [ (N21 - N21) buo + (N22 - N22) 8vo + (M21 - M21) 8¢1 
o 

(8.2.31) 
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Noting, by the hypothesis of Hamilton's principle, that the virtual generalized 
displacements are zero at t = 0 and t = T, the equations of motion and the natural 
(or force) boundary conditions are obtained by setting the coefficients of the varied 
generalized displacements to zero in 0 and on r 1 and r 2: 

(8.2.32) 

(8.2.33) 

(8.2.34) 

(8.2.35) 

(8.2.36) 

The natural boundary conditions are obvious from the boundary terms in Eq. 
(8.2.31). 

In deriving the equations of motion, we have not assumed that Na(3 = N(3O' 

and Ma(3 = A1(30' for Ct =J- (3. Vanishing of the moments about the normal to 
the differential element (see Figure 8.2.1c) yields an additional relation among the 
twisting moments and surface shear forces: 

(8.2.37) 

which must be accounted for in the formulation; otherwise, it will lead to 
inconsistency associated with rigid body rotations (i.e., a rigid body rotation gives a 
nonvanishing torsion except for flat plates and spherical shells). To account for this 
discrepancy, we must add the term (see Sanders [28] and Budiansky and Sanders 
[29]) 

(8.2.38) 

to the virtual strain energy functional 8U. Here ¢n denotes the rotation about the 
transverse normal to the shell surface. This amounts to modifying w~ and w; in Eq. 
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(8.2.25) as follows: 

The rotation ¢n is equal to the normal component of the curl of the displacement 
vector u 

¢n == (\7 x u) . n = _1_ [(voa2) 1 - (uoat) 2] 
2ala2 ' , 

(8.2.40) 

In view of Eq. (8.2.40), one can show that 

(8.2.41) 

Use of the modified strain-displacements relations (8.2.39) in Hamilton's principle 
yields the following equations of motion: 

where 

(8.2.47) 
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8.2.5 Laminate Constitutive Relations 

Suppose that the shell is composed of N orthotropic layers of uniform thickness, 
stacked on each other with the principal material 1 axis of the kth layer is oriented 
at an angle 8k from the shell Xl coordinate in the counterclockwise sense and 

x\k) = C. The stress-strain relations of the kth lamina, whether structural layer 
or actuating/sensing layer, in the shell coordinate system are given as 

!
~: )(k) 

0"5 

0"6 

Qll 
Ql2 

0 
0 

Ql6 

Ql2 0 
Q22 0 

0 Q44 
0 Q45 

Q26 0 

0 

q16 Ikl C) r r 0 Q26 E2 e32 
Q4.s o E4 - 0 H( (8.2.48) 

Q55 o E5 0 
0 Q66 E6 E36 

where Qij are the transformed stiffnesses, and Q~;) are the lamina stiffnesses referred 
to the principal material coordinates of the kth lamina 

Qll = Qll cos4 8 + 2( Ql2 + 2Q66) sin2 8 cos2 8 + Q22 sin4 8 

Ql2 = (Qll + Q22 - 4Q66) sin2 8 cos2 8 + Ql2(sin4 8 + cos4 8) 

Q22 = Qll sin4 8 + 2( Ql2 + 2Q66) sin2 8 cos2 8 + Q22 cos4 8 
- 3 3 

Ql6 = (Qll - Ql2 - 2Q66) sin 8 cos 8 + (Q12 - Q22 + 2Q66) sin 8 cos 8 
- 3 '~ 

Q26 = (Qll - Ql2 - 2Q66) sin 8 cos 8 + (Q12 - Q22 + 2Q66) sin 8 cos' 8 

Q66 = (Qll + Q22 - 2Ql2 - 2Q66) sin2 8cos2 8 + Q66(sin4 8 + cos4 8) 
- 2 2 

Q44 = Q44 cos 8 + Q55 sin 8 

Q45 = (Q55 - Q44) cos 8 sin 8 
- 2 . 2 

Q55 = Q55 cos 8 + Q44 sm 8 (8.2.49a) 

(8.2.49b) 

The superscript k on Qij, 8, as well as on the engineering constants E I , E 2 , Vl2 
and so on, is omitted for brevity. In equation (8.2.48), He, denotes the intensity of 
the electric or magnetic field and Eij are the electro- or magnetostrictive material 
coefficients 

- 28' 28 e31 = e31 cos + e32 sm 
- 28+ .28 e32 = e32 cos e31 sm 

E36 = (e31 - e32) sin 8 cos 8 (8.2.50) 

Using the lamina constitutive equations, the stress resultants defined in Eqs. 
(8.2.18) and (8.2.19) can be expressed in terms of the membrane strains E~ and 
bending strains E;. However, the laminate constitutive equations do not exhibit the 
symmetry among the stiffnesses (Le., Aij =I- A ji , Bij =I- Bji and Dij =I- Dji) primarily 
due to N a (3 -I N(3a and Ma(3 -I M(3a for a -I (3. 
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8.3 Theory of Doubly-Curved Shells 
8.3.1 Equations of Motion 

If we omit the term z/ R in the definition of the stress resultants and assume that 
aa,{3 = 0 (ct, (3 = 1,2) (i.e., constant radii of curvatures), the equations can be 
simplified substantially [14]. For thin shallow shells, we have 

( 1 + ~J ~ 1, ( 1 + ~2) ~ 1 

and we have N12 = N21 and M12 = M21. The laminate constitutive relations become 

{ 
{N} } _ [[A] 
{M} - [B] 

[B]] {{cO}} _ {{N}}M 
[D] {Ii} {M} 

{ ~~ } = K s [~:: ~::] {:~ } - { ~~ } 

where the laminate stiffness coefficients (Aij , B ij , D ij ) are defined by 

N 
" -(k) Aij = ~Qij ((k+l - (k), i,j = 1,2,6 
k=1 

N 
1 ,,-(k) 2 2 

Bij = "2 ~Qij ((k+l - (k), 
k=1 

i,j = 1,2,6 

1 ~ -(k) 3 3 
Dij = "3 ~Qij ((k+l - (k), 

k=1 

i,j = 1,2,6 

N 
" -(k) Aij = ~Qij ((k+l - (k), i,j = 4,5 
k=1 

and the strains are given by [see Eqs. (8.2.25) and (8.2.39)] 

and 
o 0 0 2-0. 1 1 1 

C6 = WI + W2 = WI, C6 = WI + W2 

and the magnetostrictive stress resultants {NM} and {MM} are defined as 

{ 
N ~ } _ ~ l(k+l { (;31 } 
N M - ~ - H( d( 

2 ,> e32 
k=ml,m2,'" '>k 

(8.3.1a) 

(8.3.1b) 

(8.3.2) 

(8.3.3a) 

(8.3.3b) 

(8.3.4a) 

(8.3.4b) 
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where 

(8.3.5a) 
k= rn l, rn2,'" 

Hij = ~ckc L e~~) (a+l - a) ,i = 3;j = 1,2 
k=ml,rn2,'" 

(8.3.5b) 

and ml, m2,' .. denote the layer numbers of the magnetostrictive (or any 
actuating/ sensing) layers. 

Then equations of motion of the simplified theory in the Cartesian coordinate 
system (Xl, X2, X3 = () (note that N12 = N21 = N6 and Nh2 = ]1.121 = M 6) are 

(8.3.6) 

(8.3.7) 

(8.3.8) 

(8.3.9) 

(8.3.10) 

(8.3.11) 

and p(k) being the density of the kth layer and n is the number of layers in the 
laminate. 

8.3.2 Analytical Solution 

Analytical solutions of the equations (8.3.6)-(8.3.10) can be obtained for simply 
supported cross-ply laminated shells [34]. Towards using the Navier type solution, 
first we write the equations of motion (8.3.6)-(8.3.10) in terms of displacements 
(uo, vo, wo, (PI, ¢2) by substituting for the force and moment resultants from 
equations (8.3.1a,b) into Eqs. (8.3.6)-(8.3.10): 

A ( 
02uO 1 owo) A ( 02vo 1 owo) A ( 02vo 02uO ) 11 -- + --- + 12 + --- + 16 -- + -----,--
OXI R1 OX1 OX10X2 R2 OX1 OXI OX1 0X2 

02¢1 02¢2 [o2¢2 02¢1 (02vo 02uO )] + Bll ~ + B12 ::l ::l + B 16 ~ +::l ::l - Co ~ -::l ::l uXl UX1UX2 uXl UXluX2 uX1 UX1UX2 

A ( 
02uO 1 owo) A ( 02vo 1 owo) A ( 02vo 02uO) + 16 +--- + 26 --+-- + 66 +--

OXlOX2 Rl OX2 OX§ R2 OX2 OXlOX2 OX§ 
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(8.3.12) 

(8.3.13) 

(8.3.14) 
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UI(XI,O,t) = 0, UI(XI, b, t) = 0, U2(0, X2, t) = 0, U2(a, X2, t) = ° 
NI (0, X2, t) = 0, N I(a,x2,t) = 0, N 2(XI, 0, t) = 0, N 2(Xl, b, t) = 0 

¢1(XI,O,t) = 0, ¢1(XI,b,t) = 0, ¢2(0, X2, t) = 0, ¢2(a, X2, t) = ° 
U3(Xl, 0, t) = 0, U3(X2, b, t) = 0, U3(0, X2, t) = 0, U3(a, X2, t) = ° 

MI (0, X2, t) = 0, M I(a,x2,t) = 0, M 2(XI, 0, t) = 0, M 2(XI, b, t) = ° (8.3.17) 

The simply supported boundary conditions in (8.3.17) are satisfied by the following 
expansions of the generalized displacement field: 

00 00 

UO(XI,X2,t) = L LUmn(t)cosaXlsintJX2 
n=lm=1 

00 00 

VO(XI,X2,t) = L LVmn(t)sinaXIcostJX2 
n=lm=l 

00 00 

WO(XI, X2, t) = L L Wmn(t) sinaXl sintJx2 
n=lm=l 

00 00 

¢1(Xl,X2,t) = L LXmn(t)cosaXlsintJX2 
n=lm=l 
00 00 

¢2(Xl, X2, t) = L LYmn(t) sin aXI cos tJX2 (8.3.18) 
n=lm=l 
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Substituting the expansions (8.3.18) into equations (8.3.12)-(8.3.16) yields the 
equations 

811 812 8 13 8 14 8 15 rmn) [0 
0 C13 0 0 

rmn) 821 822 823 8 24 8 25 Vmn 0 0 C23 0 0 1:"mn 

831 832 8 33 8 34 8 35 Wmn + 0 0 C33 0 0 Wmn 

841 842 8 43 8 44 8 45 Xmn 0 0 C43 0 0 ~mn 
851 852 8 53 8 54 8 55 Y mn 0 0 C53 0 0 Y mn 

Mll 0 0 M14 0 

l~H=l+) 
0 M22 0 0 M 25 

+ 0 0 M33 0 0 (8.3.19) 
M41 0 0 M44 0 

0 M52 0 0 M55 

where 8 ij = 8 ji , Cij and Mij = Mji (i,j = 1,2,···,5) are defined by (only nonzero 
elements are given) 

2 ( 2 ) 2 KsA55 8 11 = A11a + A66 + 2CoB 66 + COD66 (3 + R2 
1 

812 = (A12 + A66 - CgD66 ) 00(3 

[ 
1 A12] 

813 = - R1 (A11 + KsA55) + R2 a 

2 2 KsA55 
814 = Blla + (B66 + COD66) (3 - R1 

8 15 = (B12 + B66 + COD66) 00(3 

( 
2 ) 2 2 K S A44 822 = A66 - 2CoB66 + COD66 a + A 22(3 + R2 

2 

( 
1 1 KsA44) 

823 = - R1 A12 + R2 A22 + R2 (3 

824 = (B12 + B66 - COD66) 00(3 

2 2 KsA44 
825 = (B66 - COD66) a + B 22(3 - R2 

2 2 A11 2A12 A22 
833 = KsA55 a + KsA44(3 + Rr + R1R2 + R~ 

8 34 = - - + - a, 835 = KsA44 - - + - (3 (
B11 B12) [ (B12 B22)] 
R1 R2 R1 R2 

8 44 = Dlla2 + D66(32 + KsA55, 8 45 = (D12 + D(6) 00(3 

855 = D66a2 + D22(32 + KsA44 (8.3.20) 

(8.3.21) 

(8.3.22) 

and all other Cij = O. Here the magnetostrictive coefficients A 31 , A32 , B31 and B32 
are defined in Eqs. (8.3.5a,b). 
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Static Analysis 

For static analysis, we set the time derivatives terms in Eq. (8.3.19) to zero and solve 
the resulting equations for the amplitudes Umn , Vmn , W mn , Xmn and Ymn . The total 
solution is obtained by substituting the amplitudes into Eq. (8.3.18). As an example 
consider simply supported cross-ply laminated spherical shell panels (R1 = R2 = R) 
under uniformly distributed load of intensity qo. The lamina material properties are 
assumed to be [15,36] 

(8.3.23) 

Table 8.3.1 contains nondimensionalized center deflections, W = 103 woE2h3 /(qoa 4 ), 

for various values of radius-to-side (R/a) ratios and two values of side-to-thickness 
(a/h) ratios (see Figure 8.3.1). 

Table 8.3.1: Nondimensionala center deflection versus radius-to-thickness ratio 
of spherical shells under uniformly distributed load (19-term Navier 
solution). 

0°/90° 0°/90%° 0°/90°/90%° 

R/a a/h = 100 a/h = 10 a/h = 100 a/h = 10 a/h = 100 a/h = 10 

1 0.0718 6.054 0.0718 4.8173 0.0715 4.8366 
2 0.2855 12.668 0.2858 8.0210 0.2844 8.0517 
3 0.6441 15.739 0.6224 9.1148 0.6246 9.1463 
4 1.1412 17.184 1.0443 9.5686 1.0559 9.5999 
5 1.7535 19.944 1.5118 9.7937 1.5358 9.8249 

10 5.5428 19.065 3.6445 10.110 3.7208 10.111 
lO:~o 16.980 19.469 6.6970 10.220 6.8331 10.251 

u w = [WE2h3/(qoa4 )] 103 

~l 
~2 

X3 

~3 

~l 
~2 

Xl 

Figure 8.3.1: Geometry of a doubly-curved shell panel. 
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Natural Vibration 

For natural vibration without structural damping, we set all Cij = 0 and assume 
solution of the form 

W (t) = WO eiwt 
mn m,n 

(8.3.24) 

in (8.3.19). Substitution of (8.3.24) in (8.3.19) yields 

( Sll 
S12 S13 S14 S15 

S21 8 22 8 23 8 24 8 25 

S31 S32 S33 S34 S35 

S41 S42 S43 S44 S45 

S51 S52 S53 S54 S55 

Ml1 0 0 M14 0 

H~~)~l!) 0 M22 0 0 M 25 
_ w2 0 0 M33 0 0 (8.3.25) 

M41 0 0 M44 0 
0 M52 0 0 M55 

which is an eigenvalue problem. For nontrivial solution, the determinant of the 
matrix in the parenthesis is set to zero. This gives values of w2

. 

Table 8.3.2 contains nondimensionalized fundamental natural frequencies, W = 
w(a2 Ih)J pi E2, for cross-ply laminated spherical shell panels [14,34]. Results for 
three different laminates and two different thickness (alh = 10 and alh = 100) 
are presented using a shear correction factor of Ks = 5/6. The case Ria = 10-30 

corresponds to a square plate. 

Table 8.3.2: Nondimensionalized fundamental frequenciesa (w = wa2J pi E2Ih), 
versus radius-to-side length ratio of spherical shells (alb = 1, 
R1 = R2, and Ks = 5/6) 

00 /900 00 /900 /0 0 00 /900 /90 0 /00 

R/a a/h = 100 a/h = 10 a/h = 100 a/h = 10 a/h = 100 a/h = 10 

1 125.93 14.481 125.99 16.115 126.33 16.172 
2 67.362 10.749 68.075 13.382 68.294 13.447 
3 46.002 9.9608 47.265 12.731 47.415 12.795 
4 35.228 9.4102 36.971 12.487 37.082 12.552 
5 28.825 9.2309 30.993 12.372 31.079 12.437 

10 16.706 8.9841 20.347 12.215 20.380 12.280 
1030 9.6873 8.8998 15.183 12.162 15.184 12.226 
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Vibration Control 

For vibration control, we assume q = ° and seek solution of the ordinary differential 
equations in (8.3.20) in the form 

Umn(t) = Uoe>..t, 

Wmn(t) = Woe>"t, 

Ymn(t) = Yoe>..t 

V,nn(t) = Voe>..t 

Xmn(t) = Xoe>..t 

(8.3.26) 

Substituting Eq. (8.3.26) into Eq. (8.3.20), we obtain, for a non-trivial solution, the 
result 

5 11 512 51:3 514 5 15 
5 21 5 22 523 524 525 
5:n 532 533 534 535 =0 (8.3.27) 
541 5 42 5 43 544 545 
551 552 553 554 555 

where 
- 2 
Sij = Sij + ACij + A Mij (8.3.28) 

for i, j = 1,2,3,4,5. This equation gives five sets of eigenvalues. The eigenvalue 
with the lowest imaginary part corresponds to the transverse motion, Wmn(t). The 
eigenvalues can be written as A = -0: + iWd, so that the damped motion is given by 

1 -at. . n1Tx1 . n1TX2 
WO(X1' X2, t) = - e smwdt sm -- sm -b-

Wd a 

In arriving at the last solution, the following boundary conditions are used: 

UO(X1' X2, 0) = 0, UO(X1' X2, 0) = 0, VO(X1, X2, 0) = 0, 

VO(X1' X2, 0) = 0, WO(X1' X2, 0) = 0, WO(X1, X2, 0) = 1, 

<P1(X1,X2,0) = 0, ¢1(X1,X2,0) = 0, <P2(X1,X2,0) = 0, 

¢2(X1, X2, 0) = 0 

(8.3.29) 

(8.3.30) 

Numerical results are obtained for various lamination schemes to show the 
influence of the position of the pair of magnetostrictive layers from the neutral 
axis on the amplitude suppression time [38,39]. All values of the composite material 
and structural constants are tabulated and both damped and undamped frequencies 
are presented in the figures. 

The composite lamina material properties were given in Table 7.7.1. 
Magnetostrictive material properties (for Terfenol-D material) are taken to be [see 
Eq. (7.7.22)] 

Em = 26.5 GPa, l/m = 0.0, Pm = 9250 kg-m-3 , dk = 1.67-8 rnA -1, C(t)rc = 104 

The numerical values of various material and structural constants (e.g., moment of 
inertia, magnetostrictive material constants) based on different lamination schemes 
and material properties [CFRP, Graphite-Epoxy (Gr-Ep), Glass-Epoxy (Gl-Ep), 
Boron-Epoxy (Br-Ep)] are listed in Tables 8.3.3 and 8.3.4. Magnetostrictive 
damping coefficients and natural frequencies for various materials and lamination 
schemes are also listed in Table 8.3.4. 
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Table 8.3.3: Stiffnesses for different laminates and materials. 

Material Laminate Dll (103 ) Dd103 ) D22 (103 ) D66(103 ) A44(107 ) 

[Nm] [Nm] [Nm] [Nm] [N/m] 

CFRP [0/90/0/90/m]s 0.768 0.182 0.454 0.348 0.616 
[0/90/0/m/90]s 0.776 0.197 0.410 0.375 0.616 
[0/90/m/0/90]s 0.687 0.226 0.425 0.430 0.616 
[0/m/90/0/90]s 0.710 0.270 0.292 0.512 0.616 
[m/0/90/0/90]s 0.532 0.329 0.323 0.621 0.616 
[0/0/m/90/90]s 0.949 0.226 0.164 0.430 0.616 
[90/90/m/0/0]s 0.164 0.226 0.949 0.430 0.616 

Gr-Ep [0/90/m/0/90]s 0.687 0.265 0.427 0.640 0.751 

Gl-Ep [0/90/m/0/90]s 0.358 0.866 0.278 0.772 0.715 

Br-Ep [0/90/m/0/90]s 1.032 0.516 0.659 0.626 0.661 

Table 8.3.4: Mass inertias and parameters 0: and Wdr. 

Material Laminate fa f 2 (1O- 4 ) -£31 -a±Wdr 

[kg/m] [kg m] (rad 8-1 ) 

CFRP [0/90/0/90/m]s 33.092 0.157 0.926 4.63 
[0/90/0/m/90]s 33.092 0.187 0.926 13.9 
[0/90/m/0/90]s 33.092 0.246 0.926 23.1 
[0/m/90/0/90]s 33.092 0.335 0.926 32.4 
[m/0/90/0/90]s 33.092 0.454 0.926 41.7 
[0/0/m/90/90]s 33.092 0.246 0.926 23.1 
[90/90/m/0/0]s 33.092 0.246 0.926 23.1 

Gr-Ep [0/90/m/0/90]s 30.1 0.220 0.926 23.1 

Gl-Ep [0/90/m/0/90]s 33.7 0.251 0.926 23.1 

Br-Ep [0/90/m/0/90]s 34.1 0.255 0.926 23.1 

The value of 0: [see Eq. (8.3.29)l increases when the magnetostrictive layer is 
located farther away from the neutral axis, indicating faster vibration suppression. 
Figure 8.3.2 shows the uncontrolled and controlled deflection amplitude at the 
center of the laminate. It is observed from Figure 8.3.3 that [m/O/90/0/90ls == 
[m/(O/90hls has the maximum vibration suppression. Present results also show 
that the vibration suppression time decreases very rapidly as mode number increases. 
Figures 8.3.4 shows a plot of vibration amplitude for mode 5, for a ten-layered 
[O/90/m/O/90ls laminate. It can be observed that attenuation favors the higher 
modes. This is clearly seen in Figure 8.3.5, where modes 1 and 2 are superposed 
and it is obvious that mode 2 attenuates at a significantly faster rate. 
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8.4 Vibration and Buckling of Cross-Ply Laminated 
Circular Cylindrical Shells 

8.4.1 Equations of Motion 

The equations of motion of the first-order shear deformation shell theory (FST) of 
a laminated circular cylindrical shell are (see [14,40,41]; cf. (8.3.6)-(8.3.10) with 
Co = 0, l/R I = () and R2 = R): 

(8.4.1) 

where R is the radius of the cylinder; N is the axial compressive load (positive in 
compression); 'Uo, Vo and Wo are the displacement components along the Xl, X2 and 
X:3 = ( axes (see Figure 8.4.1); (PI and ¢2 are the rotation functions; a superposed 
dot indicates differentiation with respect to time t; and Ii (i = 0,1,2) are the mass 
inertia terms defined as 

i=0,1,2 (8.4.2) 

N is the total number of layers and p(k) is the material mass density of the kth 
layer. 

~r-------------------------~~ Xl 

L 

Figure 8.4.1: Laminated shell geometry and coordinate system. 
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For a general cross-ply laminate (i.e., a laminated shell with stiffnesses Al6 
A 26 = A45 = B16 = B 26 = D16 = D26 = 0), the stress resultants are given by 

Nl = AnE~ + A l2 Eg + Bnd + Bl2d 

N2 = A12E~ + A 22 Eg + Bl2d + B22d 

Ml = BnE~ + B l2 Eg + Dnd + Dl2d 

M2 = B12E~ + B 22 Eg + Dl2d + D22E~ 
N6 = A66Eg + B66E~, M6 = B66Eg + D66E~ 
Ql = Kg5A 55 Eg, Q2 = Kl4A44E~ (8.4.3) 

where K14 and Kg5 are the shear correction factors, and the strains are defined as 

o [)uo 1 [)(/JI 
El = [)Xl' El = [)Xl 

o [)vo Wo 1 [)¢2 
E2 = ~ + -R E2 = ~ 

UX2 UX2 
o [)Vo [)uo 1 a¢2 a¢l 

E6 = aXl + aX2' E6 = aXl + [)X2 

o [)Wo 0 [)Wo 
E4 = ¢2 +~, E5 = ¢l + ~ (8.4.4) 

UX2 UXl 

The equations of motion of the classical shell theory (CST) are obtained from 
equations (8.4.1) by setting 

(8.4.5) 

The equations of motion can be expressed in terms of generalized displacements 
(uo, vo, Wo, ¢l, ¢2) by substituting Eqs. (8.4.4) [and Eq. (8.4.5) in the case of CST] 
into equations (8.4.3) and the subsequent results into equations (8.4.1): 

[L]{~} = {O} (8.4.6) 

(8.4.7) 
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Note that the longitudinal, circumferential and rotary inertia terms are included. 

(
E22 _ K2 A ) ~ 

L45 = R 44 44 OX2 

(8.4.8) 

8.4.2 Analytical Solution Procedure 

Here we discuss the Levy type solution procedure. For the circular cylindrical 
shell with arbitrary boundary conditions at Xl = ±L/2, we assume the following 
representation for the generalized displacement components: 

1 
~~ ) = 1 x:!;:H~~.~:~ ) Tm(t), 
¢2 Yrn(xI)sinf3m x 2 
Wo Wm(xI) cos f3mx2 

(8.4.9) 

where Tm = eiwmt , Wm being the natural frequency corresponding to the mth 
mode, when performing an eigenfrequency analysis (we keep in mind that there 
are denumerable infinite frequencies for each value of m), i = A and f3m = 
m/ R(m = 0,1,2, ... ). Since the solution technique presented for these equations is 
general, we present only the equations of FST and include the numerical results of 
CST for the sake of comparison. Substitution of Eq. (8.4.9) into Eq. (8.4.6) results 
in five (three for CST) coupled ordinary differential equations: 

~=G~+~~+~~+~~+~~ 
V~ = C6 U:n + C7 v'n + C8X~L + CgYm + ClOWm 

X:~ = C11 Um + C 12 V~ + C 13 X m + C14Y~ + C15 W~t 
Y~ = C 14U:n + C 17 v'n + C 1S X:n + C 1gYrn + C 20W m 

W::, = C 21 U:n + C22V,n + C 23 X:n + C 24Ym + C 25 W m (8.4.10) 
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where a prime indicates a derivative with respect to Xl. The coefficients C j 

(j = 1,2, ... ,25) are given for free vibration analysis by 

C 1 = (e2 - e1e14)/e26) C2 = (e3 - e1 e17)/e26) C3 = (e4 - e1 e16)/e26 

C 4 = (e5 - e1 e17)/e26, C5 = (e6 - e1 e1s)/e26, C6 = (es - e7e20)/e27 

C 7 = (e3 - e7e21)/e27) Cs = (elO - e7e22)/e27, C9 = (el1 - e7e23)/e27 

C lO = (e12 - e7e24) / e27, Cl1 = (e14 - e13e2)/e26, C12 = (e15 - e13e3)/e26 

C13 = (e16 - e13 e4)/e26, C14 = (e17 - e13 e5)/e26) C15 = (e1s - e13 e6)/e26 

C16 = (e20 - e1ges)/e27) C17 = (e21 - e1ge9)/e27) CIS = (e22 - e1g elO)/e27 

C19 = (e23 - e1g el1)/e27) C20 = (e24 - e1ge12)/e27) C21 = e2s/e25 

(8.4.11) 

where 

el = B11/A 11) e2 = (A66,6! - w!Io)/Al1 , e3 = -,6m(AI2 + A66 )/A11 
e4 = (B66f3;, - w;,h)/Al1 , e5 = -f3m(B12 + B 66 )/A11 , e6 = -A12/(A11R) 

e7 = B 66 /A66 , es = ,6m(A12 + A66 )/A66 , e9 = (A22 ,6! - w;'Io)/A66 

elO = f3m(B12 + B 66 )/A66 , e11 = (B22 ,6;, - w;'h)/A66 , e12 = ,6mA22/(A66 R ) 

e13 = B11/ D 11 , e14 = (B66,6;' - w;'h)/ D 11 , e15 = -,6rn(B12 + B 66 )/ D11 

el6 = (Kg5 A 55 + D66,6! - w;'h)/ Dl1) e17 = -,6m(D12 + D66)/ Dl1 

e1S = -(B12/ R - Kg5A 55 )/ D 11 , e19 = B66/ D66 , e20 = Bm(B12 + B66)/ D66 

e21 = (B22 ,6! - w;'h)/ D66 , e22 = ,6m(D12 + D66)/ D66 

e23 = (K14 A44 + D22 ,6;n - w;'h)/ D66 ) e24 = ,6m(B22/ R - K14 A44)/ D66 
2 A 

e25 = K55 A 55 - N, e26 = 1 - e1e13, e27 = 1 - e7e19, e2S = A12/ R 

e29 = f3m A22/R , e30 = -Kg5A 55 + B 12 /R, e31 = f3m(-K14 A 44 + B22/R) 

e32 = K14A44,6;' - w;,Io + A22/ R2 (8.4.12) 

In the stability analysis, we let Wm -+ 0 in ej (j = 1,2,· .. ,32). 
With some simple algebraic operations (addition and subtraction), it is made 

sure that only one unknown variable with its highest derivative appears in equations 
(8.4.10). This will save the computational time required in the method that we will 
introduce for solving equations (8.4.10). 

There exists a number of ways to solve a system of ordinary differential equations. 
However, when there are more than three governing equations, as in Eq. (8.4.10), 
it is more practical to introduce new unknown variables and replace the original 
system of equations by an equivalent system of first-order equations (to be able to 
use the state-space approach). We introduce the following variables: 

Zlm = Um(xI}, 

Z3m = Vm(xJ), 

Z5m = Xm(Xl) 

Z7m = Ym(xI}, 

Z9m = Wm(Xl), 

Z2rn(xI} = U:n(xI} = Z~m(xI} 
Z4m(XJ) = V~(xJ) = Z~rn(xJ) 
Z6m(Xl) = X:n(xJ} = Z£rn(xI} 

ZSm(xI} = Y~(Xl) = Z~rn(xJ} 

ZlOm(XI} = W:n(Xl) = Z(lm(Xl) (8.4.13) 
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for m = 1,2, .... In view of the definitions in (8.4.13), Eqs. (8.4.10) along with 
relations in (8.4.13) can be expressed in the form 

{Z'} = [A]{Z}, (8.4.14) 

where 

{Z'} = {Z~rrp Z~m' ... ' Z~Om}T, {Z} = {Zlm, Z2m, ... , ZlOm}T, (8.4.15) 

and the coefficient matrix [AJ is 

0 1 0 0 0 0 0 0 0 0 
C1 0 0 C2 03 0 0 C4 0 C5 

0 0 0 1 0 0 0 0 0 0 
0 C4 C7 0 0 C8 Cg 0 ClO 0 

[AJ= 
0 0 0 0 1 0 0 0 0 0 

Cll 0 Cl2 Cl3 0 0 Cl4 0 Cl5 0 
(8.4.16) 

0 0 0 0 0 0 0 1 0 0 
0 C16 Cl7 0 0 Cl8 Cl9 0 C20 0 
0 0 0 0 0 0 0 0 0 1 
0 C21 C22 0 0 C23 C24 0 C25 0 

A formal solution of Eq. (8.4.14) (see [43,44]) is given as 

{Z(xJ)} = 1I(xI){D}, (8.4.17) 

where 1I(xd is a fundamental matrix, the columns of which consist of ten linearly 
independent solutions of equations (8.4.10) and {D} is an unknown constant vector. 
Some or all components of this vector, as will be seen later, are in general complex. 
The non-singular fundamental matrix 1I(xd is not unique. However, all fundamental 
matrices differ from each other by a multiplicative constant matrix. Since equations 
(8.4.17) are the solutions of equations (8.4.10) and 11(0) is a non-singular constant 
matrix, a special fundamental matrix <I>(xI) (known as the state transition matrix) 
for Eq. (8.4.10) can be defined from Eq. (8.4.17) such that 

(8.4.18) 

are also the solutions of equations (8.4.lO) , with 

(8.4.19) 

Since [AJ is a constant matrix, the state transition matrix is given by a matrix 
exponential function as 

(8.4.20) 

By imposing the ten boundary conditions at Xl = ±L/2 on the solution given 
by Eq. (8.4.17), a homogeneous system of algebraic equations can be found: 

[M]{Z(O)} = {O} (8.4.21) 
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For a non-trivial solution of natural frequency or critical buckling load, the 
determinant of the coefficient matrix [M] must be set to zero 

IMI =0 (8.4.22) 

Since the constant vector {Z(O)} is real, the determinant of [M] is also real. Hence, 
in a trial and error procedure, one can easily find the correct value of natural 
frequency (in a free vibration problem) or of critical buckling load (in a stability 
problem) which would make IMI = o. A non-zero compressive (or tensile) edge load 
can also be included in the free vibration analysis. 

Numerous methods are available (e.g., see [43,44]) for determining the matrix 
exponential, e[A]Xl, appearing in equation (8.4.20). However, regardless of any 
method used, it is found that IMI becomes ill conditioned when the ratio of the 
characteristic length of the structure to its thickness is near or larger than 20. This 
is also the case in the Levy-type eigenfrequency and stability problems of laminated 
plates and shell panels when shear deformation theories are used. 

When the eigenvalues of the coefficient matrix [A] are distinct, the fundamental 
matrix IJ!(xt) is given by 

IJ!(xI) = [U][Q(xI)], (8.4.23) 

where [Q(xt)] is another fundamental matrix, defined as 

(8.4.24) 

and [U] is a modal matrix that transforms [A] into a diagonal form (i.e., the jth 
column of [U] constitutes the eigenvectors of [A] corresponding to the jth eigenvalue 
of [A]). In Eq. (8.4.20), Aj (j = 1,2",·,10) are the distinct eigenvalues of [A], 
which in general can be real and complex. We note that the eigenvalues of [A] are 
the same as the roots of the auxiliary equation of (8.4.19). These eigenvalues in 
most eigenfrequency and stability problems of plates and shells are distinct. The 
axisymmetric buckling problem and axisymmetric eigenfrequency problem (when 
all inertia forces, except the radial inertia force, are neglected) of a cylindrical shell 
are two examples where two of the eigenvalues, as will be seen, are identical. When 
the eigenvalues are repeated, Eq. (8.4.24) is no longer valid and a Jordan canonical 
form of [A] must be used [42,43]. 

Substituting Eq. (8.4.23) into Eqs. (8.4.19) yields 

q>(xt) = [U][Q(xt)][U]-l (8.4.25) 

and 
{D} = [Url{Z(O)} (8.4.26) 

Equations (8.4.18) and (8.4.25) were used in [40]. However, due to the occurrence of 
an ill-conditioned determinant IMI in Eq. (8.4.22), Nosier and Reddy [41] proposed 
the following approach. Instead of imposing the boundary conditions on equations 
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(18.4.18), impose the boundary conditions on equations (8.4.17), which have a 
simpler form. This way we come up with a set of homogeneous algebraic equations 
of the form 

[K]{D} = {O}. (8.4.27) 

For a non-trivial solution of Eq. (8.4.27) to exist, the determinant of the generally 
complex coefficient matrix [K] must vanish. Since, in general, [K] can be complex, 
it may be computationally more convenient to substitute Eq. (8.4.26) into Eq. 
(8.4.27) to obtain 

[K][U]-I{Z(O)} = {O} (8.4.28a) 

and set the coefficient matrix in equation (8.4.28a) to zero: 

(8.4.28b) 

In this way the determinant in equation (8.4.28b) will always be a real number. 
However, it will have the same computational problem as IMI in Eq. (8.4.22). The 
key point in overcoming this difficulty is to rewrite Eq. (8.4.28b) as 

IKI/IUI = 0; (8.4.29) 

that is, to evaluate the determinants of [K] and [U] separately, rather than evaluating 
the determinant of ([K][U]-l). It should also be noted that, in this way, the inverse 
of [U] is never needed. For very thin shells (or long shells), computer overflow and 
underflow may occur when we evaluate the elements of the coefficient matrix [K] 
This problem is addressed in detail in [41]. However, it should be kept in mind that 
the determinant of [K] never becomes ill conditioned. In summary, after assuming a 
trial value for natural frequency (in free vibration analysis) or for buckling load (in 
stability analysis) for a particular m, we will impose the ten boundary conditions at 
Xl = ±L/2 on Eq. (8.4.17), derive Eq. (8.4.27) and check whether Eq. (8.4.29) is 
satisfied. It should be remembered that lUI appearing in Eq. (8.4.29) is never zero, 
since the eigenvectors in [U] are independent of each other. 

A remark must be made concerning the computation of eigenvalues and 
eigenvectors of the coefficient matrix [A]. Since the diagonal elements of [A] are 
all zero, during the computation of eigenvalues and eigenvectors computer overflow 
or underflow may occur. To resolve this problem, we can subtract a non-zero 
constant number from the diagonal elements of [A] and compute the eigenvalues 
and eigenvectors of the new matrix. The eigenvalues of [A] can then be obtained by 
adding the same number to each eigenvalue of the new matrix. The eigenvectors of 
[A] will be identical to those of the new matrix (see page 52 of [43]). 

8.4.3 Boundary Conditions 

A combination of boundary conditions may be assumed to exist at the edges of the 
shell. Here we classify these boundary conditions for the FST according to [41]: 

Simply supported 

Sl: Wo = Jl.h = (P2 = NI = N6 = 0, S2: Wo = Ml = (P2 = Uo = N6 = 0 

S3: Wo = MJ = rP2 = Nl = Vo = 0, S4: Wo = J\;h = rP2 = Uo = Vo = 0 (8.4.30) 
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Clamped 

C1: Wo = (PI = (P2 = N1 = N6 = 0, C2: Wo = (PI = cP2 = Uo = N6 = 0 

C3: Wo = cP1 = cP2 = N1 = Vo = 0, C4: Wo = cP1 = cP2 = Uo = Vo = 0 (8.4.31) 

Free edge 

(8.4.32) 

The boundary type S3 is referred to as a shear diaphragm by Leissa [44]. Similar 
boundary conditions may also be classified for the CST (see [41]). 

In the above discussion it was assumed that m -I 0 (non-axisymmetric case). For 
axisymmetric mode (Le., when m = 0) we have Vo = cP2 = 0, and Eqs. (8.4.9) and 
(8.4.10) become 

and 

ug = C\Uo + 03XO + 03W~ 
X~ = 04UO + 05XO + 0 4 W~ 
W~/ = 07U~ + OsXb + Og Wo 

(8.4.33) 

(8.4.34) 

where To(t) = eiwot for free vibration and To(t) = 1 for stability problems. The 
coefficients OJ (j = 1,2" ",9) appearing in Eq. (8.4.34) are 

where 

01 = (e2 - e1e6)/e13, O2 = (e3 - e1e7 )/e13, 

04 = (e6 - e5e2)/e13, 0 5 = (e7 - e5e3)/e13, 

07 = eg/e12, Os = elO, 

03 = (e4 - e1es)/e13 

06 = (es - e5e4)/e13 

Og = eu/e12 (8.4.35a) 

e1 = Bu/An, e2 = Iow6/A n e3 = -hW6/An, e4 = -A12/(RAn) 

e5 = Bn/Dn, e6 = -hw6/Dn, e7 = (Kg5 A55 - hW6)/Dn 
es = (Kg5A55 - B 12 / R)/ D n , eg = A 12 / R, elO = B 12 / R - Kg5A55 

eu = A22/ R2 - IoW6, e12 = Kg5A55 - ii, e13 = 1 - e1e5 (8.4.35b) 

In the stability problem, we let Wo -----7 0 in ej (j = 1,2"",13). In the vibration 
problem, when only the radial inertia is included, we will have 

e2 = e3 = e6 = 0, e7 = Kg5A55 / Dll 

For additional details and discussion, the reader may consult [41]. 

8.4.4 Numerical Results 

Numerical results are presented here for an orthotropic material with the following 
properties [42]: 

(8.4.36) 
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and for an isotropic material with Poisson ratio v = 0.25. It is assumed that 
K14 = Kg5 = Ks = 5/6 and the total thickness h of the shell is equal to 1 in. 
in all the numerical examples. Furthermore, all layers are assumed to be of equal 
thickness. 

The effect of altering the lamination scheme on the fundamental frequency of a 
cross-ply shell with various boundary conditions is shown in Table 8.4.1 (a number 
in parentheses denotes the circumferential mode number m). Note that in a (90/0) 
laminated shell, the fibers of the outside layer are in the circumferential direction 
and those of the inside layer are along the longitudinal axis of the shell. It is observed 
that, except for the S4-F case, the fundamental frequency for a (90/0) laminated 
shell is slightly smaller than that of a (0/90) laminated shell. However, an analysis 
based on a more accurate theory, known as the generalized layerwise shell theory 
[45] (also see Chapter 12), indicates that this exception for boundary type S4-F does 
not occur. 

Table 8.4.1: The effects of lamination and various boundary conditions on the 
dimensionless fundamental frequency Wm of a shell; R/ h = 60, 
L/ R = 1, N = 0 and wm = wm (L2 /10h)j p/ E2. 

Laminate Theory F-F S3-F C4-F S3-S3 S3-C4 C4-C4 

(0/90) FST 0.4096 (3) 0.4579 (3) 1.7158 (5) 2.8497 (6) 3.0291 (6) 3.2659 (6) 
CST 0.4098 (3) 0.4585 (3) 1.7193 (5) 2.8535 (6) 3.0358 (6) :3.2762 (6) 

(90/0) FST 0.4071 (3) 0.4542 (3) 1.7200 (5) 2.7747 (6) 2.9745 (6) :1.2424 (6) 
CST 0.4076 (3) 0.4545 (3) 1.7233 (5) 2.7788 (6) 2.9805 (6) 3.2508 (6) 

The numerical results indicate that, unless the shell is extremely short, the 
minimum axisymmetric frequency is always quite larger than the fundamental 
frequency of cross-ply and isotropic shells. This is particularly true for cross-ply 
shells as can be seen from Table 8.4.2, where the results are tabulated for cases 
C1-C1 through C4-C4. It should be noted that the effect of imposing various in-

Table 8.4.2: Comparison of the dimensionless fundamental frequency with 
dimensionless minimum axisymmetric frequency of a shell according 
to FST: R/h = 60, L/R = 1, N=O and wm = wm (L 2 /lOh)jp/E2 . 

Laminate C1 C1 C2C2 C3 C3 C4 C4 

(0/90) 3.0836 (6) 3.2007 (6) 3.1133 (6) 3.2659 (6) 
14.1068 (0) 14.1198 (0) 14.1068 (0) 14.1198 (0) 
14.1140 (0) 14.1239 (0) 14.1140 (0) 14.1239 (0) 

Isotropic 1.9928 (6) 2.1882 (5) 2.0196 (6) 1.2090 (6) 
6.0155 (0) 6.1657 (0) 6.0155 (0) 6.1657 (0) 
6.0155 (0) 6.1657 (0) 6.0155 (0) 6.1657 (0) 
6.0368 (0) 6.1685 (0) 6.0:368 (0) 6.1685 (0) 
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plane boundary conditions is more severe for isotropic shells than cross-ply shells. 
In Table 8.4.2, two minimum axisymmetric frequencies are presented. The second 
number, which is slightly larger than the first one, corresponds to the case when 
only the radial force is included. For additional discussion, see [41]. 

The influence of various simply supported boundary conditions on the critical 
buckling load of laminated and isotropic shells can be studied with the help of 
Table 8.4.3. As in the frequency problem, it is seen that various in-plane boundary 
conditions have more severe influence on the critical buckling load of isotropic shells. 
Also, the minimum axisymmetric buckling load in isotropic shells is relatively larger 
than the critical buckling load in cross-ply shells. Indeed, the actual computations 
indicate that only for extremely short cross-ply shells the axisymmetric buckling 
load will be the actual critical load. It should be noted that the bending-extension 
coupling induced by the lamination asymmetry substantially decreases the buckling 
loads. However, for antisymmetric cross-ply shells, the effect of the coupling 
dies out rapidly as the number of layers is increased, as can be seen from the 
results of Table 8.4.4. Note that we have not generated any numerical results for 
unsymmetric cross-ply shells. Furthermore, for antisymmetric cross-ply shells we 
have B12 = B66 = 0, B22 = -B11, A22 = A11 and D22 = D 11 . 

Table 8.4.3: The effects of various simply supported conditions on the 
dimensionless critical buckling load N of cross-ply shells [N = 
N L2 /(100h3 E 2 )] and an isotropic shell [N = N L2 /(lOh 3 E)]; R/h = 
40 and L/R = 2. 

Laminate Theory 81-81 82-82 83-83 84-84 

(90/0) FST 1.5451 (4) 1.5793 (4) 1.8479 (6) 1.8849 (6) 
3.6512 (0) 3.6637 (0) 3.6512 (0) 3.6637 (0) 

CST 1.5705 (4) 1.6081 (4) 1.8663 (6) 1.9044 (6) 
3.7693 (0) 3.7839 (0) 3.7693 (0) 3.7839 (0) 

(0/90/0) FST 1.8234 (4) 1.8266 (5) 2.0372 (6) 2.0959 (6) 
5.5233 (0) 5.5233 (0) 5.5233 (0) 5.5233 (0) 

CST 1.8396 (5) 1.8430 (5) 2.0507 (6) 2.1095 (6) 
5.7739 (0) 5.7739 (0) 5.7739 (0) 5.7739 (0) 

Isotropic F8T 4.7535 (1) 4.7560 (1) 9.4428 (3) 9.4440 (3) 
9.5074 (0) 9.5128 (0) 9.5074 (0) 9.5128 (0) 

CST 4.8062 (1) 4.8090 (1) 9.5548 (4) 9.5492 (3) 
9.5923 (0) 9.5977 (0) 9.5923 (0) 9.5977 (0) 
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Table 8.4.4: The influences of lamination and boundary conditions on the 
dimensionless critical buckling load N of a shell according to FST: 
R/h = 80, L/R = 1 and N = NL2 /(lOh3E2 ). 

Lamination F-F S3-F C4-F S3- S3 C4C4 

(90/0) 1.6372 (5) 2.1895 (4) 5.2273 (8) 9.3966 (9) 9.8950 (8) 
(0/90) 1.6329 (5) 2.1753 (4) 5.2542 (8) 9.3325 (8) 9.8394 (8) 
(90/0/90/00 2.4524 (5) 3.4898 (4) 6.2835 (7) 11.6085 (7) 12.5659 (8) 
(0/90/0/90) 2.4486 (5) ;1.4775 (4) 6.2953 (7) 11.6417 (7) 12.5078 
(90/0/90/0/90/0) 2.5988 (5) 3.7177 (4) 6.4610 (7) 11.9466 (7) 12.9768 (7) 
(0/90/0/90/0/90) 2.5961 3.7089 (4) 6.4691 (7) 11.9688 (7) 12.9381 (7) 
(90/0;' .. /100 layers) 2.7138 (5) 3.8941 (4) 6.6030 (7) 12.2219 (7) 13.2932 (7) 
(0/90;' . ./100 layers) 2.7136 (5) 3.8935 (4) 6.6035 (7) 12.2233 (7) 13.2909 (7) 

Problems 

8.1 Verify the strain-displacement relations in (8.2.22). 

8.2 Verify the strain-displacement relations in (8.2.24). 

8.3 Show that the equations of motion associated with a cylindrical shell of radius Rare 

(1) 

(2) 

(3) 

(4) 

(5) 

where .1:1 = X, X2 = Re, RI = 00, and R2 = R. 
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Linear Finite Element Analysis of 
Composite Plates and Shells 

9.1 Introduction 

In Chapters 4 through 8, the Navier, Levy, and variational (Ritz) solutions to 
the equations of composite beams, plates and shells were presented for simple 
geometries. However, exact analytical or variational solutions to these problems 
cannot be developed when complex geometries, arbitrary boundary conditions, or 
nonlinearities are involved. Therefore, one must resort to approximate methods of 
analysis that are capable of solving such problems. 

The finite element method is a powerful computational technique for the solution 
of differential and integral equations that arise in various fields of engineering and 
applied science. The method is a generalization of the classical variational (i.e., Ritz) 
and weighted-residual (e.g., Galerkin, least-squares, collocation, etc.) methods [1-
5]. Since most real-world problems are defined on domains that are geometrically 
complex and may have different types of boundary conditions on different portions 
of the boundary of the domain, it is difficult to generate approximation functions 
required in the traditional variational methods. The basic idea of the finite element 
method is to view a given domain as an assemblage of simple geometric shapes, called 
finite elements, for which it is possible to systematically generate the approximation 
functions needed in the solution of differential equations by any of the variational 
and weighted-residual methods. The ability to represent domains with irregular 
geometries by a collection of finite elements makes the method a valuable practical 
tool for the solution of boundary, initial, and eigenvalue problems arising in various 
fields of engineering. The approximation functions are often constructed using ideas 
from interpolation theory, and hence they are also called interpolation functions. 
Thus the finite element method is a piecewise (or element wise) application of the 
variational and weighted-residual methods. For a given differential equation, it is 
possible to develop different finite element approximations (or finite element models), 
depending on the choice of a particular variational or weighted-residual method. For 
a detailed introduction to the finite element method, the reader is advised to consult 
References 1-5. 
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The major steps in the finite element analysis of a typical problem are (see Reddy 
[1,2]) 

1. Discretization of the domain into a set of finite elements (mesh generation). 

2. Weighted-integral or weak formulation of the differential equation over a typical 
finite element (subdomain). 

3. Development of the finite element model of the problem using its weighted
integral or weak form. The finite element model consists of a set of algebraic 
equations among the unknown parameters of the element. 

4. Assembly of finite elements to obtain the global system (i.e., for the total 
problem) of algebraic equations. 

5. Imposition of boundary conditions. 

6. Solution of equations. 

7. Post-computation of solution and quantities of interest. 

The above steps of the finite element method make it a modular technique that 
can be implemented on a computer, independent of the shape of the domain and 
boundary conditions. In addition, the method allows coupling of various physical 
problems because finite elements based on different physical problems can be easily 
generated in the same computer program. 

In this chapter, we develop finite element models of the linear equations governing 
laminated composite plates and shells. The objective is to introduce the reader to the 
finite element formulations of laminated composite structures. While the coverage 
is not exhaustive in terms of solving complicated problems, for this is primarily a 
textbook, it helps the reader in gaining an understanding of the plate and shell finite 
elements used in the analysis of practical problems. 

It is important to note that any numerical or computational method is a means to 
analyze a practical engineering problem and that analysis is not an end in itself but 
rather an aid to design. The value of the theory and analytical solutions presented 
in the preceding chapters to gain insight into the behavior of simple laminated beam 
and plate structures is immense in the numerical modeling of complicated problems 
by the finite element method or any numerical method. Those who are quick to use a 
computer rather than think about the problem to be analyzed may find it difficult to 
interpret or explain the computer-generated results. Even to develop proper input 
data to a computer program requires a good understanding of the underlying theory 
of the problem as well as the method on which the program is based. 

9.2 Finite Element Models of the Classical 
Plate Theory (CLPT) 

9.2.1 Weak Forms 

In this section, finite element models of Eqs. (6.1.1)-(6.1.3) governing the motion of 
laminated plates according to the classical laminate theory are developed. For the 
sake of brevity, Eqs. (3.3.25), which are expressed in terms of the stress resultants 
but equivalent to Eqs. (6.1.1)-(6.1.3), are used to develop the weak forms. 
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Multiplying three equations in (3.3.25) with 8uo, 8vo, and 8wo, respectively, and 
integrating over the element domain, we obtain 

1 [ aNxx aNxy a2uo a
2 

(aWO)] 0= 8uo ------+Io~--h~ - dxdy 
flC ax ay at2 at2 ax 

(9.2.1a) 

(9.2.1b) 

(9.2.1c) 

where N.Tx, Nxy , and Nyy are in-plane edge forces. The stress and moment resultants 
N xx , A{rx, etc. are known in terms of the displacements (uo, vo, wo) through Eq. 
(3.3.40). Note that the virtual displacements (8uo, 8vo, 8wo) take the role of weight 
functions in the development of weak forms. Integration by parts to weaken the 
differentiability of uo, va, and Wo results in the expressions 

r [a8uo a8uo a2uo a
2 

(awo)] o - Jne ~ N.TX + ay N.r;y + Io8uo at2 - h 8uo at2 ax dxdy 

- Ire (Nxxnx + Nxyny) Duo ds (9.2.2a) 
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where (nx, ny) denote the direction cosines of the unit normal on the element 
boundary re. Integration by parts of the inertia terms in the last equation is 
necessitated by the symmetry considerations of the resulting weak form, which leads 
to symmetric mass matrix in the finite element model. 

We note from the boundary terms in Eq. (9.2.2) that uo, vo, wo, awol ax, and 
awol ay are the primary variables (or generalized displacements), and 

are the secondary degrees of freedom (or generalized forces). Thus, finite elements 
based on the classical plate theory require continuity of the transverse deflection 
and its normal derivative across element boundaries. Also, to satisfy the constant 
displacement (rigid body mode) and constant strain requirements, the polynomial 
expansion for Wo should be a complete quadratic. 

9.2.2 Spatial Approximations 

First, we note that the stress and moment resultants contain first-order derivatives 
of (uo, vo) and second-order derivatives of Wo with respect to the coordinates x 
and y. Second, the primary variables Uo, vo, Wo, awolax, and awolay must be 
carried as the nodal variables in order to enforce their interelement continuity. Thus, 
the displacements (uo, vo) must be approximated using the Lagrange interpolation 
functions, whereas Wo should be approximated using Hermite interpolation functions 
over an element ne. Let 

m 

uo(x, y, t) ~ L uj(t)1/Jj(x, y) 
j=l 
m 

vo(x, y, t) ~ L vj (t)1/Jj (x, y) 
j=l 

n 

wo(x, y, t) ~ L ~k(t)'Pk(x, y) 
k=l 

(9.2.4) 
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where (uj, vj) denote the values of (ua, va) at the jth node of the Lagrange elements, 
,6,k denote the values of Wa and its derivatives with respect to x and y at the 
k-th node, and (?/Jj, <ph:) are the Lagrange and Hermite interpolation functions, 
respectively. 

Lagrange Interpolation Functions 

The Lagrange interpolation functions ?/J'f(x, y) used for the in-plane displacements 
(ua, va) can be derived as described for the one-dimensional functions (see Reddy 
[1], Chapter 9). The simplest Lagrange element in two dimensions is the triangular 
element with nodes at its vertices (see Figure 9.2.1), and its interpolation functions 
have the form 

(9.2.5a) 

The functions are linear in x and y, complete, and have nonzero first derivatives 
with respect to x and y. The linear triangular element (i.e., element with linear 
variation of the dependent variables) can represent only a constant state of strains: 

y 

1 

2 

x 

(a) 

\jf1 

1 

2 2 

1 

(b) 

Figure 9.2.1: Linear Lagrange triangular element and its interpolation functions. 
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3 Oo/,e 3 
o ""' e 'Vi ""' eb cxx = LUi 8 = LUi i, 

i=l X i=l 

(9.2.5b) 

For this reason the linear triangular element is known as the constant strain triangle 
(CST). A triangular element with quadratic variation of the dependent variables 
requires six nodes, because a complete quadratic polynomial in two dimensions has 
six coefficients: 

(9.2.6a) 

The three vertex nodes uniquely describe the geometry of the element (as in the 
linear element), and the other three nodes are placed at the midpoints of the sides 
(see Figure 9.2.2). The quadratic triangular element represents a state of linear 
strains: 

6 6 

c~x = L uf (bi + 2eiX + diy) , C~y = Lvi (Ci + dix + 2fiy) 
i=l i=l 

6 

2c~y = L [U~ (Ci + dix + 2fiY) + vj (bi + 2eiX + diy)] (9.2.6b) 
i=l 

The interpolation functions for linear and quadratic triangular elements are 
presented below in terms of the area coordinates, Li (see Figures 9.2.1 and 9.2.2): 

1/J'l L1 (2L1 - 1) 
1/J2 L2(2L2 - 1) 
1/J§ L3(2L3 - 1) 
1/J4 4L1L2 

(9.2.7a) 

1/Js 4L2 L3 
1/Jr, 4L3L1 

where Li are the area coordinates defined within an element 

11i 3 
Li = 11' 11= LA 

i=l 

(9.2.7b) 

h 

-I 
1 

Figure 9.2.2: Quadratic Lagrange triangular element. 
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The simplest rectangular element has four nodes at vertices (see Figure 9.2.3), 
which define the geometry. The interpolation functions for this element have the 
form 

(9.2.8a) 

The strains in the linear rectangular element are partially linear (i.e., at least linear 
in one coordinate) 

4 4 

E~x = L ur (bi + diy) , E~y = Lvi (Ci + dix) 
i=l j=l 

4 

2E~y = L [ur (Ci + dix) + vi (bi + diy)] 
i=l 

(9.2.8b) 

Note that the shear strain is represented as a bilinear function of the coordinates. 

x 

(a) 

3 

1 

2 2 

3 

2 2 
(b) 

Figure 9.2.3: Linear Lagrange rectangular element and its interpolation 
functions. 
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A rectangular element with a complete quadratic polynomial representation 

'ljJf(x, y) = ai+biX + CiY + dixy + eix2 + fiy2 + 9ix2 y 

+hixy2 + kix
2y2 (9.2.9a) 

contains nine parameters and hence nine nodes (see Figure 9.2.4). In these elements 
the strains are represented at least as bilinear: 

9 

E~x = L ui (bi + 2eix + diy + 29iXy + hiy2 + 2kiXy2) 
i=1 

9 

E~y = L vi (Ci + dix + 2fiy + 2hixy + 9iX2 + 2kix
2
y) 

j=1 

(9.2.9b) 

and the shear strain is represented as a bi-quadratic function of the coordinates. 
The linear and quadratic Lagrange interpolation functions of rectangular 

elements are given below in terms of the element coordinates (~, 7]), called the natural 
coordinates. 

1 
-

4 

{ ~! } = ~ { 1: ! ~m ~ ~ l } 
'ljJ4 (1 - ~)(1 + 7]) 

(1 - ~)(1 - 7])( -~ - 7] - 1) + (1 - e) (1 - 7]2) 
(1 + ~)(1-7])(~ -7] -1) + (1- e)(1-7]2) 
(1 + ~)(1 + 7])(~ + 7] - 1) + (1 - e)(l - 7]2) 

(1 - ~)(1 + 7])( -~ + 7] - 1) + (1 - e)(l - 7]2) 
2(1 - ~2)(1 - 7]) - (1 - ~2)(1 - 7]2) 
2(1 + ~)(1 - 7]2) - (1 - e)(l - 7]2) 
2(1 - e) (1 + 7]) - (1 - e)(l - 7]2) 
2(1 - ~)(1 - 7]2) - (1 - e)(l - 7]2) 

4(1 - ~2)(1 - 7]2) 

8 ~ 
6 9 o------()----.. 

1 5 2 

Figure 9.2.4: Nine-node quadratic Lagrange rectangular element. 

(9.2.10) 

(9.2.11) 
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The serendipity family of Lagrange elements are those elements which have no 
interior nodes. Serendipity elements have fewer nodes compared to the higher
order Lagrange elements. The interpolation functions of the serendipity elements 
are not complete, and they cannot be obtained using tensor products of one
dimensional Lagrange interpolation functions. Instead, an alternative procedure 
must be employed, as discussed in Reference 1. The interpolation functions for the 
quadratic serendipity element are given in Eq. (9.2.12) below (also see Figure 9.2.5). 
Although the interpolation functions are not complete because the last term in Eq. 
(9.2.9a) is omitted, the serendipity elements have proven to be very effective in most 
practical applications (serendipity!). 

(1 - ~)(1 - 7])( -~ - 7] - 1) 
(1 + ~)(1 - 7])(~ - 7] - 1) 
(1 + ~)(1 + rl)(~ + 7] - 1) 

1 (1 - 0(1 + 7])( -~ + rl - 1) 
4 2(1 _~2)(1 -7]) 

2(1 + ~)(1 - 7]2) 
2(1 - e)(l + 7]) 
2(1 - ~)(1 - 7]2) 

Hermite Interpolation Functions 

(9.2.12) 

There exists a vast literature on triangular and rectangular plate bending finite 
elements of isotropic or orthotropic plates based on the classical plate theory (e.g., 
see References 6-27). Here we discuss triangular and rectangular C 1 plate bending 
elements. 

There are two kinds of C 1 plate bending elements. A conforming element is one 
in which the interelement continuity of Wn, awo/ax, and awo/ay (or awn/an) is 
satisfied, and a nonconforming element is one in which the continuity of the normal 
slope, awn / an, is not satisfied. 

An effective nonconforming triangular element (the BCIZ triangle) was developed 
by Bazeley, Cheung, Irons, and Zienkiewicz [7], and it consists of three degrees of 
freedom (wo, -awo/ay, awn/ax) at the three vertex nodes (see Figure 9.2.6). The 
interpolation functions for the linear triangular element can be expressed in terms 

7J 

8 
6 

1 5 2 

Figure 9.2.5: Eight-node quadratic serendipity rectangular element. 
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z L-------=-~A 3 -------

L-____________________________________________ -.~ x,S=~ 

Figure 9.2.6: A nonconforming triangular element with three degrees of freedom 
(wo, ow%x, ow%y) per node. 

of the area coordinates as 

L1 + LrL2 + LrL3 - L1L~ - L1L§ 
X31 (L3 Lr - f) - X12(Lr L2 + f) 
Y31 (L3 Lr + f) - Y12(Lr L2 + f) 

L2 + L~L3 + L~L1 - L2L§ - L2Lr 
X12(L1L~ - f) - X23(L~L3 + f) 
Y12(L1L~ + f) - Y23(L~L3 + f) 

L3 + L§L1 + L§L2 - L3Lr - L:IL~ 
x23(L2L§ - f) - X31(L§L1 + f) 
Y23(L2L§ + f) - Y31(L§L1 + f) 

(9.2.13) 

where f = 0.5L1L2 L3, Xij = Xi - Xj, and Yij = Yi - Yj, (Xi, Yi) being the global 
coordinates of the ith node. 

A conforming triangular element due to Clough and Tocher [22] is an assemblage 
of three triangles as shown in Figure 9.2.7. The normal slope continuity is enforced 
at the midside nodes between the subtriangles. In each subtriangle, the transverse 
deflection is represented by the polynomial (i = 1, 2, 3) 

where (~, 77) are the local coordinates, as shown in the Figure 9.2.7. The thirty 
coefficients are reduced to nine, three (wo,ow%x,ow%y) at each vertex of the 
triangle, by equating the variables from the vertices of each subtriangle at the 
common points and normal slope between the midside points of subtriangles. 

A nonconforming rectangular element has Wo, Ox, and Oy as the nodal variables 
(see Figure 9.2.8). The element was developed by Melosh [18] and Zienkiewicz and 
Cheung [19]. The normal slope varies cubically along an edge whereas there are only 
two values of ow%n available on the edge. Therefore, the cubic polynomial for the 
normal derivative of Wo is not the same on the edge common to two elements. The 
interpolation functions for this element can be expressed compactly as 
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dWo dWO 
W O'-'-

dX dy 

z L __ ~c:~,3 

L-------------------------------~X,~=~ 

Figure 9.2.7: A conforming triangular element with three degrees of freedom. 

where 

rp~ = gil (i = 1,4,7, 10); rp~ = gi2 (i = 2,5,8,11) 

rpi = gi3 (i = 3,6,9,12) 

1 2 2 
gil =8(1 + ~0)(1 + 7]0)(2 + ~o + 7]0 - ~ - 7] ) 

1 2 
gi2 =8~i(~0 - 1)(1 + 7]0)(1 + ~o) 

1 2 
gi3 =87]i(7]0 - 1)(1 + ~0)(1 + 7]0) 

~ =(x - xc)/2, 7] = (y - yc)/b, ~o = ~~i, 7]0 = 7]7]i 

(9.2.15a) 

(9.2.15b) 

where 2a and 2b are the sides of the rectangle, and (xc, Yc) are the global coordinates 
of the center of the rectangle. 

z 

,14------ 2a 

Y,l1=L 
b 

2 
~/ 
1 

x, ~=...£ a 

Figure 9.2.8: A nonconforming rectangular element with three degrees of 
freedom (wo, 8wO / 8x, 8wo / 8y) per node. 
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A conforming rectangular element with wo, 8wo/8x, 8wo/8y, and 82wo/8x8y 
as the nodal variables was developed by Bogner, Fox, and Schmidt [20]. The 
interpolation functions for this element (see Figure 9.2.9) are 

where 

!.pi =gil (i = 1,5,9,13); !.pi = gi2 (i = 2,6,10,14) 

!.pi =gi3 (i = 3,7,11,15); !.pi = gi4 (i = 4,8,12,16) 

122 
gil = 16 (~+ ~d (~o - 2)(7] + 7]i) (7]0 - 2) 

122 
gi2 =16~i(~ + ~i) (1 - ~0)(7] + 7]i) (7]0 - 2) 

1 2 2 
gi3 =167]i(~ + ~i) (~o - 2)(7] + 7]i) (1 -7]0) 

1 2 2 
gi4 = 16~i7]i(~ + ~i) (1 - ~0)(7] + 7]i) (1 - 770) 

(9.2.16a) 

(9.2.16b) 

In this book we will use the Lagrange linear rectangular element for in-plane 
displacements and the conforming and nonconforming rectangular elements for 
bending deflections to present numerical results. The combined conforming element 
has a total of six degrees of freedom per node, whereas the nonconforming element 
has a total of five degrees of freedom per node. For the conforming rectangular 
element (m = 4 and n = 12) the total number of nodal degrees of freedom per 
element is 24, and the nonconforming element the total number of degrees of freedom 
per element is 12. 

z y, T\=L 
b 

---- 2a---____ .,"'t 2 

Figure 9.2.9: A conforming rectangular element with four degrees of freedom 
(wo, 8wo/8x, 8wo/8y, 82wo/8x8y) per node. 
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9.2.3 Semidiscrete Finite Element Model 

Substituting approximations (9.2.4) for the displacements and the ith interpolation 
function for the virtual displacement (8uo rv 1/Ji, 8vo rv 1/Ji, 8wo rv CPi) into the weak 
forms, we obtain the ith equation associated with each weak form 

m 

O '"' (K31 e K 32 e M 31 ··e M 32 .. e ) =L ~~+ ~~+ ~~+ ~~ 
j=l 

n 

+ '"' [(K33 + Ce ) ~e + M33 he] F3 F T3 
L k€ ke £ k£ L...:;,. £ - k - k (9.2.17) 
£=1 

where i = 1,2,···, m; k = 1,2,···, n. The coefficients of the stiffness matrix 
K a{"3 = K{3n mass matrix Ma.{3 M!!a (symmetric), and force vectors F? and 

2J J~ , ZJ JZ " 

Fta are defined as follows: 

K 11 - A SXX A (SXY syx) A SYY ij - 11 ij + 16 ij + ij + 66 ij 

K 12 A SxY A SXX A SYY A Syx ij = 12 ij + 16 ij + 26 ij + 66 ij 

Kll = A66 Sil + A26 (Sfl + SYjX) + A22 SYl 

K 1:3 - B RXXX B RXYY 2B RXxy B RYxX B RYYY 2B RYxy 
ik - - 11 ik - 12 ik - 26 ik - 16 ik - 26 ik - 66 ik 

K 23 - B RXXX B RXYY 2B RXxy B RYxX B RYYY 2B RYxy 
ik - - 16 ik - 26 ik - 66 ik - 12 ik - 22 ik - 26 ik 

K 33 - D T XXXX + D (TxXYY + T YYxX ) + 2D (TXXXY + T XYXX ) k€ - 11 k£ 12 k£ k£ 16 k£ k£ 

+ 2D26 (T:r
y + T%r

y
) + 4D66T:r

y + D22T%fYY 

C c - r [N' S'xx N' (S'XY s'yx) N' S'YY] d d ij - In. xx ij + xy ij + ij + YY ij X Y 

M 11 J T o/,eo/,e d d M13 J I o/,e acp'k d d ij = 10'f/i'f/j X y, ik = - l'f/i-a x Y 
n' n- x 

Mi~2 = r Io1/Ji1/J'j dxdy, Mlk3 = - r h 1/Ji aaCP'k dxdy k· l~ y 

33 r [ e e (acp'k acpg acp'k acpg)] 
Mk£ = l~ IOCPkCPe + h ax ax + ay ay dxdy 

F/ = 1 Px1/Ji ds, F? = r py1/Ji ds 
~. lr. 

3 Jed d i (Q e T acp'k acp'k) d Fk = qCPk xy+ nCPk+ x-a +TY-
a 

s 
n- r e x y 

pT1 = r (a1/Ji NT + a1/Ji NT) dxdy pT2 = r (a1/Ji NT + a1/Ji NT) 
Z In. ax xx ay xy '~l~ ax xy ay YY dxdy 

Fj{3 = r (aa2~k MJ'x + 2aa2cpak Nr~ + aa2~k M~) dxdy 
lnc x x y y. 

(9.2.18a) 
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where NIx, MIx, etc. are the thermal force and moment resultants [see Eq. (3.3.41)]' 
and 

(9.2.18b) 

and ~,Tj, (, and J1 can be equal to x or y. In matrix notation, Eq. (9.2.17) can be 
expressed as 

[K12] 
[K22] 

[K23 ]T 

[0] 
[M22] 

[M23]T 

(9.2.19) 

This completes the finite element model development of the classical laminate 
theory. The finite element model in Eq. (9.2.17) or (9.2.19) is called a displacement 
finite element model because it is based on equations of motion expressed in terms of 
the displacements, and the generalized displacements are the primary nodal degrees 
of freedom. 

It should be noted that the contributions of the internal forces defined in Eq. 
(9.2.3) to the force vector will cancel when element equations are assembled. They 
will remain in the force vector only when the element boundary coincides with the 
boundary of the domain being modeled (see Reddy [1], pp. 313-318). Of course, 
the contributions of the applied loads (i.e., q(x, y) and t::..T(x, y)) to a node will add 
up from elements connected at the node and remain as a part of the force vector. 

9.2.4 Fully Discretized Finite Element Models 

Static Bending 

In the case of static bending under applied mechanical and thermal loads, Eq. 
(9.2.19) reduces to 

[K12] 
[K22] 

[K23F 
where it is understood that all time-derivative terms are zero. 

Buckling 

(9.2.20) 

In the case of buckling under applied in-plane compressive and shear edge loads, 
Eq. (9.2.19) reduces to 

[K12] 
[K22] 
[K23 ]T 

[0] 
[0] 
[0] 
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where 

(9.2.22) 

and all time-derivative terms are zero. 

Natural Vibration 

In the case of natural vibration, the response of the plate is assumed to be 
periodic 

(9.2.23) 

where {.6. O} is the vector of amplitudes (independent of time) and w is the frequency 
of natural vibration of the system. Substitution of Eq. (9.2.23) into Eq. (9.2.19) 
yields 

[K12] 
[K22] 

[K23 jT 

Transient Analysis 

For transient analysis, Eq. (9.2.19) can be written symbolically as 

(9.2.24) 

(9.2.25) 

where [Ke] (which may contain [ce]) and [Me] are the stiffness and mass matrices 
appearing in Eq. (9.2.19), and 

(9.2.26) 

Equation (9.2.25) represents a set of ordinary differential equations in time. To fully 
discretize them (i.e., reduce them to algebraic equations), we mllst approximate the 
time derivatives. Here we discuss the Newmark time integration scheme [1,2,28] for 
a more general equation than that in (9.2.25). 

Consider matrix equation of the form 

(9.2.27) 
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where [eel denotes the damping matrix (due to structural damping and/or velocity 
proportional feedback control), [Me] the mass matrix, and [Ke] the stiffness matrix. 
The global displacement vector {~} is subject to the initial conditions 

{~(O)} = {~}o, (9.2.28) 

In the Newmark method [28], the function and its time derivatives are approximated 
according to 

. 1 2·· 
{~}s+l = {~}s + Ot{~}s + 2(ot) {~}s+1' 

{A}s+1 = {A}s + {Li}s+aOt 
{Li}s+a = (1 - a){Li}s + a{Lih+l 

(9.2.29a) 

(9.2.29b) 

(9.2.29c) 

and a and "( are parameters that determine the stability and accuracy of the scheme, 
and ot is the time step. For a = 0.5, the following values of"( define various well
known schemes: 

l
~' the constant-average acceleration method (stable) 
~, the linear acceleration method (conditionally stable) 

"( = 0, the central difference method (conditionally stable) 
~, the Galerkin method (stable) 
2, the backward difference method (stable) 

(9.2.30) 

The set of ordinary differential equations in (9.2.27) can be reduced, with the 
help of Eqs. (9.2.29a-c), to a set of algebraic equations relating {~}s+1 to {~}s. 
We have 

where 

[K]S+1 = [K]s+1 + a3[M]s+1 + a6[e]s+1 

{Fh,s+1 = {F}s+1 + [M]s+1 {A}s + [C]s+1 {B}s 

{A}s = a3{~}s + a4{A}s + as{Li}s 
{B}s = a6{~}s + adA}s + as{Lih 

and ai, i = 1,2, ... ,8, are defined as h = 2(3) 

1 
a1 = aot, a2 = (1 - a)ot, a3 = (3(Ot)2' a4 = a30t 

as = ~ - 1, a6 = (3~t' a7 = ~ - 1, as = Ot (~ - 1) 

(9.2.31) 

(9.2.32) 

(9.2.33) 

Note that in Newmark's scheme the calculation of [K] and {F} requires 
knowledge of the initial conditions {~}o, {A }o, and {Li }o. In practice, one does not 
know {Li }o. As an approximation, it can be calculated from the assembled system 



FINITE ELEMENT ANALYSIS OF COMPOSITE PLATES AND SHELLS 503 

of equations associated with (9.2.31) using initial conditions on {Ll}, {A}, and {F} 
(often {F} is assumed to be zero at t = 0): 

{Li}o = [Mr 1 ({F}o - [K]{Ll}o - [C]{A}) (9.2.34) 

At the end of each time step, the new velocity vector {A L+l and acceleration vector 
{Li L+l are computed using the equations 

{ Li } s+ 1 = a3 ( { Ll } s+ 1 - {Ll L) - a4 { A } s - a5 { Li } s 

{A}s+l = {A}s + a2{Li}s + adLi}s+l 

where al and a2 are defined in Eq. (9.2.33). 
Returning to Eq. (9.2.25), the fully discretized system is given by 

[ke]S+l = ([Ke]s+l + [Ce]s+d + a:dMe]s+l 

{Fe} = {Fe}s+l + [Me]s+l {Ae} 

{Ae} = (a3{Lie}s + a4{A
e

}s + a5{~e}S) 

9.2.5 Quadrilateral Elements and Numerical Integration 

Introduction 

(9.2.35) 

(9.2.36a) 

(9.2.36b) 

An accurate representation of irregular domains (i.e., domains with curved 
boundaries) can be accomplished by the use of refined meshes and/or irregularly 
shaped elements. For example, a nonrectangular region cannot be represented 
using all rectangular elements; however, it can be represented by triangular and 
quadrilateral elements. However, it is easy to derive the interpolation functions for a 
rectangular element, and it is easier to evaluate integrals over rectangular geometries 
than over irregular geometries. Therefore, it is practical to use quadrilateral 
elements with straight or curved sides but have a means to generate interpolation 
functions and evaluate their integrals over the quadrilateral elements. A coordinate 
transformation between the coordinates (x, y) used in the formulation of the 
problem, called global coordinates, and the element coordinates (x, y) used to derive 
the interpolation functions of rectangular elements is introduced for this purpose. 
The transformation of the geometry and the variable coefficients of the differential 
equation from the problem coordinates (x,y) to the local coordinates (x, y) results 
in algebraically complex expressions, and they preclude analytical (i.e., exact) 
evaluation of the integrals. Therefore, numerical integration is used to evaluate 
such complicated expressions. 

While the element coordinate system, also called a local coordinate system, can be 
any convenient system that permits easy construction of the interpolation functions, 
it is useful to select one that is also convenient in the numerical evaluation of the 
integrals. Numerical integration schemes, such as the Gauss-Legendre numerical 
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integration scheme, require the integral to be evaluated on a specific domain or with 
respect to a specific coordinate system. Gauss quadrature, for example, requires 
the integral to be expressed over a square region 0 of dimension 2 x 2 and the 
coordinate system (~, ry) be such that -1 :s: (~, ry) :s: 1. The coordinates (~, ry) are 
called normalized or natural coordinates. Thus, the transformation between (x, y) 
and (~, ry) of a given integral expression defined over a quadrilateral element oe to 
one on the domain 0 facilitates the use of Gauss-Legendre quadrature to evaluate 
integrals. The element 0 is called a master element (see Reddy [1], Chapter 9). 

Coordinate Transformations 

The transformation between oe and 0 is accomplished by a coordinate 
transformation of the form 

m m 

X = L xj~j(~, ry) , y = Lyj~j(~, ry) (9.2.37) 
j=1 j=1 

while a typical dependent variable u(x, y) is approximated by 

n n 

u(x, y) = L uj7f;j(x, y) = L uj7f;j(x(~, ry), y(~, ry)) (9.2.38) 
j=1 j=1 

where ~j denote the interpolation functions of the master element 0 and 7f;j are 
interpolation functions of a typical element oe over which u is approximated. 
Although the Lagrange interpolation of the geometry is implied by Eqs. (9.2.27) and 
(9.2.28), one can also use Hermite interpolation of the geometry and/or the solution 
as required. The transformation (9.2.27) maps a point (x, y) in a typical element oe 
of the mesh to a point (~, ry) in the master element 0, and vice versa if the Jacobian 
of the transformation is positive-definite. The positive-definite requirement of the 
Jacobian dictates admissible geometries of elements in a mesh (see Reddy [1], pp. 
421-448). 

The interpolation functions 7f;j used for the approximation of the dependent 

variable are, in general, different from ~j used in the approximation of the geometry. 
Depending on the relative degree of approximations used for the geometry and 
the dependent variable( s), the finite element formulations are classified into three 
categories. 

1. Superparametric (m > n): The polynomial degree of approximation used for the 
geometry is of higher order than that used for the dependent variable. 

2. Isoparametric (m = n): Equal degree of approximation is used for both geometry 
and dependent variables. 

3. Subparametric (m < n): Higher-order approximation of the dependent variable 
is used. 

For example, in the finite element analysis of the Euler-Bernoulli beams, we may 
use linear Lagrange interpolation of the geometry 

2 

x = LXj~j(~) (9.2.39) 
j=1 
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whereas the Hermite cubic interpolation is used to approximate the transverse 
deflection 

4 

WO(X) = L ~jipj(X(~)) (9.2.40) 
j=1 

Then we say that subparametric formulation is used for the transverse deflection WOo 
In the Timoshenko beam element we can use the same degree of interpolation for 
both geometry and dependent variables. Then we say that isoparametric formulation 
is used for the transverse deflection Wo and rotation ¢x. 

An example of the coordinate transformation in one dimension is provided by 
the linear transformation, which maps straight lines into straight lines 

(9.2.41a) 

where xl = Xe and x2 = Xe+1, XI being the global coordinate of the ith node of 
the eth element, and XI denotes the global coordinate of the Ith global node of the 
mesh. The transformation (9.2.41a) can be expressed directly in terms of X and ~: 

(9.2.41b) 

where he = Xe+1 - Xe is the element length. Note that the Lagrange and Hermite 
interpolation functions defined in Eqs. (9.2.39) and (9.2.40), respectively, can be 
written in terms of the natural coordinate ~ with the help of the linear coordinate 
transformation (9.2.41): 

he 2 ip2 = --(1 - ~)(1 - ~ ) 
8 

he 2 
ip4=8(1+~)(1-~ ) 

(9.2.42) 

(9.2.43) 

It should be noted that, once the approximations of geometry and solution 
are selected, the coordinate transformations have the sole purpose of numerically 
evaluating the integrals inside the computer program. No transformation of the 
physical domain or the solution is involved in the finite element analysis. The 
resulting algebraic equations of the finite element formulation are always among the 
nodal values of the physical domain and the nodal values are referred to the global 
coordinate system. Different elements of the finite element mesh can be generated 
from the same master element by assigning the global coordinates of the elements. 
Master elements of different order interpolation define different transformations 
and hence different collections of finite element meshes. Thus, with the help of 
an appropriate master element, any given element of a mesh can be generated. 
However, the transformations of a master element should be such that there exist 
no spurious gaps between elements and no element overlaps occur. 



506 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

Numerical Integration: the Gauss Quadrature 

Recall that a finite element model is a system of algebraic equations among the 
nodal values of the primary variables (generalized displacements) and secondary 
variables (generalized forces). The coefficients of these algebraic equations contain 
integrals of the physical parameters (e.g., material properties) and functions used 
for the approximation of the primary variables. The integral expressions are, in 
general, complicated algebraically due to the spatial variation of the parameters 
or coordinate transformations. Therefore, numerical integration methods, known 
as numerical quadratures, are used to evaluate them. Here we discuss the Gauss 
quadrature, which is the most widely used method for master elements of rectangular 
or prismatic geometries. 

We illustrate the essential elements of the Gauss quadrature by considering the 
following representative integral expression 

(9.2.44) 

We wish to transform the integral from ne to the master element n = {( ~, TJ) : -1 ::; 
~ ::; 1, -1 ::; TJ ::; I} so that the Gauss quadrature can be used. Note that the 
integrand contains not only 1j;i(x, y), but also their derivatives with respect to the 
global coordinates (x, y). The functions 1j;i(x, y) can be easily expressed in terms 
of the local coordinates ~ and TJ by means of the transformation in Eq. (9.2.37), 
as was shown for one-dimensional Lagrange and Hermite functions in Eqs. (9.2.42) 
and (9.2.43). We must first develop relations eNi/8x and 81j;i/8y to 81j;i/8~ and 
81j;i/8TJ using the transformation (9.2.37). 

By the chain rule of partial differentiation, we have 

oy 1 e { ?J!l } of, ox 
oy o7/J'f 
OTJ 7JY 

(9.2.45) 

which gives the relation between the derivatives of 1j;i with respect to the global 
and local coordinates. The coefficient matrix in Eq. (9.2.45) is called the Jacobian 
matrix of the transformation (9.2.37) 

[ ~; [J]e = a~ 
OTJ 

(9.2.46) 

and its determinant .J is called the Jacobian, which must be greater than zero in 
order to invert Eq. (9.2.45). Negative nonzero values of .J imply that a right-hand 
coordinate system is transformed to a left-hand coordinate system, which should be 
avoided. Inverting Eq. (9.2.45), we obtain 

(9.2.47) 
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This requires the Jacobian matrix [J] be nonsingular. The Jacobian can be 
determined using the transformation (9.2.37) in Eq. (9.2.46). We have 

[ ~~ [J] = ax 
81] 

(9.2.48) 

Thus, given the global coordinates (Xj,Yj) of element nodes and the interpolation 
functions {Pj used for geometry, the Jacobian matrix can be evaluated using Eq. 

(9.2.48). Note that (Pj are different, in general, from 7/J'j used in the approximation 
of the dependent variables. The Jacobian is given by 

(9.2.49) 

We have from Eq. (9.2.47) 

(9.2.40a) 

where 

J* - h2 J* - J12 J* _ Jl1 J* _ J21 
11 - J' 12 - -----:1' 22 - J' 21 - -----:1 (9.2.50b) 

Returning the integral in Eq. (9.2.44), we can write it now in terms of the natural 
coordinates as 

(9.2.51 ) 

where the element area dA = dxdy in element OC is transformed to dA == dxdy = 
J d~dTJ in the master element O. 
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Using the Gauss quadrature formulas for integrals defined over a rectangular 
master element 0, which are the same as those for the one-dimensional quadrature, 
we obtain 

10 Fij(~, 7])d~d7] = ill [ill Fij(~, 7])d7]] d~ ~ ill [t Fij(~, 7]J )WJ] d~ 
M N 

~ L L Fij(~I,7]J)WIWJ 
I=lJ=l 

(9.2.52) 

where M and N denote the number of Gauss quadrature points in the ~ and 
7] directions, (~I, 7]J) denote the Gauss points, and WI and WJ denote the 
corresponding Gauss weights. Table 9.2.1 contains Gauss point locations and 
associated weights for N = 1,2,···,5. For Gauss point locations and weights for 
N > 5, see [29]. 

Table 9.2.1: Weights and points for the Gauss-Legendre quadrature III one 
coordinate direction. 

M N i Fij(f,,1])df,d1] "" L L Fi'j(f,I, r/J)WIW.J 
n I=l.J=l 

NorM Points f,I or r/.J WeightR WI or W.J 

1 0.0000000000 2.0000000000 

2 ±0.5773502692 1.0000000000 

3 0.0000000000 0.8888888889 
±O. 7745966692 0.5555555555 

4 ±0.3399810435 0.6521451548 
±0.8611363116 0.3478548451 

5 0.0000000000 0.5688888889 
±0.5384693101 0.4 78G286705 
±0.9061798459 0.2369268850 

6 ±0.2386191861 0.4679139346 
±0.6612093865 0.3607615730 
±0.9324695142 0.1713244924 

The selection of the number of Gauss points required to evaluate the integrals 
accurately is based on the following rule: a polynomial of degree p is integrated 
exactly employing N = int[~(p + 1)]; that is, the smallest integer greater than 
~ (p + 1). In most cases, the interpolation functions are of the same degree in both 
~ and 7], and therefore one has M = N. When the integrand is of different degree 
in ~ and 7], the number of Gauss points is selected on the basis of the largest-degree 
polynomial in one of the coordinates. The minimum allowable quadrature rule is 
one that computes the mass of the element exactly when the density is constant. 
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Table 9.2.2 contains information on the selection of the integration order and the 
location of the Gauss points for linear, quadratic, and cubic elements. The maximum 
degree of the polynomial refers to the degree of the highest polynomial in ~ or rJ that 
is present in the integrand of the element matrices of the type in Eq. (9.2.42). Note 
that the polynomial degree of coefficients as well as Jtj and .J should be accounted 
for in determining the total polynomial degree of the integrand. Of course, the 
coefficients a, b, and c and ~j in general may not be polynomials. In those cases, 
their functional variations must be approximated by a suitable polynomial in order 
to determine the polynomial degree of the integrand. The N x N Gauss point 
locations are given by the tensor product of one-dimensional Gauss points ~I. 

Table 9.2.2: Selection of the integration order and location of the Gauss points 
for linear, quadratic, and cubic quadrilateral elements (nodes not 
shown). 

Element 
Type 

Linear 
(r = 2) 

Quadratic 
(T = :1) 

Cubic 
(7" = 4) 

Maximum 
Polynomial 
Degree 

2 

4 

6 

Order of 
Integration 
(r' x r) 

(2 x 2) 

(3 x 3) 

(4 x 4) 

Order of 
the 
Residual 

Location of 
Integration Points t 
in Master Element 

11 

s=-ff; ;s=ff 

'1 =ff - - -~ - -~ -
,---:I--+--I~ ~ 

'1=-ff--

i;=-.IT 11. i;=.IT 

'1={t--le55;-:=~-; }5 
I I 

'1= 0 - - +- - S 
I I I 

'1=-fF-- -- -- -
I I I 

1:,=- 0.861... 

'1= 0.861.. 
'1= 0.339 .. 

'1= - 0.339 .. 
'1=- 0.861.. 

1:,= 0.861... 

tSee Table 9.2.1 for the integration points and weights for each coordinate direction. 
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9.2.6 Post-Computation of Stresses 

Once the generalized displacements at the nodes are determined, Eq.(9.2.4) can be 
used to determine the strains using the strain-displacement relations (3.3.10). For 
the case of small strains, displacements and rotations, the membrane strains at any 
point (x, y, z) in a typical element ne can be computed from the equations 

e { ~ }e {~}e Exx 8x 8x 
~ 82~Q 

Eyy = 8y - z 8y 

{ 20xy } """ + Doo 20''''" 
8y 8x 8x8y 

{ 

8'IjJ}e { 8

2

'Pk }e u·_J ~ 
m J 8x n 8x 

"""' 8'IjJj """' A e 82~k = ~ Viay - Z ~ Uk 8y 

j=1 U . 8'IjJj + V' 012 k=1 2 8 2
'Pk 

J 8y J 8x 8x8y 

(9.2.53) 

Recall that only (uo, vo) and (wo, 8wo / 8x, 8wo / 8y) are continuous across element 
interfaces; the first derivatives of the in-plane displacements and the second 
derivatives of the transverse deflection are, in general, not continuous across element 
interfaces. In particular, the values of any strain component computed from different 
elements connected at a node are different. 

The stresses at any point in the plate can be computed from the constitutive 
equations of a lamina, as given in Eq. (6.3.29a). Since the strains are discontinuous, 
the stresses are also discontinuous across element interfaces, including nodes. It 
was shown by Barlow [30,31] that stresses computed at the Gauss points associated 
with the Gauss rule used to evaluate the stiffness matrix of an element are the most 
accurate. 

9.2.7 Numerical Results 

Here we use the conforming (C) and nonconforming (NC) rectangular finite elements 
to analyze laminated plates for bending and natural vibration. Additional numerical 
results will be presented in Section 9.3. Note should be made of the fact that the 
finite element model developed herein is not restricted to any particular lamination 
scheme, geometry, boundary conditions, or loading. Additional results are presented 
in Section 9.3.5. 

The notation m x n mesh denotes m subdivisions along the x-axis and n 
subdivisions along the y-axis with the same type of elements. Solution symmetries 
available in a problem should be taken advantage of to identify the computational 
domain because they reduce computational effort. For example, a 2 x 2 mesh in 
a quadrant of the plate is the same as 4 x 4 mesh in the total plate, and the 
results obtained with the two meshes would be identical, within the round-off 
errors of the computation, if the solution exhibits biaxial symmetry. A solution 
is symmetric about a line only if (a) the geometry, including boundary conditions, 
(b) the material properties, and (c) the loading are symmetric about the line. The 
boundary conditions along a line of symmetry should be correctly identified and 
imposed in the finite element model. When one is not sure of the solution symmetry, 
it is advised that the whole plate be modeled. 
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Bending Analyses 

For antisymmetric cross-ply and angle-ply rectangular laminates with their 
respective simply supported boundary conditions, a quadrant of the plate may be 
used as the computational domain of the finite element analysis. The boundary 
conditions along the symmetry lines for the cross-ply and angle-ply laminates are 
different, as shown in Figure 9.2.10. The symmetry boundary conditions can be 
identified from the Navier solutions for each case. When one is doubtful of the 
boundary conditions along the lines of symmetry, it is safe to use the full plate 
model. In the case of conforming element, it is necessary that the cross-derivative 
ow%;x:oy be also set to zero at the center of the plate when a quarter-plate model 
is used. Otherwise, the results will be less accurate. 

Table 9.2.3 shows a comparison of finite element solutions with the analytical 
solutions of simply supported orthotropic and two-layer cross-ply and angle-ply 
(-45/45) square laminates under a uniformly distributed transverse load. In all 
cases, a quadrant of the plate was used in the finite element analysis. The stresses 
in the finite element analysis were computed at the Gauss points nearest to the 
locations at which the stresses were evaluated analytically. For the nonconforming 
and conforming rectangular plate elements used here, the strains and stresses are 
computed using the one-point Gauss rule, i.e., at the center of the element. Stresses 
C5xx and C5yy are computed at (5a/8, 5b/8), (9a/16, 9b/16), and (17a/32, 17b/32) for 
uniform meshes 2 x 2, 4 x 4, and 8 x 8, respectively; the origin of the coordinate 
system is taken at the center of the laminate (see Figure 9.2.10); C5xy is computed 
for the same meshes at (3a/8, 3b/8), (7a/16, 7b/16), and (15a/32, 15b/32). 

Theory B.C. 

88-1 
F8DT 

88-2 

88-1 
CLPT 

88-2 

y 

~------------------, I 

r -
I 

-I------i-I----- x 
I 
I 
I L ________ ~ _______ _ I 

x=o y=O 

uo=o <px =0 vo=o <py =0 

vo=o <px =0 uo=O <py =0 

uo=o 
awo 

vo=o awo_o -=0 
ax dY -

dWO=O dWo 
vo=o uo=o ay-=o dX 

Figure 9.2.10: Symmetry boundary conditions for antisymmetric cross-ply and 
angle-ply laminates. 
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Table 9.2.3: A comparison of the maximum transverse deflections and stresses t 
of simply supported square plates under uniformly distributed 
transverse load (hn = h/n, Ed E2 = 25, G12 = G 13 = 
0.5E2, G23 = 0.2E2, V12 = 0.25; CLPT solutions). 

Variable Nonconforming 

2x2 4x4 

Orthotropic Plate (88-1) 

0.7082 
0.7148 
0.0296 
0.0337 

0.6635 
0.7709 
0.0253 
0.0421 

Cross-Ply (0/90) Plate (88-1) 

fiJ 1.7937 
0.1109 
0.9436 
0.0751 

1.7203 
0.1230 
1.0440 
0.0872 

Angle-Ply (-45/45) Plate (88-2) 

iJj 1.0524 
axx = ayy 0.2600 
axy 0.3935 

1.0341 
0.3279 
0.4264 

Angle-Ply (-45/45)4 Plate (88-2) 

iJj 0.4045 
axx = ayy 0.1500 
axy 0.2501 

0.3905 
0.1880 
0.2612 

8x8 

0.6531 
0.7828 
0.0246 
0.0444 

1. 7017 
0.1259 
1.0683 
0.0914 

1.0296 
0.3449 
0.4376 

0.3870 
0.1975 
0.2636 

2x2 

0.7532 
0.5772 
0.0283 
0.0369 

1.7004 
0.1056 
0.8819 
0.0704 

1.0111 
0.2639 
0.3852 

0.3948 
0.1406 
0.2495 

Conforming 

4x4 

0.6651 
0.7388 
0.0249 
0.0416 

1.6909 
0.1215 
1.0263 
0.0853 

1.0222 
0.3303 
0.4206 

0.3870 
0.1867 
0.2590 

t The stresses are computed at the center of each finite element. 

8x8 

0.6517 
0.7759 
0.0246 
0.0448 

1.6935 
0.1255 
1.0637 
0.0908 

1.0264 
0.3445 
0.4356 

0.3859 
0.1973 
0.2627 

Analytical 
solution 

0.6497 
0.7866 
0.0244 
0.0463 

1.6955 
0.1268 
1.0761 
0.0933 

1.0280 
0.3504 
0.4421 

0.3858 
0.2006 
0.2637 

The conforming element (fPwo/(Jx(Jy = 0 at the center of the plate) yields 
slightly better solutions than the nonconforming element, and both elements show 
good convergence. However, convergence of the displacements is always faster than 
stresses for the displacement-based finite elements, and the rate of convergence of 
stresses is two orders less than that of displacements for the CLPT-based element. 
Since the stresses in the finite element analysis are computed at locations different 
from the analytical solutions, they are expected to be different. Mesh refinement not 
only improves the accuracy of the solution, but the Gauss point locations also get 
closer to the node point locations (but never become the nodal locations), resulting 
in better agreement with the true solution. 

It is clear from the results presented in Table 9.2.3 that the convergence of 
the finite element results to the analytical solutions is very good. The slower 
convergence of stresses in two-layer angle-ply plates compared to the eight-layer 
laminate is due to the presence of bending stretching-coupling. Recall that in 
angle-ply laminates the analytical solution for stresses is the sum of two parts: 
one is a double sine series and the other is double cosine series. They are mutually 
exclusive at points (a/2, b/2) and (0,0); however, the parts add up at the Gauss 
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points (0.46875,0.46875) and (0.03125,0.03125). For example, the analytical results 
of stresses for the (-45/45) laminate are Ctxx = 0.3486 and Ctxy = 0.4312 at the 
Gauss points (0.46875,0.46875) and (0.03125,0.03125), respectively, which shows 
better agreement between the analytical and finite element stress values. 

The effect of the simply supported 88-1 (us = Wo = es = 0) and 88-2 
(un = Wo = es = 0) and clamped (un =l1s = Wo = On = Os = 0) boundary 
conditions on two-layer cross-ply and angle-ply laminates is investigated using full 
plate models and 8 x 8 uniform mesh of conforming elements (no boundary condition 
on the cross-derivative was imposed) and the results are presented in Table 9.2.4. 
Recall that cross-ply laminates admit the Navier solutions for the 88-1 boundary 
conditions whereas antisymmetric angle-ply laminates admit for the 88-2 boundary 
conditions. Analytical solutions (i.e., Navier or Levy type solutions) are not available 
for cross-ply laminates with 88-2, antisymmetric angle-ply laminates with 88-1, and 
any laminate for clamped (CC) boundary conditions. The locations of maximum 
stresses are indicated below for various cases. 

Cross-Ply 88-1 and 88-2 [CTxx(xo,Yo,~h/2) = ~CTyy(xo,Yo,h/2)]: 

CTyy (0.5625a, 0.5625a, h/2); CTxy (0.9375a, 0.9375a, ~h/2) 

Cross-Ply Clamped [CTxx(XO, Yo, ~h/2) = ~CTyy(YO, Xu, h/2)]: 

~CTyy(0.4375a, 0.0625a, h/2); CTxy (0.8125a, 0.8125a, ~h/2) 

Angle-Ply [CTxx(XO, Yo, h/2) = CTyy(XO, Yo, h/2)]: 

88-1: CTyy (0.6875a, 0.3125a, h/2); CTxy (0.8125a, 0.1875a, ~h/2) 

88-2: CTyy (0.8125a, 0.1875a, h/2); ~CTxy(0.9375a, 0.9375a, h/2) 

Clamped: ~ CTxx (0.0625a, 0.4375a, h/2); ~CTxy(0.0625a, 0.6875a, h/2) 

Table 9.2.4: Maximum transverse deflections and stresses t of square laminates 
under uniformly distributed transverse load and for different 
boundary conditions (hn = h/n, Ed E2 = 25, G12 = G 13 = 
0.5E2, G23 = 0.2E2, 1/12 = 0.25). 

Variable (0/90) (-45/45) 

88-1 88-2 CC 88-1 88-2 CC 

1.6839 0.8957 0.3814 0.6773 1.0208 0.3891 
1.0469 0.8939 0.5699 0.3392 0.3659 0.2202 
0.0851 0.0361 0.0181 0.3341 0.4201 0.1772 

t The stresses are computed at the center of each fillite element; 8 x 8 uniform mesh of conforming; 
elements is used in the full plate. 
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From the results (see Table 9.2.4) it is clear that SS-2 boundary conditions make 
the cross-ply laminate stiffer because they restrain the bidirectional composite from 
having normal in-plane displacements (un = 0). Similarly, SS-l boundary conditions 
make the antisymmetric angle-ply stiffer by restraining the in-plane tangential 
displacements (us = 0). The clamped boundary conditions make both plates quite 
stiff compared to the simply supported boundary conditions. 

A comparison of finite element solutions with the analytical solutions of 
antisymmetric cross-ply and angle-ply laminates under sinusoidal loading is 
presented in Table 9.2.5. The finite element solutions are obtained using 8 x 8 
uniform mesh of conforming elements in the full plate. The stresses are computed 
at the Gauss points and the locations of the stresses are indicated in the footnote 
of the table. 

Table 9.2.5: A comparison of finite element (second row) and analytical (first 
row) solutions of antisymmetric cross-ply and angle-ply square 
plates subjected to sinusoidal distribution of transverse load and 
for various boundary conditions (hn = h/n, Ed E2 = 25, G12 
G13 = 0.5E2, G23 = 0.2E2, 1/12 = 0.25; n = number of layers). 

n Variable SS SC CC FF FS FC 

Cross-Ply Laminates (0/90/0 ... ) 

2 'II! 1.064 0.664 0.429 1.777 1.471 0.980 
1.055 0.652 0.415 1.761 1.445 0.966 

axx 7.157 5.660 4.800 2.403 4.442 3.042 
6.888a 5.859a 4.457a 2.262° 4.562a 3.150a 

i'tyy 7.157 4.483 2.914 11.849 9.837 6.560 
6.888° 4.496a 2.722a 11.5Hia 1O.029b 7.142° 

10 'II! 0.442 0.266 0.167 0.665 0.579 0.380 
0.442 0.266 0.168 0.665 0.579 0.381 

o-xx 5.009 3.829 3.167 1.725 2.986 1.865 
4.791a 3.953a 2.904a 1.615° 2.999a 1.925a 

a-yy 5.009 3.025 1.911 7.480 6.531 4.284 
4.791a 3.046a 1.811 a 7.258° 6.711b 4.694a 

Angle-Ply Laminates (-45/45/ - 45···) (FEM only) 

2 'II! 0.649 0.497 0.384 3.026 1.319 0.981 
axx 0.652" 0.554c 0.375d 0.698 f 1.043c 0.7339 

i'tyy 0.652c 0.554c 0.374d 0.830 f 1.043c 0.7459 

10 'II! 0.243 0.191 0.429 1.426 0.524 0.397 
axx 0.188' 0.163' 0.116" 0.357 f 0.318' 0.2499 

i'tyy 0.188c 0.163c 0.115e 0.427 f 0.317c 0.2549 

a: (0.4375,0.4375); b: (0.5625,0.5625); c: (0.0625,0.0625); d: (0.9375,0.8125); 

e: (0.3125,0.3125); f: (0.1875,0.9375); g: (0.8125,0.6875). 
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Natural Vibration 

The finite element solutions are compared with the analytical solutions of 
antisymmetric cross-ply and angle-ply laminates in Table 9.2.6. In all cases, a 
quarter-plate model with appropriate symmetry boundary conditions was used in 
the finite element analysis. The finite element solutions show convergence to the 
analytical solutions with mesh refinements. 

Table 9.2.6: A comparison of the natural frequencies,t w = w(b2/h)Jp/E2 
of simply supported square plates (hn = h/n, Ed E2 = 40) 

G12 = G 1:l = 0.6E2' G23 = 0.5E2, V12 = 0.25, a/h = 10). 

n+ Nonconforming Conforming Analytical 
solution 

2 x 2 4x4 2x2 4x4 

Cross-Ply (0/90/0/···) Plates (88-1) 

2 10.882 l1.080 11.215 11.186 11.154 
4 16.461 16.960 16.745 17.101 17.145 
8 17 .. 559 18.140 17.795 18.279 18.352 

Angle-Ply (-45/45/ - 45/··.) Plates (88-2) 

2 14.360 14.413 14.659 14.504 14.439 
4 22.821 23.168 23.168 23.294 23.304 
8 23.699 24.888 24.883 25.024 25.052 

t The rotary inertia is included. +n = Number of layers in the laminate. 

9.3 Finite Element Models of Shear Deformation 
Plate Theory (FSDT) 

9.3.1 Weak Forms 

Following the procedure described in Section 9.2.1, we can develop the weak forms 
of the equations governing the first-order shear deformation plate theory. We 
consider the linear equations of motion of FSDT from Eqs. (5.4.13), which are 
in terms of the stress resultants but equivalent to Eqs. (9.1.1) through (9.1.5). The 
generalized displacements of FSDT are (uo, vo, Wo, cPx, cPy). The weak forms of the 
five equations in (5.4.13) are obtained by multiplying them with 8uo) 8vo) 8wo, 8cPx, 
and 8cPy, respectively, and integrating over the clement domain. We obtain 

(9.3.1a) 

(9.3.1b) 
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We note from the boundary terms in Eq. (9.3.1a-e) that (uo,vo,wo,rPx,rPy) are 
the primary variables (or generalized displacements). Unlike in the classical plate 
theory, the rotations (rPx, rPy) are independent of woo Note also that no derivatives 
of Wo are in the list of the primary variables. The secondary variables are 

(9.3.2) 

9.3.2 Finite Element Model 

The weak forms of the first-order theory contain, at the most, only the first 
derivatives of the dependent variables (uo,vo,wo,rPx,rPy). Therefore, they can all 
be approximated using the Lagrange interpolation functions. In principle, the sets 
(uo,vo), wo, and (rPx,rPy) can be approximated with differing degrees of functions. 
For simplicity, we use the same interpolation for all variables. Let 

Tn 

uO(X, y, t) = L Uj(t)1/J'j(x, y) 
j=1 

m 

Vo(X, y, t) = L Vj(t)1/J'j(x, y) 
]=1 

(9.3.3a) 

(9.3.3b) 
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n 

Wo(x, y, t) = L Wj(t)'l/Jj(x, y) (9.3.4) 
j=l 

p 

¢x(x, y, t) = L sj(t)'l/Jj(x, y) (9.3.5a) 
j=l 

p 

¢y(x, y, t) = L S; (t)'l/Jj (x, y) (9.3.5b) 
j=l 

where 'l/J'j are Lagrange interpolation functions. In general, (uo, vo), wo, and (¢x, ¢y) 
may be interpolated with different degree of interpolation. One can use linear, 
quadratic, or higher-order interpolations of these sets. 

Substituting Eqs. (9.3.3)-(9.3.5) for (uo, vo, Wo, ¢:r, ¢y) into the weak forms in 
Eq. (9.3.1), we obtain the semidiscrete finite element model of the first-order theory: 

[ 

[KIl] 
[K12]T 
[K1:1]T 

[K 14V 
[K 15 ]T 

fo[M] 
[0] 

+ [0] 

or 

h[M] 
[0] 

[K12] 
[K22] 

[K2:1]T 
[K24]T 
[K25 ]T 

[0] 
fo[M] 

[0] 
[0] 

h[M] 
(9.3.6a) 

(9.3.6b) 

where the coefficients of the submatrices [Ka ;3] and [M a ;3] and vectors {per} are 
defined for (a, (3 = 1, 2, ... , 5) by the expressions 

K 1(r = r (f)'l/Ji N0 + f)'l/Ji N0) dxdy 
2J Joe f)x 1J f)y 6J 

K2a = r (f)'l/Ji' Nf:( + f)'l/Ji N2) dxdy 
2J Joe f)x J f)y J 

K 3a 1 (f)W Qa f)'l/Ji Qa) dxdy ij = ~ 1j + ~ 2j 
Oc uX uy 

K4o: = r (f)'l/Ji M O + f)'l/Ji M O + nl,feQa.) dxdy 
2J Joe f)x 1J f)y 6J (j/z 1J 

Kta = r (~!i M0 + 8!f M2; + 'l/JfQ~j) dxdy 
Jn' uX uy 

G .. - i [NA 8'l/J.'f f)'l/J'j NA (f)'l/Ji f)'l/J'j f)'l/J.'f EN'j ) NA f)'l/J'f 8'l/J'j 1 
!J - TT + xy + + yy . fl' . ... f)x f)y f)x f)y f)y f)x f)y f)y dxdy 

}\,;[ij = 1 'l/Ji''l/J'j dxdy 
flC 

(9.3.7) 
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The coefficients NIj, MIj, and QIj for a = 1,2" .. ,5 and 1= 1,2,6 are given by 

4 a'ljJj a'ljJj 
N 1j = Bl1 ax + B16 ay , 

5 a'ljJj a'ljJj 
N 1j = B12 ay + B16 ax 

1 a'ljJj a'ljJj 
N 2j = A12 ax + A 26 ay , 

2 a'ljJj a'ljJj 
N 2j = A22 ay + A 26 ax 

4 a'ljJj a'ljJj 
N 2j = B12 ax + B 26 ay , 

5 a'ljJj a'ljJj 
N 2j = B22 ay + B 26 ax 

1 a'ljJj a'ljJj 
N6j = A16 ax + A66 ay , 

2 a'ljJj a'ljJj 
N6j = A 26 ay + A66 ax 

4 a'ljJj a'ljJj 
N6j = B16 ax + B66 ay , 

5 a'ljJj a'ljJj 
N6j = B 26 ay + B66 ax 

1 a'ljJj a'ljJj 
M 1j = Bl1 ax + B16 ay , 

2 a'ljJj a'ljJj 
M 1j = B12 ay + B16 ax 

4 a'ljJj a'ljJj 
M 1j = Dl1 ax + D16 ay , 

5 a'ljJj a'ljJj 
M 1j = D12 ay + D16 ax 

1 a'ljJj a'ljJj 
M 2j = B12 ax + B 26 ay , 

2 a'ljJj a'ljJj 
M 2j = B22 ay + B26 ax 

4 a'ljJj a'ljJj 
M 2j = D12 ax + D 26 ay , 

5 a'ljJj a'ljJj 
M 2j = D22 ay + D 26 ax 

1 a'ljJj a'ljJj 
M6j = B16 ax + B66 ay , 

2 a'ljJj a'ljJj 
M6j = B 26 ay + B66 ax 

4 a'ljJj a'ljJj 
M6j = D16 ax + D66 ay , 

a'ljJe a'ljJe 
Mgj = D26 a: + D66 a: 

(9.3.8a) 

Fl = 1 Px'ljJf dxdy, F? = 1 Py'ljJf dxdy 
~re ~re 

F? = r q'ljJf dxdy + 1 Qn'ljJf ds Joe ~re 

Fi4 = 1 Tx'ljJf dxdy, Fl = 1 Ty'ljJf dxdy 
~re ~re 
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FTI = l' (81/Jf NT + 81/Jf NT) dxdy z fie ax xx ay xy 

FT2 = l' (81/Jf NT + 81/Jf NT) dxdy 
2 fi, ax xy ay YY 

FT4 = l' (81/Jf MT + 8'!/Jf MT) dxdy 
2 Ire 8x :r;x 8y xy 

F T5 = l' (a1/Jf MT + a1/Jf MT) dxdy 
z Ir e ax xy ay YY 

(9.3.8b) 

where N'!x, lVl'!x, etc. are the thermal force and moment resultants. 
The displacement-based CO plate bending element of Eq. (9.3.6) is often referred 

to in the finite element literature as the Mindlin plate element due to the fact 
that it is based on the so-called Mindlin plate theory, which is labeled in this 
book as the first-order shear deformation plate theory. Any of the Lagrange 
interpolation functions presented in Eqs. (9.2.10), (9.2.11), and (9.2.12) may be 
used to approximate the displacement field (uo, Vo, Wo, ¢x, ¢y). When the bilinear 
rectangular element is used for all generalized displacements, the element stiffness 
matrices are of the order 20 x 20; and for the nine-node quadratic element they are 
45 x 45 (see Figure 9.3.1). 

y 

z 
3 

~~~~-x 
1 2 

un, vo, wo, <l>x, <l>y (at each node) 

y 

z 
7 3 

- -- -- -- - -- -- ---_ .. - - - - - - - -- - ---

.9 

5 2 

un' va' wo, <l>x' <l>.Y (at each node) 

Figure 9.3.1: Linear and quadratic Lagrange rectangular elements for the first
order shear deformation theory. 
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Equation (9.3.6) can be simplified for static bending, buckling, natural vibration, 
and transient analyses, as described in Eqs. (9.2.20)~(9.2.24). The simplifications 
are obvious and therefore are not repeated for the FSDT element. However, 
numerical results for bending, buckling, natural vibration, and transient response 
will be discussed. 

9.3.3 Penalty Function Formulation and Shear Locking 

A finite element model equivalent to that in Eq. (9.3.6) can also be derived using the 
penalty function approach (see Reddy [32,33]) applied to the classical plate theory. 
For the sake of simplicity in discussion, consider the weak form of the classical plate 
theory without membrane strains, nonlinearity, and inertia terms [see Eq. (3.3.19)]: 

(9.3.9) 

Next assume, again for the sake of simplicity, that the plate under consideration is 
orthotropic. Using the plate constitutive equations (3.3.44), we rewrite the weak 
form (9.3.9) in terms of the generalized displacements 

where ITo denotes the total potential energy functional 

IIo(wo) = 1J [Dn (0;;;0 r + 2D12 0;;;0 o;~;o + D22 (8;;'0 r 
+1D66 (;:~~ r -qwo 1 dxdy (9.:l.11) 

Equation (9.3.10) is a statement of the principle of the minimum potential energy, 
which is a special case of the principle of virtual displacements when the material of 
plate is assumed to obey Hooke's law. Introduce the variables ex and ey such that 

awo awo _ e = 0 ax - ex = 0, ay y (9.3.12) 
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Then the potential energy functional takes the form 

(9.3.13) 

The difference between Ilo(wo) and Il(wo,ex,ey) is that the latter contains at 
the most only the first derivatives of the dependent variables, and therefore will 
require CO -interpolation in the finite element model. However, the potential energy 
functional Il( Wo, ex, ey) in Eq. (9.3.13) does not include the fact that the dependent 
variables ex and ey are related to Wo by Eqs. (9.3.12). Therefore, the principle of 
the minimum potential energy must be stated as one of minimizing the functional 
Il(wo, ex, ey) subjected to the (constraint) conditions in Eq. (9.3.12): mmmllze 

(9.3.14a) 

subjected to the constraints 

awo awo _ e - ° ax - ex = 0, ay y - (9.3.14b) 

The constrained minimization problem (9.3.14) can be solved either using the 
Lagrange multiplier method or the penalty function method. In the Lagrange 
multiplier method we assume that there exist Lagrange multipliers Al and A2 such 
that the constrained minimization problem is equivalent to DilL (wo, ex, ey, AI, A2) = 
0, where 

(9.3.15) 

The weak form, DilL = 0, can be used to construct a finite element model with 
CO-interpolation of all dependent unknowns: Wo, ex, ey, AI, and A2. The Lagrange 
multipliers can be shown to have the meaning of shear forces Al rv Qx and A2 rv Qy. 
The finite element model based on the functional ilL is called a mixed finite element 
model, because displacements are mixed with forces as element degrees of freedom. 

In the penalty function method the constrained problem is posed as one of 
minimizing the functional IIp ( Wo, ex, ey) 

dxdy (9.3.16) 

where {I and {2 are called the penalty parameters, which are preselected positive 
functions of (x, y). In the penalty function method, the square of the error in 
each constraint is minimized along with the original functional, and the penalty 
parameters represent weights with which the constraints are minimized relative to 
the original functional. Thus, in the penalty function method the constraints are 
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satisfied only approximately and the minimum character of the problem is penalized. 
The larger the values of the penalty parameters, the smaller the error in satisfying 
the constraint conditions. A desirable aspect of the penalty function method is that 
no new variables are introduced in addition to those in the original functional and 
the constraint equations. 

At this juncture we should remind ourselves that the problem we are trying to 
formulate is the classical plate bending. A finite element model based on the penalty 
functional (9.3.16) is expected to give an approximate solution to the classical 
plate theory for sufficiently large values of the penalty parameters. However, there 
are computational problems, namely shear locking, arising from the finite element 
implementation of the model based on (9.3.16). Before we embark on the discussion 
of shear locking, it is useful to note the similarity between the functional IIp and 
that of the first-order shear deformation plate theory. 

The total potential energy functional for the first-order theory, omitting 
membrane effects and the von Karman nonlinearity, and assuming orthotropic 
material behavior, can be derived from Eq. (3.4.9): 

O - { (M ;; (1) + M ;; (1) + M ;; (1) Q;; (0) + Q ;; (0) - lOa xxuExx yyUEyy xyUrxy + xUrxz yUryz 

-qDWO) dxdy (9.3.17) 

Using the plate constitutive equations (3.4.21) and (3.4.22), we rewrite the weak 
form (9.3.17) in terms of the generalized displacements 

which is the first variation of the functional 

- { 1 [(acPx )2 acPx acPy (acPy)2 
II(wo,cPx,cPy) = lOa 2 Du ax +2D12 ax ay +D22 ay 

(
acPx acPy)2 (awo )2 

+ D66 ay + ax + A55 ax + cPx 

+A44 (00:0 + cPy r -qwo 1 dxdy (9.3.19) 

We note the similarity between the functionals IIp of (9.3.16) and IT in (9.3.19). 
They are the same with the following correspondence 

(9.3.20) 

Thus, for a particular choice of the penalty parameters, we recover the first-order 
shear deformation theory from the penalty formulation of the classical plate theory; 
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for large values of the penalty parameters, the classical plate theory is recovered. 
Indeed, use of the functional in (9.3.19) is more appropriate because it naturally 
gives rise to the classical plate theory as the plate thickness is reduced in relation to 
the plate in-plane dimensions. This is due to the fact that Dij are proportional to 
h3 whereas Aij are proportional to h. Thus the penalty parameters are of the order 
h-2

. When a/h = 100, the penalty parameters Aij are 104 times larger than Dij, 

and hence the constraints (9.3.12) are satisfied accurately; i.e., the classical plate 
theory is realized. 

The CO-plate bending elements based on the first-order shear deformation plate 
theory are among the simplest available in the literature. They are expected, in 
theory, to give the thin plate theory solution when the side-to-thickness ratio a/ h is 
very large (a/h :::: 100). Unfortunately, when lower-order (quadratic or less) equal 
interpolation of the transverse deflection and rotations is used, the elements do 
not accurately represent the bending behavior as the side-to-thickness ratio of the 
element becomes large (i.e., thin plate limit). For thin plates, the shearing strains 
cxz and Cyz are required to vanish, and the plate elements based on the first-order 
theory become excessively stiff, yielding displacements that are too small compared 
to the true solution. This type of behavior is known as shear locking. There are a 
number of papers on the subject of shear locking and elements developed to alleviate 
the problem (see [32-57]). 

Shear locking is due to the inability of shear deformable elements to accurately 
model the bending within an element under a state of zero transverse shearing strain. 
When thin plates are analyzed by the shear deformable elements, the energy due to 
transverse shear strains must vanish. Numerically this is equivalent to requiring the 
product of the shear stiffness matrix and the displacement vector be zero. Therefore, 
in order to obtain a nontrivial solution, the shear stiffness matrix must be singular. 
One way to achieve the singularity of the transverse shear stiffness matrix is to use 
an order of numerical integration lower than is necessary to evaluate the integrals 
exactly. Thus, reduced integration of transverse shear stiffnesses (i.e., all coefficients 

in K':/ that contain A 44 , A 45 , and A55) is necessary. Higher-order elements or refined 
meshes of lower-order elements experience relatively less locking, but sometimes at 
the expense of rate of convergence. 

In this chapter only rectangular or quadrilateral elements based on the first
order shear deformation theory are used. Equal interpolation of all generalized 
displacements is employed. Stiffness coefficients associated with the transverse 
shear deformation (i.e., terms containing A 44 , A 45 , and A55) are evaluated using 
reduced integration, and full integration is used for all other stiffness coefficients, 
mass coefficients, and force components. 

With the suggested Gauss rule, highly distorted elements tend to have slower 
rates of convergence but they give sufficiently accurate results. Of course, one 
should avoid using highly distorted elements; most commercial codes issue warning 
messages when the element is highly distorted (e.g., see Chapter 9, pp. 439-448, of 
the textbook by Reddy [1] for a discussion of modeling considerations). 
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9.3.4 Post-Computation of Stresses 

Here we discuss the evaluation of stresses from the known displacement expansions. 
Once the nodal values of generalized displacements (uo, Vo, Wo, ¢x, ¢y) have been 
obtained by solving the assembled equations of a problem, the strains are evaluated 
in each element by differentiating the displacement expansions [see Eqs. (9.3.3)
(9.3.5)]. Since only the displacements and not their derivatives are continuous across 
the element boundaries in the CO finite element formulations, strain continuity across 
the boundaries is not ensured. That is, along a boundary common to two elements, 
the strains and hence stresses take different values on the two sides of the interface. 
However, strains and hence stresses are continuous within an element. Here we give 
the equations for the computation of stresses in an element. We assume that there 
are no temperature effects. 

As noted earlier, the strains and stresses are the most accurate if they are 
computed at the (N - 1) x (N - 1) Gauss points, where N x N is the exact Gauss 
quadrature rule used to evaluate the bending stiffness coefficients. For example, 
the linear rectangular plate bending element of the first-order theory requires 
2 x 2 integration to evaluate the bending stiffnesses exactly. Then the one-point 
integration should be used to evaluate the transverse shear stiffness coefficients, 
strains, and stresses. Similarly, for a quadratic rectangular element the reduced 
integration rule is the 2 x 2 Gauss rule. 

Since the displacements in the finite element models are referred to the global 
coordinates (x, y, z), the stresses are computed at the Barlow points (i.e., reduced 
integration points )in the global coordinates using the constitutive relations 

where 

fXXf 
Qu 

a yy Q12 
a xy Q16 
a xz 0 
a yz 0 
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oy ox 

(9.3.21) 

(9.3.22) 

If stresses and strains are required in the lamina principal material coordinates, 
for example, to check for failures, the strains and stresses of Eqs. (9.3.21) and 
(9.3.22) should be transformed to material coordinates associated with each layer 
using the transformation relations (2.3.14) and (2.3.10). Alternatively, the strains 
can be transformed using Eq. (2.3.14) 

! ;:42:1 ) (k) ! ::: ) " = [R](k) ryz 

rxz 

rxy 

(9.3.23a) 
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cos2 Bk sin2 Bk 0 0 sin Bk cos Bk 
sin2 Bk cos2 Bk 0 0 - sin Bk cos Bk 

[R](k) = 0 0 cosBk - sin Bk 0 
0 0 sin Bk COS Bk 0 

- 2 sin e k cos B k 2 sin ek cos ek 0 0 2 e . 2 e cos k - sm k 
(9.3.23b) 

and then the lamina constitutive equations are used to compute the stresses: 

!~:r 
Ql1 Q12 0 0 0 

Ikl !~: r Q12 Q22 0 0 0 
0 0 Q44 0 0 (9.3.24) 

a5 0 0 0 Q55 0 E5 

a6 0 0 0 0 Q66 E6 

9.3.5 Bending Analysis 

First the effect of integration rule and the convergence characteristics of the CO finite 
element model based on equal interpolation is investigated using a simply supported 
(88-1) cross-ply square laminate under sinusoidally distributed transverse load [58]. 
The laminate consists of three plies (0/90/0) of thicknesses h/4, h/2, and h/4, where 
h denotes the total laminate thickness; it is equivalent to (0/90/90/0) laminate with 
equal thickness plies. For this problem, we have developed closed-form solutions in 
Chapters 5 and 7, and Pagano [59,60] developed the 3-D elasticity solution for 
the prohlem. Also see [61-77] for analytical solutions for bending, vibration, and 
stability of shear deformation plate theories. The material properties used are those 
typical of graphite-epoxy material (Material 1) 

The transverse load in all cases is assumed to be (sinusoidal on the whole plate) 

7fX 7fy 
q(x, y) = qo cos - cos-

a b 
(9.3.26) 

where the origin of the coordinate system (x, y) is taken at the center of the plate, 
-a/2 :S x :S a/2, -a/2 :S y :S a/2, and -h/2 :S z :S h/2. 

The following nondimensionalizations of the quantities are used: 
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As noted earlier, the stresses in the finite element analysis are computed at the 
reduced Gauss points, irrespective of the Gauss rule used for the evaluation of the 
element stiffness coefficients. The Gauss point locations differ for each mesh used. 
The Gauss point coordinates A and E are shown in Table 9.3.1. The finite element 
solutions (FES) are compared with the 3-D elasticity solution (ELS) and the closed
form solutions (CFS) in Table 9.3.2 for three side-to-thickness ratios a/h = 10,20, 
and 100. The notation nL stands for n x n uniform mesh of linear rectangular 
elements, nQ8 for n x n uniform mesh of eight-node quadratic elements, and nQ9 
for n x n uniform mesh of nine-node quadratic elements in a quarter plate. The 
stresses in FEM are evaluated at the Gauss points as indicated below: 

h h h 
CTxx(A, A'"2)' CTyy(A, A, 4)' CTxy(E, E, -"2) 

CTxz(E, A) in layers 1 and 3, CTyz(A, E) in layer 2 (9.3.28) 

Table 9.3.1: The Gauss point locations at which the stresses are computed. 

Coordinate 2L 4L 8L 2Q8/2Q9 4Q8/4Q9 

A 0.125a 0.0625a 0.03125a 0.05283a 0.02642a 
B 0.375a 0.4375a 0.46875a 0.44717a 0.47358a 

Table 9.3.2: Effect of reduced integration on the nondimensionalized maximum 
deflections ill and stresses CJ of simply supported (SS-l) cross-ply 
(0/90/90/0) square plates under sinusoidal load (see [58]). 

a/h Source w x 102 axx a-yy a-xy axz a-yz 

Finite Element Solutions t 
10 2L-F 0.5901 0.3339 0.2454 0.0163 0.316 0.125 

2L-R 0.6508 0.3799 0.2838 0.0187 0.335 0.107 
2L-S 0.6655 0.3796 0.2882 0.0189 0.353 0.114 

4L-F 0.6427 0.4512 0.3280 0.0219 0.389 0.129 
4L-R 0.6599 0.4668 0.3406 0.0227 0.395 0.123 
4L-S 0.6632 0.4667 0.3419 0.0227 0.400 0.125 

2Q8-F 0.6605 0.4831 0.3492 0.0234 0.404 0.126 
2Q8-R 0.6615 0.4842 0.3509 0.0234 0.404 0.126 
2Q8-S 0.6613 0.4844 0.3509 0.0233 0.405 0.126 

2Q9-F 0.6551 0.4790 0.3400 0.0231 0.399 0.126 
2Q9-R 0.6633 0.4841 0.3508 0.0234 0.404 0.125 
2Q9-S 0.6631 0.4844 0.3509 0.0233 0.404 0.126 

8L-S 0.6628 0.4907 0.3565 0.0238 0.412 0.128 
4Q8-S 0.6626 0.4954 0.3589 0.0240 0.414 0.128 
4Q8-S 0.6627 0.4954 0.3589 0.0240 0.414 0.128 

Analytical Solutions 

10 CFS 0.6627 0.4989 0.3614 0.0241 0.416 0.129 
(0.318) (0.181)+ 

ELS 0.7370 0.5590 0.4010 0.0276 0.301 0.196 

(table is continued on the next page) 
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(table is continued from the previous page) 

alh Source tV x 102 a,r:x o-yy o-xy jj xz o-yz 

Finite Element Solutions 

20 2L-F 0.3236 0.2645 0.1491 0.0111 0.303 0.139 
2L-R 0.4712 0.4036 0.2289 0.0170 0.353 0.089 
2L-S 0.4760 0.4043 0.2:108 0.0171 0.373 0.094 

4L-F 0.4346 0.4365 0.2451 0.0183 0.395 0.123 
4L-R 0.4863 0.4940 0.2777 0.0207 0.415 0.103 
4L-S 0.4874 0.4942 0.2782 0.0207 0.420 0.105 

2Q8-F 0.4876 0.5082 0.2828 0.0214 0.424 0.106 
2Q8-R 0.4901 0.5117 0.2870 0.0214 0.424 0.106 
2Q8-S 0.4901 0.5120 0.2870 0.0214 0.424 0.106 

2Q9-F 0.4891 0.5083 0.2829 0.0214 0.424 0.106 
2Q9-R 0.4915 0.5118 0.2870 0.0213 0.424 0.106 
2Q9-S 0.4915 0.5120 0.2870 0.0213 0.424 0.105 

8L-S 0.4902 0.5189 0.2912 0.0218 0.433 0.108 
4Q8-S 0.4911 0.5236 0.2936 0.0219 0.434 0.108 
4Q9-S 0.4912 0.5236 0.2936 0.0219 0.434 0.108 

Analytical Solutions 

20 CFS 0.4912 0.5273 0.2956 0.0221 0.437 0.109 
(0.333) (0.150) 

ELS 0.5128 0.5430 0.3080 0.0230 0.328 0.156 

Finite Element Solutions 

100 2L-F 0.0315 0.0299 0.0151 0.0012 0.230 0.211 
2L-R 0.4107 0.4129 0.2076 0.0164 0.360 0.082 
2L-S 0.4120 0.4140 0.2082 0.0164 0.381 0.086 

4L-F 0.1034 0.1203 0.0604 0.0048 0.298 0.221 
4L-R 0.4281 0.5045 0.2535 0.0200 0.422 0.098 
4L-S 0.4284 0.5048 0.2537 0.0207 0.428 0.097 

2Q8-F 0.4143 0.4900 0.2435 0.0199 0.430 0.100 
2Q8-R 0.4319 0.5214 0.2621 0.0206 0.43.'i 0.102 
2Q8-S 0.4319 0.5214 0.2620 0.0206 0.433 0.102 

2Q9-F 0.4193 0.4946 0.2420 0.0201 0.431 0.098 
2Q9-R 0.4339 0.5224 0.2625 0.0207 0.432 0.098 
2Q9-S 0.4339 0.5224 0.2550 0.0206 0.430 0.097 

8L-S 0.4324 0.5297 0.2662 0.0210 0.441 0.100 
4Q8-S 0.4336 0.5344 0.2685 0.0212 0.441 0.100 
4Q9-S 0.4337 0.5344 0.2685 0.0212 0.441 0.100 

Analytical Solutions 

100 CFS 0.4337 0.5382 0.2704 0.0213 0.445 0.101 
(0.339) (0.139) 

ELS 0.4347 0.5390 0.2710 0.0214 0.339 0.139 

CLPT* 0.4313 0.5387 0.2667 0.0213 (0.3:~9) (0.138) 

t F = full integration; R = reduced integration; S = selective integration. 

:I: The values of transverse shear stresses in parentheses are obtained using the 3-D equilibrium 
equations. 

* The CLPT solution is independent of sicle-to-thickness ratio, al h. 
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An examination of the numerical results presented in Table 9.3.2 shows that the 
F8DT finite element with equal interpolation of all generalized displacements does 
not experience shear locking for thick plates even when full integration rule is used. 
8hear locking is evident when the element is used to model thin plates (a/h :::: 100) 
with full integration rule (F). Also, higher-order elements show less locking but with 
slower convergence. The element behaves uniformly well for thin and thick plates 
when the reduced (R) or selectively reduced integration (8) rule is used. The finite 
element results are in excellent agreement with the closed-form solutions of the first
order shear deformation theory. The displacements converge faster than stresses, 
which is expected because the rate of convergence of gradients of the solution is one 
order less than the rate of convergence of the solution. 

Nondimensionalized maximum deflections and stresses in five-layer (hI = h3 = 
hs = h/6, h2 = hI! = h/4) cross-ply (0/90/0/90/0) square laminates under 
sinusoidally distributed transverse load are compared in Table 9.3.3. The finite 
element results were obtained with 4 x 4 mesh of eight-node quadratic elements in 
a quarter plate are in excellent agreement with the closed-form solutions. Although 
the first-order shear deformation theory underpredicts deflections for small values 
of a/h, the stresses are in good agreement with those predicted by the 3-D elasticity 
theory; the error is relatively more for the five-layer case compared to the three-layer 
case shown in Table 9.3.2. 

Table 9.3.3: Comparison of nondimensionalized maximum deflections and 
stresses of simply supported (88-1) five-layer (0/90/0/90/0) square 
plates under sinusoidal loading (El = 25E2, G12 = G13 = 0.5E2, 
G23 = 0.2E2, [/12 = 0.25,K = 5/6). 

a/h Source w x 102 axx ifyy axy axz ayz 

4 ELS 1.8505 0.685 0.633 0.0384 0.238 0.229 
CFS 1.5623 0.4369 0.5026 0.0235 0.3054 0.2403 

(0.2267) (0.2809) 
FEM 1.5620 0.4339 0.4991 0.0233 0.3033 0.2281 

10 ELS 0.6771 0.545 0.430 0.0247 0.258 0.223 
CFS 0.6213 0.5021 0.4107 0.0221 0.3459 0.1998 

(0.2559) (0.2324) 
FEM 0.6212 0.4986 0.4078 0.0219 0.3435 0.1984 

20 ELS 0.4938 0.539 0.380 0.0222 0.268 0.212 
CFS 0.4796 0.5276 0.3748 0.0215 0.3617 0.1840 

(0.2673) (0.2135) 
FEM 0.4796 0.5239 0.3722 0.0214 0.3592 0.1827 

100 ELS 0.4338 0.539 0.360 0.0213 0.272 0.205 
CFS 0.4332 0.5382 0.3598 0.0213 0.3683 0.1774 

(0.2720) (0.2056) 
FEM 0.4331 0.5345 0.3573 0.0211 0.3655 0.1761 

CLPT 0.4313 0.5387 0.3591 0.0213 (0.2722) (O.2052)t 

t Stresses computed from 3-D equilibrium equations. 
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Table 9.3.4 shows a comparison of the elasticity solution of Pagano [60], with 
the closed-form and finite element solutions of a three-layer cross-ply (0/90/0) 
square plate under sinusoidally distributed transverse load. The layers are of equal 
thickness, with the material properties listed in Eq. (9.3.25). The same locations 
and nondimensionalizations as given in Eqs. (9.3.26) and (9.3.27) are used. The 
finite element results obtained with 4 x 4 mesh of eight-node quadratic elements in 
a quarter plate are in excellent agreement with the closed-form solutions. 

While the classical laminate plate theory underpredicts deflections for small 
values of a/ h, the stresses predicted are in general agreement with the first-order 
shear deformation theory and elasticity theory. Also, the transverse shear stresses 
predicted through equilibrium equations, for the laminates studied so far, are very 
close to those predicted by the elasticity theory. 

Table 9.3.4: Comparison of nondimensionalized maximum deflections and 
stresses of simply supported (88-1) three-ply (0/90/0) square 
plates subjected to sinusoidal loading (hi = h/3, E1 = 25E2 , 

G12 = G13 = 0.5E2, G23 = 0.2E2, V12 = 0.25, K = 5/6). 

nih Source W x 102 
ax::r: i7yy axy CTxz jj yz 

10 ELS 0.590 0.288 0.029 0.357 0.123 
CFS 0.6693 0.5134 0.2536 0.0252 0.4089 0.0915 

(0.3806) (0.1108)t 

FEM 4Q8-S 0.6692 0.5098 0.2518 0.0250 0.4060 0.0908 

20 ELS 0.552 0.210 0.0234 0.385 0.094 
CFS 0.4921 0.5318 0.1997 0.0223 0.4205 0.0759 

(0.3912) (0.0901) 

FEM 4Q8-S 0.4921 0.5281 0.1983 0.0222 0.4176 0.0754 

100 ELS 0.539 0.181 0.0213 0.395 0.083 
CFS 0.4337 0.5384 0.1804 0.0213 0.4247 0.0703 

(0.3950) (0.0827) 

FEM 4Q8-S 0.4336 0.5346 0.1791 0.0212 0.4215 0.0699 

CLPT 0.4313 0.5387 0.1796 0.0213 (0.3951) (0.0823) 

t Values computed from equilibrium equations. 

Next, we consider a sandwich plate subjected to sinusoidally distributed 
transverse loading. The face sheets (i.e., layers 1 and 3) are assumed to be 
orthotropic with the following material properties: 

E1 = 25E2, E2 = 106 psi, G12 = G13 = 0.5E2, G23 = 0.2E2, V12 = 0.25 (9.3.29) 

and the core material is transversely isotropic and is characterized by the following 
material properties: 

E1 = E2 = 106 psi, G13 = G23 = 0.06 X 106 psi, V12 = 0.25 

E1 6 . 
G12 = ( ) = 0.016 x 10 pSI 

2 1 + V12 
(9.3.30) 
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Each face sheet is assumed to be one-tenth of the total thickness of the sandwich 
plate (a = b). The finite element results obtained with 4 x 4 mesh of eight-node 
quadratic elements with reduced integration (4Q8-R) are compared with the closed 
form solution and elasticity solution of Pagano [60] in Table 9.3.5. The stresses 
are nondimensionalized as before, and their locations with respect to a coordinate 
system whose origin is at the center of the plate are as follows: 

h h h 
axx(O, 0'2)' ayy(O, 0'2)' axy (a/2, b/2, -2)' axAO, b/2, 0), ayz (a/2, 0, 0) (9.3.31) 

The results indicate that the effect of shear deformation on deflections is significant 
in sandwich plates even at large values of a/h. The equilibrium-derived transverse 
shear stresses are surprisingly close to those predicted by the elasticity theory for 
a/h :::: 10, while those computed from constitutive equations are considerably 
underestimated for small side-to-thickness ratios. The transverse shear stress 
component ayz is significantly overestimated by CLPT. Figures 9.3.2 and 9.3.3 show 
the variation of the transverse shear stresses through the thickness of the sandwich 
plates for side-to-thickness ratios a/h = 2,10, and 100. 

Table 9.3.5: Comparison of nondimensionalized maximum deflections and 
stresses in a simply supported (88-1) sandwich plate subjected to 
sinusoidally varying transverse load (hI = h3 = O.lh, h2 = 0.8h, 
K = 5/6). 

a/h Source iiJ x 102 o-xx (fyy (fxy a-xz ayz 

4 ELS 1.556 0.2595 0.1481 0.239 0.1072 
CFS 4.7666 0.8918 0.1562 0.0907 0.1229 0.0537 

(0.2808) (0.0746) 
FEM 4.7663 0.8856 0.1551 0.0901 0.1221 0.0534 

10 ELS 1.153 0.1104 0.0717 0.300 0.0527 
CFS 1.5604 1.0457 0.0798 0.0552 0.1374 0.0293 

(0.3134) (0.0408) 
FEM 1.5603 1.0384 0.0792 0.0548 0.1365 0.0278 

20 ELS 1.110 0.0700 0.0511 0.317 0.0361 
CFS 1.0524 1.0831 0.0612 0.0466 0.1409 0.0234 

(0.3213) (0.0325) 
FEM 1.0523 1.0755 0.0608 0.0462 0.1399 0.0233 

100 ELS 1.098 0.0550 0.0437 0.324 0.0297 
CFS 0.8852 1.0964 0.0546 0.0435 0.1422 0.0213 

(0.3242) (0.0296) 
FEM 0.8851 1.0887 0.0542 0.0432 0.1412 0.0161 

CPT 0.8782 1.0970 0.0543 0.0433 (0.3243) (0.0295) 

t Values computed from equilibrium equations. 
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Figure 9.3.2: Distribution of transverse shear stress O"xz through the thickness 
of a simply supported (88-1) sandwich plate under sinusoidally 
distributed transverse load. 
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of a simply supported (8S-1) sandwich plate under sinusoidally 
distributed transverse load. 
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The same sandwich plate as discussed above is analyzed for simply supported 
and clamped boundary conditions when uniformly distributed load is used. Once 
again a quarter plate model is used with 4 x 4 mesh of quadratic F8DT elements and 
8 x 8 mesh of CLPT conforming cubic elements. The results are presented in Table 
9.3.6. The effect of shear deformation on the deflections is even more significant in 
clamped plates than in simply supported plates. 

Table 9.3.6: Nondimensionalized maximum deflections and stresses in a square 
sandwich plate with simply supported (88-1) and clamped 
boundary conditions (hI = h3 = O.lh, h2 = 0.8h, K = 5/6). 

a/h Source W x 102 o-xx ayy axy O-xz ayz 

Simply supported plate under uniformly distributed load 

10 4Q8-R 2.3370 1.5430 0.0883 0.1136 0.2396 0.0991 
50 4Q8-R 1.3671 1.5964 0.0526 0.0916 0.2433 0.0881 
100 4Q8-R 1.3359 1.5978 0.0514 0.0906 0.2394 0.0880 
CLPT 8CC-F+ 1.3296 1.5830 0.0509 0.0906 

Clamped plate under uniformly distributed load 

10 4Q9-Rt 1.2654 0.5018 0.0550 0.0120 0.2318 0.1445 
50 4Q9-R 0.3111 0.5356 Om08 0.0039 0.2406 0.1160 
100 4Q9-R 0.2785 0.5347 0.0094 0.0030 0.2400 0.1148 
CLPT 8CC-F+ 0.2951 0.5401 0.0145 0.0605 

t The 4Q9-S element gives the same results as 4Q9-R. 
+ 8 x 8 mesh of conforming cubic elements with full integration for stiffness coefficient evaluation 
and one-point Gauss rule for stresses. 

Table 9.3.7 shows maximum nondimensionalized deflections for angle-ply (0/-
0/0/-0, ... ) square plates under sinusoidal load for 0 = 5°,30°, and 45°. The 
material properties of an individual layer are assumed to be (Material 2) 

(9.3.32) 

The finite element results obtained with a 4 x 4 mesh of nine-node elements in a 
quadrant are identical to the closed-form solutions (CF8) for all angles and side
to-thickness ratios, when the correct symmetry boundary conditions (88-1) are 
used. Figure 9.3.4 shows the effect of side-to-thickness ratio, number of layers, 
and the lamination angle on the nondimensionalized maximum deflection of simply 
supported (88-1) antisymmetric angle-ply plates. The figure also shows the effect 
of using incorrect boundary conditions along the lines of symmetry; the symmetry 
conditions of 88-1 (see Figure 9.2.10) were used to obtain solutions of the two- and 
sixteen-layer laminates. It is clear from the results that when the lamination angle 
is small or the number of layers is large, the error due to the incorrect symmetry 
boundary conditions is small. This is expected because for very small lamination 
angle, the laminate is close to being a cross-ply laminate, and when the number of 
layers is large (n ::::: 8), the laminate behaves like an orthotropic plate, for which the 
88-1 boundary conditions are valid. 



Table 9.3.7: 

a/h Source 

2 CFS 
FEM 

4 CFS 
FEM 

10 CFS 
FEM 

20 CFS 
FEM 

50 CFS 
FEM 

100 CFS 
FEM 

CLPT 
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Nondimensionalized deflections, W x 102 , as a function of number of 
layers, angle, and side-to-thickness ratio for simply supported (88-
2) angle-ply square plates under sinusoidally distributed transverse 
load (hn = hln, El = 40E2, G 12 = G 13 = 0.6E2, G23 = 0.5E2, 
V12 = 0.25, K = 5/6, n = Number of layers in the laminate). 

e = 5° e = 30° e = 45° 

n=2 

3.7849 
3.7853 

1.3165 
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Figure 9.3.4: Effect of transverse shear deformation, lamination angle, number 
of layers, and symmetry boundary conditions on the deflections of 
simply supported (88-1) antisymmetric angle-ply laminates under 
sinusoidal load. 
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The stresses obtained with the same mesh as above for ten-layer antisymmetric 
angle-ply laminates are presented in Table 9.3.8. The stresses in the finite element 
analysis as well as in the closed-form solution are evaluated at the Gauss points: 

Xc = Yc = 0.47358a, Xs = Ys = 0.02642a (9.3.33) 

The finite element stresses (second row) are in excellent agreement with the closed
form solution (first row). For () = 45° it is found that the stresses are independent 
of side-to-thickness ratio. 

Next, results for thermal bending are presented (see [61,62]). Figure 9.3.5 shows 
the effect of side-to-thickness ratio a / h on the nondimensionalized deflections and 
stresses of cross-ply and angle-ply plates subjected to temperature distribution that 
is linear through the thickness and varies sinusoidally in the plane of the plate 
(q = 0, To = 0, Tl t- 0). The deflection and stresses are amplified to show the 
effect of thickness-shear strain. Clearly, the effect of shear deformation on thermal 
deflections and stresses is not as significant as in mechanically loaded plates. 

Table 9.3.8: Nondimensionalized stresses for simply supported (88-2) angle
ply (-() / () / -() / ... ) square plates under sinusoidal transverse load 
(hn = h/n, n = 10 El = 40E2, G 12 = G 13 = 0.6E2, G23 = 0.5E2, 
V12 = 0.25, K = 5/6, 4Q9-R, n = number of layers). 

a/h () = 5° () = 30° ()t = 45° 

axx o-yy axy axx o-yy axy o-xx axy 

2 0.3324 0.0964 0.0850 0.1530 0.0786 0.1688 0.1430 0.1392 
0.3280 0.0957 0.0846 0.1500 0.0774 0.1689 0.1421 0.1401 

4 0.4423 0.0551 0.0511 0.2011 0.0890 0.1425 0.1430 0.1392 
0.4379 0.0547 0.0510 0.1982 0.0822 0.1423 0.1421 0.1401 

10 0.5146 0.0279 0.0289 0.2328 0.0865 0.1252 0.1430 0.1392 
0.5103 0.0277 0.0290 0.2298 0.0854 0.1252 0.1421 0.1401 

20 0.5286 0.0227 0.0246 0.2389 0.0871 0.1218 0.1430 0.1392 
0.5243 0.0225 0.0247 0.2359 0.0860 0.1219 0.1421 0.1401 

50 0.5327 0.0211 0.0233 0.2407 0.0873 0.1208 0.1430 0.1392 
0.5284 0.0210 0.0234 0.2377 0.0862 0.1209 0.1421 0.1401 

100 0.5333 0.0209 0.0231 0.2410 0.0873 0.1207 0.1430 0.1392 
0.5290 0.0207 0.0233 0.2380 0.0862 0.1208 0.1421 0.1401 

CLPT 0.5290 0.0207 0.0233 0.2411 0.0873 0.1206 0.1440 0.1402 

t The stresses are independent of side-to-thickness ratio. 
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cross-ply and angle-ply laminates subjected to thermal loading. 
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Lastly, numerical results for transverse deflections and stresses of rectangular 
plates for a variety of boundary conditions are presented. The analytical results 
reported were obtained using the Levy method with state-space approach (see 
Sections 7.4 and 7.5, and References 63-76). For the finite element analysis, a 
4 x 4 mesh is used for the classical plate theory, while 2 x 2 mesh of nine-node 
quadratic elements is used for the first-order theory when a quadrant of a plate is 
analyzed (for SS, ee, and FF boundary conditions), and equivalent 8 x 4 and 4 x 2 
meshes were used for the half-plate models (in the case of se, FS, and Fe boundary 
conditions). The notation se, for example, refers to simply supported boundary 
condition on the edge x = -a/2 and clamped boundary condition on the edge 
x = a/2, while the remaining two edges, y = 0, b, are simply supported. In all cases 
a sinusoidally varying transverse load is used, and the material properties of each 
lamina are assumed to be those of graphite-epoxy material with the properties listed 
in Eq. (9.3.25). The deflections and stresses are nondimensionalized as follows: 

b h h2 

ifxx = CTxx(O, -, --)-2- X 10 
2 2 b qo 

h 
ifyz = CTyz(O, 0, O)-b x 10 

qo 
(9.3.34) 

Tables 9.3.9 through 9.3.11 contain numerical values of deflections and stresses 
of antisymmetric cross-ply square plates (0/90/0/···) with various boundary 
conditions and sinusoidally distributed transverse load. The analytical (first row) 
and finite element solutions (second row) are presented. In all cases the finite element 
results are in good agreement with the analytical solutions. 

Table 9.3.9: Nondimensionalized center deflections w x 102 of antisymmetric, 
two-layer and ten-layer cross-ply square plates (0/90h. 

k a Theory SS SC CC FF FS FC h 

5 FSDT 1.758 1.477 1.257 2.777 2.335 1.897 
1.759 1.478 1.257 2.776 2.334 1.897t 

CLPT 1.064 0.664 0.429 1.777 1.471 0.980 
1 1.043 0.648 0.417 1.786 1.465 0.977 

10 FSDT 1.237 0.883 0.656 2.028 1.687 1.223 
1.238 0.883 0.657 2.027 1.687 1.223 

CLPT 1.064 0.664 0.429 1.777 1.471 0.980 
1.043 0.648 0.417 1.786 1.465 0.977 

5 FSDT 1.137 1.045 0.945 1.663 1.460 1.258 
1.137 1.045 0.945 1.662 1.460 1.258 

CLPT 0.442 0.266 0.167 0.665 0.579 0.380 
5 0.444 0.266 0.169 0.686 0.593 0.391 

FSDT 0.615 0.480 0.385 0.915 0.800 0.612 
10 0.616 0.480 0.386 0.914 0.800 0.612 

CLPT 0.442 0.266 0.167 0.665 0.579 0.380 
0.444 0.266 0.169 0.686 0.593 0.391 

t The second row corresponds to finite element results. 
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Table 9.3.10: Nondimensionalized stress (o-xx) of antisymmetric cross-ply square 
plates (0/90/0/ ... ); n denotes the total number of layers. 

a 
It 

5 

10 

5 

Theory SS 

FSDT 7.157 
6.948 

CLPT 7.157 
6.659 

FSDT 7.157 

CLPT 

FSDT 

CLPT 

6.948 
7.157 
6.659 

SC 

5.338 
5.465 
5.660 
5.782 
5.494 
5.668 
5.660 
5.782 

CC 

3.911 
3.707 
4.800 
4.348 
4.450 
4.222 
4.800 
4.348 

FF 

2.469 
2.359 
2.403 
2.034 
2.442 
2.331 
2.403 
2.034 

FS 

4.430 
4.479 
4.442 
4.288 
4.435 
4.491 
4.442 
4.288 

FC 

2.434 
2.542 
3.042 
2.991 
2.790 
2.895 
3.042 
2.991 

10 

5.009 
4.864 
5.009 
4.611 
5.009 
4.863 
5.009 
4.611 

3.707 
3.755 
3.829 
3.911 
3.642 
3.754 
3.829 
3.911 

2.275 
2.154 
3.167 
2.798 
2.692 
2.550 
3.167 
2.798 

1.712 
1.639 
1.725 
1.324 
1.723 
1.648 
1.725 
1.324 

2.957 
2.993 
2.986 
2.806 
2.968 
3.010 
2.986 
2.806 

1.343 
1.427 
1.865 
1.700 
1.594 
1.674 
1.865 
1.700 

n 

10 FSDT 

CLPT 

Table 9.3.11: Nondimensionalized stress (o-yy) of antisymmetric cross-ply 
(0/90/0/ ... ) square plates; n denotes the total number of layers. 

a 
It 

5 

2 
10 

5 

Theory 

FSDT 

CLPT 

FSDT 

CLPT 

FSDT 

CLPT 

SS 

7.157 
6.948 
7.157 
6.659 
7.157 
6.948 
7.157 
6.659 

SC 

6.034 
5.914 
4.483 
4.393 
5.109 
5.082 
4.483 
4.393 

CC 

5.153 
4.990 
2.914 
2.615 
3.799 
3.661 
2.914 
2.615 

FF 

11.907 
11.675 
11.849 
11.614 
11.884 
11.654 
11.849 
11.614 

FS 

9.848 
9.140 
9.837 
8.878 
9.847 
9.120 
9.837 
8.878 

FC 

8.047 
8.367 
6.560 
7.181 
7.150 
7.610 
6.560 
7.181 

10 

5.009 
4.864 
5.009 
4.611 
5.009 
4.863 
5.009 
4.611 

4.628 
4.511 
3.025 
2.942 
3.904 
3.852 
3.025 
2.942 

4.212 
4.086 
1.911 
l.694 
3.135 
3.031 
1.911 
1.694 

7.583 
7.429 
7.480 
7.395 
7.533 
7.384 
7.480 
7.395 

6.590 
6.141 
6.531 
5.935 
6.566 
6.097 
6.531 
5.9:35 

5.706 
5.844 
4.284 
4.782 
5.029 
5.279 
4.284 
4.782 

10 FSDT 

CLPT 

Table 9.3.12 contains nondimensionalized deflections of angle-ply laminates 
subjected to uniformly distributed transverse load under various boundary 
conditions and with different values of E1/E2 (G 12 = G B = 0.6E2, G23 = 0.5E2, 
1/12 = 0.25). The results were obtained using the Levy method with state-space 
approach discussed in Section 7.5. 
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Table 9.3.12: Nondimensionalized deflections if; == wo(O, b/2)E2h3 x 102/(a4qo) 
of simply supported (88-2), four-layer antisymmetric angle-ply 
square plates [(45/-45/45/-45), a/h = 10j. 

Theory EJ SS SC CC FF FS FC 
E2 

FSDT 2 3.3749 2.4227 1. 7530 10.7347 6.4469 4.7427 
CLPT 3.2142 2.2144 1.6308 10.4702 6.2336 4.4460 

FSDT 10 1.1598 0.9443 0.7708 6.0487 2.6109 2.1091 
CLPT 1.000 0.7457 0.5578 5.5710 2.3451 1.7473 

FSDT 20 0.7013 0.6024 0.5180 4.2843 1.6234 1.3787 
CLPT 0.5418 0.4120 0.3133 3.6574 1.3432 1.0104 

FSDT 30 0.5312 0.4706 0.4170 3.2417 1.2252 1.0749 
CLPT 0.3718 0.2847 0.2179 2.7376 0.9433 0.7121 

As noted in 8ection 6.6, the midplane symmetric plates are characterized by 
nonzero bending-twisting coupling coefficients D16 and D26 . Figure 9.3.6 contains 
plots of the nondimensionalized center deflection versus side-to-thickness ratio for 
three-layer (-45/45/-45) simply supported (88-1) and clamped, square, symmetric 
laminates under uniformly distributed transverse load (El = 25E2 , G 12 = G 13 = 
0.5E2, G23 = 0.2E2, V12 = 0.25, K = 5/6, a/h = 10). The finite element results 
are obtained using 4 x 4 mesh of nine-node elements (i.e., 4Q9-R). The solution 
obtained with omitting D16 and D26 is also shown in the figure. The bending
twisting coupling has the effect of increasing deflections. Also, the effect of shear 
deformation is more in the clamped plate than in the simply supported plate. Figure 
9.3.7 shows the nondimensionalized center deflections obtained by the CLPT and 
F8DT (a/h = 10) as functions of the lamination angle for simply supported (88-2) 
symmetric three-layer (-e /e I-e) plates under uniformly distributed load. The plots 
are symmetric about 45°. 

Table 9.3.13: Effects of side-to-thickness ratio, integration, and type of 
element on the nondimensionalized fundamental frequency 
w w(a2 /h)J p/ E2 of simply supported (88-1) cross-ply 
(0/90/90/0)square plates. 

alh 

2 
10 

100 

Serendipity Element 

F 

5.502 
15.174 
19.171 

R 

5.503 
15.179 
18.841 

S 

5.501 
15.159 
18.808 

Lagrange Element 

F 

5.502 
15.182 
19.225 

R 

5.503 
15.193 
18.883 

S 

5.501 
15.172 
18.933 

CFS 

5.500 
15.143 
18.836 
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Figure 9.3.6: Nondimensionalized deflection versus side-to-thickness ratio for 
three-layer (-45/45/-45), simply supported (88-1) and clamped 
symmetric plates under uniform loading. 
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supported (88-1) symmetric three-layer (-0/0/-0) plates under 
uniformly distributed load. 



540 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

9.3.6 Vibration Analysis 

The effect of reduced integration and the use of eight-node and nine-node elements 
on the accuracy of the natural frequencies are studied using three-layer cross-ply 
(0/90/0) laminate used to obtain the results in Table 9.3.2. A 2 x 2 mesh in a 
quarter plate is used to obtain the results [58,77]. Effects of side-to-thickness ratio, 
integration, and type of element on the nondimensionalized fundamental frequency 
w of simply supported (88-1) cross-ply (0/90/90/0) square plates (Material 2; rotary 
inertia included) are presented in Table 9.3.13. From the results obtained, it is clear 
that both full (F) and selective (8) integrations give good results for thick plates 
(a/h :S 10), whereas reduced integration (R) gives the best results for thin plates 
(a/ h 2': 100). However, the reduced integration and selective integration rules both 
give good results for a wide range of side-to-thickness ratios. 

Table 9.3.14 contains the lowest six natural frequencies of two- and four
layer cross-ply and angle-ply laminates with clamped edges. While the first two 
fundamental frequencies are very close, the higher frequencies are quite different for 
these laminates. 

Table 9.3.14: The lowest six nondimensionalized frequencies of cross-ply and 
angle-ply square plates with clamped boundary conditions (w = 

w(a2 /h)J p/ E 2 ; hi = h/n, a/h = 10, Material 2, 2Q8-R in full 
plate). 

Laminate a/h WI w2 W3 w4 w5 W6 

(0/90) 2 5.900 1O.137t 14.750t 18.123 18.245 20.759 
10 19.567 43.702t 128.43t 98.578 98.658 141.47 

100 25.677 244.77t 967.21 t 1454.2t 1625.5 1687.1 t 

(0/90b 2 6.001 10.374t 23.477t 27.019 27.181 34.240t 
10 24.368 47.200t 101.35 101.69 141.23t 157.31 

100 40.506 259.23t 968.04 968.06 1455.6t 1627.2 

(-45/45) 2 5.883 10.106t 14.75t 19.101 20.129 20.826 
10 18.979 41.482t 96.584 98.336 128.43t 160.64 

100 24.420 241.00t 966.94 967.16 1454.5t 1943.9 

(-45/45)2 2 5.992 10.359t 20.830 21.081 23.479t 31.771 
10 23.834 45.720t 99.174 101.37 141.26t 185.49 

100 38.201 249.30t 967.32 967.92 1455.8t 1947.0 

t Occur in pairs_ 

Figure 9.3.8a shows the effect of side-to-thickness ratio on the nondimensionalized 
fundamental frequencies, w = w(a2 /h)J phi E2, of cross-ply plates (a/h = 10, 
Ed E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, 1/12 = 0.25, K = 5/6). 8imilar 
results are presented for angle-ply plates in Figure 9.3.8b, which also contains a 
plot of the fundamental natural frequency versus the lamination angle for four-layer 
antisymmetric angle-ply laminates. The dashed line in Figure 9.3.8b corresponds to 
the case in which the 88-1 (incorrect) symmetry boundary conditions were used. 
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Figure 9.3.8: Nondimensionalized fundamental frequency versus side-to
thickness ratio of simply supported antisymmetric (a) cross-ply 
(SS-1) and (b) angle-ply (SS-2) plates. 
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9.3.7 Transient Analysis 

Here we present results of transient analysis obtained using the shear deformable 
finite element. For additional results, the reader may consult References 78-80. The 
nine-node quadratic element with selective integration rule is used in the examples 
discussed here. In all cases initial conditions were assumed to be zero. The constant
average-acceleration scheme (0: = "( = 0.5) of Newmark is used for time integration. 

Simply supported (SS-l) antisymmetric cross-ply square plates (0/90)n under 
suddenly applied sinusoidally (SSL) or uniformly (UDL) distributed transverse step 
load are analyzed. The boundary conditions for a quadrant are (see Figure 9.2.10): 

x = 0: Uo = ¢x = 0; 

y = 0: Vo = ¢y = 0; 

x = a /2: Vo = Wo = ¢y = 0 

y = a/2: Uo = Wo = ¢x = 0 (9.3.35) 

The finite element results were obtained using a 2 x 2 mesh of nine-node quadratic 
FSDT finite elements in a quadrant. The following geometric and material properties 
were used: 

a = b = 25 em, h = 5 em, qo = 10 N/cm2
, tlt = 5 f.LS 

The following nondimensionalizations are used: 

We note that 

a b h h2 

iTxx = O"xx(-2"' 2' 2) b2qo 

h h2 

iTxy = O"xy(O, 0, - 2) b2qo 

a b h a b h 
o"xx( 2' 2' 2) = -O"yy( 2' 2' -2) 

a b h a b h 
O"YY(2'2'2) = -O"xx(2'2'-2) 

a b h a b h 
0" xy ( 2' 2' - 2) = - 0" xy ( 2' 2' 2 ) 

(9.3.36) 

(9.3.37) 

(9.3.38) 

(9.3.39) 

Table 9.3.15 contains nondimensionalized center deflection and stresses for (0/90) 
laminate under sinusoidal load. The finite element results are compared with the 
closed-form solutions (CFS) developed in Section 6.7 (also see Reddy [78]). The 
results are in good agreement with the analytical solutions. 

Figures 9.3.9 through 9.3.12 show plots of center deflection wand maximum 
stresses iT xx, iT yy, and iT xy of two-layer and eight-layer antisymmetric cross-ply square 
plates under suddenly applied sinusoidally or uniformly distributed transverse step 
load. The geometry and material properties are the same as listed in Eqs. (9.3.36) 
and (9.3.37). The finite element results are in excellent agreement with the analytical 
solutions of the first-order shear deformation plate theory. 
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Table 9.3.15: Comparison of transverse deflection and stresses obtained by the 
finite element method with closed-form solution of two-layer cross-
ply square plate under suddenly applied sinusoidal load. 

Time W a;rx ijo,y 

(/-is) CFSt FES CFS FES CFS FES 

10 0.0514 0.0515 0.0080 0.0077 0.0058 0.0056 
20 0.2486 0.2489 0.0777 0.0754 0.0525 0.0507 
40 1.0152 1.0165 0.4962 0.4819 0.3073 0.2978 
60 2.0523 2.0544 0.9679 0.9400 0.6039 0.5849 
80 2.9782 2.9807 1.4649 1.4224 0.9075 0.8790 
100 3.4784 3.4802 1.6724 1.6233 1.0404 1.0073 
120 3.3620 3.3621 1.6544 1.6052 1.0251 0.9922 
140 2.6836 2.6818 1.2807 1.2416 0.7979 0.7715 
160 1.6705 1.6674 0.8195 0.7936 0.5080 0.4907 
180 0.6952 0.6921 0.2997 0.2892 0.1902 0.1829 
200 0.0902 0.0889 0.0394 0.0375 0.0248 0.0236 

t Closed-form solution with Newmark's scheme for time integration. 

9.4 Finite Element Analysis of Shells 
9.4.1 Weak Forms 

The displacement finite element model of the equations governing doubly-curved 
shells, Eqs. (8.3.6)~(8.3.10), can be derived in a manner similar to that of plates. In 
fact, the finite element model of doubly-curved shells is identical to that of FSDT 
with additional terms in the stiffness coefficients (see pages 465~468 of Reddy [89]). 
For the sake of completeness, the main equations are presented here. 

We begin with the weak forms of Eqs. (8.3.6)~(8.3.10) (Xl = X and X2 = y): 

i [88UO 88uo Ql. {Puo fj2cPl] 
0= -8 NI + -8 (N6 + COM 6) - 8uo-

R 
+ Iobuo-

8 
2 + h buo-

8 
2 dxdy 

.~Y X Y Itt 

- 1 PlbuO ds (9.4.1a) Ire 

(9.4.1c) 
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mOT = 1, M=51ls 

(0/90), UDL 

(0/90),88L 

(0/90)4, UDL 

Figure 9.3.9: Plots of center deflection w versus time for simply supported (88-1) 
two-layer and eight-layer cross-ply square plates under sinusoidal 
or uniform step loading. 
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Figure 9.3.10: Plots of center normal stress o-xx versus time for simply supported 
(88-1) two-layer and eight-layer cross-ply square plates under 
sinusoidal or uniform step loading. 
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Figure 9.3.11: Plots of center normal stress (fyy versus time for simply supported 
(88-1) two-layer and eight-layer cross-ply square plates under 
sinusoidal or uniform step loading. 
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Figure 9.3.12: Plots of center normal stress (fxy versus time for simply supported 
(88-1) two-layer and eight-layer cross-ply square plates under 
sinusoidal or uniform step loading. 
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1 (88(/JI 88c/JI 82cPl 82uo) o = Sle ----a;;- Ml + -----ay M6 + 8cPl Ql + h 8cPl at2 + h 8(Pl at2 dxdy 

fie T18cPl ds (9.4.1d) 

1 (a8(/J2 a8cP2 a2cP2 a2vo) o = Sle ----a;;- M6 + -----ay M2 + 8cP2Q2 + h 8cP2 at2 + h 8cP2 at2 dxdy 

- fie T2 8cP2 ds (9.4.1e) 

where Co = 0.5(1/ Rl - 1/ R2) and the stress resultants N i , Mi and Qi are 
defined by Eqs. (8.3.1a,b). We note from the boundary terms in Eq. (9.4.1a-e) 
that (uo, Vo, Wo, (PI, cP2) are the primary variables. Therefore, we can use the CO 
interpolation of the displacements. The secondary variables are 

(9.4.2) 

where (N1 , N2, N6) are the applied surface loads that are introduced to study the 
buckling problem. Note that in the case of shells, surface displacements are coupled 
to the transverse displacement even for linear analysis of isotropic shells. 

9.4.2 Finite Element Model 

Using interpolation of the form 

m 

uo(x, y, t) = L Uj(t)1jJ'j(x, y) 
j=1 
m 

Vo(x, y, t) = L Vj(t)1jJ'j(x, y) 
j=1 

n 

wo(x, y, t) = L Wj(t)1jJ'j(x, y) 
j=1 

P 

cPl (x, y, t) = L SJ (t)1jJ'j(x, y) 
j=1 

P 

cP2(X, y, t) = L S; (t)1jJ'j (x, y) 
j=1 

(9.4.3a) 

(9.4.3b) 

(9.4.4) 

(9.4.5a) 

(9.4.5b) 

where 1jJ'j are Lagrange interpolation functions. In the present study equal 
interpolation (m = n = p) of five displacements, with p = 1,2"" is used. Note 
that the finite element model developed here for doubly-curved shells contains the 
FSDT plate element as a special case (set Co = 0, 1/ Rl = 0 and 1/ R2 = 0). 
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Substituting Eqs. (9.4.3)-(9.4.5) for (uo, vo, wo, (PI, cP2) into the weak forms in 
Eq. (9.4.1a-e), we obtain the semidiscrete finite element model of the first-order 
shear deformation shell theory: 

( 
[Kll] [K12] [K13] [K14] [K 15] [0] [0] [0] [0] 

[01 ) j {u'} ) [K12]T [K22] [K23 ] [K24] [K25 ] [0] [0] [0] [0] [0] {ve} 
[K1:3jT [K23]T [K33] [K:34] [K35] + [0] [0] [G] [0] [0] {we} 
[K14]T [K24]T [K:34]T [K44] [K45 ] [0] [0] [0] [0] [0] {Sl} 
[K 15 ]T [K25 ]T [K35 ]T [K45 jT [K55 ] [0] [0] [0] [0] [0] {S2} 

fo[M] [0] [0] h[M] [0] jiii.'}) fF1}-{FT1 }) [0] fo[M] [0] [0] h[M] { ije} { F2} _ {FT2} 

+ [0] [0] fo[M] [0] [0] {we} = {F3} 
h[M] [0] [0] h[M] [0] {51} {F4} _ {FT4} 

[0] h[M] [0] [0] h[M] {52} {F5} _ {FT5} 

(9.4.6) 

where the coefficients of the submatrices [AI°,B] and Gij are the same as those defined 
for (0:, (3 = 1,2" .. ,5) by the expressions in (9.3.7). The stiffness coefficients [Ko ;3] 
are defined as follows: 

Kl o = r. _'Y_i Nf + _'Y_i (Nt{ + CoMff) -1/;[ ~ dxdy 
[

OOI,e ool,e QO ] 

J iD' Ox J oy J J Rl 

[ 
o1/;i' (N°C C ~ JOC ) o1/;i Hoc e Q2j ] d d 

K;t =,k, Ox 6j - 01V16j + oy 2j - 1/;'i R2 X y 

Kj3a = _'Y_i Q~. + _'Y_i Q~. + 1/;[ --.!l + ----'2 dxdy 1 [ool,e ool,e (Ne
, NClC.)] 

J D' OX J fJy J R1 R2 

K 4n = 1 (01/;1' MClC. + 01/;1' M n + OI,eQCl'.) dxdy 
!J ::l 1J ::l 6J 'Yt 1J Dc uX uy 

K 5n = r. (o·lj;i MClC. + o'lj;i Ar'. + OI,eQn.) dxdy 
LJ in' OX 6J oy 2J 'Yt 2J 

(9.4.7) 

and the nonzero coefficients N'lj, J\;1'lj, and Qlj for 0: = 1, 2, ... , 5 and f = 1, 2, 6 are 
given by 
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a?jJe a?jJe 5 a?jJj a?jJj 
M{j = Du a: + D16 a: ' M 1j = D12 ay + D16 ax 

1 a?jJj a?jJj 2 a?jJj a?jJj 
M2j = B12 ax + B 26 ay , M 2j = B22 ay + B26 ax 

4 a?jJj a?jJj 5 a?jJj a?jJj 
M 2j = D12 ax + D26 ay , M2j = D22 ay + D 26 ax 

1 a?jJj a?jJj 2 a?jJj a?jJj 
M6j = B 16 ax + B66 ay , M6j = B 26 ay + B66 ax 

a?jJe a?jJe 5 a?jJj a?jJj 
Mij = D16 a: + D66 a: ' M6j = D26 ay + D66 ax 

N3. = (Au + A12) "i,e N3. = (A12 + A22) "i,e N 6
3. = (A 16 + A 26 ) "i,e 

IJ Rl R2 'rJ' 2J Rl R2 'rJ' J Rl R2 'rJ 

(9.4.8a) 

(9.4.8b) 

(9.4.8c) 

where NT, MT, etc. are the thermal force and moment resultants. 
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9.4.3 Numerical Results 

Here we present numerical results for a number of problems, isotropic as well as 
composite shells (mostly cylindrical shells). In all examples presented here we 
set Co = O. The results are compared, when available, with those reported in 
the literature. Quadrilateral elements with selective integration rule to evaluate 
the stiffness coefficients (full integration for bending terms and reduced integration 
for bending-membrane coupling terms and transverse shear terms) are used. See 
Chapter 10 for a discussion of the so-called membrane locking. 

Clamped cylindrical shell 

Consider the deformation of a cylindrical shell with internal pressure [89]. The shell 
is clamped at its ends (see Figure 9.4.1). The geometric and material parameters 
used are 

Rl = 1030 (~l ~ 0), R2 = R = 20in., a = 20in., h = 1 in. (9.4.9a) 

El = 7.5 X 106 psi, E2 = 2 X 106 psi, Gl2 = 1.25 X 106 psi 

G 13 = Gn = 0.625 X 106 psi, V12 = 0.25 (9.4.9b) 

The pressure is taken to be Po = (6.41/rr) ksi. The numerical results obtained using 
4 X 4 mesh of four-node (linear) quadrilateral elements (4 X 4Q4) and 2 X 2 mesh of 
nine-node (quadratic) quadrilateral elements (2 x 2Q9) in an octant (uo = <PI = 0 at 
;1:1 = 0; Vo = <P2 = 0 at X2 = 0, 'iT R/2; and Uo = Vo = Wo = <PI = <P2 = 0 at Xl = a/2) 
of the shell are presented in Table 9.4.1. The reference solutions by Rao [90] and 
Timoshenko and Woinowsky-Krieger [91] did not account for the transverse shear 
strains. 

Table 9.4.1: Maximum radial deflection (wo in.) of a clamped cylindrical shell 
with internal pressure. 

Laminate 

o 
0/90 

Present Solution~ 

4 x 4Q4 

0.3754 
0.1870 

R 

2 x 2Q9 

0.3727 
0.1803 

Ref. [90] Ref. [91] 

0.3666 0.367 

Figure 9.4.1: Clamped cylindrical shell with internal pressure. 



550 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

Doubly-curved shell panel 

Next, we consider a spherical shell panel (Rl = R2 = R) under central point load 
[89]. The shell panel is simply supported at edges (see Figure 9.4.2). The geometric 
and material parameters used are 

Rl = R2 = R = 96 in., a = b = 32 in., h = 0.1 in. (9.4.10a) 

El = 25E2, E2 = 106 psi, G 12 = G 13 = 0.5E2, G23 = 0.2E2, lI12 = 0.25 

(9.4.lOb) 

The point load is taken to be Fo = 100 lbs. The numerical results obtained using 
various meshes of linear and quadratic elements in a quadrant of the shell are 
presented in Table 9.4.2. The finite element solution converges with refinement 
of the mesh to the series solution of Vlasov [92], who did not consider transverse 
shear strains in his analysis. 

Table 9.4.2: Maximum radial deflection (-wo x 10 in.) of a simply supported 
spherical shell panel under central point load. 

Laminate 4 x 4Q4 
Uniform 

Isotropic 0.3506 
Orthotropic 0.9373 
0/90 
45/ - 45 

~l 

Present Solutions 

2 x 2Q9 4 x 4Q9 
Uniform Uniform 

0.3726 0.3904 
1.0349 
1.0217 
0.5504 

4 x 4Q9 
Nonuniform 

0.3935 
1.2644 
1.2376 

Ref. [90] Ref. [92] 

0.3866 0.3956 

~2 

Figure 9.4.2: Simply supported spherical shell panel under central point load. 



FINITE ELEMENT ANALYSIS OF COMPOSITE PLATES AND SHELLS 551 

The remaining example problems of this chapter are analyzed using various p 
levels [see Eq. (9.4.3)-(9.4.5)]. With 5 degrees of freedom at each node, the number 
of degrees of freedom per element for different p values is as follows: 

Element type p level DoF per element 

Q4 1 20 
Q9 2 45 

Q25 4 125 
Q49 6 245 
Q81 8 405 

The numerical integration rule (Gauss quadrature) used is J x J x K, where K 
denotes the number of Gauss points (i.e., K x K Gauss rule) used to evaluate the 
transverse shear terms (i.e., those containing A 44 , A45 or A 44 ), J denotes the number 
of Gauss points to evaluate the bending-membrane coupling terms (which are zero 
for the linear analysis of plates), and J denotes the number of Gauss points used 
to evaluate all remaining terms in the stiffness matrix. "Full integration" means 
using a Gauss rule that evaluates an integral exactly. "Reduced integration" rule 
is one in which one point less than that in the full integration rule is used. One 
may use full integration for all terms, reduced integration for all terms, or selective 
integration where reduced integration for transverse shear and coupling terms and 
full integration for all other terms in the stiffness matrix. The values of J, J and K 
used in the present study for different p levels and integration rules are listed below. 

p level Full Selective Reduced 
integration integration integration 

1 2x2x2 2x1x1 1x1x1 
2 3x3x3 3x2x2 2x2x2 
4 5x5x5 5x4x4 4x4x4 
6 7x7x7 7x6x6 6x6x6 
8 9x9x9 9x8x8 8x8x8 

Clamped cylindrical shell panel 

First we consider an isotropic cylindrical shell panel with the following geometric 
and material parameters and subjected to uniformly distributed transverse (normal 
to the surface) load q (see Figure 9.4.3): 

a =O.lrad., R = 100in., a = 20in., h = 0.125in. 

E = 0.45 X 106 psi, /J = 0.3, q = 0.04 psi 

(9.4.11a) 

(9.4.11b) 

Two sets of uniform meshes, one with 81 nodes (405 DoF) and the other with 289 
nodes (1,445 DoF), are used in a quadrant of the shell with different p levels. For 
example, for p = 1 the mesh is 8 x 8Q4, for p = 2 the mesh is 4 x 4Q9, and for p = 8 
the mesh is 1 x 1Q81 - all meshes have a total of 81 nodes. Doubling the above 
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Figure 9.4.3: Clamped cylindrical shell panel under uniform transverse load. 

meshes will have 289 nodes. The vertical displacement at the center of the shell 
obtained with various meshes and integration rules are presented in Table 9.4.3. 
The results obtained with selective and reduced integrations are in close agreement 
with those of Palazotto and Dennis [93] and Brebbia and Connor [94]. 

Table 9.4.3: Vertical deflection (-WA x 102 in.) t at the center of the clamped 
cylindrical panel under uniform transverse load. 

Mesh of 81 nodes Mesh of 289 nodes 

]I Full Selective Reduced Full Selective Reduced 
level integ. integ. integ. integ. integ. integ. 

1 0.3378 1.1562 1.1577 0.7456 1.1401 1.1404 
2 1.1721 1.1351 1.1352 1.1427 1.1349 1.1349 
4 1.1347 1.1349 1.1349 1.1349 1.1349 1.1349 
8 1.1:349 1.1348 1.1348 1.1348 1.1349 1.1349 

t Palazotto and Dennis [9:3] reported -l.144 x 10-2 in., while Brebbia and Connor [94] 

reported a value of -1.1 x 10-2 in. 

Barrel vault 

This is a well-known benchmark problem, known as the Scordelis-Lo roof [95]. A 
solution to this problem was first discussed by Cantin and Clough [96] (who used 
v = 0.3). The problem consists of a cylindrical roof with rigid supports at edges 
x = ±a/2 while edges at y = ±b/2 are free. The shell is assumed to deform under 
its own weight (i.e., q acts vertically down, not perpendicular to the surface of the 
shell). The geometric and material data of the problem is (see Figure 9.4.4) 

a = 40° (O.698rad.), R = 300 in., a = GOOin., h = 3in. (9.4.12) 

6 . . Y Y 0625· E = 3 x 10 pSI, V = 0.0, qy = q sm -, qz = -q cos -, q =. pSI 
R R 



FINITE ELEMENT ANALYSIS OF COMPOSITE PLATES AND SHELLS 553 

Figure 9.4.4: A cylindrical shell roof under its own weight. 

The boundary conditions on the computational domain are 

At x = 0: 'Uo = rPl = 0, At x = a/2: Vo = Wo = rP2 = ° 
At y = 0: Vo = rP2 = 0, At Y = b/2: Free (9.4.13) 

Two sets of uniform meshes, one with 289 nodes (1,445 DoF) and the other with 
1,089 nodes (5,445 DoF), are used in a quadrant of the shell with different p levels. 
The displacement at y = ±b/2 (middle of the free edge) of the shell, obtained with 
various meshes and integration rules, are presented in Table 9.4.4. To avoid shear 
and membrane locking one must use at least a mesh of 4 x 4Q25 (p = 4). The results 
obtained with selective and reduced integrations are in close agreement with those 
reported by Simo, Fox and Rifai [97]. 

Table 9.4.4: Vertical deflection (-w Bin.) t at the center of the free edge of a 
cylindrical roof panel under its own weight. 

Mesh of 289 nodes Mesh of 1,089 nodes 

p Full Selective Reduced Full Selective Reduced 
level integ. integ. integ. integ. integ. integ. 

1 0.9002 3.2681 3.6434 1.8387 3.5415 3.64:31 
2 3.6170 3.6393 3.6430 3.6367 3.6425 :3.6428 
4 3.6374 3.6430 3.6430 3.6399 3.6428 3.6428 
8 3.6392 3.6429 3.6429 3.6419 3.6429 3.6429 

t Sima, Fox and Rifai [97] reported Wrd = -3.6288 in. for deep shells. 

Figure 9.4.5 shows the variation of the vertical deflections wo(O, y) and 'Uo(300, y) 
as a function of X2 = y, while Figure 9.4.6 shows the convergence of the vertical 
displacement WB for p = 1,2,4,8. Figure 9.4.5 also contains the results of 
Zienkiewicz [98]. 
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The barrel vault problem is also analyzed when the shell is laminated of a 
composite material. The data of the problem is ex = 40°, R = 300 in., a = 600 in. 
and 

(9.4.14a) 

The full panel is modeled with 4 x 4Q81 mesh and boundary conditions Vo = Wo = 

¢2 = 0 at x = ±a/2. In addition, Uo is set to zero at x = y = 0 to eliminate the rigid 
body mode. The following dimensionless quantities are presented in Table 9.4.5: 

E h3 h 10h2 h 10h2 

W = lOWE q~4 ' O'xx = O'xx(O, 0, -2) qR2 O'yy = O'xx(O, 0, 2) qR2 (9.4.14b) 

Table 9.4.5 contains the nondimensionalized deflection and normal stresses for 
two-layer and ten-layer antisymmetric cross-ply (0/90/0/90/···) and angle-ply 
(-45/45/ - 45/ ... ) laminated shells for different radius-to-thickness ratio, S = R/ h. 

Table 9.4.5: Maximum transverse deflections and stresses of cross-ply and 
angle-ply laminated cylindrical shell roof under its own weight. 

Cross-ply laminates Angle-ply laminates 

Layers S=R/h fiJ (fxx i7yy 'ifl ij xx i7 yy 

2 20 12.1529 1.0036 ~9.1915 20.0913 5.6676 ~1.7034 

50 5.4211 0.7577 ~8.7572 7.2105 4.2838 ~3.1827 

100 3.1191 ~0.4476 ~5.3055 4.7959 2.9433 ~3.0257 

10 20 8.7239 ~1.6420 ~5.6938 16.7332 3.7232 0.1132 
50 3.1358 0.8313 ~6.6390 4.3687 3.2165 ~1.6501 

100 1.8877 0.1773 ~5.4245 2.4243 2.4786 ~ 1.9317 

Pinched cylinder 

This is another well-known benchmark problem [99~101]. The circular cylinder with 
rigid end diaphragms is subjected to a point load at the center on opposite sides 
of the cylinder, as shown in Figure 9.4.7. The geometric and material data of the 
problem is 

7r 
ex = 2 rad., R = 300in., a = 600in., h = 3in. 

E = 3 X lO6 psi, V12 = 0.3 

The boundary conditions used are: 

At x = 0: Uo = ¢1 = 0, At x = a/2: Vo = Wo = ¢2 = 0 

At y = 0, b/2: Vo = ¢2 = 0 

(9.4.15) 

(9.4.16) 

Three different meshes with 81 nodes, 289 nodes and 1,089 nodes (with different 
p values) are used in the octant of the cylinder. Table 9.4.6 contains radial 
displacement at the point of load application. The solution of Fliigge [99] is based on 
classical shell theory. It is clear that the problem requires a high p level to overcome 
shear and membrane locking. Figure 9.4.8 shows the convergence characteristics of 
the problem. 
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Table 9.4.6: Radial displacement ( - WAX 105 ) t at node 1 of the pinched circular 
cylinder problem. 

Mesh of 81 nodes Mesh of 289 nodes Mesh of 1,089 nodes 

p level Full Selec. Reduc. Full Selec. Reduc. Full Selec. Reduc. 

1 0.1282 1.5784 1.8453 0.2785 1.7724 1.8600 0.6017 1.8432 1.8690 
2 0.4184 1.7247 1.8451 1.2238 1.8395 1.8596 Ul844 1.8636 1.8677 
4 1.1814 1.8108 1.8438 1.7574 1.8510 1.8586 1.8335 1.8648 1.8667 
8 1.7562 1.8309 1.8415 1.8325 1.8548 1.8579 1.8471 1.8653 1.8661 

t The analytical solution of Fliigge [99] is -1.8248 x 10-5 in.; Cho and Roh [100] reported the value 
Wref = -1.8541 x 10-5 in. 
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The pinched circular cylinder problem is also analyzed when the shell is laminated 
of a composite material. The data of the problem is a = 45°, R = 300 in., a = 600 in. 
and the lamina material properties used are the same as those in Eq. (9.4.14b). The 
following nondimensionlization is used: 

_ a b E 1h3 b E h2 

W = lOwo(-2' 2) PR2' U = lOu()(a, 2) ~R 

a b h lOh2 b b h 10h2 

O"xx = o"xx( 2' 2' -2)--:P O"yy = O"yy( 2' 2' 2)--:P 

The boundary conditions used are: 

Angle-Ply: x = 0, a: V() = W() = (P2 = 0; y = 0, b: Va = ¢2 = 0 

(9.4.17) 

(9.4.16a) 

Cross-Ply: x = 0, a: Va = Wa = ¢2 = 0; Y = 0, b: Ua = ¢2 = 0 

a b 
x = 2' y = "2: u() = 0 (9.4.16b) 

Table 9.4.7 contains the nondimensionalized deflections and normal stresses 
for two-layer and ten-layer antisymmetric cross-ply (0/90/0/90/ ... ) and angle-ply 
(-45/45/ -45/···) laminated shells for different radius-to-thickness ratio, S = R/h. 
The results were obtained using 4 x 4Q81 mesh in half cylinder and full integration 
[and boundary conditions given in Eq. (9.4.16)]. If the same mesh and boundary 
conditions as those used for the cross-ply laminated cylinder to analyze the angle-ply 
laminated cylinder, we would obtain erroneous results. 

Table 9.4.7: Displacements and normal stresses at point A of the laminated 
pinched circular cylinder problem. 

Cross-Ply 

Layers S = RI h -w -u it xx -ityy 

2 20 6.0742 1.9536 73.364 82.045 
50 2.3756 1.4257 59.438 67.737 

100 1.2450 1.1712 44.853 55.209 

10 20 
50 

100 

4.2118 0.9106 53.866 64.446 
1.4527 0.7383 45.643 52.575 
0.7405 0.6721 36.927 42.616 

Simply supported cylindrical panel 

Angle-Ply 

-w -u 

5.2275 5.5368 
2.2283 4.8263 
1.3065 4.4498 

3.6457 3.7541 
1.2986 3.1528 
0.7373 2.9870 

jjxx 

35.089 
29.964 
24.650 

23.301 
20.615 
17.691 

-iTyy 

42.256 
35.201 
29.386 

30.027 
24.593 
20.897 

The last example of the section deals with the bending of a cross-ply laminated 
circular cylindrical panel of length a, angle 2a and radius R. The panel is simply 
supported at all its edges, and subjected to distributed transverse load q, as shown 
in Figure 9.4.9. The geometric and material parameters of the problem are 

7l"X 7l"y 
a=7l"/8rad., R= 1, a=4, q(x,y) =qosin~sinb 

E1 = 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, V12 = 0.25 (9.4.18a) 
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x, u 

Figure 9.4.9: Geometry of the simply supported circular cylindrical panel. 

The boundary conditions used for the panel are: 

At x = 0, a: Vo = Wo = (h = 0, At Y = 0, b: Uo = Wo = (PI = 0 (9.4.18b) 

A mesh of 4 x 4Q25 is used in the full panel and the stiffness coefficients were 
evaluated using full integration. Table 9.4.8 contains the maximum displacement 
[Ui = wo(a/2, b/2, 0)(10El/QOS3), S = R/h] at the center of the panel, and various 
stresses [o-a,6 = IJa,6(10/qoS2)] for different radius-to-thickness ratios. The present 
results are compared with the 3-D analytical solutions of Varadan and Bhaskar 
[102] and closed-form solution developed by Cheng, et al. [103] using the third
order shell theory (see Chapter 11) for (90/0/90) and (0/90) laminates. They are 
in good agreement with each other. 

9.5 Summary 
In this chapter, linear finite element models of the classical and first-order shear 
deformation plate theories and the Sanders shell theory for doubly-curved shells 
are developed. The finite element models developed herein are general in that 
they can be used for any lamination scheme, geometry, and boundary conditions. 
Numerical examples of bending, buckling, natural vibration, and transient response 
of rectangular plates and bending of doubly-curved (mostly cylindrical) shells are 
presented in tabular and graphical forms. The Sanders shell theory accounts for 
transverse shear strains in much the same way as the first-order shear deformation 
plate theory. For additional details, the reader may consult the references listed at 
the end of the chapter. 
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Table 9.4.8: Displacements and stresses in simply supported, cross-ply 
laminated circular cylindrical panel under sinusoidally distributed 
load. 

(90/0/90) (0/90) 

Variablet S= R/h Ref. [102] Ref. [103] Present Ref. [102] Ref. [103] Present 

W 50 0.5495 0.5486 0.5458 2.2420 2.2372 2.2586 
100 0.4715 0.4711 0.4718 1.3670 1.3666 1.3720 
500 0.1027 0.1027 0.1028 0.1005 0.1005 0.1006 

a-lx 50 0.0712 0.0710 0.0711 0.2189 0.2187 0.2211 
100 0.0838 0.0837 0.0841 0.1871 0.1871 0.1882 
500 0.0559 0.0559 0.0560 0.0449 0.0449 0.0451 

-2 
G:r :r 50 -0.0225 -0.0217 -0.0214 1.6100 1.6051 1.6169 

100 0.0018 0.0020 0.0021 2.3000 2.2979 2.3036 
500 0.0379 0.0379 0.0380 0.9436 0.9436 0.9438 

a~y 50 3.9300 3.9265 3.9489 8.9370 8.9543 9.0939 
100 3.5070 3.5048 3.5338 5.5600 5.5643 5.6366 
500 0.7895 0.7897 0.8048 0.4345 0.4346 0.4489 

-2 G yy 50 -3.9870 -3.9870 -3.9555 -0.9670 -0.9615 -0.9601 
100 -3.5070 -3.5063 -3.4972 -0.5759 -0.5750 -0.5740 
500 -0.7542 -0.7545 -0.7492 -0.0339 -0.0339 -0.0342 

-1 CJxy 50 0.0118 0.0123 0.0114 0.0784 0.0784 0.0767 
100 0.0478 0.0480 0.0474 0.1819 0.1819 0.1813 
500 0.0766 0.0766 0.0765 0.0925 0.0925 0.0924 

a-~y 50 0.0760 0.0764 0.0765 0.3449 0.3444 0.3501 
100 0.1038 0.1039 0.1045 0.3452 0.3414 0.3480 
500 0.0889 0.0889 0.0890 0.1045 0.1045 0.1047 

t w(a/2, b/2); -1 
CTxx o-xx(a/2, b/2, h/2); -2 

O":I:J' = o-x:r(a/2, b/2, -h/2); -1 
a yy = o-yy(a/2,b/2,h/2); 

o-;y = o-yy(a/2, b/2, -h/2); ai y = ayy(O, 0, h/2); and o-~y = axy(O, 0, -h/2) 

x, u 

O'~x and O':,are computed at the top 

~ 
O'~, and O'~,are computed at the bottom 

y, v 



560 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

Problems 
9.1 The equation of motion governing the bending of symmetrically laminated beams according to 

the classical laminate theory is given by (see Chapter 4) 

(1 ) 

where Nxx is the axial load and 

ij = bq, ia = bIa, i2 = bh (2) 

and b is the width of the beam, q(x, t) is the distributed transverse load, and 10 and 12 are 
mass inertias 

(3) 

Develop the weak form and finite element model of Eq. (1). 

9.2 (a) Derive finite element interpolation fUIlctions using wa, () = -dwa/dx, and d2wa/dx2 as the 
nodal variables of an element with two (end) nodes, with a total of six degrees of freedom per 
element. Note that you must select a complete polynomial containing six parameters 

and derive the Hermite interpolation functions. 

(b) Use the finite element approximation to compute the stiffness matrix [Ke] derived in 
Problem 9.1. 

9.3 Derive finite element Hermite interpolation functions using Wa and () = -dwa/dx as the nodal 
variables of an element with three nodes (two end nodes and the middle node), with a total of 
six degrees of freedom per element. As in Problem 9.2, you must select a complete polynomial 
containing six parameters and derive the Hermite interpolation functions. 

9.4 The equations of motion governing symmetrically laminated beams according to the first-order 
shear deformation (i.e., the Timoshenko) beam theory are 

(1 ) 

(2) 

where 
(3) 

Construct weak forms of Eqs. (1) and (2) over the typical finite element, assume interpolation 
of the primary variables, and develop the finite element model. 

9.5 Consider the following set of equations governing the classical plate theory: 

(1) 

(2) 

(3) 

(4) 
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where Dij are the bending stiffnesses of a specially orthotropic plate (see Chapter 5) 

(5) 

Rewrite Eqs. (1)-(4) in an alternative form (curvatures in terms of the moments) such that 
(wo, Mx;r, lvlxy , lYlyy ) are the independent variables, develop the weak form of the equations 
and develop a mixed finite element model of the equations. 

9.6 A simplified mixed model can be derived by eliminating the twisting moment lvIxy from 
equations (1)-(4) of Problem 9.5. We can write the resulting equations as 

(1) 

(2) 

(3) 

where h denotes the plate thickness and 

(4) 

Develop the weak forms of the equations and associated finite element model. 

References for Additional Reading 

1. Reddy, J. N., An Introduction to the Finite Element Method, Second Edition, McGraw-Hill, 
New York (1993). 

2. Reddy, J. N., Energy Principles and Variational Methods in Applied Mechanics, Second 
Edition, John Wiley, New York (2002). 

3. Burnett, D. S., Finite Element Analysis, Addison-Wesley, Reading, MA (1987). 

4. Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, Vol. 1: Linear Problems, 
McGraw- Hill, New York (1989). 

5. Hughes, T. J. R., The Finite Element Method, Linear Static and Dynamic Finite Element 
Analysis, Prentice-Hall, Englewood Cliffs, NJ (1987). 

O. Hrabok, M. M. and Hrudey, T. M., "A Review and Catalog of Plate Bending Finite Elements," 
Computers and Structures 19(3), 479-495 (1984). 

7. Bazeley, G. P., Cheung, Y. K., Irons, B. M., and Zienkiewicz, O. C., "Triangular Elements in 
Plate Bending - Conforming and Non-Conforming Solutions," Proceedings of the Conference on 
Matrix Methods in Struct'ural Mechanics, AFFDL-TR-66-80, Air Force Institute of Technology, 
Wright-Patterson Air Force Base, Ohio, 547-576 (1965). 

8. Fraeijis de Veubeke, B., "A Conforming Finite Element for Plate Bending," Internat'ional 
Journal of Solids and Structures, 4(1), 95-108 (1968). 

9. Argyris, .T. H., Fried, 1., and Scharpf, D. W., "The TUBA Family of Plate Bending Elements 
for the Matrix Displacement Method," Journal of the Royal Aeronautical Society, 72, 701-709 
(1969). 

10. Bell, K., "A Refined Triangular Plate Bending Finite Element," International Journal for 
Numerical Methods 'in Engineering, 1, 101-122 (1969). 

11. Irons, B. M., "A Conforming Quartic Triangular Element for Plate Bending," International 
Journal for Numerical Methods in Engineering, 1, 29-45 (1969). 



562 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

12. Stricklin, J. A., Haisler, W., Tisdale, P., and Gunderson, R., "A Rapidly Converging Triangular 
Plate Element," AIAA Journal, 7(1), 180-181 (1969). 

13. Batoz, J. L., Bathe, K. J., and Ho, L. W., "A Study of Three-Node Triangular Plate Bending 
Elements," International Journal for Numerical Methods in Engineering, 15(12), 1771-1812 
(1980). 

14. Batoz, J. L., "An Explicit Formulation for an Efficient Triangular Plate Bending Element," 
International Journal for Numerical Methods in Engineering, 18(7), 1077-1089 (1985). 

15. Batoz, J. L. and Tahar, M. B., "Evaluation of a New Quadrilateral Thin Plate Bending 
Element," International Journal for Numerical Methods in Engineering, 18, 1655-1677 (1982). 

16. Jeyachandrabose, C. and Kirkhope, J., "An Alternative Formulation for DKT Plate Bending 
Element," International Journal for Numerical Methods in Engineering, 21(7), 1289-1293 
(1985). 

17. Hellan, K., "Analysis of Plates in Flexure by a Simplified Finite Element Method," Acta 
Polytechnica Scandinavia, Civil Engineering Series 46, Trondheim (1967). 

18. Melosh, R. J., "Basis of Derivation of Matrices for the Direct Stiffness Method," AIAA Journal, 
1, 1631-1637 (1963). 

19. Zienkiewicz, O. C. and Cheung, Y. K., "The Finite Element Method for Analysis of Elastic 

Isotropic and Orthotropic Slabs," Proceeding of the Institute of Civil Engineers, London, UK, 
28,471-488 (1964). 

20. Bogner, F. K., Fox, R. L., and Schmidt, Jr. L. A., "The Generation of Inter-Element
Compatible Stiffness and Mass Matrices by the Use of Interpolation Formulas," Proceedings 
of the Conference on Matrix Methods in Structural Mechanics, AFFDL-TR-66-80, Air Force 
Institute of Technology, Wright-Patterson Air Force Base, Ohio, 397·-443 (1965). 

21. Anderson, R. G., Irons, B. M., and Zienkiewicz, O. C., "Vibration and Stability of Plates Using 
Finite Elements," International Journal of Solids and Structures, 4(10), 1031-1055 (1968). 

22. Clough, R.W., and Tocher, J. L., "Finite Element Stiffness Matrices for Analysis of Plate 
Bending," Proceedings of the Conference on Matrix Methods in Structural Mechanics, AFFDL
TR-66-80, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 515-545 
(1965). 

23. Clough, R. W. and Felippa, C. A., "A Refined Quadrilateral Element for Analysis of Plate 
Bending," Proceedings of the Second Conference on Matrix Methods in Structural Mechanics, 
AFFDL-TR-66-80, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 
399-440 (1968). 

24. Ahmad, S., Irons, B. M., and Zienkiewicz, O. C., "Analysis of Thick and Thin Shell Structures 
by Curved Finite Elements," International Journal for Numerical Methods in Engineering, 
13(4),575-586 (1971). 

25. Morley, L. S. D., "A Triangular Equilibrium Element with Linearly Varying Bending Moments 
for Plate Bending Problems," Technical Note, Journal of the Aeronautical Society, 71 (1967). 

26. Morley, L. S. D., "The Triangular Equilibrium Element in the Solution of Plate Bending 
Problems," Journal of the Aeronautical Society, 72 (1968). 

27. Morley, L. S. D., "The Constant-Moment Plate Bending Element," Journal of Strain Analysis, 
6(1), 20-24 (1971). 

28. Newmark, N. M., "A Method for Computation of Structural Dynamics," Journal of 
Engineering Mechanics, 85, 67-94 (1959). 

29. Carnahan, B., Luther, L. A., and Wilkes, J. 0., Applied Numerical Methods, John Wiley & 
Sons, New York, 1969. 

30. Barlow, J., "Optimal Stress Location in Finite Element Models," International Journal for 
Numerical Methods in Engineering, 10, 243-251 (1976). 



FINITE ELEMENT ANALYSIS OF COMPOSITE PLATES AND SHELLS 563 

31. Barlow, J., "More on Optimal Stress Points - Reduced Integration Element Distortions and 
Error Estimation." International Journal for Nv,merical Methods in Engineering, 28, 1486--
1504 (1989). 

32. Reddy, .1. N., "Simple Finite Elements with Relaxed Continuity for Non-Linear Analysis of 
Plates," Proceedings of the Third Inter'national Conference in Australia on Finite Element 
Methods, University of New South Wales, Sydney (1979). 

33. Reddy, .T. N., "A Penalty Plate-Bending Element for the Analysis of Laminated Anisotropic 
Composite Plates," International Jov,rnal for Numerical Methods in Engineering, 15(8), 1187-
1206 (1980). 

34. Averill, R. C. and Reddy, .1. N., "Behavior of Plate Elements Based on the First-Order Shear 
Deformation Theory," Engineering Computations, 7, 57-74 (1990). 

35. Reddy, .1. N. and Averill, R. C., "Advances in the Modeling of Laminated Plates," Compv,ting 
Systems in Engineering, 2(5/6), 541-555 (1991). 

36. Belytschko, T. and Tsay, C. S., "A Stabilization Procedure for the Quadrilateral Plate 
Bending Element with One-point Quadrature," International Jov,rnal for Nv,mencal Methods 
in Engineering, 19 405-420 (1983). 

37. Park, K. C. and Flaggs, D. L., "A Symbolic Fourier Synthesis of a One-point Integrated 
Quadrilateral Plate Element," Computer Methods in Applied Mechanics and Engineering, 
48(2), 203-236 (1985). 

38. Belytschko, T., Ong, .1. S.-J., and Liu, W. K., "A Consistent Control of Spurious Singular 
Modes in the 9-node Lagrange Element for the Laplace and Mindlin Plate Equation," 
Computer Methods in Applied Mechanics and Engineering, 44, 269295 (1984). 

39. Crisfield, M. A., "A Quadratic Mindlin Element Using Shear Constraints," Computers and 
Str'uct'uTes, 18, 833-852 (1984). 

40, Huang, H. C. and Hinton, E., "A Nine-Node Lagrangian Plate Element with Enhanced Shear 
Interpolation," Engineering Computations, 1, 369-379 (1984), 

41. Tessler, A. and Dong, S, B" "On a Hierarchy of Conforming Timoshenko Beam Elements," 
Computers and Structures 14, 335-344 (1981). 

42. Zienkiewicz, O. C" Too, .T . .T, M., and Taylor, R. L., "Reduced Integration Technique in General 
Analysis of Plates and Shells," International Journal for Numerical Methods in Engineer'ing, 
3,275-290 (1971). 

43. Hughes, T, .T, R. and Cohen, M., "The 'Heterosis' Finite Element for Plate Bending," 
Computers and StTuctures, 9(5), 445--450 (1978). 

44. Hinton, E. and Huang, H. C., "A Family of Quadrilateral Mindlin Plate Elements with 
Substitute Shear Strain Fields," Computers und Str'uctures 23(3), 409-431 (1986). 

45. Hughes. T . .T. R., Taylor, R. L., and Kanoknukulchai, W., "A Simple and Efficient Element for 
Plate Bending," International Journal fOT Numerical Methods in Engineering, 11(10), 1529-
1543 (1977). 

46. Pugh, E. D, L" Hinton, E., and Zienkiewicz, O. C" "A Study of Quadrilateral Plate 
Bending Elements with 'Reduced' Integration," International Journal fOT Numerical Methods 
in EngineeTing. 12(7), 1059-1079 (1978). 

47. Malkus, D. S. and Hughes, T . .1. R., "Mixed Finite Element Methods-Reduced and Selective 
Integration Techniques: A Unification of Concepts," Computer Methods in Applied Mechanics 
and Engineering, 15(1), 63-81 (1978). 

48. Hughes, T . .1. R., Cohen, M., and Haroun, M., "Reduced and Selective Integration Techniques 
in the Finite Element Analysis of Plates," Nuclear Engineer'ing and Design, 46, 203-222 (1981). 

49. Belytschko, T., Tsay, C. S., and Liu, W. K., "Stabilization Matrix for the Bilinear Mindlin 
Plate Element," Computer Methods in Applied Mechanics and Engineering, 29, 313 327 
(1981). 



564 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

50. Hughes, T. J. R. and Tezduyar, T. E., "Finite Elements Based Upon Mindlin Plate Theory with 
Particular Reference to the Four-Node Bilinear Isoparametric Element," Jour'nal of Applied 
Mechanics, 48(3), 587-596 (1981). 

51. Spilker, R. L. and Munir, N. 1., "The Hybrid-Stress Model for Thin Plates," International 
Journal for Numerical Methods in Engineering, 15(8), 1239-1260 (1980). 

52. Spilker, R. L. and Munir, N. 1., "A Serendipity Cubic-Displacement Hybrid-Stress Element 
for Thin and Moderately Thick Plates," International Journal for Numerical Methods in 
Engineering, 15(8), 1261-1278 (1980). 

53. Spilker, R. L. and Munir, N. 1., "A Hybrid-Stress Quadratic Serendipity Displacement Mindlin 
Plate Bending Element," Computers and Structures, 12, 11-21 (1980). 

54. Crisfield, M. A., "A Four-Noded Plate Bending Element Using Shear Constraints; A Modified 
Version of Lyons' Element," Computer Methods in Applied Mechanics and Engineering, 38, 
93-120 (1983). 

55. Tessler, A. and Hughes, T. J. R., "An Improved Treatment of Transverse Shear in the 
Mindlin-Type Four-Node Quadrilateral Element," Computer Methods in Applied Mechanics 
and Engineering, 39, 311-335 (1983). 

56. Tessler, A. and Hughes, T. J. R., "Three-Node Mindlin Plate Element with Improved 
Transverse Shear," Computer Methods in Applied Mechanics and Engineering, 50, 71-101 
(1985). 

57. Bathe, K. J. and Dvorkin, E. N., "A Four-Node Plate Bending Element Based on 
Mindlin/Reissner Plate Theory and Mixed Interpolation," Internat10nai Journal for Numerical 
Methods in Engineering, 21, 367-383 (1985). 

58. Reddy, J. N. and Chao, W. C., "A Comparison of Closed-Form and Finite Element Solutions 
of Thick Laminated Anisotropic Rectangular Plates," Nuclear Engineering and Design, 64, 
153-167 (1981). 

59. Pagano, N. J., "Exact Solutions for Composite Laminates in Cylindrical Bending," Journal of 
Composite Materials, 3, 398-411 (1967). 

60. Pagano, N. J., "Exact Solutions for Rectangular Bidirectional Composites and Sandwich 
Plates," Journal of Composite Materials, 4, 20-34 (1970). 

61. Reddy, J. N. and Hsu, Y. S., "Effects of Shear Deformation and Anisotropy on the Thermal 
Bending of Layered Composite Plates," Journal of Thermal Stresses, 3, 475-493 (1980). 

62. Khdeir, A. A. and Reddy, J. N., "Thermal Stresses and Deflections of Cross-Ply Laminated 
Plates Using Refined Plate Theories," Journal of Thermal Stresses, 14(4),419-438 (1991). 

63. Reddy, J. N. and Khdeir, A. A., "Buckling and Vibration of Laminated Composite Plates 
Using Various Plate Theories," AIAA Journal, 27 (12), 1808-1817 (1989). 

64. Nosier, A. and Reddy, J. N., "On Vibration and Buckling of Symmetric Laminated Plates 
According to Shear Deformation Theories," Acta Mechanica, 94 (3-4),123-170 (1992). 

65. Khdeir, A. A., Librescu, L., and Reddy, J. N., "Analytical Solution of a Refined Shear 
Deformation Theory for Rectangular Composite Plates," International Journal of Solids and 
Structures, 23(10),1447-1463 (1987). 

66. Khdeir, A. A. and Reddy, J. N., "Dynamic Response of Antisymmetric Angle-Ply Laminated 
Plates Subjected to Arbitrary Loading," Journal of Sound and Vibration, 126(3), 437-445 
(1988). 

67. Khdeir, A. A. and Librescu, L., "Analysis of Symmetric Cross-Ply Laminated Elastic Plates 
Using a Higher-Order Theory: Part I-Stress and Displacement," Composite Structures, 9, 
189-213 (1988). 

68. Khdeir, A. A. and Librescu, L., "Analysis of Symmetric Cross-Ply Laminated Elastic Plates 
Using a Higher-Order Theory: Part II-Buckling and Free Vibration," Composite Structures, 
9, 259-277 (1988). 



FINITE ELEMENT ANALYSIS OF COMPOSITE PLATES AND SHELLS 565 

69. Khdcir, A. A., "Free Vibration and Buckling of Symmetric Cross-Ply Laminated Plates by an 
Exact Method," Journal of Sound and Vibration, 126(3), 447-461 (1988). 

70. Khdeir, A. A., "Free Vibration of Antisymmetric Angle-Ply Laminated Plates Including 
Various Boundary Conditions," Journal of Sound and Vibration, 122(2),377-388 (1988). 

71. Khdeir, A. A., "Free Vibration and Buckling of Unsymmetric Cross-Ply Laminated Plates 
Using a Refined Theory," Journal of Sound and Vibration, 128(3), 377-395 (1989). 

72. Khdeir, A. A. and Reddy, J. N., "Exact Solutions for the Transient Response of Symmetric 
Cross-Ply Laminates Using a Higher-Order Plate Theory," Composite Science and Technology, 
34, 205 224 (1989). 

73. Khdeir, A. A., "An Exact Approach to the Elastic State of Stress of Shear Deformable 
Antisymmetric Angle-Ply Laminated Plates," Composite Structures, 11, 245-258 (1989). 

74. Khdeir, A. A., "Comparison Between Shear Deformable and Kirchhoff Theories for Bending, 
Buckling and Vibration of Antisymmetric Angle-Ply Laminated Plates," Composite Structur'es, 
13, 159 172 (1989). 

75. Khdeir, A. A., "Stability of Antisymmetric Angle-Ply Laminated Plates," ASCE Journal of 
Eng'ineeT"ing Mechanics, 115, 952-962 (1989). 

76. Khdeir, A. A. and Reddy, J. N., "Analytical Solutions of Refined Plate Theories of Cross-Ply 
Composite Laminates," Journal of Pressure Vessel Technology, 113(4),570-578 (1991). 

77. Reddy, J. N., "Free Vibration of Antisymmetric, Angle-Ply Laminated Plates Including 
Transverse Shear Deformation by the Finite Element Method," Journal of Sound and 
Vibration, 66(4), 565-576 (1979). 

78. Reddy, J. N., "On the Solutions to Forced Motions of Rectangular Composite Plates," Journal 
of Applied Mechanics, 49, 403--408 (1982). 

79. Reddy, J. N., "Dynamic (Transient) Analysis of Layered Anisotropic Composite-Material 
Plates," International Journal for Numerical Methods in Engineering, 19, 237-255 (1983). 

80. Reddy, J. N., "Geometrically Nonlinear Transient Analysis of Laminated Composite Plates," 
AIAA Jour'nal, 21(4), 621-629 (1983). 

81. Maugin, G. A., Continuum Mechanics of Electromagnetic Solids, North-Holland, Amesterdam, 
The Netherlands (1988). 

82. Uchino, K., "Electrostrictive Actuators: Materials and Applications," Ceramic Bulletin, 65, 
647652 (1986). 

83. Goodfriend, M. J. and Shoop, K. M., "Adaptive Characteristics of the Magnetostrictive 
Alloy, Terfenol-D, for Active Vibration Control," Journal of Intelligent Material Systems and 
Structures, 3, 245-254 (1992). 

84. Benjeddou, A., "Advances in Piezoelectric Finite Element Modeling of Adaptive Structural 
Elements: A Survey," Computers 8 Structures, 76, 347-363 (2000). 

85. Lam, K. Y., Peng, X. Q., Liu, G. R., and Reddy, J. N., "A Finite-Element Model for 
Piezoelectric Composite Laminates," Smart Materials and Structures, 6(5), 583-591 (1997). 

86. Reddy, J. N., "On Laminated Composite Plates with Integrated Sensors and Actuators," 
Engineering Structures, 21, 568-593 (1999). 

87. Pradhan, S. C., Ng, T. Y., Lam, K. Y., and Reddy, J. N., "Control of Laminated Composite 
Plates Using Magnetostrictive Layers," Smart Materials and Structures, 10, 1-11 (2001). 

88. Reddy, J. N. and Cheng, Z.-Q., "Deformations of Piezothermoelastic Laminates with Internal 
Electrodes," ZAMM, 81(5), 347-359 (2001). 

89. Reddy, J. N., Energy and Variational Methods in Applied Mechanics, John Wiley & Sons, New 
York (1984). 

90. Rao, K. P., "A Rectangular Laminated Anisotropic Shallow Thin Shell Finite Element," 
Computer Methods in Applied Mechanics and Engineering, 15, 13-33 (1978). 



566 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

91. Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells, McGraw-Hill, New 
York (1959). 

92. Vlasov, V. Z., General Theory of Shells and Its Applications in Engineering, (Translation 
of Obshchaya teoriya obolocheck i yeye prilozheniya v tekhnike) , NASA TT F-99, National 
Aeronautics and Space Administration, Washington, D.C. (1964). 

93. Palazotto, A. N. and Dennis, S. T., Nonlinear Analysis of Shell Structures, AIAA Education 
Series, Washington, D.C. (1992). 

94. Brebbia, C. and Connor, J., "Geometrically Nonlinear Finite Element Analysis," Journal of 
Engineering Mechanics, 463-483 (1969). 

95. Scordelis, A. C. and Lo, K. S., "Computer Analysis of Cylindrical Shells," Journal of American 
Concrete Institute, 538-560 (1964). 

96. Cantin, G. and Clough, R. W., "A Curved Cylindrical Shell Finite Element," AIAA Journal, 
6, 1057 (1968). 

97. Simo, J. C., Fox, D. D., and Rifai, M. S., "On a Stress Resultant Geometrically Exact Shell 
Model. Part II: The Linear Theory," Computer Methods in Applied Mechanics and Engineering 
73, 53-92 (1989). 

98. Zienkiewicz, O. C., The Finite Element Method, McGraw-Hill, New York (1977). 

99. Fliigge, W., Stresses in Shells, Second Edition, Springer-Verlag, Berlin, Germany (1973). 

100. Cho, M. and Roh, H. Y., "Development of Geometrically Exact New Elements Based 
on General Curvilinear Coordinates," International Journal for Numerical Methods in 
Engineering, 56, 81-115 (2003). 

101. Kreja, 1., Schmidt, R., and Reddy, J. N., "Finite Elements Based on a First-order Shear 
Deformation Moderate Rotation Theory with Applications to the Analysis of Composite 
Structures," International Journal of Non-Linear Mechanics, 32(6), 1123-1142 (1997). 

102. Varadan, T. K. and Bhaskar, K., "Bending of Laminated Orthotropic Cylindrical Shells - An 
Elasticity Approach," Composite Structures, 17, 141-156 (1991). 

103. Cheng, Z. Q., He, L. H., and Kitipornchai, S., "Influence of Imperfect Interfaces on Bending 
and Vibration of Laminated Composite Shells," International Journal of Solids and Structures, 
37, 2127-2150 (2000). 



10 

Nonlinear Analysis of 
Composite Plates and Shells 

10.1 Introduction 

The nonlinear partial differential equations governing composite laminates 
of arbitrary geometries and boundary conditions cannot be solved exactly. 
Approximate analytical solutions to the large-deflection theory (in von Kiirman's 
sense) of laminated composite plates were obtained by many (see, for example, [1-
12]). In most of these studies the effects of shear deformation and rotary inertia 
were neglected, and only rectangular or cylindrical geometries were considered. The 
latter restriction is a direct result of the methods of analysis used; i.e., Ritz method, 
Galerkin method, perturbation method, and the double series method cannot be 
applied to plates of complicated geometries. For example, the classical variational 
methods (e.g., the Ritz and Galerkin methods) are limited to simple geometries 
because of the difficulty in constructing the approximation functions for complicated 
geometries. The use of numerical methods facilitates the solution of such problems. 
Among the numerical methods available for the solution of nonlinear differential 
equations defined over arbitrary domains, the finite element method is the most 
practical and robust computational technique. 

Historically, two distinct approaches have been followed in developing nonlinear 
finite element models of laminated structures. The first approach is based on a 
laminate theory, in which the 3-D elasticity equations are reduced to 2-D equations 
through certain kinematic assumptions and homogenization through the thickness, 
as described in Chapter 3. In the nonlinear formulation based on small strains and 
moderate rotations, the geometry of the structure is assumed to remain unchanged 
during the loading, and the geometric nonlinearity in the form of the von Ka,rman 
strains is included. We shall term the elements based on such assumptions the 
laminated elements (see [13-20]). 

The second approach is based on the 3-D continuum formulation, where any 
kinematic assumptions are directly introduced through the spatial finite element 
approximations. Full nonlinear strains or only the von Karman nonlinear strains 
are included as desired, and the equations are derived in an incremental form 
directly. The formulation accounts for geometric changes that occurred during 
the previous increment of loading. Thus, the geometry is updated between load 
increments. Finite elements based on this formulation are called continuum elements 
(see [21,23,26-32]). 
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There are two incremental continuum formulations that are used to determine 
the deformation and stress states in continuum problems (see Bathe, et al. [26] and 
Reddy [32]): (1) the total Lagrangian formulation and (2) the updated Lagrangian 
formulation. In these formulations, the configuration (i.e., geometry) of the 
structure for the current load increment is determined from a previously known 
configuration. In the total Lagrangian formulation, all of the quantities are referred 
to a fixed, often the undeformed, configuration, and changes in the displacement and 
stress fields are determined with respect to the reference configuration. The strain 
and stress measures used in this approach are the Green-Lagrange strain tensor 
and 2nd Piola-Kirchhoff stress tensor. In the updated Lagrangian formulation, 
the geometry of the structure from the previous increment is updated using the 
deformation computed in the current increment, and the updated configuration is 
used as the reference configuration for the next increment. A direct consequence 
of this is that differentiations and integrations are performed with respect to this 
reference configuration. The stress and strain measures used in this approach are 
the Cauchy stresses and the infinitesimal (Almansi) strains. 

The major objective of this chapter is to study the geometrically nonlinear 
behavior of laminated plates and shells. Towards this objective we develop the 
displacement finite element models of the classical laminated plate theory (CLPT) 
and the first-order shear deformation plate theory (FSDT) when the von Karman 
nonlinear strains are accounted for, i.e., develop nonlinear laminated plate elements. 
Alternative finite element models to the displacement model, i.e., mixed and hybrid 
finite element models, can be found in [33-42]. Then a formulation of the continuum 
shell element is presented. For additional discussion of the continuum finite elements, 
one may consult [21,23,26-32]. The shear deformable nonlinear finite element models 
presented herein are used to study nonlinear bending, transient behavior, and 
postbuckling of laminated structures. Additional details and numerical examples 
may be found in [17,19-25,32]. 

10.2 Classical Plate Theory 
10.2.1 Governing Equations 

The equations of motion of the classical theory of laminated plates are given by [see 
Eq. (3.3.25)] 

(10.2.1) 

(10.2.2) 

(10.2.3) 

where the nonlinear expression N and the mass moments of inertia Ii are defined 
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by 

(10.2.4b) 

and the stress resultants (Nxx , N yy , N xy ) and (Mxx, l\IIyy, l'vlxy) are defined by 

(10.2.5) 

where {NT} and {A{T} are thermal force resultants 

(10.2.7a) 

(10.2. 7b) 

and {NP } and {A{P} are the piezoelectric (or other actuation field) resultants 

(10.2.8a) 

(10.2.8b) 

10.2.2 Virtual Work Statement 

The stress resultants (N's and M's) in (10.2.1)-(10.2.3), in general, are related to 
the displacement gradients, temperature increment, and electric/magnetic (or any 
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actuation) field by Eqs. (10.2.6). Therefore, the equations of motion (10.2.1)
(10.2.3) can be expressed in terms of displacements (uo, vo, wo) by substituting for 
the stress resultants from Eqs. (10.2.5) and (10.2.6). Then the weak forms of 
(10.2.1)-(10.2.3) over a typical laminated plate finite element ne are given by (here 
only the thermal stress resultants are included) 

-1 (08uo {A [ouo 1 (OWO)2] A [avo 1 (OWO)2] 0- -- 11 -+- -- + 12 -+- --
Oe ax ax 2 ax oy 2 oy 

(10.2.9a) 

(10.2.9b) 



where 
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N n = Nxxnx + Nxyny, Ns = Nxynx + Nyyny 
oAins 

Vn = Qn + ---a;- + P 

AiT! = Mxxnx + Mxyny , Ms = Mxynx + Myyny 

( oWo OWO) (OWO OWO) 
P = N xx ax + N xy oy nx + N xy ax + N yy ay ny (10.2.10) 

and (nx, ny) denote the direction cosines of the unit normal on the element boundary 
re. 
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10.2.3 Finite Element Model 

Assume finite element approximation of the form 

m m 

uo(x, y) = L uj'l/Jj(x, y), vo(x, y) = L vj'l/Jj(x, y), 
j=1 j=1 

n 

wo(x, y) = L ~jrpj(x, y) 
j=1 

(10.2.11) 
where 'l/Jj are the Lagrange interpolation functions, ~j are the values of Wo and its 
derivatives at the nodes, and rpj are the interpolation functions, the specific form of 
which will depend on the geometry of the element and the nodal degrees of freedom 
interpolated. Substituting approximations (10.2.11) into Eq. (10.2.9), we obtain 

[K12] 
[K22] 
[K32] 

or, in compact form 

(10.2.12) 

(10.2.13) 

The nonzero elements of the stiffness matrix [Ke] and mass matrix [Me] = [Me]T 
and force vectors {F} and {FT} are defined as follows: 
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where N'Ix, M'Ix, etc. are the thermal (or hygrothermal and/or actuation) forces 
and moments defined in Eqs. (10.2.7a,b). 

The plate bending elements discussed in Chapter 9 for the classical plate 
theory can be used here with a choice of Lagrange interpolation of the in-plane 
displacements (uo, va). For example, linear interpolation of (uo, va) and Hermite 
cubic interpolation of Wo will have 20 element degrees of freedom for nonconforming 
rectangular element and 25 degrees of freedom for conforming rectangular element. 

This completes the development of the nonlinear displacement finite element 
model of the classical plate theory in the rectangular Cartesian coordinate system. 
Equation (10.2.13) can be reduced to a set of nonlinear algebraic equations by means 
of the Newmark time integration scheme, as shown in Section 6.7. A discussion of 
iterative methods for the solution of the nonlinear algebraic equations resulting from 
(10.2.13) is presented in Section 10.4 (also, see Reddy [32]). 
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10.3 First-Order Shear Deformation Plate Theory 
10.3.1 Governing Equations 

The equations of motion of the first-order shear deformation plate theory are given 
by 

_ (aNxx aNxy ) J, a2UO a2rjJ:" _ 
ax + ay + 0 at2 + h a{2 - 0 (10.3.1) 

_ (aN xy aN yy ) J, a
2 

Vo I a
2 

rjJy - 0 
ax + ay + ° at2 + 1 at2 - (10.3.2) 

(
aQx aQy) N( a2wo 

- ax + ay - Uo, Vo, WO) - q + 10 at2 = 0 (10.3.3) 

_ (aJv1.Tx aMxy ) Q I a
2

rjJx I a2uo _ 
ax + ay + x + 2 at2 + 1 at2 - 0 (10.3.4) 

_ (aMxy aMyy ) Q I a
2

rjJy a2vo _ 
ax + ay + y + 2 at2 + h at2 - 0 (10.3.5) 

where N and Ii are defined by Eq. (10.2.4a,b), and the stress resultants are given 
by 

(1O.3.6a) 

{ 
Jv1.TX } [Bll 
Myy = E12 
Jtlxy Bl6 

(10.3.6c) 

(k) 

{ 
QP} N /Zk+l [e e 0] (k) {Ex} x = L 14 24 E d Q; k=l' Zk eL5 e2.5 0 E~ Z 

(10.3.7) 

and the shear stiffnesses (A44, A 55 , A 4.5) are defined by 

N 

(A A A) '"'(Q-(k) -(k) -(k))( ) 
44, 45, ,55 = L 44' Q4,5 ,Q55 Zk+1 - Zk (1O.3.8a) 

k=l 
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10.3.2 Virtual Work Statements 

The weak forms of the equations of motion associated with the first-order shear 
deformation plate theory are 

(lO.3.9a) 

(lO.3.9b) 
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+ o8wo [OWO {A12 [OUO + ~ (OWO)2] + A22 [OVO + ~ (OWO)2] 
ay ay ax 2 ax ay 2 ay 

[ 
ouo ovo Dwo DWo] D¢x D¢y ( D¢x D¢y ) } +A26 -+-+-- +B12-+ B22-+ B26 -+-' Dy Dx Dx Dy Dx Dy Dy Dx 

owo {A [ouo 1 (owo) 2] A [ovo 1 (owo) 2] + - 16 - + - - + 26 - + - -
& & 2 & ~ 2 ~ 

+A66 -+-+-- +B16-+ B26-+ B66 -+-' [
Duo Dvo Dwo Dwn] D¢x D¢y ( D¢;c D¢y ) }] 
Dy Dx Dx Dy Dx Dy Dy Dx 

_ [DOWO (NT Dwn NT DWo) Down (NT Dwo NT Dwo)] 
Dx xx Dx + xy oy + oy xy ox + yy Dy 

} J /' D2 - 8wOq dxdy - Ire Vn8wods + , 0' fo D~o 8wo dxdy (10.3.9c) 

0- -- 11 - + - - + 12 - + - -_ /. (D8¢x {B [DUO 1 ( DWO)2] B [DVo 1 ( DWO)2] 
. oe Dx Dx 2 Dx Dy 2 Dy 

[
Duo Dvo Dwo DWo] D¢x D¢y ( D¢x D¢y ) } +B16 -+-+-- +D11-+D12-+D16 -+-' 
Dy ox Dx oy D;r Dy Dy ox 

Do¢x {B [DUO ~ ( DWO)2] B [DVo ~ ( DWO)2] 
+ Dy 16 Dx + 2 Dx + 26 Dy + 2 Dy 

B [
Duo Dvo Dwo DWo] D D¢2: D D¢y D ( D¢x D¢y ) } + 66 -+-+-- + 16-+ 26-+ 66 -+-Dy Dx Dx Dy Dx Dy Dy Dx 

+ K s8¢x [A 55 (¢2: + D
o
:

o
) + A45 (¢y + DD:o ) ]) dxdy 

1 (DO¢x T Do¢x T) i . - -,::,-l\Iixx + --Mxy dxdy - l't/Inb¢n ds 
Of" ux Dy r f 

r (D2¢x D2uO) 
+ Joe h Dt2 + h Dt2 b¢:r dxdy (lO.3.9d) 

0- -- 12 - + - - + 22 - + - --1 (Db¢y {B [DUO 1 (
DWO)2] B [DVo 1 (

DWO)2] 
Oe Dy Dx 2 Dx Dy 2 Dy 

B l D'lLO Dvo Dwo Dwo] D¢x D D¢y D ( D¢x D¢y ) } + 26 -+-+-- +D12-+ 22-+ 26 -+-
Dy Dx Dx Dy Dx Dy Dy Dx 

D8¢y {B [DUO ~ (D1J)o)2] B [DVo ~ ( DWo)2] 
+ Dx 16 Dx + 2 Dx + 26 Dy + 2 Dy 

[ 
O'lLO oVo Dwo owo] O¢2: O¢y (O¢x D¢y) } +B66 -+-+-- +D16 -,-+D26-' +D66 -+-
Dy Dx Dx Dy Dx Dy Dy Dx 

l ( Dwo ) ( Dwo ) ] ) + Ksb¢y A45 ¢2: + Dx + A44 ¢y + Dy dxdy 

1 (D8¢y T D/5¢y T) i" - . -,::,-Alxy + ~l\IIY1' dxdy - AIs/5¢,9 ds 
Oe u.T uy' r f 
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where the secondary variables of the formulation as 

10.3.3 Finite Element Model 

(10.3.ge) 

(10.3.10a) 

(10.3.10b) 

(10.3.10c) 

The virtual work statements in Eqs. (1O.3.9a-e) contain at the most only the first 
derivatives of the dependent variables (Uo,vo,wo, cPx, cPy). Therefore, they can all be 
approximated using the Lagrange interpolation functions. In principle, (uo, va), Wo, 
and (cPx, cPy) can be approximated with differing degrees of functions. Let 

m m 

'" (1) uo(x, y) = L Uj1/Jj (x, y), '" (l) vo(x, y) = L Vj1/Jj (x, y) (10.3.11) 
j=1 j=1 

n 
'" (2) wo(x, y) = L Wj1/Jj (x, y) (10.3.12) 
j=1 

P p 

cPx(x, y) = L S]1/Jj3) (x, y), cPy(x,y) = LS]1/Jj3)(x,y) (10.3.13) 
j=1 j=1 

where 1/J;Cx) (0: = 1,2,3) are Lagrange interpolation functions. One can use linear, 
quadratic, or higher-order interpolations of these variables. 

Substituting Eqs. (10.3.11)-(10.3.13) for (uo, Va, wo, cPx, cPy) into Eqs. (10.3.9a-e), 
we obtain the following finite element model: 

rF1

}) rF1T

}) 

[Kll] [K12] [K 13 ] [K14] [K 15 ] f"}) {F2} {F2T} [K21] [K22] [K23] [K24] [K25 ] {vel 
{F3} + {O} = [K31 ] [K32] [K33] [K34] [K35 ] {we} 
{F4} {F4T} [K41] [K42] [K43 ] [K44] [K45 ] {S1 } 
{F5} {F5T} [K51 ] [K52 ] [K53 ] [K54 ] [K55 ] {S2} 

[Mll] [0] [0] [M14] [0] 1 W)) [0] [M22] [0] [0] [M25] {vel 

+ [0] [0] [M33 ] [0] [0] {we} (10.3.14) 
[M14]T [0] [0] [M44] [0] {51 } 

[0] [M25]T [0] [0] [M55] {52} 

or, in compact matrix form 

[Ke]{~e} + [Me]{Ae} = {Fe} (10.3.15) 
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where the coefficients ofthe submatrices [Kap], [Map] and vectors {po'} and {paT} 
are defined for (a, (3 = 1,2,3,4,5) by the expressions 
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(
OWOO1jJY) OWOO1jJY»)] 

+A26 ---+---
OX oy oy OX 

Oni,(l) [ 0 oni,(2) 0 oni,(2) 
'l-'i Wo 'l-'J Wo 'l-'J +-- A 16---+A26---
OX OX OX oy oy 

A owo o1jJj oWo o1jJj ] d d 
( 

(2) (2») } 
+ 66 ---+--- X Y 

OX oy oy OX 

1 [
oni,(l) (o1jJ(3) o1jJ(3») 

K 24 'I-'~ B J + B J ij = -0- 12-
0
- 26-

0
-

Oe y X Y 

o1jJ (1) ( o1jJ (3) o1jJ (3) ) 1 
+ O~ B16 O~ + B66 O~ dxdy = Kil 

1 [
oni,(l) (o1jJ(3) o1jJ(3») 

K 25 'l-'z B J + B J ij = -0- 26 -0- 22 -0-
Oe y X Y 

+ -~- B66 _J_ + B 26 _J_ dxdy = K 5l 
o1jJ(l) (o1jJ(3) o1jJ(3») 1 

OX OX oy J 

{ 

oni,(2) (1) (1) 
K31 = r _'I-'_j_ [All owo o1jJi + A12 oWo o1jJi 

~J Joe ox ox ox oy oy 

A ( 
OWo o1jJ i 

1
) OWO o1jJ?) ) ] + 16 ---+---

OX oy oy OX 

o1jJ;2) [ OWO o1jJ~l) OWO o1jJ?) +-'- A 16---+A26---oy OX OX oy oy 

( 
(1) (1») } 

A owoo1jJi owoo1jJi ] d d + 66 ---+--- X Y 
OX oy oy OX 

{ 

oni,(2) (1) (1) 
K32 = r _'I-'_J_ [A12 OWO o1jJi + A22 OWO o1jJi 

ZJ Joe oy OX OX oy oy 

A (
owo o1jJi1) OWo 01jJ?»)] + 26 ---+---
OX oy oy OX 

o1jJ3
2
) [ OWO o1jJ?) OWO o1jJi

1
) +-- A 16---+A26---

OX OX OX oy oy 

( 
(1) (1») } 

A owoo1jJi owoo1jJi ] d d + 66 ---+--- X Y 
OX oy oy OX 

[
01jJ(2) (01jJ(2) 01jJ(2») 

K~3 = Ks Le O~ A55 O~ + A45 O~ 
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(10.3.16) 

where NIx, NJy and NIy are thermal forces and MIx, MJy and M,:{y are the 
thermal moments. When the bilinear rectangular element is used for all generalized 
displacements (uo, Vo, wo, ¢x, ¢y), the element stiffness matrices are of the order 
20 x 20, and for the nine-node quadratic element they are 45 x 45 (see Figure 9.3.1). 

10.4 Time Approximation and the Newton-Raphson 
Method 

10.4.1 Time Approximations 

Here we discuss the solution of equations of the form in (10.2.13) and (10.3.15). 
Equation (10.3.15), when generalized to include damping (structural or otherwise), 
has the form [32] 

[M]{Li} + [c]{A} + [K]{~} = {F} 

The fully discretized equations using Newmark's scheme are 

where 

[k( {~}s+d]{~}s+l = {F}s.s+l 

[k({~}s+d] = [K( {~}8+J)] + a3[1Vf]s+1 + a6[C]s+1 

{F}s,s+l = {F}s+l + [M]s+dA}s + [C]s+dB}s 

{ A } s = a3 { 6. } s + a4 { A L + a5 { Li } s 

{B}s = ad~L + CL7{A}s + CLs{Li}s 

(10.4.1) 

(10.4.2) 

(10.4.3a) 
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and ai are defined as (r = 2(3) 

1 
a2 = (1 - a)ilt, a3 = (3(ilt)2' a4 = a3ilt , 

1 
a5 = - - 1, 

r 
a6 - ~ a7 = _(3a - 1, as = ilt (~ - 1) - (3ilt' I 

(10.4.3b) 

In Eqs. (2.4.2) and (2.4.3a), the notation (-)s indicates that the enclosed quantity 
is evaluated at time ts. 

The new velocity vector {A}s+1 and acceleration vector {Li}s+1 at the end of 
each time step are computed using the equations 

{ Li } s+ 1 = a3 ( { il } s+ 1 - {il} s) - a4 { A} - a5 { Li } s 

{A}s+1 = {A}s + a2{Li}s + aI{Li}s+1 

(10.4.4a) 

(10.4.4b) 

10.4.2 The Newton-Raphson Method 

Equation (10.4.2) represents a system of nonlinear algebraic equations at time t s+1. 
These equations must be solved using an iterative method. Here we discuss the 
Newton-Raphson iteration method, which is based on Taylor's series (see [32, 43-
47]). 

The Newton-Raphson iterative method is based on Taylor's series expansion 
of the nonlinear algebraic equation (10.4.2) about the known solution. Suppose 
that Eq. (10.4.2) is to be solved for the generalized displacement vector {il}s+1 at 
time t s+1. Due to the fact that the coefficient matrix [k( {il}s+1)] depends on the 
unknown solution, the equations are solved iteratively. To formulate the equations 
to be solved at the r + 1st iteration by the Newton-Raphson method, we assume 
that the solution at the rth iteration, {il }:+1' is known. Then define 

(10.4.5) 

where {R} is called the residual, which is a nonlinear function of the unknown 
solution {il}s+1. Expanding {R} in Taylor's series about {il}:+1' we obtain 

{O} = {R}({il}s+d = {R}~+1 + [Z~~t[+1 ({il}:ti - {il}~+1) 

+ ;! [8{ ~{~~ }] r ({ il }~ti - {il }~+1) 2 + ... (10.4.6a) 
s+1 

o = {R}~+1 + (lkT( {il}~+1)]) {8il} + O( {8il}2) (10.4.6b) 

where 0(·) denotes the higher-order terms in {8il}, and [kT] is known as the tangent 
stiffness matrix (or geometric stiffness matrix) 
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Equations (10.4.5)-(10.4.7) are also applicable to a typical finite element. In 
other words, the coefficient matrix in Eq. (10.4.7) can be assembled after the 
element tangent stiffness matrices and force residual vectors are computed. The 
assembled equations are then solved for the incremental displacement vector after 
imposing the boundary and initial conditions of the problem [see Eq. (10.4.6b)] 

(10.4.8) 

The total displacement vector is obtained from 

(10.4.9) 

Note that the element tangent stiffness matrix is evaluated using the latest known 
solution, while the residual vector contains contributions from the latest known 
solution in computing element [K({6.}:+1)]{6.}:+1 and previous time step solution 

in computing element {F}s,s+1. After assembly and imposition of the boundary 
conditions, the linearized system of equations are solved for {66.}. 

At the beginning of the iteration i.e., r = 0), we assume that {6.}O = {O} so 
that the solution at the first iteration is the linear solution, because the nonlinear 
stiffness matrix reduces to the linear one. The iteration process is continued [i.e., 
Eq. (10.4.8) is solved in each iteration] until the difference between {6.}:+1 and 
{6. }:ti reduces to a preselected error tolerance. The error criterion is of the form 
(for the sake of brevity the subscript '(s + 1)' on the quantities is omitted) 

N 

LI6.~+1 - 6.[1 2 

-1=-1-N----- < E (say 10-3 ) (10.4.10) 

LI6.~+112 
1=1 

where N is the total number of nodal generalized displacements in the finite element 
mesh, and E is the error tolerance. The velocity and acceleration vectors are updated 
using Eqs. (1O.4.4a,b) only after convergence is reached for a given time step. 

In the Newton-Raphson method the global tangent stiffness matrix and residual 
vector must be updated using the latest available solution {6. }~+1 before Eq. (10.4.8) 
is solved. If the tangent stiffness matrix is kept constant for a preselected number 
of iterations but the residual vector is updated during each iteration, the method 
is known as the modified Newton-Raphson method. The approach often takes more 
iterations to obtain convergence. The Newton-Raphson method fails to trace the 
nonlinear equilibrium path through the limit points where the tangent matrix [KT ] 

becomes singular and the iteration procedure diverges. Riks [44] and Wempner 
[47] suggested a procedure to predict the nonlinear equilibrium path through limit 
points. The method, known as the Riks- Wempner method provides the Newton
Raphson method and its modifications with a technique to control progress along the 
equilibrium path. The theoretical development of this method and its modification 
can be found in [32,43-46]. 
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10.4.3 Tangent Stiffness Coefficients for CLPT 

(lO.4.11a) 

where 
1 23-

~i = Ui, ~i = Vi, ~i = ~i (10.4.11b) 

the coefficients of the submatrices [TO;i3] are defined by 

Texi3 = fJR? (104 2) 
2) fJ~i3 .. 1 

) 

the components of the residual vector {RO;} are 
3 n* 

Ri = L L K~' ~k - FiO; (10.4.13) 
,=1k=1 

and n* denotes n or m, depending on the nodal degree of freedom. Thus, we have 

Texi3 = ~ (~ ~ KO;, ~, _ FO;) 
2) fJ~i3 ~ ~ 2k k 2 

j ,=1 k=1 

3 m fJKO;, 
= L L --1-~k + K':/' (10.4.14) 

/=1 k=1 fJ~j 

The only coefficients that depend on the solution are KIl, K'fl, Kf], Kfl, and Kfl, 
and they are functions of only ~r = ~i. Hence, derivatives of all stiffness coefficients 
with respect to ~1 = Uj and ~2 = Vj are zero. 

Thus, we have 

(10.4.15) 
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Thus, we must compute the following derivatives of the element stiffness coefficients 
(only the nonzero parts are shown in the calculation): 

A (
aWOaYk aWOaYk)] + 16 ---- + ----
ax oy ay ox 

a1/Ji [A awo a<Pk A awo a<Pk 
+- 16----+ 26----

oy ox ox oy oy 

A ( awo o<Pk awo o<Pk )] } d d 1 + 66 ---- + ---- x y 
ox oy oy ox 

_ 1 1 {01/Ji [A owo o<Pj A oWo o<Pj - - - 11---- + 12----
2 [2e ox ox ox oy oy 

A (
OWOO<Pj OWOO<pj)] + 16 ---- + ----
ox oy oy ox 

o1/Ji [A OWo O<Pj A Owo O<Pj 
+ - 16---- + 26----

oy ox ox oy oy 

A (
owo O<Pj OWo O<Pj)]}d d + 66 ---- + ---- x y 
ox oy oy ox 

(10.4.16) 

~ oKlt A 3 _ 1 ~ A 3 0 [1 {01/Ji [A OWo O<Pk A OWo O<Pk L -----=---:f Uk - - L Uk -----=-:3 0 - 12 ---- + 22 ----
k=1 OLlj 2 k=1 OLlj [2' oy ox ox oy oy 

A (
OWOO<Pk OWOO<Pk)] + 26 ---- + ----
ox oy oy ox 

o1/Ji [A OWo O<Pk A Owo O<Pk 
+ - 16---- + 26----

ox ox ox oy oy 

A ( OWo O<Pk Owo O<Pk)]}d d 1 + 66 ---- + ---- x y 
ox oy oy ox 

_ 1 1 {01/Jf [A OWo O<Pj A OWo O<Pj - - - 12---- + 22----
2 [2e oy ox ax ay oy 

A (
OWOO<Pj owoo<pj)] + 26 ---- + ----
ox oy oy ox 

o1/Ji [A OWo o<pj A OWo o<Pj 
+ - 16---- + 26----

ox ox ox oy oy 

A 
(

OWOO<Pj owoo<Pj)]}d d + 66 ----+---- x Y ox oy oy ox 
(10.4.17) 

~ 0 Kff _ ~ 0 [1 {01/Jk [A oWo O<Pi A OWo o<Pi L 'Uk -----=---:f - L 'Uk -----=-:3 -- 11 ---- + 12 ----
k=l OLlj k=1 OLlj [2e ox ox ox oy oy 

A (
owoO<Pi owoO<Pi)] + 16 ---- + ----
ox oy oy ox 
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a'IjJk [A awo aCPI A awo aCPI 
+ - 16-- + 26--ay ax ax ay ay 

A ( awo aCPI awo aCPI)]}d d 1 + 66 --+-- X Y ax ay ay ax 

= ~ Au UCPi cpJ + A12 UCPi cpJ 1 {
::l [ ::l eo e ::l eo e 

oe ax ax ax ay ay 

+ A16 (aCPI acpj + aCPI aCPj)] 
ay ax ax ay 

au [A aCPI aCPj A aCPI acpj 
+ - 16-- + 26--ay ax ax ay ay 

+ A66 CPi cpJ + CPi cpJ dxdy (
a eae aeae)]} 
ay ax ax ay (10.4.18) 

t vk a~¥ = t vk ~ 3 [r {a'IjJk [A12 awo OCPI + A22 owo oCPI 
k=1 ot::..j k=1 ot::..j Joe oy aX ax oy oy 

A (awoaCPI awoaCPi)] 
+ 26 ax oy + ay ax 

o'IjJk [A owo oCPI A oWo oCPI 
+- 16--+ 26--ax ax ax ay ay 

A (Owo oCP[ owo OCPI)]}d d 1 + 66 ax ay + ay ax x y 

-1 {OV [A oCPI oCPj A oCP[ oCPj - - 12-- + 22--
Oe oy ax ax oy ay 

+ A26 CPi cpJ + CPi cpJ 
(
oe ae aeae)] 
ay ax ax oy 

ov [A oCPI aCPj A aCPI oCPj 
+- 16--+ 26--ax ax ax oy oy 

+ A66 CPi cpJ + CPi cpJ dxdy ( a eoe aeoe)]} 
oy ax ax oy (10.4.19) 

~ a K7~ ~ -3 a [1 1 {[ (awo) 2 (awo ) 2 
L... wk 03.3 = L...t::..ko3.3 2" e All a +A12 a k=1 J k=1 J 0 X Y 
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B ( OWOO~j OWOO~j)] + 16 ---- + ----
oy OX OX oy 

02~i [B OWO o~j B OWO o~j 
+ Oy2 12 OX OX + 22 oy oy 

B ( OWOO~j OWOO~j)] + 26 ---- + ----
oy OX OX oy 

02 ~i [B OWO o~j B OWO o~j 
+ 2 oxoy 16 OX OX + 26 oy oy 

( OWOO~j OWOO~j)]} +B66 --+-- dxdy 
oy OX OX oy 

Note that Ti~3 is given by combining the expressions in Eqs. (10.4.18)-(10.4.21) and 
K~3. One may find that the tangent stiffness matrix is symmetric. This completes 
the finite element model development of the classical plate theory. 

10.4.4 Tangent Stiffness Coefficients for FSDT 

Since the source of nonlinearity in the classical and first-order shear deformation 
plate theories is the same, the nonlinear parts of the tangent stiffness coefficients 
derived for the classical plate theory are also applicable to the first-order theory. 
For the sake of completeness, they are presented here again. 

The coefficients of the submatrices [Tap] (0, (3 = 1,2,···,5) are defined by 

TcxP = oRi 
~J ot1(3 

J 

(10.4.22) 

where the components of the residual vector {ROO} are given by 

5 n* 

Ri = L L K~"/ t1Z - Ft (1O.4.23a) 
,,/=lk=l 

(1O.4.23b) 

and n* denotes n, m, or p, depending on the nodal degree of freedom. Thus, we 
have 

(10.4.24) 
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8wo [81/;y) (81/;~3) 81/;;3)) +-- --- B 12--+B26--
8y ay ax ay 

81/;Y) (8'ljP) 01/;(3))] } 43 + -- B16--~ - + B66--
l

- dxdy + K· 
ax ax ay lJ 

Clearly, the tangent stiffness matrix is symmetric. 

10.4.5 Membrane Locking 

Recall that when lower order (quadratic or less) equal interpolation of the generalized 
displacements is used, the FSDT elements become excessively stiff in the thin plate 
limit, yielding displacements that are too small compared to the true solution. This 
type of behavior is known as shear locking (see Reddy [32] and references therein). 
As discussed earlier, shear locking is avoided by using selective integration: full 
integration to evaluate all linear stiffness coefficients and reduced integration to 
evaluate the transverse shear stiffnesses (i.e., all coefficients in K::/ that contain 
A44 , A45 , and A55). 

Another type of locking, known as the membrane locking, occurs in plates and 
shells due to the inconsistency of approximation of the in-plane displacements 
( Uo, vo) and the transverse displacement Wo. The membrane locking can be explained 
by considering, for simplicity, the Timoshenko beam finite element (see Problem 
10.12). When the element is used to analyze pure bending deformation, it should 
experience no axial (or membrane) strain: 

o = duo ~ ( dWO)2 _ cxx - dx + 2 dx - 0 (for pure bending) (10.4.26) 
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In order that the above constraint be satisfied for independent approximations of 
Uo and Wo, the term should cancel the second term in Eq. (10.4.26). This in turn 
requires that 

duo . (ddWXo) 2 degree of polynomial of - rv degree of polynomIal of 
dx 

(10.4.27) 

If both variables are approximated with sufficiently higher-order polynomials, the 
coefficients in the polynomials get adjusted to satisfy the constraint (10.4.26). Also, 
when both Uo and Wo are approximated using linear polynomials, the correspondence 
(10.4.27), hence constraint (10.4.26), is automatically satisfied; however, when 
quadratic interpolation of both Uo and Wo is used, then ~ is linear and (~)2 
is quadratic and there is no possibility of canceling the coefficient in quadratic term. 
If Uo is interpolated with cubic polynomials and Wo is interpolated with quadratic 
polynomials, we have 

duo 
(quadratic) 

dx (
dW )2 
dx

O 
( quadratic) (10.4.28) 

Thus the constraint (10.4.26) is again satisfied. In summary, the element does not 
experience membrane locking for the following two cases: 

(1) Uo is linear and W is linear 

(2) Uo is cubic and Wo is quadratic 

and it experiences locking when both Uo and Wo are interpolated using quadratic 
polynomials. 

Since quadratic approximation of Uo and Wo is common in practice, it is necessary 
to find a way to avoid membrane locking ofthe element. It is found that, for this case, 
the membrane locking can be avoided by using selective integrations of the terms of 
the form in Exx. For example, consider the coefficient (Kl/)tan (see Problem 10.14): 

(K~2)tan = l XI3 

Eb A [dUO + ~ (dWO)2] d1jJi d1jJj dx 
1J X A xx dx 2 dx dx dx 

(10.4.29) 

For quadratic interpolation of Uo and Wo, the first term is a cubic (p = 3) polynomial 
and the second term is a fourth-order (p = 4) polynomial. Thus the exact evaluation 
of the first term requires NGP = (p + 1)/2 = 2 and the second term requires 
NGP = [(p+ 1)/2] = 3, where NGP denotes the number of Gauss points. Thus, for 
constant E~xA, three-point Gauss quadrature yields exact values of both integrals. 
However, the two-point Gauss rule would yield an exact value for the first term 

l
xB duo d1jJi d1jJj dx 

XA dx dx dx 

and at the same time the second term 

l
XI3 (dWO)2 d1jJi d1jJj -- ---- dx 

XA dx dx dx 
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is approximated as the same degree polynomial as the first term. This amounts to 
using an interpolation for Wo that satisfies the constraint E~;r = O. 

The discussion presented above for the Timoshenko beam element also applies 
to membrane locking in CLPT and FSDT plate elements. Of course, if the mesh of 
quadratic elements is sufficiently refined, the membrane locking disappears. 

10.5 Numerical Examples of Plates 
10.5.1 Preliminary Comments 

Here we present some numerical examples of laminated plates and shells using the 
nonlinear shear deformable laminated plate finite element presented in Section 10.2. 
A shear correction coefficient K = 5/6 is used here. 

The problems presented here illustrate certain features characteristic to 
composite laminates. These include: 

(1) the effect of geometric nonlinearity on static deflections, 

(2) the use of biaxial symmetry boundary conditions in quarter plate models of 
rectangular laminates, 

(3) postbuckling response of laminates under in-plane compression, 

(4) nonlinear transient response of composite laminates, and 

(5) postbuckling and progressive failure analysis of composite panels subjected to 
in-plane compression. 

All of the problems are selected from the author's publications, and additional 
examples can be found in the references cited at the end of the chapter (in particular, 
see Reddy [32]). 

10.5.2 Isotropic and Orthotropic Plates 

In this section several examples of isotropic and orthotropic plates with various edge 
conditions are presented to illustrate the use of the CLPT and FSDT elements in the 
geometrically nonlinear (in the von Karman sense). The effect of the integration rule 
to evaluate the nonlinear and transverse shear stiffness coefficients is investigated 
in the first example. Unless stated otherwise, a uniform mesh of 4 x 4 nine-node 
quadratic elements is used in a quarter plate for the FSDT. For this choice of mesh, 
full integration (F) is to use 3 x 3 Gauss rule, and reduced integration (R) is to use 
2 x 2 Gauss rule. Stresses are calculated at the center of the element. The shear 
correction coefficient is taken to be Ks = 5/6. A tolerance of E = 10-2 is used for 
convergence in the Newton-Raphson iteration scheme to check for convergence of 
the nodal displacements. 

Example 10.5.1: ____________________________ _ 

Consider an isotropic, square plate with 

a = b = 10 in., h = 1 in., E = 7.8 x 106 psi, v = 0.3 (10.5.1) 

Two types of simply supported boundary conditions are studied. The displacement boundary 
conditions used for 88-1 and 88-3 are 

88-1: At x = a/2 : Va = wa = ¢Y = 0 



88-3: 
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At y = b/2 : Uo = 'Wo = CP,r = 0 

Uo = Vo = 'Wo = ° OIl simply supported edges 

(10.5.2) 

(10.5.3) 

Uniformly distributed load of intensity qo is used. The boundary conditions along the symmetry 
lines for both cases are given by 

At x = 0 : Uo = CPx = 0; At Y = 0: Va = cPy = 0 (symm. lines) (10.5.4) 

It is clear that 88-3 provides more edge restraint than 88-1 and therefore should produce lower 
transverse deflections. 

Using the load parameter, P == qoa4/Eh4, the incremental load vector is chosen to be 

{.6.P} = {6.25, 6.25,12.5,25.0,25.0, .. ,25.0} 

Table 10.5.1 contains the deflections 'Wo(O, O) and normal stresses CTxx = o-xx(a2/Eh2) at the center 
of the first element for various integration rules (also see Figure 10.5.1). The number of iterations 
taken for convergence are listed in parenthesis. The linear F8DT plate solution for load qo = 4875psi 
(or P = 6.25) is 'Wo = 0.2917in. for 88-1 and 'Wo = 0.3151in. for 88-3. As discussed earlier, the 
4 x 4Q9 meshes are not sensitive to shear or membrane locking, and therefore the results obtained 
with various integration rules are essentially the same. 

Table 10.5.1: Center deflection ill and stresses o-xx of simply supported (88-1 and 
88-3) plates under uniformly distributed load. 

88-3 88-1 

P R-R* F-R F-F R-R F-R F-F 

Deflections, 'Wo(O, 0) 

6.25 0.2790 (3) 0.2790 (4) 0.2780 (3) 0.2813 (3) 0.2813 (3) 0.2812 (3) 
12.5 0.4630 (3) 0.4630 (3) 0.4619 (3) 0.5186 (3) 0.5186 (3) 0.5185 (3) 
25.0 0.6911 (3) 0.6911 (3) 0.6902 (3) 0.8673 (4) 0.8673 (4) 0.8672 (4) 
50.0 0.9575 (3) 0.9575 (3) 0.9570 (3) 1.3149 (4) 1.3149 (4) 1.3147 (4) 
75.0 1.1333 (3) 1.1333 (3) 1.1330 (3) 1.6241 (3) 1.6239 (3) 1.6237 (3) 

100.0 1.2688 (3) 1.2688 (3) 1.2686 (3) 1.8687 (3) 1.8683 (3) 1.8679 (3) 
125.0 1.3809 (2) 1.3809 (2) 1.3808 (2) 2.0758 (2) 2.0751 (2) 2.0746 (2) 
150.0 1.4774 (2) 1.4774 (2) 1.4774 (2) 2.2567 (2) 2.2556 (2) 2.2549 (2) 
175.0 1.5628 (2) 1.5629 (2) 1.5629 (2) 2.4194 (2) 2.4177 (2) 2.4168 (2) 
200.0 1.6398 (2) 1.6399 (2) 1.6399 (2) 2.5681 (2) 2.5657 (2) 2.5645 (2) 

Normal stresses, CT xx (0.3125,0.3125, h/2) 

6.25 1.861 1.861 1.856 1.779 1.779 1.780 
12.5 3.305 3.305 3.300 3.396 3.396 3.398 
25.0 5.319 5.320 5.317 5.882 5.882 5.885 
50.0 8.001 8.002 8.001 9.159 9.162 9.165 
75.0 9.983 9.984 9.983 11.458 11.462 11.465 

100.0 11.633 11.634 11.634 13.299 13.307 13.308 
125.0 13.084 13.085 13.085 14.878 14.890 14.889 
150.0 14.396 14.398 14.398 16.278 16.293 16.290 
175.0 15.608 15.610 15.610 17.553 17.572 17.567 
200.0 16.741 16.743 16.743 18.733 18.755 18.748 

* The first letter refers to the integration rule used for the nonlinear terms while the second letter 
refers to the integration rule used for the shear terms. 
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o-xx versus load P for isotropic (v = 0.3), simply supported square 
plates under uniformly distributed load (4 x 4Q9 for FSDT and 
8 x 8C for CPT). 
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Example 10.5.2: ____________________________________________________________ ___ 

Orthotropic plates with 

a. = b = 12 in., h = 0.138 in., El = 3 x 106 psi, E2 = 1.28 x 106 psi 

G 12 = G 13 = G23 = 0.37 x 106 psi, V12 = 0.32 (10.5.5) 

and subjected to uniformly distributed transverse load (i.e., q = qo=constant) are analyzed. A 
uniform mesh of 4 x 4Q9 elements with reduced integration is used in a quadrant. The incremental 
load vector is chosen to be 

{6P} = {0.05, 0.05, 0.1, 0.2, 0.2, ... ,0.2} 

Twelve load steps are used, and a tolerance of E = 0.01 is used for convergence. 

Table 10.5.2 contains the center deflection and total normal stress as a function of the load for 
SS-l and SS-3 boundary conditions. The linear FSDT solution for load qo = 0.05 is Wo = 0.01132 
for SS-l and Wo = 0.01140 for SS-3. Plots of load qo (psi) vs. center deflection Wo (in.) and qo 
versus normal stress (total as well as membrane) (Jxx = axx(a.2/E2h2) are shown in Figure 10.5.2 
for SS-l and SS-3 plates. The figures also show the results obtained using 8 x 8 mesh of conforming 
CPT clements. 

Table 10.5.2: Center deflection Wo and normal stress a-xx for simply supported 
orthotropic square plates under uniformly distributed load (4 x 
4Q9). 

SS-l SS-3 

qo CPT FSDT FSDT CPT FSDT FSDT 

Wo Wo o-XT Wo Wo aX;]: 

0.05 0.0113 (2) 0.0113 1.034 0.0112 0.0113 1.056 
0.10 0.0224 (2) 0.0224 2.070 0.0217 0.0218 2.116 
0.20 0.0438 (3) 0.0439 4.092 0.0395 0.0397 4.058 
0.40 0.0812 (3) 0.0815 7.716 0.0648 0.0650 7.103 
0.60 0.1116 (3) 0.1122 10.702 0.0823 0.0824 9.406 
0.80 0.1367 (3) 0.1377 13.169 0.0957 0.0959 11.284 
1.00 0.1581 (2) 0.1594 15.255 0.1068 0.1069 12.894 
1.20 0.1767 (2) 0.1783 17.050 0.1162 0.1162 14.316 
1.40 0.1932 (2) 0.1951 18.631 0.1245 0.1244 15.602 
1.60 0.2081 (2) 0.2103 20.044 0.1318 0.1318 16.783 
1.80 0.2217 (2) 0.2241 21.324 0.1385 0.1384 17.880 
2.00 0.2343 (2) 0.2370 22.495 0.1447 0.1445 18.909 

Example 10.5.3: 

Here, we analyze an orthotropic plate with clamped edges; i.e., all generalized displacements are 
set to zero on the boundary. The boundary conditions of a clamped edge are taken to be 

1LO = Vo = Wo = <Px = <py = 0 (10.5.6) 

The geometric and material parameters used are the same as those listed in Eq. (10.5.5). A 
uniformly distributed load of intensity qo is used. 

The linear solution for load qo = 0.5 is Wo = 0.0301. Table 10.5.3 contains center deflections and 
stresses for the problem (see [36-38]). Figure 10.5.3 contains plots of load versus center deflection 
of an isotropic plate (h = 0.138 in., E = 1.28 x 106 psi, and v = 0.3); the CPT deflections were 
obtained using 8 x 8 mesh of the non-conforming elements and the FSDT deflections were obtained 
with 4 x 4Q9 mesh (mesh of nine-node Lagrange elements). 
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Figure 10.5.3: Nonlinear center deflection Wo versus load parameter qo for 
clamped, orthotropic, square plates under uniform load. 

Table 10.5.3: Center deflection Wo and normal stress o-xx for clamped orthotropic 
square plates under uniformly distributed load (4 x 4Q9). 

qo 'Wo ij :r:J' qo 'Wo a:D :l' 

0.5 0.0294 (3) 4.317 12.0 0.2450 (2) 46.001 
1.0 0.0552 (3) 8.467 14.0 0.2610 (2) 49.851 
2.0 0.0948 (3) 15.309 16.0 0.2754 (2) 5:3.431 
4.0 0.1456 (3) 24.811 18.0 0.2886 (2) 56.800 
6.0 0.1795 (3) 31.599 20.0 0.3006 (2) 59.998 
8.0 0.2054 (3) 37.078 22.0 0.3119 (2) 63.053 

10.0 0.2268 (2) 41. 793 24.0 0.3224 (2) 65.986 

10.5.3 Laminated Composite Plates 

In this section examples of laminated plates with various laminations schemes and 
edge conditions are presented. Unless stated otherwise, all example problems arc 
analyzed using the FSDT element. 

Example 10.5.4: ____________________________ _ 

This example is concerned with the nonlinear bending of a square. simply-supported (SS-l), 
orthotropic plate (see Figure 10.5.4 for the geometry and boundary conditions) made of high 
modulus glass-epoxy fiber-reinforced material 

(10.5.7) 
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Figure 10.5.4: Geometric boundary conditions for 88-1 type simply supported 
rectangular plates, 

and subjected to sinusoidal or uniform load. Uniform meshes of 8 x 8 CPT nonconforming elements 
and 4 x 4 nine-node quadratic FSDT elements in a quarter plate. The linear deflections predicted 
by the CPT and FSDT elements for P == (qoa4/E2h4) = 10 and plate side-to-thickness ratio of 
a/h = 10 are ill == wo(0,0)(E2h3/qOa4) = 0.0653 and ill = 0.0952. These values coincide with the 
analytical solutions (see Reddy [40]). Table 10.5.4 contains results of the nonlinear analysis for 
a/h = 10 (also see Figure 10.5.5). The following nondimensionalizations are used: 

W= Wo h2 h 2 
17xx = CTxx (A,A,h/2)E2' 17yy = CTyy(A. A, h/2)--2 

h' 2a E2 a 

h 2 _ h _ h 
(10.5.8) 17xy = CTxy(B,B, ~ h/2)E2' CTxz = CTxz(B, A)E' CTyz =CTyz(A,B)-

2a 2a . qoa 

where A = 0.0625a and B = 0.4375a. 

Table 10.5.4: Nondimensionalized maximum transverse deflections and stresses 
of simply supported (88-1) square plates. 

P W axx 17yy if xy -O-xz -ayz 

10 0.0951 7.453 0.3771 0.4800 0.0540 0.0092 
20 0.1895 14.852 0.7827 0.9845 0.1077 0.0183 
30 0.2826 22.146 1.2117 1.5113 0.1608 0.0275 
40 0.3738 29.291 1.6590 2.0583 0.2130 0.0366 
50 0.4627 36.253 2.1198 2.6229 0.2641 0.0456 
60 0.5491 43.010 2.5900 3.2026 0.3139 0.0546 
70 0.6328 49.546 3.0660 3.7952 0.:3624 0.0635 
80 0.7136 55.856 3.5450 4.3985 0.4096 0.0722 
90 0.7917 61.940 4.0248 5.0106 0..1554 0.0808 
100 0.8670 67.802 4.5037 5.6300 0.4998 0.0893 
110 0.9397 73.450 4.9804 6.2551 0.5430 0.0977 
120 1.0099 78.893 5.4540 6.8849 0.5849 0.1058 
130 1.0776 84.141 5.9239 7.5184 0.6256 0.1138 
140 1.1431 89.205 6.3894 8.1548 0.6653 0.1217 
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Figure 10.5.5: Nonlinear center deflection Wo versus load parameter qo for simply 
supported (88-1), orthotropic, square plates under uniform load. 

Example 10.5.5: _____________________________ _ 

This example is concerned with the nonlinear bending of a square, symmetric cross-ply (0/90/90/0) 
laminated plate made of layer properties, El = 1.8282 x 106 , E2 = 1.8315 x 106 , G 12 = G 13 = G23 = 

0.3125 x 106 , v12 = 0.2395. The geometric parameters used are: a = b = 12 in and h = 0.096 in (each 
layer of 0.024 in. thick). A mesh of 4 x 4Q9 F8DT elements in a quarter plate is used. Results for 
both clamped and 88-3 boundary conditions under uniform load are obtained. A load increment of 
L:lQO = 0.2 psi is used. The maximum linear deflection for the clamped case is wo(O, 0) = 0.04102 in 
and for 88-3 it is wo(O, 0) = 0.07611 in. Table 10.5.5 and Figure 10.5.6 contain nondimensionalizcd 
deflections and stresses for the plate. The stresses are nondimensionalized as in Eq. (10.5.8). 

Table 10.5.5: Maximum transverse deflections of clamped and simply supported 
(88-3) cross-ply (0/90/90/0) square plates under uniform load. 

Clamped Plate Simply Supported Plate 

Qo 10wo o-yy jj xy 100-;cz lOwo o-yy a:ry 102 0-xz 

0.2 0.3773 -1.2751 0.2540 0.0965 0.7324 -0.4254 1.4812 0.0265 
0.4 0.6504 -1.5699 0.4903 0.1843 0.9946 0.3911 2.1387 0.0658 
0.6 0.8489 -1.4175 0.7049 0.2647 1.1677 1.2271 2.6145 0.0987 
0.8 1.0039 -1.0753 0.9031 0.3396 1.3012 2.0315 :Ul012 0.1263 
1.0 1.1316 -0.6444 1.0890 0.4103 1.4116 2.8012 3.3326 0.1499 
1.2 1.2406 -0.1693 1.2651 0.4779 1.5067 3.5386 3.6249 0.1702 
1.4 1.3362 0.3279 1.4331 0.5426 1.5908 4.2481 3.8881 0.1879 
1.6 1.4216 0.8356 1.5944 0.6049 1.6667 4.9331 4.1284 0.2036 
1.8 1.4991 1.3472 1.7499 0.6652 1.7360 5.5965 4.3503 0.2175 
2.0 1.5701 1.8588 1.9003 0.7236 1.8001 6.2408 4.5567 0.2301 
2.2 1.6359 2.3682 2.0461 0.7804 1.8597 6.8680 4.7501 0.2414 
2.4 1.6972 2.8739 2.1878 0.8358 1.9156 7.4798 4.9322 0.2516 
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Figure 10.5.6: Load-deflection curves for symmetric cross-ply (0/90/90/0) 
laminates. 

Example 10.5.6: __________________________________________________________ __ 

Here we consider nonlinear bending of square, anti symmetric , cross-ply (0/90/0/90···) laminated 
plates made of material 

(10.5.9) 

The geometric parameters used are: a = b = 12 in and total thickness h = 0.3 in. Again, uniform 

mesh of 4 x 4Q9 FSDT elements in a quarter plate is used. Results for clamped boundary conditions 

under uniform load are obtained. A load increment of Llqo = 200 psi is used. The maximum linear 

deflection for two layers (0/90) is wo(O,O) = 0.22683 in, and for six layers (0/90/0/90/0/90) it 

is wo(O,O) = 0.08669 in. Table 10.5.6 contains results of the nonlinear analysis (also see Figure 

10.5.7). Note that the six-layer laminate is relatively stiffer than the two-layer laminate (for the 

same total thickness of the laminates). 

10.5.4 Effect of Symmetry Boundary Conditions 
on Nonlinear Response 

As discussed in Chapters 5, 6, and 7, the Navier solutions of the linear theories can 
be developed for antisymmetric cross-ply plates with SS-l boundary conditions and 
antisymmetric angle-ply laminates with the SS-2 boundary conditions. The Navier 
solutions can be used to determine the conditions on deflections and forces along the 
lines of biaxial symmetry, i.e., along the lines x = a/2 and y = b/2 of a rectangular 
plate of dimension a x b and with the origin of the (x, y) coordinate system being at 
the lower left corner of the plate. If the symmetry conditions implied by the Navier 
solutions are used in the linear finite element analysis of a quarter plate, as was 
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Figure 10.5.7: Load-deflection curves for clamped, antisymmetric cross-ply 
(0/90/0/90/ ... ) laminated square plates under uniform load. 

Table 10.5.6: Maximum deflections of two-layer and six-layer cross-ply 
(0/90/0/90·· .) square plates under uniform load. 

(0 0 /90°) (0/90/0/90/0/90) 

qo 'IlJ0 a.:cx a-yy 'IlJo a-:r :1: ay !} 

100 0.1541 82.63 -0.3807 0.0826 -28.40 -1.423 
200 0.2243 130.03 9.3434 0.1491 -40.12 -2.200 
400 0.3063 195.00 l.1977 0.2419 -37.73 -2.644 
600 0.3609 245.53 2.2529 0.:3095 -22.49 -2.482 
800 0.4032 289.35 3.2416 0.3552 -2.96 -2.092 

1,000 0.4385 329.07 4.1747 0.3957 18.19 -1.599 
1,200 0.4690 365.89 5.0614 0.4303 39.91 -1.055 
1,400 0.4961 400.54 5.9104 0.4607 61.74 -0.486 
1,600 0.5206 433.46 6.7275 0.4879 83.47 0.095 
1,800 0.5431 464.97 7.5173 0.5126 104.99 0.680 

done in Chapter 9, one obtains correct full plate solutions. When quarter-plate 
models with the geometric boundary conditions implied by the Navier solutions on 
the lines of symmetry are used in the nonlinear finite element analysis, results do 
not agree, in general, with those of the corresponding full-plate models (see Reddy 
[51]). 

To illustrate this point, a two-layer, antisymmetric angle-ply (45/-45) square 
laminate (a = 1000 mm, h = 2 mm), under uniform transverse load is considered. 
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The following layer properties are used: 

EI = 250 CPa, E2 = 20 CPa, G I2 = G I3 = 10 CPa 

G23 = 4 CPa, lII2 = lI13 = 0.25 (10.5.10) 

The load-deflection curves obtained from the quarter-plate and full-plate analyses 
are shown in Figure 10.5.8. Meshes of 2 x 2 and 4 x 4 nine-node quadratic elements 
based on the first-order shear deformation plate theory are used to model the quarter 
and full plates, respectively. The following boundary conditions along the lines of 
symmetry were used: 

at x = a/2 : 

at y = b/2 : 
Vo = rPx = 0; N xx = Mxy = 0 

Uo = rPy = 0; N yy = Mxy = 0 (10.5.11) 

where the coordinate system is fixed at the lower left corner of the laminate. 

Note that the force boundary conditions are included in the finite element model 
in an integral sense. It is clear from the results that the use of a quarter-plate 
model with the symmetry conditions (10.5.11) yields larger deflections than those 
obtained from the full-plate model. The discrepancy increases with the intensity of 
the transverse load. This discrepancy can be explained in the light of the symmetry 
conditions (10.5.11) used to model the quarter plate. As noted earlier, the symmetry 
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Figure 10.5.8: Load-deflection curves (,\ vs. wo) for full-plate and quarter-plate 
models of simply supported (88-2) antisymmetric angle-ply (45/-
45) laminates. 
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conditions are derived from the Navier solution for the linear theory. For the angle
ply case, the assumed solution is of the form [see Eqs. (7.3.2)] 

00 

'" . m7rX n7ry 
Uo = ~ Umn sm -a- cos -b- , 

00 m7rX . n7ry 
Vo = L V mn cos -a- sm -b-

rn,n=l rn,n=l 

00 

L 
. m7rX . n7ry Wo = Wmn SIn -- sm --

a b 
(10.5.12) 

m,n=l 

00 00 

L 
2 . m7rX n7ry 

A, - S sm -- cos --
'f'y - mn a b 

'" 1 m7rX . n7ry ¢x = ~ Smn cos -a- sm -b- , 
m,n=l m,n=l 

The resultant forces N;J;x and Nyy and moment Mxy are given by (note that 
A16 = A 26 = A45 = 0, Bll = B12 = B22 = B66 = 0, and D16 = D26 = 0) 

N = A [auo ! ( aWO)2] A [avo ( aWO)2] xx 11 ax + 2 ax + 12 ay + ay 

+ B 16 (a¢x + a¢y) 
ay ax (1O.5.13a) 

N = A [auo ! (awo) 2] A [avo (aWo ) 2] yy 12 ax + 2 ax + 22 ay + ay 

+ B26 (a¢x + a¢y) 
ay ax (1O.5.13b) 

[
auG 1 (aWo) 2] [avo (aWo) 2] Mxy = B 16 ax +"2 ax + B 26 ay + ay 

D (
D¢x a¢y) + 66 -- +--oy ax (10.5.13c) 

The expressions in Eqs. (10.5.13a-c), for the nonlinear case, indicate that the force 
boundary conditions in (10.5.11) are not satisfied. For example, N xx and N yy have 
the form 

2 2W2 
( / ) A n 7r mn 2 n7ry =f-

N xx a 2,y ~ 12 2b2 cos -b- 0 

m 27r2W 2 m7rX Nyy(x, b/2) ~A12 2 mn cos2 
-- =f- 0 

. 2a a 
(10.5.14) 

When a quarter plate model is used without specifying Uo on line x = a/2 and Vo on 
line y = b/2, in the finite element analysis it is implied that the natural boundary 
conditions N xx = 0 on x = a/2 and Nyy = 0 on y = b/2 are specified. The quarter
plate model with zero in-plane forces Nxx (a/2, y) and Nyy(x, b/2) simulates the plate 
as more flexible than the full-plate model, in which the in-plane forces are not taken 
to be zero on the lines of symmetry. 

For antisymmetric cross-ply laminates, a quarter-plate model with the symmetry 
conditions implied by the N avier solution gives the same solution as the full-plate 
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model for both linear and nonlinear theories. This is due to the fact that the zero 
force boundary conditions are satisfied in an integral sense for cross-ply laminates. 

10.5.5 Nonlinear Response Under In-Plane Compressive Loads 

Another interesting characteristic of composite laminates is their behavior under 
compressive loads. Most often the critical buckling loads are determined through 
an eigenvalue analysis. The critical buckling loads can also be determined from 
geometric nonlinear analysis, where the critical buckling load is taken to be the 
so-called limit load. 

First we consider an angle-ply (45/-45) laminate with the following geometric 
parameters and material properties: 

a = b = 1, 000 mm, h = 2 mm 

ZJ12 = ZJ13 = 0.24, ZJ23 = 0.49 (10.5.15) 

For 88-2 type simply supported boundary conditions, the uniaxial buckling load can 
be determined analytically (see Chapter 7). Here we use 4 x 4 mesh of nine-node 
elements in the full plate to determine the critical buckling load, and the same mesh 
is used to determine the nonlinear response under applied in-plane compressive 
load Nyy = AoNEy, where Ao is the critical buckling load determined from the 
eigenvalue analysis. Figure 10.5.9 contains a plot of the maximum out-of-plane 
deflection Wo (mm) versus load parameter A (NEy = 10.85) N/m). It is clear the 
load-deflection curve exhibits a limit point, which is the same as the critical buckling 
load determined from the eigenvalue analysis. 

Next we consider antisymmetric cross-ply laminates. The geometry and materials 
properties used are the same as those used for the angle-ply laminate. The 88-1 
type simply supported boundary conditions and 2 x 2 mesh of nine-node elements 
in a quarter plate are used to determine the critical buckling loads No by eigenvalue 
analysis and load-deflection curves in the nonlinear analysis under in-plane load 
Nyy = AoNEY (NEy = 6.25) N/m). Figure 10.5.10 contains load-deflection curves for 
two-, four-, six-, and eight-layer laminates. The critical buckling loads are indicated 
on the load-deflection curves for comparison. Unlike the angle-ply laminates, the 
cross-ply laminates do not exhibit clear limit-load behavior. 

10.5.6 Nonlinear Response of Antisymmetric Cross-Ply 
Laminated Plate Strips 

Unlike isotropic metallic plates, composite plates exhibit quite different nonlinear 
behavior. For example, the geometric nonlinear effects could be very significant even 
at small loads and deflections, depending on the lamination scheme and boundary 
conditions (see [24,25,52]). To illustrate the point we analyze an antisymmetric 
cross-ply square laminate (90/0) with two opposite edges pinned (uo = 0) or hinged 
(uo i- 0) and the other two edges free, and subjected to uniformly distributed 
transverse load. 
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Figure 10.5.9: Load-deflection curves (A vs. wo) of a simply supported (88-
2) two-layer antisymmetric angle-ply (45/-45) laminate under 
uniformly distributed in-plane compressive edge load. 
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The geometry, finite element mesh, and boundary conditions for the pinned
pinned and hinged-hinged cases are shown in Figure 10.5.11. The material properties 
and geometric parameters used are 

E1 = 20 msi, E2 = 1.4 msi, V12 = 0.3, G 12 = G 13 = G23 = 0.7 msi 

a = 9 in., b = 1.5 in., h = 0.4 in. (10.5.16) 

The results of the nonlinear analysis are presented in Table 10.5.7. For hinged
hinged boundary conditions, the plate strip is essentially in pure bending and hence 
the axial force N xx = O. Therefore, the solution is independent of the sign of the 
applied load. For a pinned plate strip, the axial force N xx is not zero; it is 

[
duo 1 (dW()) 2] d¢x 

N xx = Au dx +"2 dx + Bu dx ' Bu < 0 (10.5.17) 

For small values of the positive load, the expression containing the Au coefficient is 
small compared to the expression containing the Bu coefficient, which is negative 
for 0 < x < 4.5. Hence, Nxx is compressive and increases the transverse deflection 
- analogous to the transverse deflection of a plate strip under an axial compressive 
load and a transverse load. Thus, the nonlinear solution is larger than the linear 
solution for small values of the load. As the load is increased, the Au expression 
becomes larger than the Bu expression, and N xx becomes positive. This stiffens 
the structure and the nonlinear solution becomes smaller than the linear solution. 
The load deflection curves for the first few load steps are shown in Figure 10.5.12. 
For a negative load, Bn dj; is positive, and the two terms in N xx add up; this yields 
a larger axial force and therefore a stiffer structure than for the positive load case. 
Therefore the deflection is lower than that for the case of positive load. 

Table 10.5.7: Transverse deflections, w()/h, of cylindrical bending of a (90/0) 
laminate under uniformly distributed transverse load. 

Load 
Pinned Hinged 

Po Linear* Nonlinear* Nonlineart Case 1 * Case 2t 

0.005 -0.235 -0.159 0.475 -0.429 0.429 
0.01 -0.470 -0.255 0.673 -0.858 0.858 
0.02 -0.940 -0.386 0.847 -1.710 1,710 
0.03 -1.41 -0.480 0.954 -2.550 2.55 
0.04 -1.88 -0.555 1.034 -:U70 3.37 
0.05 -2.35 -0.618 1.100 -4.190 4.19 
0.10 -4.70 -0.845 1.327 -7.920 7.92 
0.25 -11. 75 -1.233 1.705 -16.16 16.17 
0.50 -23.50 -1.609 2.075 -24.82 24.82 
0.75 -35.25 -1.870 2.332 -:~0.87 30.87 
1.0 -47.00 -2.078 2.532 -:35.69 35.69 
2.0 -94.00 -2.665 3.117 -,t9.56 49.56 
3.0 -141.00 -3.075 3.525 -59.65 59.65 
4.0 -188.00 -3.402 3.850 -G8.00 68.00 
5.0 -235.00 -3.675 4.125 -75.33 75.33 

*For negative load values. t For positive load values. 
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Figure 10.5.11: Geometry, loading, and boundary conditions used for cylindrical 
bending of a cross-ply plate strip. 
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10.5.7 Transient Analysis of Composite Plates 

Nonlinear transient response of laminated composite plates was reported by Reddy 
[20]. Here we present a few examples from this paper. For additional examples, the 
reader may consult [20]. In all examples discussed here, suddenly applied transverse 
step loads are considered, and the initial conditions are taken to be zero. In the 
nonlinear transient analysis, there are three loops. The iterative loop for convergence 
of the solution is the innermost, followed by loops on time increments and the load 
increments. 

The first example involves a simply supported isotropic square plate subjected 
to suddenly applied uniformly distributed transverse load. The following geometric, 
material, and load parameters were used: 

a = b = 243.8 em, h = 0.635 em, p = 2.547 X 10-6 N_s2 /cm4 

El = E2 = 7.031 X 105 N/cm2
, v12 = 0.25 

qo = 4.882 X 10-4 N/cm2
, ilt = 0.005 s (10.5.18) 

Figure 10.5.13 shows the center deflection Wo as a function of time for four different 
values of the load and two different time steps. The amplitude increases while the 
period of response decreases with an increase in the intensity of load. Load versus 
the maximum deflection is also shown in the figure. This problem may serve as 
a reference for verification of the geometric nonlinear option of a finite element 
program. 
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Figure 10.5.13: Center deflection versus time for nonlinear transient analysis of 
an isotropic, simply supported, square plate. 
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Next, we consider nonlinear transient analysis of simply supported cross-ply 
(0/90) and angle-ply (45/-45) plates. Figure 10.5.14 contains plots of center 
deflections (w = 'Wo x 103 and tV = 'Wo X 102) of simply supported (88-1) cross
ply laminated rectangular plate (a = V2, b = 1, h = 0.2, p = 1.0, in English units of 
inches and pounds) under uniformly distributed transverse patch loading of intensity 
qo = 10-2 over the area 0 ::; (x, y) ::; 0.2. The material properties were assumed to 
be 

(10.5.19) 

A time step of tlt = 0.1 was used. A nonuniform 4 x 4 mesh of nine-node quadratic 
elements in quarter plate was used. Figure 10.5.14 contains results of both five and 
three degrees of freedom models. The three degrees of freedom element models the 
plate stiffer than the five degrees of freedom element. 

Figure 10.5.15 contains plots of center defiection versus time for simply supported 
(88-2), square (a = b = 243.8 em, h = 0.635 cm, p = 2.547 X 1O-6 Ns2 /cm4 ), 

angle-ply ~45/-45) plates under uniformly distributed pressure loading (qO = 50 x 
1O-4 N/cm). The material properties in Eq. (10.5.19) were used. The effect of 
geometric nonlinearity is obvious from the figure. 

10.6 Functionally Graded Plates 
10.6.1. Background 

While laminated composite materials provide the design fiexibility to achieve 
desirable stiffness and strength through the choice of lamination scheme, the 
anisotropic constitution of laminated composite structures often results in stress 
concentrations near material and geometric discontinuities that can lead to damage 
in the form of delamination, matrix cracking, and adhesive bond separation. 
Functionally gradient materials (FGM) are a class of composites that have a 
continuous variation of material properties from one surface to another and thus 
alleviate the stress concentrations found in laminated composites. The gradation 
in properties of the material reduces thermal stresses, residual stresses, and stress 
concentration factors. The gradual variation results in a very efficient material 
tailored to suit the needs of the structure and therefore is called a functionally 
graded material. They are typically manufactured from isotropic components such 
as metals and ceramics since they are mainly used as thermal barrier structures in 
environments with severe thermal gradients (e.g., thermoelectric devices for energy 
conversion, semiconductor industry). In such applications the ceramic provides heat 
and corrosion resistance; meanwhile the metal provides the strength and toughness. 

Thin-walled members, i.e., plates and shells, used in reactor vessels, turbines 
and other machine parts are susceptible to failure from buckling, large amplitude 
defiections, or excessive stresses induced by thermal or combined thermomechanical 
loading. The main applications of functionally gradient materials have been in high 
temperature environments, including thermal shock - a situation that arises when 
a body is subjected to a high transient heating or cooling in a short time period. 
References 54-69 provide a background and insights into thermomechanical and 
transient analysis of FGM structures. A brief review of the work carried out in 
[54,69] for plates is presented here. 
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10.6.2 Theoretical Formulation 

Consider a plate of total thickness h and made of an isotropic but inhomogeneous 
material through the thickness of the plate. Further, we restrict the formulation to 
linear elastic material behavior, small strains and displacements, and to the case in 
which the temperature field is known. 

Suppose that a typical material property P is varied through the plate thickness 
according to the expressions (a power law) 

(
z l)n 

V= -+
h 2 

(10.6.1 ) 

where Pt and Pb denote the property of the top and bottom faces of the plate, 
respectively, and n is a parameter that dictates the material variation profile through 
the thickness. Here we assume that moduli E and G, density p, thermal coefficient 
of expansion Oc, and thermal conductivity k vary according to Eq. (10.6.1), while 
l/ is assumed to be a constant. We take Pt = Pc and Pb = Pm as the properties of 
the ceramic and metal, respectively. The metal content in the plate increases as the 
value of n increases. The value of n = 0 represents a fully ceramic plate. The above 
power law assumption reflects a simple rule of mixtures used to obtain the effective 
properties of the ceramic-metal plate. 

The through-thickness functionally graded plate is an inhomogeneous (through 
the thickness) isotropic plate, exhibiting bending stretching coupling (i.e., not all 
Bij = 0). Hence, the governing equations of motion as well as the finite element 
models derived for the CLPT and FSDT are valid for the FGM plates. However, 
the temperature distribution through the thickness must be calculated by solving 
the equation 

(10.6.2a) 

(10.6.2b) 

The temperature field T(z) is then used m computing the thermal forces and 
moments 

(10.6.3a) 

(1O.6.3b) 

The plate stiffnesses are given by 

(i,j=1,2,6) (10.6.4a) 

h 

Aij = I: Qij(Z) dz (i,j = 4,5) 
2 

(10.6.4b) 
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where quantities with subscripts, 'm' and 'c' correspond to the metal and ceramic, 
respectively. The modulus E and the thermal coefficient of expansion a, and 
the elastic coefficients Qij, vary through the plate thickness according to Eqs. 
(10.6.1a,b). 

10.6.3 Thermomechanical Coupling 

The finite element model associated with Eq. (10.6.2a) is of the form (see Reddy 
[32]) 

(10.6.5) 

Due to the dependence of the conductivity k on z, the temperature distribution 
through the thickness of a FGM plate, for the boundary conditions given in (10.6.2b), 
is a nonlinear function of z. 

Next, we wish to examine the contribution of the temperature field to the 
nonlinear finite element equations. The thermal contributions to the finite element 
equations associated with the five generalized displacements are: 

(10.6.6) 

The thermal contribution associated with 8wo is nonlinear in woo For the purpose 
of computational efficiency, this term is included in the stiffness matrix. Therefore, 
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The K33 term of the stiffness matrix can be expressed as (superscript 2 on 'l/Ji is 
omitted for simplicity) 

K:n = t . [NT D'l/Ji D'i/Jj +NT D'i/Ji D'i/Jj +NT (D'i/Ji D'i/Jj + D'i/Ji D'i/Jj)] d d (1067) 
2J x:r D D YY D D xy D D D D x Y .. . rle x x Y Y x Y Y x 

10.6.4 Numerical Results 

Numerical results are presented for ceramic-metal FGM plates. The metal is taken to 
be aluminum and the ceramic used is zirconia. The properties for the two materials 
are listed below. 

Aluminum 

E = 70 GPa; v = 0.3, p = 2,707 Kg/m:3, k = 204 W /mK, a = 23 x 1O-6o C 

Zirconia 

E = 151 GPa; // = 0.3, p = 3,000 Kg/m3
, k = 2.09 W /mK, a = 10 x 1O-6oC 

The plate considered is a square plate with side a = 0.2 m and thickness h = 0.01 
m. The boundary conditions considered are all sides simply supported (SS-l). 
Because of the biaxial symmetry of the problem, the computational domain is taken 
to be the positive quadrant. A regular mesh of 4 x 4 four-node elements is used. 
In order to avoid membrane and shear locking, reduced integration is used in the 
numerical evaluation of the nonlinear and the shear terms of the stiffness matrix 
(see Reddy [32]). 

The nondimensionalized quantities used in reporting the results are: center 
deflection, 1V = wo/h and load parameter P = qoa4 /(Em h4 ). First, bending of 
FGM plates under transverse mechanical load is investigated. Figures 10.6.1 and 
10.6.2 contain plots of nondimensionalized deflection ill versus the load parameter 
P for simply supported plates for various values of the power-law index n under 
distributed transverse load. As expected, the deflection response of FGM plates is 
intermediate, both for linear and nonlinear response, to that of the ceramic (stiffer) 
and metal (softer) plates. Note that the value of power-law index n = 0 corresponds 
to the ceramic plate and n ---) 00 corresponds to the metal plate. One may note that 
the nonlinear deflections are smaller than the linear ones, showing the stiffening 
effect due to the development of in-plane forces that make the plate stiffer with 
increasing load. 

Next, bending under applied temperature field is studied. The metal surface 
is exposed to 20°C and the ceramic surface is exposed to fixed but different 
temperatures. The melting point of pure aluminum is 600°C and that of zirconia 
is 2600°C. Thus, using 0 to 600°C for aluminum plate is not realistic (the modulus 
and other properties of aluminum will change long before its temperature reaches 
600°C), but the purpose is to establish the bounds for the FGM analysis. Also, 
aluminum reacts with oxygen and forms aluminum oxide, whose melting point is 
about 1900°C. Typical property variations as well as the temperature variations 
through the thickness for various values of n are shown in Figure 10.6.3 and 10.6.4, 
respectively. 
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Plots of the nondimensionalized deflection as a function of the temperature of the 
ceramic surface are presented in Figures 10.6.5 and 10.6.6 for linear and nonlinear 
analysis, respectively. The intermediate behavior observed for mechanical loads 
is not present in the thermal load case, linear or nonlinear analysis. The FGM 
plates experience less transverse deflections due to the thermal forces than their 
monolithic counterparts. This is due to the fact that the thermal resultants (i.e., 
thermal forces as well as bending moments) that develop in FGM plates are smaller 
than those of the monolithic plates. Another interesting observation is that the 
nonlinear deflections are larger than the linear deflections under thermal loads (for 
FGM as well as for monolithic plates). This is again due to the fact that the in-plane 
forces developed due to the geometric nonlinearity are negated by the thermal forces 
and moments [see Eq. (10.6.7)], making the overall plate stiffness reduced. 
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Figure 10.6.5: Nondimensionalized center deflection for a simple supported 
aluminum-zirconia FGM plate for various values of volume 
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10.7 Finite Element Models of Laminated Shell Theory 
10.7.1 Governing Equations 

The finite element model of the laminated shallow shell theory with the von Karman 
(or Sanders [70]) nonlinear strains can be developed in the same way as for the plate 
element. Here we present a brief development of the finite element model [71]. 

The equations of motion of the first-order shear deformation shell theory (see 
Chapter 8) are summarized here for the case Co = 0 (see Figure 10.7.1 for the 
coordinate system used): 

(10.7.1) 

(10.7.2) 

(10.7.3) 

(10.7.4) 

(10.7.5) 

where 

(10.7.6) 

p being the mass density, and 

(10.7.7) 

is the nonlinear contribution to the equilibrium equations due to the von Karman 
nonlinear strains. 

~) 

dx = ald~l' dy = a2d~2 
a = a)R), b = a 2R2 

~2 

Figure 10.7.1: Geometry and coordinate system of a doubly curved shell. 
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It should be noted that the nonlinear strain-displacement equations of the 
Sanders nonlinear shell theory [70] are modified here for shallow shells by omitting 
the nonlinear terms of the form 

awo Uo 
--ay RI' 

Otherwise, the governing equations in Eqs. (10.7.1)-(10.7.4) will contain additional 
nonlinear terms (see Reddy [32]). 

The stress resultants are related to the strains (in the absence of thermal and 
other influences) 

(10.7.8a) 

{ 
Mxx } [B11 
Myy = Bl2 

Mxy Bl6 

(10.7.8b) 

(10.7.8c) 

10.7.2 Finite Element Model 

The weak forms of Eqs. (10.7.1)-(10.7.5) were presented in Eqs. (9.4.1a-e), with 
the understanding that Xl = X, X2 = Y and NI = N xx , etc., and Ni replaced by 
N xx , N yy , N xy ). The finite element model is of the form 

[KI2] 
[K22] 
[K32] 
[K42] 
[K 52 ] 

[0] 

[KI3] [KI4] [K I5 ] 
[K23] [K24] [K25 ] 
[K33 ] [K34] [K35 ] 
[K43 ] [K44] [K45 ] 
[K53 ] [K54] [K55 ] 

[0] [MI4] 
[0] [0] 

[M33] [0] 
[0] [M44] 
[0] [0] 
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where the linear stiffness coefficients, mass coefficients and force coefficients are as 
defined in Eqs. (9.4.7) and (9.4.8a-c). Since all of the linear stiffness coefficients are 
already defined in Eq. (9.4.7), only the stiffness coefficients that contain nonlinear 
terms are given here. Note that K&3 are the only ones that have additional nonlinear 
terms when compared to the plate element: 

(lO.7.l0a) 

{

(I) 0 (2) (2) 
K2:~ = ~ r o7/Ji [A12 OWo ~ + A22 OWo o7/Jj 

'J 2 jrle oy ox ox oy oy 

A oWo 07/J j oWo oi/J j ] 

( 

(2) (2)) 
+ 26 ----- + -----

ox oy oy ox 

(1) 0 (2) (2) 
07/J i [ OWo 7/J j Owo 07/J j +-- A16---+A26---

ox ox ox oy oy 

A oWo 07/J j oWo 07/J j ] 

( 

(2) (2)) 
+ 66 ----- + -----

ox oy oy ox 

[ 

(1) (1) 1 
(

A16 A26 ) o7/Ji (A12 A22) o7/Ji ,/,.(2) + -+- --+ -+- -- 'f/ 
R1 R2 ox R1 R2 oy J 

( 
(2) , (2))} Ks (1) o7/Jj oi/Jj - -7/J. A44-- + A45-- dxdy 

R2 ' oy ox 
(1O.7.lOb) 

{ 

0'0(2) (1) (1) 
K 31 = 1 _Y_J_ [A oWo o7/Ji A oWo o7/Ji 

!J 0 11 0 0 + 12 0 0 rle x x x y y 

( 

(1) (1)) 
A 8wo 87/Ji 8wo 87/Ji ] + 16 ----- + -----

ox oy oy ox 
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(IO.7.10c) 

(IO.7.10d) 
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The tangent stiffness coefficients can be computed as in the case of plates. 

10.7.3 Numerical Examples 

Here we present two numerical examples. The following boundary conditions are 
used: 

88-1: At x = a: Uo = Wo = ¢y = 0; At y = b: Vo = Wo = ¢x = 0 

CC-1: Vo = Uo = Wo = ¢x = ¢y = 0 along the clamped edges 

Along the symmetry lines the normal surface displacement and normal rotation are 
set to zero (for the cross-ply laminates discussed here). The following two sets of 
material properties of a lamina are used (labeled as Material 1 and Material 2, 
respectively) : 

El = 25 X 106
, E2 = 106

, G12 = G 13 = 0.5E2, G23 = 0.2E2, v12 = 0.25 

El = 40 X 106
, E2 = 106

, G 12 = G 13 = 0.6E2, G23 = 0.5E2, v12 = 0.25 

The first example is concerned with the bending of a simply supported (88-1), 
nine-layer (0/90/90/···), spherical panel under uniform transverse load, qo. The 
geometric parameters used are: a = b = 50 in., R = 103 in., and h = 1 in. Figure 
10.7.2 contains the load-deflection response of the shells for the two sets of material 
properties. 

The second example consists of a clamped (CC-1), two-layer (0/90), cylindrical 
shell panel under uniform load qo. Material properties used are those of Material 
1. Figure 10.7.3 contains the center deflection wo, normal stress CTyy and transverse 
shear stress CT xz as functions of the load Qo. 
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Figure 10.7.2: Center deflection versus load parameter for simply supported 
cross-ply (0/90/90/···) laminated spherical shell panel under 
uniform load. 
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Figure 10.7.3: Center deflection, normal stress and transverse shear stress versus 
load for clamped cross-ply (0/90) laminated cylindrical shell 
panel under uniform load. 
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10.8 Continuum Shell Finite Element 
10.8.1 Introduction 

The plate and shell finite elements developed in Chapter 9 and previous sections 
of this chapter were based on laminated plate and shell theories. Such theories are 
limited to geometrically linear analyses and nonlinear analysis with small strains 
and moderate rotations. The finite element model to be developed in this section 
is based on 3-D elasticity equations, and the geometry and the displacement fields 
of the structure are directly discretized by imposing certain geometric and static 
constraints to satisfy the assumptions of a shell theory (see [21,23-32,72-80]). The 
development presented here is based on the material in Chapter 9 of the author's 
nonlinear finite element book [32]. 

Consider the motion of a body in a fixed Cartesian coordinate system, and assume 
that the body may experience large displacements and rotations. It is difficult to 
determine the final configuration of a deformed body subjected to loads with large 
magnitude. A practical way of determining the final configuration C from a known 
initial configuration Co is to assume that the total load is applied in increments 
so that the body occupies several intermediate configurations, Ci (i = 1,2",,), 
prior to occupying the final configuration. The magnitude of load increments 
should be such that the computational method used is capable of predicting the 
deformed configuration at each load step. In the determination of an intermediate 
configuration Ci , the Lagrangian description of motion can use any of the previously 
known configurations Co, Cl ,"', and Ci - l as the reference configuration. If the 
initial configuration is used as the reference configuration with respect to which 
all quantities are measured, it is called the total Lagrangian description. If the 
latest known configuration Ci - l is used as the reference configuration, it is called 
the updated Lagrangian description. 

Here we use the total Lagrangian description to formulate the governing 
equations of a continuum. We consider three equilibrium configurations of the 
body, namely, Co, C 1, and C2 , which correspond to three different loads (see Figure 
10.8.1). The three configurations of the body can be thought of as the initial 
undeformed configuration Co, the last known deformed configuration Cl , and the 
current deformed configuration C2 to be determined. It is assumed that all variables, 
such as the displacements, strains, and stresses are known up to the Cl configuration. 
We wish to develop a formulation for determining the displacement field of the body 
in the current deformed configuration C2 . It is assumed that the deformation of the 
body from Cl to C2 due to an increment in the load is small, and the accumulated 
deformation of the body from Co to C1 can be arbitrarily large but continuous (i.e., 
neighborhoods move into neighborhoods). 

The notation used for positions, displacements, strains, stresses, etc. is that 
used by Bathe [31]. A left superscript on a quantity denotes the configuration 
in which the quantity occurs, and a left subscript denotes the configuration with 
respect to which the quantity is measured. Thus;Q indicates that the quantity 
Q occurs in configuration Ci but measured in configuration Cj . When the quantity 
under consideration is measured in the same configuration in which it occurs, the 
left subscript may not be used. The left superscript will be omitted on incremental 
quantities that occur between configurations C1 and C2 . For example, the total 
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Figure 10.8.1: Three different equilibrium configurations of a body. 

displacements of the particle X in the two configurations CI and C2 can be written 
as 

6u = Ix - OX 

BU = 2x - Ox 

(i=I,2,3) 

(i=I,2,3) 

and the displacement increment of the point from CI to C2 is 

10.8.2 Incremental Equations of Motion 

The principle of virtual displacements requires that the sum of the external virtual 
work done on a body and the internal virtual work stored in the body should be 
equal to zero: 

8W= r 2a-:8(2e) d 2V-8 2R=O J2V 
= r 2a-ij8(2eij)d2V-82R=O J2V 

where 8 2 R denotes the virtual work done by applied forces 

(IO.8.la) 

(IO.8.lb) 

(10.8.2a) 

(10.8.2b) 
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and d 2 S denotes the surface element and 2 f is the body force vector (measured per 
unit volume), 2(]" is the Cauchy stress tensor, 2eij is the infinitesimal strain tensor 

(10.8.2c) 

and 2t is the boundary stress vector (measured per unit surface area) in configuration 
C2 . The variational symbol '15' is understood to operate on unknown displacement 
variables eUi and Ui). 

Equation (10.8.1a) cannot be solved directly since the configuration C2 is 
unknown. This is an important difference compared with the linear analysis in which 
we assume that the displacements are infinitesimally small so that the configuration 
of the body does not change. In a large deformation analysis special attention must 
be given to the fact that the configuration of the body is changing continuously. 
This change in configuration can be dealt with by defining appropriate stress and 
strain measures. The stress and strain measures that we shall use are the 2nd 
Piola-Kirchhoff stress tensor S and the Green-Lagrange strain tensor E, which are 
"energetically conjugate" to each other (see [32]). 

In the total Lagrangian formulation, all quantities are measured with respect to 
the initial configuration Co. Hence, the virtual work statement in Eq. (1O.8.1a) must 
be expressed in terms of quantities referred to the reference configuration. We use 
the following identities [31,32]: 

(10.8.3) 

(10.8.4) 

(10.8.5) 

where 5fi and 5ti are the body force and boundary traction components referred to 
the configuration Co. Using Eqs. (10.8.3)-(10.8.5) in Eq. (10.8.1b) we arrive at 

(10.8.6) 

where 

(10.8.7) 

Next, we simplify the virtual work statement (10.8.6). First, we note that (see 
Eqs. (9.3.15) and (9.3.16) of [32]) 

15 (6Eij ) = 15 (6Eij ) + 15(oEij) = 15(oEij) 

= 15(oeij) + 8(OT!ij) (10.8.8) 

where 15 (6 Eij ) = 0 because it is not a function of the unknown displacements. 
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The virtual strains are given by 

(10.8.9) 

(10.8.10) 

Substituting Eqs. (10.8.8) for 8(5Eij) and using the decomposition 

for 58ij into Eq. (10.8.6), we arrive at the expression 

0= r 6Sij 8(6Eij) d °v - 8(6R) }ov 

= lv (6 Sij + OSij) 8(OCij) d °v - 8(6R ) 

= lv {OSij 8(OCij)+6Sij[8(oeij)+8(07]ij)l} d OV-8(6 R ) 

= r OSij 8(OCij) d °v + r 6 Sij 8 (07]ij ) d °v + 8(6R) - 8(5R) }ov }ov 
(10.8.11) 

where 8(bR) is the virtual internal energy (in moving the actual internal forces 
through virtual displacements) stored in the body at configuration C1 

(10.8.12) 

Since the body is in equilibrium at configuration C1 , by the principle of virtual work 
applied to configuration C1 we have 

(10.8.13) 

and therefore 
(10.8.14) 

We need only to replace OSij in terms of the strains and ultimately the displacement 
increments using an appropriate constitutive relation. 

The first term of Eq. (10.8.11) represents the change in the virtual strain energy 
due to the virtual incremental displacements Ui between configurations C1 and C2. 
The second term represents the virtual work done by forces due to initial stresses 
bSij. The last two terms together denote the change in the virtual work done by 
applied body forces and surface tractions in moving from Cl to C2 . This is primarily 
due to the geometric changes that take place between the two configurations. 
Equation (10.8.11) represents the statement of virtual work for the incremental 
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deformation between the configurations C1 to C2, and no approximations are made 
in arriving at it. 

For dynamic analysis, the principle of virtual displacements (10.8.11) can be 
written as [32] 

(10.8.15) 

10.8.3 Continuum Finite Element Model 

Equation (10.8.15) can be used to develop the nonlinear displacement finite element 
model for any continuum. The basic step in deriving the finite element equations for 
a shell element is the selection of proper interpolation functions for the displacement 
field and geometry. In the case of beam and shell elements, the approximation for the 
geometry is chosen such that the beam or shell kinematic hypotheses are realized. 
First we derive the finite element model of a continuum and then specialize it to 
shells [24-26]. 

It is important that the coordinates and displacements are interpolated using the 
same interpolation functions (isoparametric formulation) so that the displacement 
compatibility across element boundaries can be preserved in all configurations. Let 

n 
o ""' 0/' 0 k Xi = ~ 'f/k Xi' 

k=l 

n 

lXi = L?/Jk lx7, 

k=l 
n 

Ui = L?/Jk u7 
k=l 

n 

2Xi = L ?/Jk 2x7 

k=l 

(i = 1,2,3) 

(10.8.16) 

(10.8.17) 

where the right superscript k indicates the quantity at nodal point k, ?/Jk is the 
interpolation function corresponding to nodal point k, and n is the number of 
element nodal points. 

Substitution of Eqs. (10.8.16) and (10.8.17) in Eq. (10.8.15) yields the finite 
element model of a 3-D continuum 

(10.8.18) 

where {.6. e} is the vector of nodal incremental displacements from time t to time 
t+.6.t in an element, and 6[M]{ Lie}, 6[KL]{ .6.e}, 6[KNL]{ .6.e}, and 6{ F} are obtained 
by evaluating the integrals, respectively: 
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Various matrices are defined by 

6[KL] = r 6[BL]T O[C] 6[BL] dOV lOA 
6[KNL] = r 6[BNL]T o[B] 6[BNL] dOV }ov 

6[M] = r 0p l[H]T l[H] dOV 
}ov 

MF} = r 6[BL]T MS} dOV }ov 

(10.8.19a) 

(10.8.19b) 

(10.8.19c) 

(10.8.19d) 

In the above equations, 6[BL] and 6[BNL] are the linear and nonlinear strain
displacement transformation matrices, o[C] is the incremental stress-strain material 
property matrix, 6 [B] is a matrix of 2nd Piola-Kirchhoff stress components, 6{ S} 
is a vector of these stresses, and 1 [H] is the incremental displacement interpolation 
matrix. All matrix elements correspond to the configuration at time t and are 
defined with respect to the configuration at time t = O. It is important to note that 
Eq. (10.8.18) is only an approximation to the actual solution to be determined in 
each time step. Therefore, it may be necessary to iterate in each time step until Eq. 
(10.8.15), with inertia terms, is satisfied to a required tolerance. 

The finite element equations (10.8.18) are second-order differential equations in 
time. In order to obtain numerical solutions at each time step, Eq. (10.8.18) needs to 
be converted to algebraic equations using a time approximation scheme, as explained 
in previous sections. We have 

(10.8.20) 

where {~} is the vector of nodal incremental displacements at time t, {~} = 
t+~t{~} _ t{~}, and 

(10.8.21a) 

2{R} = 2{R} - MF} + 6[M] (a3 t{~} + a4 t{A} + a5 t{Li}) (10.8.21b) 

1 1 
a3 = (3(~t)2' a4 = a3~t, a5 = 2(3 - 1 (10.8.22) 

Once Eq. (10.8.20) is solved for {~} at time t + ~t, the acceleration and velocity 
vectors are obtained using 

t+~t{Li} = a3{~} - a4 t{A} - a5 t{Li} 
t+~t{A} = t{A} + al t+~t{Li} + a2 t{Li} 

where al = a~t and a2 = (1 - a)~t. 

(10.8.23) 

The finite element equations (10.8.20) are solved, after assembly and imposition 
of boundary conditions, iteratively at each time step until Eq. (10.8.15) is satisfied 
within a required tolerance. The Newton-Raphson method with Riks-Wempner 
algorithm (see Reddy [32]) is used in the present study. 
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10.8.4 Shell Finite Element 

The FSDT shell finite element can be deduced from the 3-D continuum element 
by imposing two kinematic constraints: (1) straight line normal to the midsurface 
of the shell before deformation remains straight but not normal after deformation; 
(2) the transverse normal components of stress are ignored in the development. 
However, the shell element admits arbitrarily large displacements and rotations but 
small strains since the shell thickness is assumed not to change and the normal is 
not allowed to distort [31,32,78,79]. 

Consider the solid 3-D element shown in Figure 10.8.2. Let (~, 7]) be the 
curvilinear coordinates in the middle surface of the shell and ( be the coordinate 
in the thickness direction. The coordinates (~, 77, () are normalized such that they 
vary between -1 and + 1. The coordinates of a typical point in the element can be 
written as 

~ [1 + (k 1 -(k ] 
Xi = L-1jJk(~' TJ) -2-(Xi )top + -2-(Xi )bottom 

k=l 

(10.8.24) 

where n is the number of nodes in the element, and 1jJk((,7]) is the finite element 
interpolation function associated with node k. If 1jJk(~, 7]) are derived as interpolation 
functions of a parent element, square or triangular in plane, then compatibility is 
achieved at the interfaces of curved space shell elements. 

Define 
(10.8.25) 

where V~ is the vector connecting the upper and lower points of the normal at node 
k. Equation (10.8.24) can be rewritten as 

Xi = t1jJk(~,7]) [(X7')mid + ~V3~] = t1jJd~)7]) [(X7:)mid + ~hke~i] 
k=l k=l 

(10.8.26) 

Element nodes 

node k 

Figure 10.8.2: Geometry and coordinate system of a shell element. 
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where hk = IV~ I is the thickness of the shell element at node k. Hence, the 
coordinates of any point in the element at time t are interpolated by the expression 

IXi = t 'ljJk(e" 7)) [Ixf + ~hk Ie~i] 
k=1 

The displacements and the displacement increments are interpolated by 

(10.8.27) 

(10.8.28) 

(10.8.29) 

Here IUf and uf denote, respectively, the displacement and incremental displacement 
components in the xi-direction at the kth node and time t. For small rotation dO. 
at each node, we have 

dO. = e~ Ie~ + e} Ie~ + e~ Ie~ (10.8.30) 

the increment of vector Ie~ can be written as 

(10.8.31) 

Then Eq. (10.8.29) becomes 

Ui = t 'ljJk(e" 7)) [u~ + fhk (e} Ie~i - e~ Ie~i)] (i = 1,2,3) 
k=1 2 

(10.8.32) 

The unit vectors Ie~ and Ie~ at node k can be obtained from the relations 

(10.8.33) 

where Ei are the unit vectors of the stationary global coordinate system 
(OXI, °X2, °X3). Equation (10.8.35) can be written in matrix form as 

(10.8.34) 

where {~e} = {uf e~ e~}T, (i = 1,2,3, k = 1,2, ... ,n, and n is the number of 
nodes) is the vector of nodal incremental displacements (five per node), and I[H] is 
the incremental displacement interpolation matrix 

1 [Hhx5n ~ [ 
~'ljJk(hk le~1 
~'ljJk(hk le~2 
~'ljJk(hk le~3 

-~'ljJk(hk le~1 
-~'ljJk(hk le~2 
-~'ljJk(hk le~3 

.. 'J ... (10.8.35) 

For each time step or iteration step one can find 3 unit vectors at each node from 
Eqs. (10.8.31) and (10.8.33). 
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expressed as 

where {ou} is the vector of derivatives of increment displacements, 

{ou} = {OUl,l OUl,2 OUl,3 OU2,1 OU2,2 OU2,3 OU3,1 OU3,2 OU3,3} T 

1[A]6X9 = 

1 + 6Ul,l 

o 
o 

o 
I OUI,2 

o 
1 + 6UI,1 

o 

0 
0 

1 OUI,3 
0 

1 + 6UI,1 

1 
OU2,1 0 

0 1 + 6U2,2 
0 0 

1 + 6U2,2 I OU3,l 
6U2,;{ 0 

(1O.8.36a) 

0 
0 

I OU2,3 
0 

I 
OU2,1 

1 OUI,2 0 lu o 2,3 1 + 6U2,2 

6U3,1 0 0 
o 6U;{,2 0 
o 0 1 + 6U;3,:3 

I 1 0 OU3,2 OU3,1 
(10.8.36b) 

1 + BU3,3 0 BU3,1 
o 1 + BU3,3 BU3,2 

and OUi,j = 8ud8 0xj. The vectors {ou} and {oe} are related to the displacement 
increments at nodes by 

{OU} = [N] {u} = [N]l[H]{~e} 

{oe} = 1 [A]{ou} = I[A][N]I[H]{~e} == 6[BL]{~e} 

6[BL] = I[A][N]I[H] 

where [N]T is the operator of differentials 

8j8 0x2 8j8 0x:3 0 0 

(1O.8.37a) 

0 
[N]T = 0 

[ a/aoX! 
0 0 8j8 0x I 8j8 0x2 8j8 0x:3 

0 0 0 0 0 0 

0 0 

o/}oJ 0 0 (10.8.37b) 
8 j 8 °XI 8j8 0x2 

The components of I [A] include 6Ui,j. From Eq. (10.8.28) the global 
displacements are related to the natural curvilinear coordinates (~, T)) and the linear 
coordinate C. Hence the derivatives of these displacements 6Ui,j with respect to the 
global coordinates °XI, °X2 and °X3 are obtained through the relation l 0 'n. 

a 1U2 
D 'u, } l a 'u, 

0 1 

~l 
U2 

OOXI aOXl aO X l ~ ~ 
lu' . _ a

1
U1 a 1U2 f!l U3 = 0[Jr1 a

l
Ul a

1
U2 D

1
u'l (10.8.38) [0 1,J] - DOx2 aO X 2 OOX2 f)T! 8i/ ar] 

o l.U1 a 1"/12 a1U3 a 1'lLl D l U2 a
1

U:1 
f)°x3 iJo x 3 aOX3 o( [J( D( 
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The Jacobian matrix 0[J] is defined as 

(10.8.39) 

and is computed from the coordinate definition of Eq. (10.8.27). The derivatives 
of displacements lUi with respect to the coordinates ~,T/ and ( can be computed 
from Eq. (10.8.28). In the evaluations of element matrices in Eqs (10.8.6a-d), the 
integrands of MBL], o[C], 6BNL], Ms]' l[H] and 6{S} should be expressed in the 
same coordinate system, namely the global coordinate system (OXl, °X2, °X3) or the 
local curvilinear system (x~, x;, x~) . 

The number of stress and strain components are reduced to five since we neglect 
the transverse normal components of stress and strain. Hence, the global derivatives 
of displacements, [6Ui,j] which are obtained in Eq. (10.8.26), are transformed to the 
local derivatives of the local displacements along the orthogonal coordinates by the 
following relation 

(10.8.40) 

where [O]T is the transformation matrix between the local coordinate system 
(x~,x;,x~) and the global coordinate system (OXl, °X2, °X3). The transformation 
matrix [0] is obtained by interpolating the three orthogonal unit vectors 
( 1 A 1 A 1 A ) h d el, e2, e3 at eac no e: 

[ 

",n of, 1 k 
L...k=l 'f/k eu 

[0] = Lk=l 'l/Jk le~2 
",n of, 1 k 
L...k=l 'f/k e13 

(10.8.41) 

Since the element matrices are evaluated using numerical integration, the 
transformation must be performed at each integration point during the numerical 
integration. 

In order to obtain MBL ], the vector of derivatives of incremental displacements 
{uo} needs to be evaluated. Equations (10.8.38) and (10.8.40) can be used again 
except that lUi are replaced by Ui and the interpolation equation for Ui, Eq. 
(10.8.41), is applied. 

Next we discuss the matrix of material stiffness. For a shell element composed 
of orthotropic material layers, with the principal material coordinates (Xl, X2, X3) 
oriented arbitrarily with respect to the shell coordinate system (x~,x;,x~ = X3). 
For a kth lamina of a laminated composite shell, the matrix of material stiffnesses 
is given by 

Cil Ci2 Ci6 0 0 
Cb C~2 C~6 0 0 

O[C'](k) = Ci6 C~6 C~6 0 0 (10.8.42) 
0 0 0 C4A C~5 
0 0 0 C~5 C~5 
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C~l = m
4
Qll + 2m

2
n

2
(Q12 + 2Q66) + n 4

Q22 

C~2 = m 2n 2(Ql1 + Q22 - 4Q66) + (m4 + n 4)Q12 

C~6 = mn[m2Qll - n 2Q22 - (m2 - n 2)(Q12 + 2Q66)] 

C~2 = n
4
Ql1 + 2m

2
n

2
(Q12 + 2Q66) + m 4

Q22 

C~6 = mn[n2Ql1 - m 2Q22 + (m2 - n 2)(Q12 + 2Q66)] 
, 2 2 2 2 2 

C66 =m n (Qll+Q22-2Q12)+(m -n) Q66 

C~4 = m 2Q44 + n 2Q55, C~5 = mn(Q55 - Q44) 

C£5 = m
2
Q55 + n 2

Q44 

m = cos e(k), n = sin e(k) (10.8.43) 

where Qij are the surface stress-reduced stiffnesses of the kth orthotropic lamina in 
the material coordinate system. The Qij can be expressed in terms of engineering 
constants of a lamina 

(10.8.44) 

where Ei is the modulus in the Xi direction, Gij (i 01- j) are the shear moduli in the 
Xi-Xj surface, and Vij are the associated Poisson's ratios. 

To evaluate element matrices in Eqs. (1O.8.19a-d), we employ the Gauss 
quadrature. Since we are dealing with laminated composite structures, integration 
through the thickness involves individual lamina. One way is to use Gauss 
quadrature through the thickness direction. Since the constitutive relation ° [C] 
is different from layer to layer and is not a continuous function in the thickness 
direction, the integration should be performed separately for each layer. This 
increases the computational time as the number of layers is increased. An alternative 
way is to perform explicit integration through the thickness and reduce the problem 
to a 2-D one. The Jacobian matrix, in general, is a function of (~, rl, (). The terms 
in ( may be neglected provided the thickness to curvature ratios are small. Thus 
the Jacobian matrix 0[J] becomes independent of ( and explicit integration can be 
employed. If (terms are retained in O[J], Gauss points through the thickness should 
be added. In the present study we assume that the Jacobian matrix is independent 
of C in the evaluation of element matrices and the internal nodal force vector. 

Since the explicit integration is performed through the thickness, the expression 
for 

[ f)lu~ 1 ' b[A'], f)xl , 
J 

{ou'}, 

is now expressed in an explicit form in terms of C. Hence, we can use exact 
integration through the thickness and use the Gauss quadrature to perform 
numerical integration on the midsurface of the shell element. 

For thin shell structures, in order to avoid "locking" we use the reduced 
integration scheme to evaluate the stiffness coefficients associated with the transverse 
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shear deformation. Hence we split the constitutive matrix o[C'] into two parts, one 
without transverse shear moduli O[C']B, and the other with only transverse shear 
moduli 0 [G']s. Full integration is used to evaluate the stiffness coefficients containing 
O[C']B, and reduced integration is used for those containing o[C']s. 

If a shell element is subjected to a distributed load (such as the weight or 
pressure), the corresponding load vector 2{R} from Eq. (10.8.19a-d) is given by 

(10.8.45) 

where 2 Pi is the component of distributed load in the °Xi direction at time t + i:lt, 
o A is the area of upper, middle or bottom surface of the shell element depending on 
the position on the position of the loading and the loading is assumed deformation
independent. 

Substituting 1 [H] into Eq. (10.8.45) yields 

1/Jk 0 
0 1/Jk 
0 0 2{Rhnxl = J 

°A ~(1/Jkhk le~1 ~(1/Jkhk le~2 
-~(1/Jkhk le~1 ~(1/Jkhk le~2 

NGPNGP 

LL 
r=1 8=1 

1/Jk 2 PI 
1/Jk 2 P2 
1/Jk 2 P3 

~(1/Jkhk LY=1 2 Pile~i 
-~(1/Jkhk LY=1 2 Pi le~i 

0 
0 {:~: } dO A 1/Jk 

-~(1/Jkhk le~3 2P1 

-~(1/Jkhk le~3 

(10.8.46) 

where h = Lr~E 1/Jk(~' 7])hk is the shell thickness at each Gauss point, and W is 
the weight at each Gauss point, and 1

0 JI is the determinant of the Jacobian matrix 
in Eq. (10.8.39) at each Gauss point. Here the ( terms are retained in Jacobian 
matrix and let ( equal to 1, -lor 0, respectively, when the distributed loading is 
at the top, bottom or middle surface. 

10.8.5 Numerical Examples 

A number of numerical examples of laminated plates and shells are presented. Only 
static bending problems of plates and shells are included. The Riks-Wempner 
method is employed for tracing the nonlinear load-deflection path (see Appendix 1 
of [32]). For most of the problems the reduced/selective integration scheme is used 
to evaluate the element stiffness coefficients. The following three sets of boundary 
conditions are used in the numerical examples presented here (see Figure 10.8.3). 



NONLINEAR ANALYSIS OF PLATES AND SHELLS 639 

y y 

Figure 10.8.3: Geometry and coordinate system for a plate or shell panel. 

BC1: Vo = Wo = rPy = 0 at:1: = a/2 
Uo = Wo = rPx = 0 at y = b/2 
Uo = rPx = 0 at x = 0; Vo = rPy = 0 at y = 0 

BC2: Uo = Wo = rPy = 0 at x = a/2 
Vo = Wo = rPx = 0 at y = b/2 
Vo = rP:r = 0 at x = 0; Uo = rPy = 0 at y = 0 

BC3: Uo = Wo = rPy = 0 at x = a/2 
Vo = Wo = rPx = 0 at y = b/2 
Uo = rPx = 0 at x = 0; Vo = rPy = 0 at y = 0 

Orthotropic plate under uniform load 

(10.8.47) 

(10.8.48) 

(10.8.49) 

Here we consider a simply supported, orthotropic, square plate under uniform 
transverse load qo. The geometry and material parameters used are 

a = b = 12in., h = 0.138in., El = 3 x 106 psi, E2 = 1.28 x 106 psi 

G 12 = Gl3 = G2:, = 0.37 x 106 psi, V12 = 0.25 (10.8.50) 

A quarter of the plate with BC1 boundary and symmetry conditions is modeled 
with the 2 x 2Q9 mesh of continuum shell elements. The present results shown in 
Figure 10.8.4 are in good agreement with the experimental results of Zaghloul and 
Kennedy [8]. 

Simply supported spherical shell panel under point load 

A simply supported isotropic spherical shell panel under central point load is 
analyzed for its large displacement response using 4 x 4Q4 and 2 x 2Q9 meshes in a 
quarter of the shell. The geometric and material parameters of the shell are shown in 
Figure 10.8.5. Figure 10.8.6 shows the response, including the post-buckling range 
(calculated using the modified Riks Wempner method). The figure also includes 
the results of Bathe and Ho [53]. 
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Figure 10.8.4: Maximum deflection versus the load magnitude for a simply 
supported orthotropic plate. 

z Symmetry line: U o = IA = 0 

Simply supported: 
U o = Vo = Wo = !fix = 0 

Symmetry line: 
Vo = !fiy = 0 

E = 104 psi, v = 0.3, R = 100 in., a = b = 30.9017 in. 

Figure 10.8.5: Geometry and boundary conditions of the spherical shell panel 
analyzed. 
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Figure 10.8.6: Load-deflection curves for a simply supported spherical shell panel 
under central point load (see Figure 10.S.5 for the geometry and 
boundary conditions). 

Isotropic cylindrical shell panel under point load 

An isotropic shallow cylindrical shell panel hinged along the longitudinal edges and 
free at the curved boundaries and subjected to a point load is analyzed (see Figure 
10.S.7a). A quadrant of the shell is modeled with 2 x 2Q9 mesh of continuum shell 
elements. The structure exhibits snap-through as well as snap-back phenomena, as 
shown in 10.S.7b. The solution obtained by Crisfield [46] is also shown in Figure 
10.S.7b to be compared with the present results. 

Simply supported composite spherical shell panel under uniform load 

A simply supported laminated spherical shell panel under uniform load was analyzed 
for its large displacement response with 2 x 2Q9 mesh of continuum shell elements in a 
quadrant of the shell. The geometry and material parameters used are: a = b = 50 
in., h = 1 in., R = 1,000 in., El = 25E2, E2 = 106 psi, G12 = G13 = 0.5E2, 
G23 = O.2E2 psi, 1/12 = 0.25. The effect of edge boundary conditions and symmetry 
conditions on the nonlinear response is investigated using BC1 and BC3. The effect 
of slight difference in the boundary conditions is very significant on the deflection 
response, as shown in Figures 10.S.Sa and 1O.S.Sb for two-layer cross-ply (0/90) and 
(-45/45) angle-ply laminates, respectively. 
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Simply supported: 
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Figure 10.8.7: Geometrically nonlinear response of a shallow cylindrical shell. (a) 
Geometry and finite element mesh. (b) Load-deflection curves. 
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Figure 10.8.8: Geometrically nonlinear response of a shallow cylindrical shell. (a) 
Load-deflection curves for (0/90) laminates. (b) Load-deflection 
curves for (-45/45) laminates. 
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Nine-layer cross-ply (0/90/0/90;'··) simply supported spherical shell panel 

A cross-ply spherical shell laminated of nine graphite-epoxy material layers with the 
material properties 

and subjected to uniform transverse load. The same geometry as that in the last 
problem (a = b = 50 in., h = 1 in., R = 1, 000 in.) is used. A quadrant of the shell 
was modeled using 2 x 2Q9 mesh of continuum shell elements and simply supported 
(BC1) boundary conditions. The load-deflection curve obtained with the modified 
Riks-Wempner method is compared with that obtained by Noor and Hartley [75] 
in Figure 10.8.9. Note that the laminated shell exhibits softening first and then 
stiffening and does not have a limit point. This response is similar to that in Figure 
10.8.7b with the same boundary conditions. 

10.8.6 Closure 

This completes the nonlinear finite element analysis of laminated plates and shells 
using continuum shell element. Additional examples involving stiffened shells can 
be found in [21,23,78,79]. 

• Noor and Hartley [75] 

10 •• Present solution 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
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Figure 10.8.9: Load-deflection response of a simply supported (BC1), nine-layer 
(0/90/0/90/ ... ), laminated spherical shell panel under uniform 
load. 
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10.9 Post buckling Response and Progressive Failure 
of Composite Panels in Compression 

10.9.1 Preliminary Comments 

The classical lamination theory, in which the transverse shear effects are neglected, 
is often used to analyze laminated composite structures. Because of low moduli 
and strengths in transverse directions compared to that of in-plane directions, 
composite laminates may fail due to transverse stresses. Indeed, it is found 
that composite laminates loaded in compression fail due to high interlaminar 
stresses (see [83,84]). Therefore, shear deformable plate and shell elements are 
needed to provide information regarding the through-thickness strength of composite 
structures. Insight gained by using these elements may aid in the characterization 
of failure modes of composite panels. 

In this section we present a case study of the postbuckling response of two 
graphite-epoxy panels loaded in axial compression. The study makes comparisons 
between the experimentally obtained and analytically determined postbuckling 
response of composite panels (see Engelstad, Reddy, and Knight [84]). 

10.9.2 Experimental Study 

The post buckling and failure characteristics of flat, rectangular graphite-epoxy 
panels, with and without holes, and loaded in axial compression have been examined 
in an experimental study by Starnes and Rouse [83]. The panels were fabricated 
from commercially available unidirectional Thornel 300 graphite-fiber tapes pre
impregnated with 4500 K cure Narmco 5208 thermosetting epoxy resin. Typical 
lamina properties for this graphite-epoxy system are 

El = 131.0 CPa (19,000 ksi), E2 = 12.0 CPa (1,890 ksi) 

G12 = 6.4 CPa (930 ksi), V12 = 0.38, hk = 0.14 mm (0.0055 in.) (10.9.1) 

where hk denotes ply thickness. Each panel was loaded in axial compression using 
a 1.33 MN (300 kips) capacity hydraulic testing machine. The loaded ends of 
the panels were clamped by fixtures during testing and the unloaded edges were 
simply supported by knife-edge restraints to prevent the panels from buckling as 
wide columns. A typical panel mounted in the support fixture is shown in Figure 
10.9.1a. Most panels exhibited post buckling strength and failed along a nodal line 
of the buckling mode in a transverse shear failure mode, as shown in Figure 1O.9.1b 
(see [83]). However, a different failure mode was observed for some of the 24-ply 
panels with holes. These panels failed along a transverse line passing through the 
hole, and failed soon after buckling. 

Here we analyze two panels, denoted C4 and H4 (see Figure 10.9.2) in [83]. The 
finite element results are compared with the experimental results of Starnes and 
Rouse [83]. Panel C4 is 50.8 cm by 17.8 cm (20.0 in. long and 7.0 in. wide), 24-ply 
laminate, (±45/02/ ± 45/02/ ± 45/0/90)8 (orthotropic). Panel C4 was observed in 
the test to buckle into two longitudinal half-waves and one transverse half-wave. 
The second panel, Panel H4, is a 50.8 cm by 14.0 cm (20.0 in. long by 5.5 in. 
wide) 24-ply laminate (±45/0/90)Js (quasi-isotropic). A 1.91 cm diameter (0.75 in. 
diameter) hole is located 19.1 cm (7.5 in.) from one of the loaded edges and along 
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(a) Typical panel with test fixture 

(b) A transverse shear failure mode 

Figure 10.9.1: (a) Typical panel with test fixture (load frame). (b) Failure mode 
(from Starnes and Rouse [83]). 
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Figure 10.9.2: Geometry and finite elements meshes of the C4 and H4 composite 
panels used in the post buckling study. 

the panel centerline. Panel H4 was observed in the test to buckle into four 
longitudinal half-waves and one transverse half-wave with the hole located near 
the buckle crest of the second longitudinal half-wave. 

10.9.3 Finite Element Models 

Finite element models of such panels were developed in Section 10.8, which are based 
on continuum formulation of a laminated shell, and it is denoted here as the nine
node Chao-Reddy element [21], 9CR. The final incremental equations of equilibrium 
for an element are of the form [see Eqs. (10.8.21) and (10.8.22)] 

(10.9.2) 

where {8~} is the vector of incremental nodal displacements, ([KL], [KNL ]) are the 
linear and nonlinear parts of the stiffness matrix, and {F} is the force vector [see 
Eqs. (10.8.19a,b,d)]: 

[KL] = L, [BL]T[C] [BL] dv 

[KNL] = r [BNL][S][BNL ] dv Joe 
{F} = r [BL]{S} dv Joe (10.9.3) 
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In these equations, [BL] and [BNL] are linear and nonlinear strain-displacement 
transformation matrices, [C] is the constitutive elasticity matrix, [S] and {S} are 
the matrix and vector of second Piola~Kirchhoff stresses, and {R} is the external 
load vector. All matrix elements refer to the deformed state and are measured with 
respect to the original undeformed configuration. 

To evaluate the integrals in Eq. (10.9.3), we use Gauss quadrature in the surface 
directions of the shell, but explicit integration in the thickness direction. Thus 
the thickness direction integration for matrices [KL] and [KNL] gives the following 
laminate stiffnesses: 

p 

[AJ = L[c'L(k+l - (k) 
k=l 

1 P , 
[B] =2 L[C L(~+1 - (~) 

k=l 

1 P , 

[D] =3 2:[C ]k(;+l - (;) 
k=l 

(10.9.4) 

Here (k is the thickness coordinate of the bottom of the kth lamina, P is the number 
of laminae, [C']k is the constitutive matrix for the kth lamina in the principal 
material coordinates, which has the form [see Eqs. (10.8.43) and (10.8.44)] 

[c'] = 1([Q], e) (10.9.5) 

where Qij are the plane stress-reduced elastic coefficients in the material coordinates 
and e is the fiber orientation angle. 

The finite element model used in Reference 84 consisted of six elements per buckle 
half-wave in each direction. Hence, the finite clement model of Panel C4 consists of 
12 nine-node quadrilateral elements along the panel length. Figure 10.9.2a shows the 
model used for the C4 specimen. The finite element model of Panel H4 is different, 
due to the presence of the hole. This model has four "rings" of elements around the 
hole with each ring subdivided into 16 elements, as shown in Figure 10.9.2b. The 
total numbers of nine-node quadrilateral elements in the finite element models of 
Panels C4 and H4 are 72 and 124, respectively. 

In order to proceed beyond the critical buckling point in the analysis of each 
panel, an initial geometric imperfection, typically the same shape as the first linear 
buckling mode, was assumed in the finite element analysis. The amplitude of each 
mode was selected to be 1-5% of the total laminate thickness. This allows efficient 
progress past the critical buckling point, but does not affect the results in the 
postbuckling range. 

10.9.4 Failure Analysis 

The maximum stress and Tsai~Wu failure criteria are used (see [13,14,85~88]). In 
the maximum stress criterion, failure is assumed to occur if anyone of the following 
conditions are satisfied: 

(10.9.6) 
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where (0"1, 0"2, 0"3) are the normal stress components, (0"4, 0"5, 0"6) are shear stress 
components, (XT' YT, ZT) are the lamina normal strengths in tension (T) along 
the (1, 2, 3) directions, and (R, S, T) are the shear strengths in the (23, 13, 12) 
planes, respectively. When (0"1, 0"2, 0"3) are compressive, they should be compared 
with (Xc, Yc, Zc), which are normal strengths in compression (C) along the (1, 2, 
3) principal material directions, respectively. 

The Tsai- Wu criterion is given by 

6 6 6 

:F == L FWi + L L FijO"iO"j ~ 1 (10.9.7) 
i=l i=l j=l 

1 1 1 1 1 1 A---- ~=---,~=--
-~~' ~~. h k 

F - 1 P. - _1_ P..·j3 - ZTIZc 
11 - XTXC' 22 - YTYc' j 

11111 
F44 = R2' F55 = S2' F66 = T2' F12 = -2 y'XTXCYTYC 

1 1 1 1 
F13 = - - , F23 = - - (10.9.8) 

2 JXTXCZTZC 2 y'YTYCZTZC 

where O"i denote the stress components referred to the principal material coordinates. 
In reality, laminate failure occurs due to propagation of damage as the load is 

increased. To model this effect, a progressive failure approach is used in the nonlinear 
finite element analysis. At each load step, Gauss point stresses are used in the 
selected failure criterion. If failure occurred at a Gauss point, a modification of the 
lamina properties was made at that Gauss point, which results in reduced stiffnesses 
[AJ, [BJ, and [D] of the laminate. For example, for the maximum stress criterion, 
if the 0"1 stress exceeds the longitudinal tensile strength XT, then the longitudinal 
modulus E1 at that point is reduced to zero. For the Tsai-Wu criterion, if failure 
occurs, then the following expressions are used to determine the failure mode: 

HI =F10"1 + F 11 O"r, H2 = F20"2 + F220"~ 
H4 =F440"~, H5 = F550"~, H6 = F660"~ (10.9.9) 

The largest Hi term is selected as the dominant failure mode and the corresponding 
modulus is reduced to zero. Thus HI corresponds to the modulus E 1 , H2 to E2 , H4 

to G23 , H5 to G13 , and H6 to G23 . As a consequence of this reduction, engineering 
material properties are updated as failure progresses. An outline of the steps used 
in the analysis is given below. 

1. After nonlinear iterative displacement convergence is achieved, calculate stresses 
in the global (x, y, z) coordinates at the middle of each layer at each Gauss point. 

2. Transform the stresses to the principal material coordinates. 

3. Compute the failure index, F. 

4. If failure occurs (i.e., F ~ 1), 
(a) identify the maximum value of Hi, 
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(b) reduce the appropriate lamina moduli at that Gauss point, and 
(c) recompute laminate stiffnesses and restart the nonlinear analysis at the same 

load step (i.e., return to Step 1). 

5. If no failure occurs, proceed to the next load step. 

The end shortening of the panel is monitored as in a compression test. The failure 
load is defined to be that load for which the panel undergoes large end shortening 
for small increments of load. 

10.9.5 Results for Panel C4 

Comparison between test results from Reference 83 and finite element results from 
Reference 84 for Panel C4 are shown in Figure 10.9.3. The figure shows (a) 
end shortening uo, normalized by the analytical end shortening U cr at buckling 
(Figure 10.9.3a); (b) out-of-plane deflection Wo near a point of maximum deflection, 
normalized by the panel thickness h (Figure 10.9.3b); and (c) the longitudinal 
surface strains e near a point of maximum out-of-plane deflection, normalized by the 
analytical buckling strain ecr . These are all shown as functions of the applied load 
P, normalized by the theoretical buckling load Per. These experimental and finite 
element results agree well up to failure of the panel. The post buckling response 
exhibits large out-of-plane deflections (nearly three times the panel thickness; see 
Figure 1O.9.3b) and high longitudinal strains from front and back surfaces (nearly 
three times the analytical buckling strain; see Figure 10.9.3c). 

Figure 1O.9.4a contains a contour plot of the out-of-plane deflections generated 
from the finite element analysis at an applied load of 2.1Pcr . Figure 1O.9.4b contains 
a photograph of the Moire fringe pattern from Reference 83 corresponding to the 
out-of-plane deflections observed during the testing of Panel C4 at the same load. 
These results indicate that the out-of-plane deflections from both test and analysis 
have the same pattern over the entire panel. Both patterns indicate two longitudinal 
half-waves with a buckling-mode nodal line at panel midlength. Stress distributions 
in each layer of the laminate were calculated using the nonlinear finite element 
results in order to determine the failure loads. The stresses were determined using 
the constitutive relations for both the in-plane and transverse components. In 
addition, the transverse shear stress distributions were also obtained by integrating 
the equilibrium equations, wherein the in-plane stresses were computed using the 
constitutive relations. 

Figure 10.9.5 shows the distribution of the maximum O'xz stress through the 
thickness direction z, normalized by the laminate thickness h for P = 2.1 Per. It 
is clear that the 0° layers carry the largest transverse shear load. Figure 10.9.6 
contains the distribution of the normal stress O'xx in the third layer of the laminate 
(a 0° ply) at panel midlength for three values of the applied load. At the buckling 
load, the normal stress is nearly uniform across the panel. Although O'xx is large, the 
largest value is well below the material allowable values: X T = 1400 MPa (203 ksi) 
in tension and Xc = 1138 MPa (165 ksi) in compression. The contour plot of O'xx 

over the entire panel in this 0° ply for an applied load of 2.1Pcr indicates (not shown 
here; see [84]) that high compressive axial stresses occur along the longitudinal edges 
of the panel. 
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Figure 10.9.3: Postbuckling response characteristics of panel C4. 
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(a) Contour plot of the 
~ analytical results [84] 

(b) Photograph of Moire 
fringe pattern [83] ~ 

Figure 10.9.4: Comparison of experimental (Moire) and analytical out-of-plane 
deflection patterns for panel C4. 

Ksil.O ~~I~r;,' :~:;cc: I~TTTI~IIITTTTTIIIITTTI'II:11' MPa 

6 
OCl 

'" aJ 
I-< ...., 
'" I-< 
cO 
aJ ..c: 

rn 

0.0 

-1.0 

-2.0 

-3.0 

-4.0 

-5.0 

-6.0 

-7.0 

-8.0 

o 

1-10 

1-40 
I 
I 

-9.0-

1-50 

~Ii -60 
r I I I ]T1TTTr I I piT I II r r -:--1 T I I r I fTTTTl I I 1 1 rn I I I I r I 

0.0 0.2 0.4 0.6 0.8 1.0 

Thickness coordinate, Z / h 

Figure 10.9.5: Transverse shear stress, O"xz, distribution through the thickness 
of panel C4. 
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Figure 10.9.6: Axial stress, O"xx, distributions in the third layer from the surface 
(0° ply) of panel C4. 
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Figure 10.9.7: Transverse shear stress, O"xz, distributions in the third layer from 
the surface (0° ply) of panel C4. 
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Figure 10.9.7 shows the distribution of the transverse shear stress in the third 
layer of the laminate (a 0° ply) at panel midlength for three values of the applied 
load. The solid curves represent the transverse shear stress distributions obtained 
using the constitutive relations, and the dashed curves denote the transverse 
shearing stress distributions obtained from the equilibrium equations. Both methods 
give very similar results. At the buckling load, the peak transverse shear stress 
occurs near the center of the panel. After buckling, the transverse shear stresses 0" xz 
redistribute towards the edges of the panel. The peak values of the transverse shear 
stress O"xz approach the material allowable value of S = T = 62 MPa (9 ksi) for 
P = 2.1PcTl indicating the panel failure due to transverse shear stress. A contour 
plot (not shown here) of the distribution of the transverse shear stress O"xz over the 
entire panel in this 0° ply for an applied load of P = 2.1Pcr indicates that high 
transverse shear stresses occur along the buckling-mode nodal line. 

This failure mode can be further explained through a close examination of the 
Green-Lagrange strain component 

Exz = ~ (aU + ow + au au + av av + ow OW) 
2 az ax ax az ax az ax az 

(10.9.10) 

in conjunction with the displacement field of the first-order shear deformation theory 

u(x, y, z) =uo(x, y) + z¢x 

v(x, y, z) =vo(x, y) + Z¢y 
w(x, y, z) =wo(x, y) (10.9.11) 

Substituting of the displacements from Eq. (10.9.11) into the strain in Eq. (10.9.10) 
and noting that ¢y is zero along a buckling-mode nodal line, we obtain 

(10.9.12) 

The quantity ~ (out-of-plane deflection gradient) is largest along a buckling-mode 

nodal line and the quantity ~ (related to the membrane strain) is largest along 
the panel edges. A similar examination of the other transverse shearing strain Eyz 
leads to the conclusion that the transverse shearing strain Exz is the dominant one. 

Figures 1O.9.8a and 10.9.8b present the progressive failure results for Panel C4, 
using the maximum stress and Tsai-Wu failure criteria, respectively. In addition 
to the strengths already mentioned, the other allowables used are transverse tensile 
strength, XT = 80.9 MPa (11.7 ksi); transverse compressive strength, Xc = 189.0 
MPa (27.4 ksi); and in-plane shear strength, T = 69.0 MPa (10.0 ksi). At some 
point in the analysis a dramatic change in slope indicates an inability of the panel 
to support additional load. This location is identified as the failure load. Figures 
1O.9.8a and 10.9.8b show that the Tsai-Wu criterion estimates the experimental 
failure more closely than the maximum stress criterion. This is attributed to the 
presence of stress interaction terms in the Tsai-Wu criterion failure index. 
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Figure 10.9.8: Progressive failure results of panel C4. 

10.9.6 Results for Panel H4 

Panel H4 was analyzed to investigate deformation and failure of a panel with a hole. 
An imperfection of 1 % of panel thickness times mode 1 was used to proceed into the 
postbuckling range. Figure 1O.9.9a contains a comparison of end shortening obtained 
numerically and experimentally. Figures lO.9.9b and lO.9.9c show the longitudinal 
surface strains e (both top and bottom surfaces) across the panel at the hole for a 
load of O.90Per and 1. 39Per , respectively. These results are in good agreement with 
experimental results from Reference 83. 

It should be noted that if uniformly reduced or selectively reduced integration 
were used in the analysis of this panel, it would predict spurious modes. These 
occur because of zero energy modes, and lack of restraint of the model around the 
hole. Element distortion around the hole could be another contributing factor. It is 
necessary to use full integration to alleviate this problem, and the mesh should be 
sufficiently refined so that element locking effects are negligible. 
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Figure 10.9.9: Post buckling response characteristics of panel H4. 
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For panel H4, once again, a transverse shear mechanism develops along nodal 
lines away from the hole. However, the peak stress approaches only 48.3 MPa 
(7.0 ksi) at the experimental failure load. At this load the in-plane shear stress 
approaches its allowable around the hole. Simultaneous first-ply failure occurs due 
to CJxy and CJxx components around the hole edge. Thus the failure mode is not a 
dominant transverse shear mode as for Panels C4 and ClO, but a more complex 
interacting mode with a dominant in-plane shear component. Progressive failure 
results are shown in Figures 1O.9.10a and 10.9.lOb. The Tsai--Wu criterion is, once 
again, in better agreement with experimental results. 

We close this section with a comment that the case study presented in this section 
brings out the importance of interlaminar stresses. References 13 and 84 contain 
additional results of post buckling and progressive failures. 
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Figure 10.9.10: Progressive failure results of panel H4. 
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10.10 Closure 
The objective of the chapter was to introduce the concept of geometric nonlinearity, 
develop finite element models of the von Karman nonlinear plate and shell theories, 
present the continuum shell finite element, and study the influence of geometric 
nonlinearity on bending, transient and buckling response and ultimate failure of 
laminated plates and shells. In particular, the von Karman nonlinear formulations 
of laminated plates using the classical and first-order shear deformation theories of 
plates and Sanders theory of shells are developed. The development of continuum 
shell element is also presented. The Newton-Raphson iterative method of solution 
is discussed, and the tangent stiffness matrix coefficients of the FSDT element are 
derived. Numerical results of the nonlinear analysis using the FSDT plate and 
shell elements as well as continuum shell element are presented to illustrate the 
influence of symmetry boundary conditions on the nonlinear response, effect of 
the geometric nonlinearity on the response of antisymmetric cross-ply plate strips, 
nonlinear transient response of laminated plates, and postbuckling response and 
progressive failure analysis of laminated panels under compressive load. For studies 
on damage and failures in composites, the reader may consult [13,92-110]. 

Problems 
10.1 Consider the nonlinear differential equation 

_~(UdU)=f(X), O<x<I 
dx dx 

du ffi 
dx (0) = 0, u(I) = v2 

Show that the finite element model is given by 

l
XI3 

d1jJ d1jJ· l XI3 

Kfj = U dX' d: dx, Ft = Fie + f1jJi dx 
:rA XA 

(la) 

(Ib) 

(2a) 

(2b) 

10.2 Compute the tangent coefficient matrix for the finite element model of Problem 10.1. Note 
that in an iterative solution of the problem, the initial guess for U should be nonzero. Explain 
why. 

10.3 Consider the displacement field of the Euler-Bernoulli beam theory (see Example 1.4.1): 

(1) 

Show that the von Kaxman nonlinear strains are given by 

_ duo 1 (dWO)2 d2wo 
Exx - J;i + 2" dx - z dx2 (2) 

and that the total potential energy associated with a laminated beam is 

II(uo,wo) = r{E~xA [dUO + ~ ( dWO)2]2 + E~xlyy (
d2w

o)2}dX 
io 2 dx 2 dx 2 dx2 

-IoL 

qwo dx (3) 
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where q = qb is the distributed transverse load, b is the width, and A = bh is the area of 
cross section of the beam. 

10.4 Show that the Euler-Lagrange equations associated with the displacement field of Problem 
10.3 are 

2 
_ d Mn _ .!!:.... (Nxx dWo) _ q = 0 

dx2 dl: dx 
(1) 

where N,r." and A{rx are the force and rnoment resultants 

NIX = 1 U xx dx, Mxx = 1 Uu Z dx (2) 

Show that the force and moment resultants for symmetrically laminated beams can be 
expressed in terms of the displacements as 

N. = Eb.A [dUO ~ ( dWO)2] xx Xel. dx + 2 dx (3) 

10.5 Use the equations of equilibrium of Problem 10.4 to derive the following weak forms for a 
beam finite element, XA < x < XB: 

O=j·XD E,~'rAd8uo [dUo+~(dWO)2] dx 
dx dx 2 dx 

XA 

- P18uO(XA) - P 281LO(XB) (1) 

(2) 

Define the secondary variables Pi and Qi in terms of the displacements. 

10.6 Develop the nonlinear finite element model of a laminated beam using the weak forms given 
in Problem 10.5. Assume finite element interpolation of Uo and Wo in the form 

2 4 

uo(x) = L Uj1/;j(X), WO(X) = L .6. j tpj (x) (1) 
j=1 j=1 

(2) 

and 1/;j are the linear Lagrange interpolation functions, tpj are the Hermite cubic 
interpolation functions, and () = - d:xo . In particular, show that 

2 4 

0= L K}}uj + L K}}.6. j - Fl (i=1,2) (3a) 
j=1 j=1 

2 4 

'"' 21 '"' 22 - 2 o = ~ Kij Uj + ~ Kij t:.j - Fi (i=1,2,3,4) (3b) 
j=1 j=1 

Kll = JXD Eb A d1/;i d1/;j dx 
'J x.r dx dx 

:rA 
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(4) 

Note: [K12F * [K21]; hence, the element stiffness matrix is unsymmetric. Equations (3a,b) 
can be written in matrix form as 

(5) 

10.7 Use matrix notation 

{ Uo } ={ Ll=l ~j~j } = [ ~1 0 0 1/'2 0 :,] lit) Wo L D.'P 0 'Pi 'P2 () 'P3 J=l J J 

= [1J.t]{D.} (1) 

(2a) 

(2b) 

(2c) 

and express the total potential energy functional for an element as 

flC({D.}) = l~B ~ (([Bd + ~[BN]){D.}) T [D]([Bd + ~[BN]){D.} dx 

_lXB ([IJ.t]{D.})T {() }dx _ {D.}T {Q} (3) 
XA q 

flC({D.}) =~{D.}T { (l~B [BLf[D][Bddx) + ~ (1~/3 [BL]T[D][BN]dX) 

_{D.}T (l~I3[IJ.t]T{~}dX+{Q}) (4) 
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[ E~O'XA [D]= 

10.8 Use the principle of the minimum total potential energy and show that 

where 

[KLJ =jrB [BLf[D][Bd dx 
xA 

[KNLJ =~ j~B [BLf[D][BNJ dx + l~B [BNJT[D][Bd dx 

[KNJ =~ JXD [BNf[D][BNJ dx 
xA 

{F} = l~D [\lIf '{ ~ }dX + {Q} 

10.9 Show that the tangent stiffness matrix of the Euler-Bernoulli beam element is 

where 

[KJtan = [KJ + -O-[KJ 
o{6} 

= [KJ + ~ JIB [BLJT[D][BNJ dx + JXB [BNJT[D][BNJ dx 
XA XA 

(4) 

(5a) 

(5b) 

(la) 

, 3 
= [Kd + [KNLJ + 2[KNJ (lb) 

and 

(lc) 

10.10 Beginning with the displacement field 

(1) 

show that the equations governing the Timoshenko beam theory (see Example 1.4.3) with 
the von Karman nonlinearity are given by 

_ dNxx = 0 
dx ' 

_~ (Nxx d'WO) _ dQx _ q = 0 
dx dx dx 

(2) 

where N,"x, Qx and Mxx are the force and moment resultants 

(3) 
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Show that the force and moment resultants can be expressed in terms of the displacements 
as 

N =Eb A [dUO ! ( dW
O)2] xx xx dx + 2 dx 

(4) 

10.11 Show that the weak forms of the Timoshenko beam theory with the von Karman 
nonlinearity are given by 

0= lXB Eb A dDuo [dUO ! (dWo )2] dx 
xx dx dx + 2 dx 

XA 

- PIDuO(XA) - P2DuO(XB) (1) 

o -lx B (dDWO N dwo dowo Q _ D ) dx 
- dx xx dx + dx x woq 

XA 

- QI0WO(XA) - Q3 DWO(XB) (2) 

0= lXB [Eb I dDcpx dcpx + Gb AK/5cpx (CPx + dWo)] dx 
xx YY dx dx xz dx 

XA 

- Q2 Dcpx(XA) - Q4 Dcpx(XB) (3) 

10.12 Assume that the generalized displacements (uo, wo, CPx) of the Timoshenko beam theory 
are approximated by 

m p 

Uo = LUi'lj!;, Wo = LWi'lj!'f, CPx = L Si'lj!7 (1) 
i=1 i=1 i=1 

and show that the finite element model is of the form 

(2) 

l

XB dnl.l d'lj!l lXB dol.1 d'lj!2 
Kll = Eb A_'I-'_i _J d K12 =! Eb A (dWO) _'I-'_i _J d' 

'J xx dx dx X, 'J 2 xx dx dx dx X 
XA XA 

l

XB 2 dol.1 d'lj!2 lXB dol.2 d'lj!2 
K22 =! Eb A (dWo) _'I-'_i _J dx+ Gb AK-'I-'_i _J dx 

'J 2 xx dx dx dx xz dx dx 
XA XA 

K23 =lxB C b AKd'lj!inl.3nl.3 dx 
1,) xz dx '+'1, '+'J 

XA 

l

x B dol.3 dol.3 lX B 
K 33 - Eb I 'l-'i 'l-'j d C b AKnl.3nl.3 d ij - xx YY dx dx x + xz 'l-'i 'l-'j X 

XA XA 

Ki~3 =0, K'fl = 2KJ?, K~2 = KJ? (3) 

10.13 Evaluate the direct stiffness coefficients [KQ!3] (0:, ;3 = 1,2,3) of the nonlinear Timoshenko 
beam finite element assuming linear but equal interpolation of Uo, Wo, and CPx, 
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10.14 Compute the tangent stiffness matrix coefficients associated with the nonlinear Timoshenko 
beam finite element. Ans: The tangent stiffness coefficients are 

( K 13 )tan =K13 = 0 
lJ 1] 

(K21 ) tan = 1'" n E" A dwo d1jJi d1jJJ dx = K;)l 
'J xx dx dx dx 

XA 

(K22) tan =jXB {Eb A [dUO ~ (dWO)2] d¢i d1jJj 
'J xx dx + 2 dx dx dx 

XA 

+ KGb A d1jJ, d1jJj} d 
xz dx dx X 

10.15 Compute the tangent stiffness coefficients for the shell finite element of Section 10.7. 

10.16 The nonlinear strain-displacement relations associated with the displacement field in Eq. 
(8.2.23) according to the Sanders' [70] nonlinear shell theory are 

(a) 

where 

and dx = (>1 d6, dy = a2 d6, and dz = dC,. Derive the equations of motion of Sanders 
nonlinear shell theory. 

10.17 Derive the finite element model associated with the governing equations developed in 
Problem 10.16. In particular, show that the finite element model is of the form 

__ , N0 + __ i N': _ 1jJ' 1J 1J dx dy 
(

01jJ' 01jJ' QQ. +N") 
oX 1J oy 6J 1 R1 

_'I"_i Nit + _~._, N0 _ 1jJ' 2J 2J d d 
(

0 0
/" Do 0e Q". + N,". ) 

oX 6J Dy 2J 1 R2 x Y 

_'1"_' Q" + _'1"_' QQ. + 00' -.!:i + ~ dx dy 
[

00/" Do/,' (NO N" )] 
oX 1J oy 2) ~, R1 R2 

K4Q = _'I"_i MQ + _'1"_' M" + 1jJ"Q". 1 (00/" 00/" ) 
'.7 n

e 
Dx 1J oy 6J 1 1J 

dxdy 

K5Q = r (D1jJf Me>. + 01jJ7 MIX + 1jJe Q".) 
'J in

e 
oX 6J Dy 2J '2J 

dxdy (6.10.7) 

for a = 1,2"",5, and define the coefficients N 1J , Mfj' and Qlj for a = 1,2",·,5 and 
1=1,2,6. 
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11 

Third-Order Theory of Laminated 
Composite Plates and Shells 

11.1 Introduction 
The classical laminate plate theory and the first-order shear deformation theory 
are the simplest equivalent single-layer theories, and they adequately describe the 
kinematic behavior of most laminates. Higher-order theories can represent the 
kinematics better, may not require shear correction factors, and can yield more 
accurate interlaminar stress distributions. However, they involve higher-order stress 
resultants that are difficult to interpret physically and require considerably more 
computational effort. Therefore, such theories should be used only when necessary. 

In principle, it is possible to expand the displacement field in terms of the 
thickness coordinate up to any desired degree. However, due to the algebraic 
complexity and computational effort involved with higher-order theories in return 
for marginal gain in accuracy, theories higher than third order have not been 
attempted. The reason for expanding the displacements up to the cubic term in the 
thickness coordinate is to have quadratic variation of the transverse shear strains 
and transverse shear stresses through each layer. This avoids the need for shear 
correction coefficients used in the first-order theory. 

There are many papers on third-order theories (see [1-32]) and their applications 
[33-52]. Although many of them seem to differ from each other on the surface, the 
displacement fields of these theories are related (see Reddy [49]). Here we present 
the original third-order shear deformation laminate theory of Reddy [25,26] that 
contains other lower-order laminate theories, including the classical laminate theory 
and first-order shear deformation laminate theory as special cases. Analytical as 
well as finite element results of this third-order theory are developed and numerical 
results are compared with those of the classical and first-order theories. 

11.2 A Third-Order Plate Theory 
11.2.1 Displacement Field 

The third-order plate theory to be developed is based on the same assumptions 
as the classical and first-order plate theories, except that we relax the assumption 
on the straightness and normality of a transverse normal after deformation by 
expanding the displacements (u, v, 'W) as cubic functions of the thickness coordinate. 
Figure 11.2.1 shows the kinematics of deformation of a transverse normal on edge 
:y = o. 
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Figure 11.2.1: Deformation of a transverse normal according to the classical, first
order, and third-order plate theories, 

Consider the displacement field 

U = Uo + z¢x + z2ex + z3 Ax 

v = Vo + z¢x + z2ey + z3 Ay 

W =Wo (11.2,1) 

where (¢x, ¢y), (ex, ey) and (Ax, Ay) are functions to be determined, Clearly, we 
have 

Uo = u(x, y, 0, t), Vo = v(x, y, 0, t), Wo = w(x, y, 0, t) 

¢ _ (8u) 
x - 8z z=o' ¢y = (~~) z=o 

2ex = (82u) 
8z2 ' 

z=o 

6Ay = (~:~) z=o 
(11.2.2) 
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There are 9 dependent unknowns, and the theory derived using the displacement 
field (11.2.1) will result in 9 second-order partial differential equations. The weak
form finite element models based on the theory require CO-interpolation of all 9 
dependent unknowns. 

The number of dependent unknowns can be reduced by imposing certain 
conditions. Suppose that we wish to impose traction-free boundary conditions on 
the top and bottom faces of the laminate [25,26]: 

CTXZ(X, y, ±h/2, t) = 0, CTyz(X, y, ±h/2, t) = 0 

Expressing the above conditions in terms of strains, we have 

0= CTxz(X, y, ±h/2, t) = Q55Ixz(X, y, ±h/2, t) + Q45IYz(X, y, ±h/2, t), 

0= CTyz(X, y, ±h/2, t) = Q45Ixz(X, y, ±h/2, t) + Q441yAx, y, ±h/2, t) 

which in turn requires, for arbitrary Qij (i,j = 4,5), 

awo ( 2 ) 0= IXZ(X, y, ±h/2, t) = ePx + -a + 2zex + 3z .Ax 
x z=±h/2 

awo ( 2 ) 0= IYz(x, y, ±h/2, t) = ePy + -a + 2zey + 3z .Ay 
y . z=±h/2 

Thus we have 

or 

(11.2.3) 

ey = 0 (11.2.4) 

The displacement field (11.2.1) now can be expressed in terms of uo, va, wo, ePx and 
ePy using the relations in Eq. (11.2.4): 

'" _ 4 3 ( aWo) u(x, y, z, t) - uo(x, y, t) + zePx(x, y, t) - 3h2 Z ePx + ax 

4 3 ( aWO) v(x, y, z, t) = vo(x, y, t) + zePy(x, y, t) - -2 Z ePy + -a 
31~ . y 

w(x, y, z, t) = wo(x, y, t) (11.2.5) 

Next, we shall derive a third-order theory [25,26,49] based on the displacement field 
(11.2.5). 
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11.2.2 Strains and Stresses 

Substitution of the displacements (11.2.5) into the nonlinear strain-displacement 
relations in Eq. (3.3.7) yields the strains 

{ 
(O)} {(1) } {(3) } Cxx CXX CXX CXX 
(0) (1) 3 (3) 

{ 
Cyy } = cyy + z cyy + z cyy 

(0) (1) (3) 
,/xy ,/xy ,/xy '/xy 

(11.2.6) 

{ 
(O)} {(2) } 

{ 
,/yz } = ,/y~ + z2 ,/y~ 
"Vxz "V( ) "V( ) 

I ,xz ,xz 
(11.2.7) 

where (C2 = 3C1 and C1 = 4/3h2) 

{ 
(O)} { ~ + 1. (~)2 } cxx ax 2 ax 

(0) ( ) 2 cyy = ~+1. ~ 
(0) oy 2 oy 

'/xy ~+~+~~ 
oy ax ax oy 

(11.2.8) 

{ 
(1)} { oq,x } cxx ax 
(1) _ ~ 

cyy - oy , 

"V (1 ) oq,x + oq,y 
,xy oy ax 

{ 
(O)} {J. + ~ } '/yz _ 'f/y oy 
(0) - J. + ~ 

'/xz 'f/x ax 
(11.2.9) 

{ 
(3)} {oq,x + ~ } cxx ax ax 
(3) oq,y 02~O 

cyy = -q TJY + oy , 

'/ (3) oq,x + oq,y + 2 02wo 
{ 

(2)} {J. + ~ } '/yz _ -C 'f/y oy 
(2) - 2 J. + ~ 

'/xz 'f/x ax 
xy oy ax oxoy 

(11.2.10) 

11.2.3 Equations of Motion 

The equations of motion of the third-order theory will be derived using the dynamic 
version of the principle of virtual displacements. The virtual strain energy 8U, 
virtual work done by applied forces 8V, and the virtual kinetic energy 8K are given 
by 

;: - r {J~ [ (;: (0) ;: (1) _ 3;: (3)) 
uU - iDo _~ (J'xx ucxx + Zucxx C1 Z ucxx 

+ (J' (&(0) + z&(1) - C1 z3&(3)) + (J' (8"V(0) + Z8"V(1) - C1 z38"V(3)) yy yy yy yy xy 'xy IXy 'xy 

+ (J' xz (8'/~~) + z2 8'/~~)) + (J' yz (8'/~~) + z2 8,/~~)) 1 dz } dxdy 

_ r (N s. (0) M ;: (1) _ p s; (3) N s; (0) H;: (1) _ P ;: (3) - iDo xxucxx + xxucxx C1 xxucxx + yyUCyy + ':'V1 yyUC yy C1 yyUCyy 

N s; (0) M s; (1) P s. (3) + xyu'/xy + xyu'/xy - C1 xyu'/xy 

Q s. (0) R ;: (0) Q s; (0) R ;: (0)) d d + xU'/xz - C2 xU'/xz + yU'/yz - C2 yU'/yz X Y (11.2.11) 
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8V = - r [qb(X, y)8w(x, y, -~) + qt(x, y)8w(x, y, ~)] dxdy 
~a 2 2 

-1 i~ [!Tnn (8un + z8¢n - CI Z38lPn) 

+ !Tns (8us + z8¢s - CIZ3blPns) + !TnzbwO 1 dzdf 

= - r q8wodxdy - r ( Nnn8Un + lVlnn8¢n - cJYnn8lPn 
ina ir 
+ Nns8us + Mns8¢s - cl~As8lPns + Qn8wO ) dr (1l.2.12) 

8K = r j%h Po [ (uo + z¢x - c1Z3cpX) (buo + z8¢x - c1z·38CPx) 
ino -2 

+ (vo + Z¢y - CIZ3cpy) (8vo + z8¢y - C1z38cpy) + 'wo8wo 1 dv 

= r [(IOUO + h¢x - clhCPx) 8uo + (huo + h¢x - Cl14CPx) 8¢x ino 
- Cl (huo + 14¢2' - clhCPx) 8cpx + (lovo + h ¢y - clhcpy) 8-/)0 

+ (h Vo + h¢y - Cl I4CPY) 8¢y - Cl (huo + 14¢y - clhcpy) 8cpy 1 dxdy 

(11.2.13) 

where no denotes the midplane of the laminate, and 

(11.2.14) 

(1l.2.15) 

In Eq. (1l.2.14), a and (3 take the symbols x and y. The same definitions hold for 
the stress resultants with a hat, which are specified. 

Substituting for 8U,8V, and 8K from Eqs. (1l.2.11)-(1l.2.13) into the virtual 
work statement in Eq. (3.4.5), noting that the virtual strains can be written in 
terms of the generalized displacements using Eqs. (1l.2.7a-c), integrating by parts 
to relieve the virtual generalized displacements, buo, bvo, bwo, b¢x, and b¢y in no of 
any differentiation, and using the fundamental lemma of calculus of variations, we 
obtain the following Euler-Lagrange equations: 

(1l.2.16) 

(1l.2.17) 
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where 

2 4 
Ji = Ii - c1Ii+2, K2 = h - 2c1 I4 + cl h, Cl = 3h2 ' C2 = 3Cl 

The primary and secondary variables of the theory are 

Primary Variables: 
oWQ 

Un, Us, WQ, on' ¢n, cPs 

Secondary Variables: N nn , N ns , Vn , Pnn , M nn , Mns 

where 

The stress resultants are related to the strains by the relations 

{ 
{N}} [[A] 
{M} = [B] 
{P} [E] 

{
{Q}}_[[A] 
{R} - [D] 

(11.2.18) 

(11.2.19) 

(11.2.20) 

(11.2.21) 

(11.2.22) 

(11.2.23) 

(11.2.24) 

(11.2.25) 

(11.2.26) 

(11.2.27) 

(11.2.28) 

(11.2.29) 

(11.2.30a) 

(11.2.30b) 
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The stiffnesses in Eq. (11. 2. 30a) are defined for i, j = 1, 2, 6 and those in Eq. 
(11.2.30b) are defined for i,j = 4,5. Note that the matrices in (11.2.30a) are of the 
order 3 x 3 and those in (11.2.30b) are of order 2 x 2. The coefficients Aij , Bij , and 

Dij were given in terms of the layer stiffnesses Q~:) and layer coordinates Zk+l and 
Zk in Eqs. (3.3.38b) and (3.4.19). Additional stiffness coefficients are defined by 

(11.2.31) 

Note that the stiffnesses E ij , Fij and so on of the third-order theory involve fourth or 
higher powers of the thickness, and, therefore, they are expected to contribute little 
to thin laminate solutions. Even for moderately thick laminates the contribution 
can be small. 

This completes the development of the Reddy third-order laminate theory. Note 
that the equations of motion of the first-order theory are obtained from the present 
third-order theory by setting Cl = O. However, the classical plate theory can be 
obtained from this theory only by replacing cPa with CPa + EJwo/EJxa, which is a 
differential, not an algebraic relationship. The displacement field in Eq. (11.2.4) 
contains, as special cases, the displacement fields used by other researchers to derive 
a third-order plate theory, as shown in Table 11.2.1. Therefore, the third-order plate 
theories reported in the literature, despite their different looks, are equivalent. Many 
of these theories were developed for only isotropic plates. 

11.3 Higher-Order Laminate Stiffness Characteristics 

Since a detailed discussion of the laminate stiffnesses was presented in Section 3.5, a 
brief discussion is presented here for additional laminate stiffnesses (i.e., E ij , F ij , Hij 

for i, j = 1,2,6 and Dij and Fij for i, j = 4,5) introduced in the present third-order 
theory. A simplified third-order theory may be deduced from the general third-order 
theory presented here by omitting the higher-order stress resultants (Pxx,Pyy,Pxy) 
but keeping the higher-order stress resultants (Rx, Ry). The resulting theory is not 
consistent in energy sense. 

We recall that the plane-stress-reduced stiffnesses Qij in the material coordinate 
system are given in terms of the engineering constants as 

(11.3.1) 

where the subscript 1 refers to the fiber direction and 2 to the direction transverse 
to the fiber. The transformed coefficients Qij are related to Qij by Eq. (8.2.49a). 
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Table 11.2.1: Relationship of the displacements of other third-order theories to 
the one in Eq. (11.2.5): Uoo = u~+z<Poo -CIz3(<poo+u~,oo), U3 = u~. 

Reference Displacement Field 
and Variables t 

Relationship 

with <Poo 

Schmidt [16] Eoo = ~ (<poo + u~,oo) 

Krishna Murty [20] Uoo = u~ - zu~,oo - c3f(z)eoo eoo = - c
I
3 (<poo + u~,a) 

Vlasov [5], 
Jemielita [14], 
Levinson [21], 
Reddy [25,26] 

Murthy [22] 

Reddy [32] 

Bhimaraddi [27], 
Reddy [49] 

Uoo = u~ + ~(5,8oo + u~,oo) 
-C4z3(,8oo + u~,oo) 

11.3.1 Single-Layer Plates 

Single Isotropic Layer 

For a single isotropic layer of material constants E and v [G = 2(I!V)] and thickness 
h, the nonzero stiffnesses of Eqs. (1l.2.30a,b) become 

for i,j = 1,2,6, and 

Hence, we have 

Eh5 
F - ------;-------;;-:-

11 - 80(1 _ v2) , 

Eh7 
HII - ------,---------;,-:-

- 448(1 - v 2 ) , 

h5 h7 
Fij = 80 Qij, Hij = 448 Qij 

I-v 
FI2 = vF11 , F22 = F11 , F66 = -2-F11 

I-v 
HI2 = vH11 , H22 = H 11 , H66 = -2-H11 

(11.3.2a) 

(11.3.2b) 

(11.3.3a) 

Gh3 1 - V Ghs 1 - v 
D44 = Dss = U = -2-D11 , F44 = FS5 = 80 = -2-F11 (11.3.3b) 
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The plate constitutive equations (11.2.28) for the third-order theory become 

exx

} 

[ An 
vAu o ]{ (O)} Exx 

N yy = V~ll Au o (0) (11.3.4a) 
N xy 0 I-v A Et6) 

2 U rxy 

{Mxx}_ [ D" 
vDll rl)} vFll r31

} 
o Exx Fu o Exx 

Myy - V~ll Du o 1 c~V + [VFlI Fu o 1 cW 
Mxy 0 I-v D (1) 0 0 I-v F (3) 

2 U rxy 2 u rxy 

(11.3.4b) 

rx} [Fll vFu { (I)} vHu 

I-"~H 1 r~} 
o Exx Hu 

Pyy = VFl1 Fu o 1 cW +[VHll Hl1 
(:~) 

Pxy 0 0 I-v F (1) 0 0 En) 
2 u rxy -2- u rxy 

(11.3.5) 

{ Qy}=~[AU Qx 2 0 { 
(O)} 0] ryz + 1 - v [Dl1 

Au ri~) 2 0 
(11.3.6a) 

{ 
(O)} 0] ryz + 1 - v [Fu 

Du 'V(O) 2 0 
/xz 

{ Ry} = ~ [Du 
Rx 2 0 

(11.3.6b) 

Single Specially Orthotropic Layer 

For a single specially orthotropic layer, the stiffnesses can be expressed in terms 
of the Qij and thickness h. The nonzero stiffnesses of Eqs. (11.2.30a,b) become 
(Bij = Eij = 0) 

D - Ql1
h3 D _ QI2

h3 
Q22

h3 D _ Q66
h3 

11 - 12 ' 12 - 12 ,D22 = 12' 66 - 12 (11.3.7a) 

F _ Qu hs 
u - 80 ' 

H _ Qu h7 

11 - 448 ' 

(11.3. 7b) 

(11.3.7c) 

The plate constitutive equations for the higher-order stress resultants become 
(and similar equations hold for N's and M's) 

~ 1 {:rD } 
Q66 rW 

(11.3.8) 

{ 
Ry } = h :~ [Q 44 

Rx 12 0 
(11.3.9) 
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Single Generally Orthotropic Layer 

For a single generally orthotropic layer (i.e., the principal material coordinates do 
not coincide with those of the plate), the stiffnesses are expressed in terms of the 
transformed coefficients Qij and thickness h. The plate constitutive equations are 

{ R
y } = [D44 

Rx D45 

~~:l {:t~ } + [~~~ 
F66 ",(1) H 16 /xy 

{ 
(O)} 

D45] IYz + [F44 
D55 ",(0) F45 

/xz 

F45] IYz { 
(2)} 

F55 ",(2) 
/XZ 

The higher-order thermal stress resultants for this case are given by 

Single Anisotropic Layer 

{ 

E~~ } (3) 
Eyy 

(3) 
IXY 

(11.3.10) 

(11.3.11) 

(11.3.12) 

For a single anisotropic layer, the stiffnesses are expressed in terms of the coefficients 
Gij and thickness h. The nonzero higher-order stiffnesses are (Bij = 0) 

F - Gij h
5 

H .. _ Gij h
7 

ZJ - 80 ZJ - 448 (11.3.13) 

for i,j = 1,2,4,5, and 6 [see Eq. (2.4.3a)]. The plate constitutive equations are the 
same as in Eqs. (11.3.10) and (11.3.11), except that the plate stiffnesses are given 
by Eq. (11.3.13). 

11.3.2 Symmetric Laminates 

The force and moment resultants for a symmetric laminate, in general, have the 
same form as the generally orthotropic single-layer plates [see Eqs. (11.3.10) and 
(11.3.11)]. For certain special cases of symmetric laminates, the relations between 
strains and resultants can be further simplified, as explained next. 

Symmetric Laminates with Multiple Isotropic Layers 

When isotropic layers of possibly different material properties and thicknesses are 
arranged symmetrically from both a geometric and a material property standpoint, 
the resulting laminate will have the following laminate constitutive equations for 
the third-order theories: 

r"} [PH F12 o ]{ (1)} [Hl1 H12 Itl { E~~ } 
Exx 

Pyy = F12 Fl1 o E(l) + H12 Hl1 
(3) 

F66 I!t) Eyy 
Pxy 0 0 0 0 (3) 

IXY 
(11.3.14) 

{~~}=[Dt { (O)} 0] IYz + [F44 
D55 ,i~) 0 

o ] { (2)} 
F55 ~!0 (11.3.15) 
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where the laminate stiffnesses Fij and Hij are defined by Eqs. (3.5.24) with 

(11.3.16a) 

(11.3.16b) 

The thermal stress resultants for this case are given by 

{ 
pT } L l zk

+1 [Q-xx - L 11 
P:{y - k=l Zk Q12 

_12 O:xx b.T z3 dz Q- ] (k) { }(k) 

Q22 O:yy 
(11.3.17) 

Symmetric Laminates with Multiple Specially Orthotropic Layers 

A laminate of multiple specially orthotropic layers that are symmetrically disposed, 
both from a material and geometric properties standpoint, about the midplane 
of the laminate do not exhibit coupling between bending and extension. The 
laminate constitutive equations are again given by Eqs. (11.3.13)-(11.3.16), where 
the laminate stiffnesses Fij and Hij are defined by Eqs. (11.2.24) with 

(11.3.18) 

The thermal stress resultants have the same form as those given in Eq. (11.3.17). 

11.3.3 Antisymmetric Laminates 

Due to the antisymmetry of the lamination scheme but symmetry of the thicknesses 
of each pair of layers, this class of antisymmetric laminates have the feature that 
F 16 = F26 = H 16 = H 26 = O. The coupling stiffnesses Bij and Eij are not zero. The 
relations between the stress resultants and the strains are 

rx} [Ell E12 { (O)} [ Fll F12 ,tl { (I)} E 16 exx exx 

Pyy = E12 E22 E26] E~~ + F12 F22 eW 
Pxy E 16 E 26 E66 e~~ 0 0 (1) 

exy 

[Hll H12 

o 1 C')} exx 

+ H~2 H22 
o (3) (11.3.19) 

0 H66 :r~ 
{~~} = [~44 o ] { E1~ } + [ F44 

D55 e~~ 0 
o ] { _(2) } 

F55 :r0 (11.3.20) 
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Antisymmetric Cross-Ply Laminates 

For antisymmetric cross-ply laminates the coupling stiffnesses have the following 
properties: 

E22 = -Ell, and all other Eij = D45 = F45 = ° (11.3.21) 

For regular antisymmetric cross-ply laminates, the coupling coefficients Ell can be 
shown to approach zero as the number of layers increases. 

Antisymmetric Angle-Ply Laminates 

For antisymmetric angle-ply laminates the stiffnesses can be simplified as 

D45 = F45 = F16 = F26 = H 16 = H26 = Ell = E22 = E12 = E66 = ° (11.3.22) 

For a fixed laminate thickness, the stiffnesses E16 and E26 go to zero as the number 
of layers in the laminate increases. 

This completes the development of the third-order theory of Reddy. In the next 
section, we develop the Navier solutions of antisymmetric angle-ply and cross-ply 
laminates. The Levy solutions are presented in Section 11.5, and finite element 
models are discussed in Section 11.6. 

11.4 The Navier Solutions 
11.4.1 Preliminary Comments 

The equations of motion of the third-order theory of Reddy presented in Eqs. 
(11.2.16)-(11.2.20) are very similar in form to the first-order shear deformation 
theory. In fact, it is possible to develop the Navier solutions of simply supported 
antisymmetric cross-ply and angle-ply laminates using the third-order theory (see 
References 25, 26, and 29). For antisymmetric cross-ply laminates the following 
stiffnesses are zero: 

A 16 = A 26 = A45 = B 16 = B26 = D16 = D26 = h = ° 
E 16 = E26 = H6 = F26 = H 16 = H26 = D45 = F45 = h = h = h = ° 

(11.4.1) 

For antisymmetric angle-ply laminates the following stiffnesses are zero: 

A 16 = A 26 = A45 = Bll = B12 = B22 = B66 = D 16 = D26 = h = ° 
En = E12 = E22 = E66 = F16 = F26 = H16 = H26 = D45 = F45 = h = h = h = ° 

(11.4.2) 

The 88-1 boundary conditions for the third-order shear deformation plate theory 
are (see Figure 11.4.1): 

uo(x, 0, t) = 0, ¢x(x, 0, t) = 0, uo(x, b, t) = 0, ¢x(x, b, t) = ° 
vo(O, y, t) = 0, ¢y(O, y, t) = 0, vo(a, y, t) = 0, ¢y(a, y, t) = ° 

wo(x, 0, t) = 0, wo(x, b, t) = 0, wo(O, y, t) = 0, wo(a, y, t) = ° (11.4.3a) 

Nxx(O, y, t) = 0, Nxx(a, y, t) = 0, Nyy(x, 0, t) = 0, Nyy(x, b, t) = ° 
Mxx(O, y, t) = 0, Mxx(a, y, t) = 0, Myy(x, 0, t) = 0, Myy(x, b, t) = ° 

(11.4.3b) 
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at x=O and x=a 

vo= wo=<Py= 0 

N xx = Mxx =0 

Figure 11.4.1: 8imply supported (88-1) boundary conditions for antisymmetric 
cross-ply laminates. 

The 88-2 boundary conditions for the third-order shear deformation plate theory 
are (see Figure 11.4.2) 

uo(O, y, t) = 0, rPx(x, 0, t) = 0, uo(a, y, t) = 0, rPx(x, b, t) = ° 
vo(x, 0, t) = 0, rPy(O, y, t) = 0, vo(x, b, t) = 0, rPy(a, y, t) = ° 
wo(x, 0, t) = 0, wo(x, b, t) = 0, wo(O, y, t) = 0, wo(a, y, t) = ° (11.4.4a) 

Nxy(O, y, t) = 0, Nxy(a, y, t) = 0, Nxy(x, 0, t) = 0, Nxy(x, b, t) = ° 
A1xx (0, y, t) = 0, Mxx(a, y, t) = 0, Jt1yy(x, 0, t) = 0, A1yy(x, b, t) = ° 

(11.4.4b) 

In the following sections, we present the Navier solutions of cross-ply laminates for 
the 88-1 boundary conditions and antisymmetric angle-ply laminates for the 88-2 
boundary conditions. 

Y·a----.L 
~-·I· 

at x=O and x=a 
-I T 

uo=wo=<Py=O SS-2 b 

at y=O and y=b 

Nxy = Mxx =0 

~-------------------~: ~------~ 
x 

Figure 11.4.2: 8imply supported (88-2) boundary conditions for antisymmetric 
angle-ply laminates. 
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11.4.2 Antisymmetric Cross-Ply Laminates 

The boundary conditions in (11.4.3a,b) are satisfied by the following expansions: 

00 00 

ua(x, y, t) = L L Umn(t) cos ax sinf3y (11.4.5a) 
n=lm=l 

00 00 

Va (x, y, t) = L L V mn ( t) sin ax cos f3y (11.4.5b) 
n=lm=l 

00 00 

wa(x, y, t) = L L Wmn(t) sin ax sinf3y (11.4.5c) 
n=lm=l 

00 00 

¢x(x,y,t) = L L Xmn(t) cos ax sin,6y (11.4.5d) 
n=lm=l 

00 00 

¢y(x, y, t) = L L Ymn(t) sin ax cos f3y (11.4.5e) 
n=lm=l 

where a = m7r I a and ,6 = n7r lb. The transverse load q is also expanded in double 
Fourier sine series 

00 00 

q(x, y, t) = L L Qmn(t) sin ax sinf3y (11.4.6a) 
n=lm=l 

Qmn(t) = a: foa fob q(x, y, t) sinax sinf3y dxdy (11.4.6b) 

Substitution of Eqs. (11.4.5) and (11.4.6) into Eqs. (11.2.16)-(11.2.20) will show 
that the Navier solution exists only if the laminate stiffnesses are such that the 
conditions in Eq. (11.4.1) hold. The coefficients (Umn , Vmn , W mn , X mn , Ymn ) of the 
Navier solution of cross-ply laminates are governed by 

[S]{~} + [M]{Li} = {F} (11.4.7a) 

1 
Umn ) 1 0 ) 1 aNln

n 

) Vmn 0 f3N'/'nn 
{~}= Wmn , {F}= Qmn - 9

1 Xmn 0 aMmn 
A 2 

Ymn 0 f3Mmn 

(11.4.7b) 

where Sij and mij are defined by 
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,g34 = A55a - Cl [Fll a 3 + (F12 + 2F66)a;32] 

835 = A44;3 - cl [F22;33 + (F12 + 2F66)a2;3] 
A - - 2 - 2A - -
844 = A55 + Dlla + D66;3, 845 = (D12 + D66)a;3 

A - - 2 - 2- A 2 A 2 
855 = A44 + D66a + D22;3, 833 = Nxxa + N yy ;3 

mu = 10, m22 = 10, m33 = 10 + cI h (002 + ;32), m34 = -c1J4 a 

m35 = -CIJ4;3, m44 = K 2, m55 = K2 

(11.4.8a) 

(11.4.8b) 

(11.4.9) 

The thermal resultants are defined by [see Eqs. (6.3.11) through (6.3.13)] 

{
NIx} 00 00 {Nr;m(t)} 
N'{;y = L L N~n (t) sin ax sin;3y 
NT n=l m=l N 6 (t) xy rnn 

{ 
MJx } 00 00 {Mlnn(t)} 
M'{;y = L L M;nn ( t) sin ax sin;3y 
MT n=l m=l NI6 (t) xy mn 

{
PIx} 00 00 {Plnn(t)} 
P'{;y = L L P~n (t) sin ax sin;3y 
pT n=l m=l p6 (t) xy mn 

N rZk+1 

{Nmn(t)} = (; JZ
k 

[Q](k){a}(k) Tmn(z,t) dz 

N rZk +1 

{Mmn(t)} = "f JZ
k 

[Q](k){a}(k) Tmn(z,t) z dz 

00 00 

t:lT(x, y, z, t) = L L (T~n + zTr;m) sin ax sin;3y 
m=l n=l 

(11.4.10a) 

(11.4.1Ob) 

(11.4.10c) 

(l1.4.lla) 

(11.4.llb) 

(ll.4.llc) 

(11.4.12a) 

(11.4.12b) 

(11.4.13) 

The ordinary differential equations (11.4.7) in time can be solved for transient 
response using the Newmark integration procedure described in Chapter 7. Equation 
(11.4.7) can be specialized to static bending analysis, buckling, and natural 
vibration. 
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The in-plane stresses in each layer can be computed from the equations [see Eqs. 
(6.3.29) and (6.3.30)] 

O 

1 
(k) ({ E } {n' } (k) ) 

xx <-<xx 

o Eyy - a yy tlT 
Q66 rxy 2axy 

(11.4.14) 

where 

{ 
(O)} {(I) } {(3) } Exx Exx Exx Exx 
(0) (1) 3 (3) 

{ 
Eyy } = EYl{ + Z E

Yi 
+ Z EYf 

rxy ,..) ) "V ( ) "V ( ) 
,xy ,xy ,xy 

{ 

(RXX SXx 3TXX) . . (3 } 00 00 mn + Z mn + C1 Z mn sm ax sm y 
= L L (R¥rfn + zSKfn + C1z3T~~) sinax sinf3y 

m=ln=l (R~n + zS~n + Clz3T!¥,) cosaxcos f3y 
(11.4.15a) 

(11.4.15b) 

The transverse shear stresses from the constitutive equations are given by 

= (1- C2Z2) f f [Q~4 
m=l n=l 

o ] (k) { (Ymn + f3Wmn ) sin ax cosf3y } 
Q55 (Xmn + aWmn ) cos ax sinf3y 

(11.4.16) 

where C2 = 4/ h2 . Note that the transverse shear stresses are layerwise quadratic 
through the thickness. 

The transverse shear stresses can also be determined using the equilibrium 
equations of 3-D elasticity. In the absence of thermal effects they are given by 

00 00 [ 1 
(J"l~)(x,y,z) = Il~ (z - zk)A~~ + 2(z2 - z£)B~~ 

+ ~ (z4 - zt)£$;~] cos ax sin f3y + (J"l~-l) (x, y, Zk) (11.4. 17a) 

00 00 [ 1 
(J"~~)(x, y, z) = fl ~ (z - Zk)C~~ + 2(z2 - z£)V~~ 

+ ~ (z4 - zt)F$;(!] sin ax cos f3y + (J"~~-l) (x, y, Zk) (11.4.17b) 
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where 

A~~ = [( a2Qi~) + (32Q~~)) Umn + a(3 (Qi~) + Q~~)) Vmn] 

B (k) [( 2Q-(k) (32Q-(k)) (3 (Q-(k) -(k)) ] mn = a u + 66 Xmn + a 12 + Q66 Yrnn 

C(k) [(3 (Q- (k) - (k)) ( 2 - (k) 2 - (k)) ] mn = a 12 + Q66 Urnn + a Q66 + (3 Q22 Vmn 

(k) [ (-(k) -(k)) ( 2 -(k) 2 -(k)) ] Vrnn = a(3 Q 12 + Q66 Xmn + a Q66 + (3 Q 22 Ymn 

[(k) = _ [a3Q-(k) + a(32 (Q-(k) + 2Q-(k))] W _ B(k) mn U 12 66 mn mn 

:r:(k) = _ [(33Q-(k) + a 2(3 (Q-(k) + 2Q-(k))] W _ V(k) mn 22 12 66 mn mn (11.4.18) 

11.4.3 Antisymmetric Angle-Ply Laminates 

The simply supported (SS-2) boundary conditions in (l1.4.4a,b) are satisfied by 

CX) CX) 

uo(x, y, t) = L L Umn(t) sin ax cos (3y (11.4.19a) 
n=1 rn=1 
oc oc 

Vo (x, y, t) = L L Vrnn (t) cos ax sin (3y (11.4.19b) 
n=1 rn=l 

and (wo, rPx, rPy) have the same expansions as in Eqs. (11.4.5c-e). Substituting the 
expansions in Eqs. (l1.4.19a,b) into Eqs. (11.2.16)-(11.2.20), we obtain equations 
of the form in (l1.4.7a) 

[S]{~} + [i1]{Li} = {F} 

with the following coefficients 

811 = Aua2 + A66(32, 812 = (A12 + A66)a(3 

813 = -C1 (3E16a2 + E26(32) (3 
A A 2 A 2 

814 = 2B16 a(3, 815 = B16a + B 26(3 

822 = A66a2 + A 22(32, 823 = -cl (E16a2 + 3E26(32) a 

.924 = 815, 825 = 2B26a (3 
- 2 - 2 2 [ 4 2 2 4] 

833 = Assa + A44(3 + cl Hu a + 2(H12 + 2H66)a (3 + H22(3 

834 = A55a - cl [Fua3 + (F12 + 2F(6)a(32] 

835 = A44(3 - cl [F22(33 + (F12 + 2F(6)a2(3] 

844 = A55 + Dl1a2 + D66(32, 845 = (D12 + D(6)a(3 
- - 2 - 2 

85.5 = A44 + D66 a + D22(3 

(11.4.20) 

(11.4.21) 

The mass and coefficients with hat and overbar are the same as those defined in 
Eqs. (11.4.8) and (11.4.9), and thermal effects are not considered. 
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The in-plane stresses in each layer can be computed from the equations 

(11.4.22) 

{ 
(O)} {U m7rx !!:!!JL } Exx 00 00 a mn cos - cos b 
(0) a 

Eyy = L L PVmn cos ax cos py 
,~V m=ln=1 -(pUmn+aVmn)sinax sinpy 

(l1.4.23a) 

{

(I) } {X.. 1-/ } Exx 00 00 a mn sIn ax sIn fJY 
(1) _ ""' ""' I-/V· . 1-/ Eyy - - ~ ~ fJImn smax smfJY 

,~V m=1 n=1 - (PXmn + aYmn ) cos ax cos py 
(l1.4.23b) 

Exx 00 00 a mn + a mn SIn ax sIn fJY 

{ 
(3)} {( X 2W) . . 1-1 } 

EW =Cl L L (PYmn + p2W mn ) sin ax sinpy 
,W m=1 n=1 -(PXmn + aYmn + 2aPW mn) cos ax cos py 

(l1.4.23c) 

The transverse stresses determined from the equilibrium equations of 3-D 
elasticity are 

CT~~)(X, y, z) = II E [(z - zk)A~~ + ~(z2 - z~)B~~ + ~ (z4 - zk)t;:;~] 
+ CTi~-I)(x, y, Zk) (l1.4.24a) 

(k-l)( ) + CTyz x, y, Zk (l1.4.24b) 

where 

-(k) [( 2 -(k) 2 -(k)) (-(k) -(k)) ]. Amn = a Q l1 + P Q66 Umn + ap Q 12 + Q66 Vmn sm ax cos py 

[ 
-(k) ( 2 -(k) 2 -(k)) ] + 2aPQ16 Umn + a Q16 + P Q26 Vmn cosaxsinpy 

-(k) [( 2 -(k) 2 -(k)) (-(k) -(k))] . Bmn = a Q l1 + P Q66 Xmn + ap Q 12 + Q66 Ymn cos ax sm py 

[ 
-(k) ( 2 -(k) 2 -(k)) ] + 2aPQ16 Xmn + a Q16 + P Q26 Ymn sinaxcospy 

-(k) [( 2 -(k) 2 -(k)) -(k)] . Cmn = a Q16 + P Q26 Umn + 2aPQ16 Vmn sm ax cos py 

[ 
1-1 (Q-(k) Q-(k)) (2Q-(k) 2 -(k))] . + afJ 12 + 66 Umn + a 66 + P Q22 Vmn cos ax sm py 
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-(k) [( 2 -(k) 2 -(k)) -(k)]. 
Drnn = a Q16 + {3 Q66 Xrnn + 2a{3Q26 Y rnn COS ax sm {3y 

[ ( 
-(k) -(k)) ( 2 -(k) 2 -(k)) ]. + a{3 Q 12 + Q66 Xrnn + a Q66 + {3 Q 22 Y rnn sm ax cos {3y 

-(k) _ [3 -(k) 2 (-(k) -(k))] " 
£rnn - - a Q11 + a{3 Q 12 + 2Q66 W rnn COS ax sm {3y 

- (3Q-(k)a2{3 + Q-(k){33) W sinaxcos{3y - f3(k) 
16 26 rnn rnn 

j:{k) = _ (Q-(k)a3 + 3Q-(k)a{32) W cos ax sin {3y rnn 16 26 rnn 

- [a2 (3 ((21~) + 2Q~~)) + (33Q~~)] Wrnn sin ax cos (3y - j)~~ (11.4.25) 

11.4.4 Numerical Results 

Bending Analysis 

Tables 11.4.1 and 11.4.2 contain nondimensionalized center deflections and stresses 
obtained with 3-D elasticity theory (ELS), third-order shear deformation plate 
theory (TSDT), first-order shear deformation theory (FSDT), and classical laminate 
plate theory (CLPT) for the following two problems (see Reddy [25]): 

1. A three-ply (0/90/0) square (a/b = 1) laminate with layers of equal thickness 
and subjected to sinusoidally distributed transverse load. 

2. A four-ply (0/90/90/0) square (a/b = 1) laminate with layers of equal thickness 
and subjected to sinusoidally distributed transverse load. 

The material properties of a ply are assumed to be 

Material 1: 

E1 = 25 X 106 psi (175 CPa), E2 = 106 psi (7 CPa) 

G12 = G13 = 0.5 x 106 psi (3.5 CPa) 

G23 = 0.2 X 106 psi (1.4 CPa), V12 = V13 = 0.25 

The following nondimensionalized quantities are reported in the tables: 

(11.4.26) 

(11.4.27) 

The origin of the coordinate system is taken at the lower left corner of the plate. 
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Table 11.4.1: N ondimensionalized center deflections and stresses in simply 
supported (88-1) three-layer (0/90/0) square laminates under 
sinusoidally distributed transverse load. 

FSDT 

a/h Variable ELSt TSDT K= 1 K- 5 -0 K=~ K=~ CLPT 

w X 102 1.9218 1.5681 1.7758 1.9122 2.5770 0.4313 
4 axx 0.755 0.7345 0.4475 0.4370 0.4308 0.4065 0.5387 

(o-yz)+ 0.217 0.1832 0.1227 0.1561 0.1793 0.3030 
0.2086 0.1850 0.1968 0.2038 0.2311 0.0823 

w x 102 0.7125 0.6306 0.6693 0.6949 0.8210 0.4313 
10 axx 0.590 0.5684 0.5172 0.5134 0.5109 0.4993 0.5387 

ayz 0.123 0.1033 0.0735 0.0915 0.1039 0.1723 
0.1167 0.1065 0.1108 0.1136 0.1207 0.01323 

W x 102 0.4342 0.4333 0.4337 0.4340 0.4353 0.4313 
100 axx 0.552 0.5390 0.5385 0.5384 0.5384 0.5382 0.5387 

ayz 0.094 0.0750 0.0586 0.0703 0.0782 0.1174 
0.0827 0.0826 0.0827 0.0827 0.0829 0.0823 

t 3-D elasticity solution of Pagano [53]. 

+ The second line corresponds to stresses computed from 3-D equilibrium equations. 

Table 11.4.2: Nondimensionalized maximum deflections and stresses in simply 
supported (88-1) symmetric cross-ply (0/90/90/0) square 
laminates under sinusoidally distributed transverse load. 

a/h Source w x 102 Oxx o-yy ayz axz axy 

ELSt 1.954 0.720 0.663 0.292 0.219 0.0467 
4 TSDT 1.894 0.665 0.632 0.239 0.206 0.0440 

0.298 0.231+ 
FSDT 1.710 0.406 0.576 0.196 0.140 0.0308 

0.280 0.269 

ELS 0.743 0.559 0.401 0.196 0.301 0.0275 
10 TSDT 0.715 0.546 0.389 0.153 0.264 0.0268 

0.192 0.307 
FDST 0.663 0.4989 0.361 0.130 0.167 0.0241 

0.181 0.318 

ELS 0.517 0.543 0.308 0.156 0.328 0.0230 
20 TSDT 0.506 0.539 0.304 0.123 0.282 0.0228 

0.154 0.330 
FDST 0.491 0.527 0.296 0.109 0.175 0.0221 

0.150 0.333 

ELS 0.438 0.539 0.276 0.141 0.337 0.0216 
100 TSDT 0.434 0.539 0.271 0.112 0.290 0.0213 

0.139 0.339 
FDST 0.434 0.538 0.270 0.101 0.178 0.0213 

0.139 0.339 

CLPT 0.431 0.539 0.269 0.138+ 0.339+ 0.0213 

t 3-D elasticity solution of Pagano and Hatfield [54]. 
+ Equilibrium-derived stresses. 
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From the results it is clear that the third-order theory gives more accurate results 
for deflections and stresses when compared to the first-order shear deformation plate 
theory with K = 5/6. It is known that the shear correction factor K depends on 
the lamina properties and the stacking sequence. The fact that no shear correction 
coefficients are needed in the third-order theory makes it more convenient to use. In 
general, the equilibrium-derived transverse shear stresses compare more favorably 
with the elasticity solution than those obtained from the constitutive equations for 
equivalent single-layer theories. 

Figure 11.4.3 contains plots of nondimensionalized center deflection, ill = 
wo(E2h3 /qoa4 ), versus side-to-thickness ratio a/h for Problem 2 (a square, 
symmetric cross-ply laminate (0/90/90/0) under sinusoidally distributed load; 
Material 1). Compared to the elasticity solution, the third-order theory 
underpredicts deflection by 3% while the first-order theory underpredicts by about 
12.5% for a/h = 4; for a/h = 10, the errors are 2.4% in TSDT and 11.8% in FSDT. 
The errors are much less at lower values of a/h. 

Figures 11.4.4 and 11.4.5 show distributions of nondimensionalized [0- = 

cr(h2 /qoa2 )] maximum normal stresses o-xx and o-yy predicted by the classical, first
order, and third-order plate theories through the thickness of a square symmetric 
cross-ply laminate (0/90/90/0) under sinusoidally distributed load (Material 1; 
a/ h = 4 and 10). The third-order theory predicts a cubic variation whereas 
the classical and first-order theories predict linear variation of the stresses. 
Plots of constitutively derived and equilibrium-derived transverse shear stresses 
o-xz = crxz(h/qoa) and o-yz = cryz(h/qoa) are shown as functions of thickness in 
Figures 11.4.6 and 11.4.7, respectively, for a square, symmetric cross-ply laminate 
(0/90/90/0) under sinusoidally distributed load (Material 1; a/h = 10).The stresses 
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Figure 11.4.3: Plots of nondimensionalized center transverse deflection versus 
side-to-thickness ratio of a symmetric cross-ply (0/90/90/0) 
laminate under sinusoidally distributed load (Material 1). 
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derived using the equilibrium equations are continuous through thickness because 
they are made to satisfy the interface continuity conditions (in determining the 
constants of integration), while the stresses computed using constitutive equations 
are always discontinuous for all equivalent single-layer theories due to the continuity 
of the transverse shear strains through thickness of the laminate. The third-order 
theory correctly satisfies vanishing of transverse shear stresses at the top and bottom 
of the laminate, because the displacement field in T8DT is derived to satisfy these 
conditions a priori. 

Figure 11.4.8 shows the effect of material anisotropy on the deflections of 
antisymmetric cross-ply (0/90)n (n = 1,3) square laminates under sinusoidal loading 
(88-1) for a/h = 10, G12 = G13 = 0.5E2, G23 = 0.2E2, 1/12 = 0.25, and a/h = 10. 
The results predicted by F8DT and T8DT are very close; it is interesting to 
note that the first-order theory overpredicts deflections for the two-layer case and 
underpredicts for the six-layer case when compared to T8DT. As noted earlier, 
bending-stretching coupling is negligible for laminates with six or more layers; hence 
the deflections of a two-layer laminate without accounting for the coupling are 
virtually the same as those obtained for the six-layer laminate (see Table 11.4.3). 

The deflections of antisymmetric angle-ply (45/ -45)n (n = 1,3) square laminates 
under sinusoidal loading are presented in Figure 11.4.9 for various ratios of moduli 
~~ (G12 = G13 = 0.6E2, G23 = 0.5E2, 1/12 = 0.25, a/h = 10). The effect of 
coupling between bending and extension is increasingly more pronounced with an 
increasing degree of material anisotropy. Even at low modulus ratios, the coupling 
terms cannot be neglected. 

Table 11.4.3: Maximum deflections, w x 102 , of simply supported (88-1) 
antisymmetric cross-ply (0/90/0/90/ ... ) square plates subjected 
to sinusoidally distributed transverse load. 

n=2 n=6 

a FSDT TSDT FSDT TSDT Ii 

4 2.1492 1.9985 1.5473 1.5411 
10 1.2373 1.2161 0.6354 0.6382 
20 1.1070 1.1018 0.5052 0:5060 
50 1.0705 1.0697 0.4687 0.4688 
100 1.0653 1.0651 0.4635 0.4635 

CLPT 1.0636 0.4618 

Table 11.4.4 contains a comparison of the maximum deflections of two- and six
layer (() / - () / ... ) antisymmetric angle-ply laminates under sinusoidal loading with 
different fiber orientations. The following material properties are assumed 

Material 2: 

El G 12 G23 = 0 5 
E2 = 40, E2 = 0.6, E2 ., 1/12 = 1/13 = 0.25 (11.4.28) 
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As in the case of antisymmetric cross-ply plates, the coupling causes a significant 
reduction of the plate stiffness, with the most critical case being for 8 = 45°. This 
observation can be explained by the fact that the magnitudes of the bending
stretching terms (B16 , B26, E 16 , E 26 , ... ) are the largest at this particular fiber 
orientation for a given number of layers. 

Table 11.4.4: Maximum deflections, if) x 102 , of simply supported (88-2), 
antisymmetric angle-ply (8/-8/ ... ) square plates subjected to 
sinusoidal loading. 

() = 5° () = 30° () = 45° 

a Source n=2 n=6 n=2 n=6 n=2 n=6 h 

4 TSDT 1.2625 1.2282 1.0838 0.8851 1.0203 0.8375 
FSDT 1.3165 1.2647 1.2155 0.8994 1.1576 0.8531 

10 TSDT 0.4848 0.4485 0.5916 0.3007 0.5581 0.2745 
FSDT 0.4883 0.4491 0.6099 0.2989 0.5773 0.2728 

20 TSDT 0.3579 0.3209 0.5180 0.2127 0.4897 0.1905 
FSDT 0.3586 0.3208 0.5224 0.2121 0.4944 0.1899 

50 TSDT 0.3215 0.2842 0.4972 0.1878 0.4704 0.1668 
FSDT 0.3216 0.2841 0.4979 0.1877 0.4712 0.1667 

100 TSDT 0.3162 0.2789 0.4942 0.1842 0.4676 0.1634 
FSDT 0.3162 0.2789 0.4944 0.1842 0.4678 0.1633 

CLPT 0.3145 0.2771 0.4932 0.1831 0.4667 0.1622 

Natural Vibration 

Fundamental frequencies, w = Wl1 (a2 /h)J p/ E2 , of simply supported laminates are 
presented for the following three cases: 

1. Four-layer (0/90/90/0) symmetric cross-ply square plate (88-1). 

2. Two- and six-layer (0/90/ ... ) antisymmetric cross-ply square plates (88-1). 

3. Two- and six-layer (8/-8/ ... ) antisymmetric angle-ply square plates (88-2) with 
8 = 5°,30°, and 45°. 

The rotary inertias are included in all cases and theories. Table 11.4.5 contains 
the nondimensionalized fundamental frequencies w = w (a2 / h) J p / E2 of the first 
laminate as a function of modulus ratio Ed E2 (G 12 = G 13 = 0.6E2, G23 = 0.5E2, 
V12 = 0.25) for a/h = 5 and 10. The fundamental natural frequencies w of 
antisymmetric cross-ply laminates (Material 2) as functions of the side-to-thickness 
are presented in Figure 11.4.10. Table 11.4.6 contains natural frequencies of two
layer and six-layer antisymmetric angle-ply laminates. All these results indicate 
that there is no significant difference between the predictions of F8DT and T8DT. 
However, T8DT does not require shear correction factors. 
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Figure 11.4.10: Plots of nondimensionalized fundamental frequency versus side-to
thickness ratio for cross-ply (0/90)n (n = 1,3) square laminates. 

Table 11.4.5: N ondimensionalized frequencies w of (0/90/90/0) cross-ply 
laminates as functions of modulus ratio. 

EdE2 a/h ELSt TSDT FSDT CLPT 

:3 5 6.618 6.560 6.570 7.299 
10 7.247 7.243 7.475 

10 5 8.210 8.272 8.298 10.316 
10 9.853 9.841 10.56:3 

20 5 9.560 9.526 9.567 13.511 
10 12.238 12.218 13.835 

30 5 10.272 10.272 10.326 16.084 
10 13.892 13.864 16.470 

40 5 10.752 10.787 10.854 18.299 
10 15.143 15.107 18.738 

t Approximate 3-D solution of Noor [55]. 
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Table 11.4.6: Nondimensionalized fundamental frequencies, w = a
2 f£ Wll h E2' 

of simply supported (88-2), antisymmetric angle-ply (e/-e/ ... ) 
square plates. 

() = 5° () = 30° () = 45° 

a Source n=2 n=6 n=2 n=6 n=2 n=6 It 

TSDT 8.715 8.859 9.446 10.577 9.759 10.895 
4 FSDT 8.531 8.737 8.917 10.502 9.161 10.805 

CLPT 14.514 16.563 13.012 21.647 13.506 13.766 

TSDT 14.230 14.848 12.873 18.170 13.263 19.025 
10 FSDT 14.179 14.840 12.681 18.226 13.044 19.025 

CLPT 17.500 18.819 14.031 23.165 14.439 24.611 

TSDT 16.656 17.619 13.849 21.648 14.246 22.877 
20 FSDT 16.641 17.622 13.790 21.679 14.179 22.913 

CLPT 17.754 18.952 14.187 23.320 14.587 24.773 

TSDT 17.626 18.753 14.174 23.067 14.572 24.480 
50 FSDT 17.623 18.754 14.164 23.074 14.561 24.488 

CLPT 17.820 18.989 14.231 23.364 14.630 24.819 

TSDT 17.780 18.935 14.223 23.295 14.621 24.739 
100 FSDT 17.780 18.935 14.220 23.297 14.618 24.741 

CLPT 17.830 18.995 14.237 23.371 14.636 24.825 

Buckling Analysis 

The uniaxial critical buckling loads of a four-layer (0/90/90/0) cross-ply plate 
(Material 2) with various side-to-thickness ratios are compared in Table 11.4.7. 
The buckling loads of the same laminate as a function of modulus ratio Ed E2 
are presented in Table 11.4.8. The results are also compared with approximate 3-D 
elasticity results obtained by Noor [57]. In Figure 11.4.11, the buckling loads of two
layer and six-layer (0/90/0/···) antisymmetric cross-ply laminates are shown as a 
function of the side-to-thickness ratio. Table 11.4.9 contains critical buckling loads 
for the two-layer and six-layer antisymmetric angle-ply laminates. Both T8DT and 
F8DT give very good results and the difference between them is not very significant. 

Table 11.4.7: Nondimensionalized uniaxial buckling loads, N = Ncr E~~3' of 
simply supported (88-1) symmetric cross-ply (0/90/90/0) square 
plates. 

a CLPT FSDT TSDT It 

5 36.160 11.575 11.997 
10 36.160 23.453 23.340 
20 36.160 31. 707 31.660 
50 36.160 35.356 35.347 

100 36.160 35.955 35.953 
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Table 11.4.8: Effect of material anisotropy on the uniaxial buckling loads, 
- 2 

N = Ncr E~h3' of symmetric cross-ply (0/90/90/0) square plates 

(G 12 = G13 = 0.6E2' G23 = 0.5E2' V12 = 0.25, a/h = 10). 

EdE2 CLPT FSDT TSDT ELS [57] 

3 5.754 5.399 5.114 5.304 
10 11.492 9.965 9.777 9.762 
20 19.712 15.351 15.298 15.019 
30 27.936 19.756 19.957 19.304 
40 36.160 23.453 23.340 22.881 

Table 11.4.9: N ondimensionalized uniaxial buckling loads, if = N a
2 

cr E2h.l, 

of simply supported (88-2) antisymmetric angle-ply (B/-B/ ... ) 
square plates. 

() = 5° () = 30° () = 45° 

a Source n=2 n=6 n=2 n=6 n=2 n=6 h 

5 TSDT 10.674 11.082 11.547 13.546 10.881 12.169 
FSDT 10.384 10.899 10.586 11.986 9.385 11.297 

10 TSDT 20.989 22.592 17.127 33.701 18.154 32.405 
FSDT 20.752 22.562 16.613 33.903 17.552 :32.525 

20 TSDT 28.308 31.577 19.561 47.643 20.691 53.198 
FSDT 28.259 31.587 19.394 47.779 20.495 53.365 

50 TSDT 31.519 35.657 20.379 53.951 21.539 60.760 
FSDT 31.511 35.660 20.350 53.981 21.505 60.798 

100 TSDT 32.042 36.332 20.502 54.993 21.666 62.022 
FSDT 32.040 36.333 20.494 55.001 21.658 62.032 

CLPT 32.220 36.563 20.543 55.350 21.709 62.455 

11.5 Levy Solutions of Cross-Ply Laminates 
11.5.1 Preliminary Comments 

The Levy type solutions for bending, natural vibration, and buckling of rectangular 
laminates of cross-ply constructions have been developed for the third-order theory 
of Reddy (see [34,41,42,44,48,50-52]). Here we present the solutions for static 
bending of cross-ply laminates (see Khdeir and Reddy [50,51]). For additional 
results, the reader may consult references at the end of the chapter. For the static 
case, the governing equations appropriate for the antisymmetric cross-ply laminate 
construction are given by 

[L]{~} = {F} (11.5.1) 

where 
(l1.5.2a) 
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Figure 11.4.11: Critical buckling load [N = Ncr (a2 j E2h3
)] versus side-to-thickness 

ratio for antisymmetric cross-ply (Oj90)n (n = 1,3) square 
laminates subjected to uniaxial compressive load (Material 2). 

and 

L11 = A11dr + A66d~, L12 = (A12 + A66)d1d2 

L 13 = -cdE11 dr + (E12 + 2E66)dld~] 
L14 = B11dr + 1366d~, L 15 = (13 12 + B66) d1d2 

L22 = A66dr + A22d~, L 23 = -cl[E22d~ + (E12 + 2E66 )drd2] 
A 2 A 2 

L24 = L 15 , L 25 = B22d2 + B66dl 

L33 = -A55d1 - A44d2 + cl H ll d1 + (2H12 + 4H66)d1d2 + H22d2 
- 2 - 2 2 [ 4 2 2 4] 

L34 = (C2D55 - A55) d1 - Cl [Flldr + (F12 + 2F66) d1d~] 

L35 = (c2D44 - A44) d2 - Cl [F22d~ + (F12 + 2F66) drd2] 
- - 2 - 2 --

L44 = -A55 + D11d1 + D66d2' L45 = (D12 + D66) d1d2 
- - 2 - 2 

L55 = -A44 + D 22 d2 + D66dl (l1.5.2b) 

di = _8
i 

- ,Xl = X and X2 = Y 
a 8x i 

a 
(11.5.3) 
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11.5.2 Solution Procedure 

A generalized Levy type solution, in conjunction with the state-space concept can be 
used to determine bending solutions of cross-ply laminated rectangular plates with 
two parallel edges simply supported and other two having arbitrary combination of 
boundary conditions. Suppose that the edges y = 0, b are simply supported, while 
the remaining ones (x = ±a/2) may have arbitrary combinations of free, clamped, 
and simply supported edge conditions (see Figure 11.5.1). 

The generalized displacements may be expressed as products of undetermined 
functions and known trigonometric functions so as to identically satisfy the simply 
supported boundary conditions at y = 0, b: 

Uo = Wo = ¢x = N yy = .A1yy = P yy = 0 

A sinusoidal distribution of the transverse load is considered 

1TX 
q(x, y) = go cos

a 

. 1Ty 
sm-

b 

The displacement quantities are represented as 

1 
uo(X, y)) 1 Urn (x) sinf3y ) 
vo(X,y) Vm(x)coSPY 
wo(X, y) = Wrn(X) s~nf3y 
¢x(X, y) Xm(X) smpy 
¢y(X, y) Y,-n(X) cos f3y 

where f3 = m1T lb. 

88-1 Y 

T 
- - --

aty=O andy=b 

88-1: uo=wo=<Px=O 
b 

1 
Nyy =Myy =0 

- -- ·x 
a/2 -I- a/2 --t 
88-1 

(11.5.4) 

(11.5.5) 

(11.5.6) 

Figure 11.5.1: The coordinate system (-a/2 -:; x -:; a/2, 0 -:; y -:; b) and 
boundary conditions used on the simply supported edges for the 
Levy solutions of rectangular cross-ply laminates using the third
order shear deformation theory. 
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Substitution of (11.5.6) into Eqs. (11.5.1) results in the following five differential 
equations: 

~=~~+~~+~~+~~+~~+~~+ff~~ 
V~ = C7U:n + C8Vm + C9Wm + ClOW~ + CllX:n + C12Ym + if cos ax 

W;::" = C13 U:n + C14Vm + C15W m + C16W~ + C17X:n + C18Ym + iT cos ax 

X~ = C19Um + C20V~ + C21 W:n + C22W;::, + C23 X m + C24Y~ + iT sin ax 

Y/:" = C25 U:n + C26Vm + C27W m + C2SW~ + C29 X:n + C30Ym + if cos ax 
(11.5.7) 

where primes denote the derivative with respect to x, and the coefficients Ci are 
defined by 

where 

C1 = (e7 e30 - e3e34)/eo, C2 = (e2 e30 - e3e29)/eo 

C3 = (e6 e30 - e3 e33)/eo, C4 = (e5 e30 - e3 e32)/eo 

C5 = (ese30 - e3 e35)/eo, C6 = (e4 e30 - e3e3J)/eo 

C7 = (eg e39 - e12e36)/Co, C8 = (e14 e39 - e12e41)/CO 

C9 = (e16 e39 - e12e43)/Co, ClO = (e13 e39 - e12 e40)/CO 

Cll = (elle39 - e12 e38)/Co C12 = (e15 e39 - e12 e42)/Co 

C19 = (e1 e34 - e7e2s)/eo, C20 = (e1 e29 - e2e28)/eo 

C21 = (e1 e33 - e6 e2s)/eo, C22 = (e1 e32 - e5e28)/eo 

C23 = (e1 e35 - e8e28)/eo, C24 = (e1 e31 - e4 e28)/eo 

C25 = (elO e36 - eg e37)/Co, C26 = (elO e41 - e14e37)/CO 

C27 = (elO e43 - e16 e37)/Co, C28 = (elOe40 - e13e37)/Co 

C29 = (elO e38 - elle37)/Co, C30 = (elO e42 - e15e37)/Co 

C13 = ao(C1 e21 + C7a1 + C25a2 + C1ge23 + e26) 

C14 = ao(C8a1 + C26a2 + e27), C15 = ao(C9a1 + C27a2 + e20) 

C16 = ao(e18 + C3e21 + C21 e23 + ClOa1 + C28a2) 

C17 = ao(e17 + C5e21 + C23 e23 + Cll a1 + C29a2) 

C18 = ao(e19 + C12a1 + C30a2), eo = e3e28 - e1 e:30 

Co = e12 e37 - elO e39, ao = -1/ (C4 e21 + C22e23 + e25) 

a1 = C2e21 + C20e23 + e22, a2 = C6e21 + C24e23 + e24 

e1 = All, e2 = -,6(A12 + A 66 ), e3 = Bll 

e4 = -,6 (13 12 + 1366 ), e5 = -C1 E ll 

e6 = ,62C1 (E12 + 2E66 ), e7 = _,62 A66 
2 A 

es = -,6 B 66 , e9 = -e2, elO = A 66 , ell = -e4 
A 2 

e12 = B66 , e13 = -c1,6(E12 + 2E66 ) , e14 = -,6 A22 
2 A 3 

e15 = -,6 B 22 , e16 = C1,6 E22 

(11.5.8) 
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- 2(' ') - 22 e17 = A55 - cd3 Fl2 + 2F66 , elS = A55 + 2cd3 (H12 + 2H66 ) 
- 3' 2- 24 

e19 = -,6A44 + Cl,6 F22) e20 = -,6 A44 - cl,6 H22 

c21 = -e5, c22 = e13, c23 = Cd~'ll' e24 = -cd3 (F12 + 2F66) , 

C25 = -ci H ll , e26 = -e6, e27 = e16, e2S = e3, e29 = e4 

e30 = Dll , e31 = - {3 (D12 + D66) 
- 2 -

e33 = -e17, e34 = e8, e35 = -A55 - {3 D66 

e37 = e12, e38 = -e31, e39 = D66 

(11.5.9) 

The stiffnesses with bars and hats are defined in Eq. (11.4.9). The coefficients iT 
are associated with thermal effects 

T (e30 e3 ) fT _ (e12 e39 ) fl = -91 - - 94 , 2 - -95 - -92 
eo eO Co Co 

T (e1 e28) T (e37 elO) f4 = -94 - -gl , f5 = -g2 - -g5 
eo eo Co Co 

fl = ao [ad! + a2fl + a (e2dT + e23fJ) - g3 + qo] (11.5.10a) 

( 
1 - 1 -) ( 2 - 2-) gl = a NrnnTo + MrnnTI , g2 = (3 NrnnTo + J\;lrnnTI 

(11.5.10b) 

In order to reduce the system of equations (11.5.7) to a state-space form, the 
components of the state vector Z(x) are defined as follows: 

ZI = Urn, Z2 = U:n , Z3 = Vrn , Z4 = V~" Z5 = Wrn , Z6 = W~, Z7 = W~! 
(11.5.11) 

Using the definitions (11.5.11), the systems of equations (11.5.7) may be converted 
to the first-order differential operator form 

Z' = AZ+r (11.5.12a) 

where the matrix [A] is a 12 x 12 matrix 

0 1 0 0 0 0 0 0 0 0 0 0 
C1 0 0 C2 0 C3 0 C4 C5 0 0 Cfj 
0 0 0 1 0 0 0 0 0 0 0 0 
0 C7 Cs 0 C9 0 ClO 0 0 Cll C12 0 
0 0 0 0 0 1 0 0 0 0 0 0 

[A] = 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 
0 C 13 C14 0 Cl.~ 0 C16 0 0 C17 C18 0 
0 0 0 0 0 0 0 0 0 1 0 0 

C19 0 0 C20 0 C21 0 C22 C23 0 0 C24 
0 0 0 0 0 0 0 0 0 0 0 1 
0 C25 C26 0 C27 0 C28 0 0 C29 030 0 

(l1.5.12b) 
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and the load vector r is 

{r} = {O, iT sin ax, 0, ii cos ax, 0, 0, 0, iT cos ax, 0, iT sin ax, 0, If cos ax}T 
(11.5.13) 

The solution to Eq. (11.5.12a) is given by 

Z = eAX{K + jX e-A(r(() dO 
-a/2 

(11.5.14) 

Here K is a column vector of constants to be determined from the edge conditions, 
and 

(11.5.15) 

where n = 12, .Ai denote the distinct eigenvalues of [AJ, and [Sj denotes the matrix 
of eigenvectors of [AJ. 

The boundary conditions for simply supported (8), clamped (C), and free (F) at 
the edges x = ±a/2 are 

S: 

C: 

F: 

(11.5.16) 

(11.5.17) 

(11.5.18) 

where the stress resultants Pa(3 and Ra of the third-order theory are defined in Eq. 
(11.2.14). 

11.5.3 Numerical Results 

The nondimensionalized center transverse deflections and stresses of two-layer and 
ten-layer cross-ply laminates under sinusoidally distributed transverse load are 
presented in Table 11.5.1 for various boundary conditions and side-to-thickness ratio 
of a/h = 5. The nondimensionalized variables used are 

(11.5.19) 

For the thick plates considered in this case, there is a significant difference between 
the results predicted by TSDT and FSDT; FSDT slightly overpredicts deflections 
and underpredicts stresses. 
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Table 11.5.1: N ondimensionalized deflections and stresses of antisymmetric 
cross-ply square plates for various boundary conditions (alh 
5, Ell E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, V12 = 0.25). 

No. of Theory Variable SS SC CC FF FS FC 
Layers 

2 TSDT ill l.667 l.333 1.088 2.624 2.211 1.733 
CT;c:r 8.385 6.816 5.679 3.171 5.349 3.727 
(j yy 8.385 6.725 5.505 13.551 1l.324 8.919 
Oyz 3.155 2.543 2.095 4.457 3.89:3 3.048 

FSDT fjj 1.758 1.477 l.257 2.777 2.335 l.897 
o-x:r 7.157 5.338 :3.911 2.469 4.430 2.4:34 
ayy 7.157 6.034 5.153 11.907 9.848 8.047 
ayz 2.729 2.297 1.958 3.901 3.390 2.748 

CLPT w 1.064 0.664 0.429 l.777 l.471 0.980 
o-,£:1: 7.157 5.660 4.800 2.403 4.442 3.042 

allY 7.157 4.483 2.914 11.849 9.837 6.560 

10 TSDT iii 1.129 1.001 0.879 1.651 1.450 1.214 
a;.r;x 6.340 5.196 4.025 2.482 3.946 2.608 
ay '!) 6.340 5.635 4.963 9.454 8.252 6.934 
ayz 3.362 2.974 2.601 4.784 4.234 3.5:35 

FSDT 1ll 1.137 1.045 0.945 1.663 1.460 1.258 
ij xx 5.009 3.707 2.275 l.712 2.957 1.343 
Ciyy 5.009 4.628 4.212 7.583 6.590 5.706 
ayz 2.729 2.498 2.248 ;3.88:3 3.437 2.951 

CLPT 'Ill 0.442 0.266 0.167 0.665 0.579 (U80 
ij ;J;;C 5.009 3.829 3.167 1.725 2.986 l.865 
ayy 5.009 3.025 1.911 7.480 6.5:n 4.284 

Tables 11.5.2 and 11.5.3 contain deflections and stresses in cross-ply laminates 
subjected to a sinusoidally distributed temperature field (see [50]) 

T(x,y,z) = z1\coso:xsinj3y (11.5.20) 

The following nondimensionalized variables are used: 

The difference between the results obtained with TSDT and FSDT is insignificant 
for side-to-thickness ratios greater than 5. 

Additional numerical results based on the Levy solution technique for TSDT are 
presented along with the finite element results in Section 11.6.3. For additional 
results the reader may consult the references at the end of the chapter. In the next 
section we develop the displacement finite element model of the Reddy third-order 
theory. 
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Table 11.5.2: Nondimensionalized center deflections ill of cross-ply square plates 
subjected to sinusoidally distributed temperature distribution. 

Laminate b/h Theory SS SC CC 

0 5 TSDT 1.0711 0.7175 0.3663 
FSDT 1.0721 0.7613 0.3915 
CLPT 1.0312 0.4543 0.2443 

10 TSDT 1.0439 0.5587 0.2871 
FSDT 1.0440 0.5677 0.2912 
CLPT 1.0312 0.4543 0.2443 

0/90 5 TSDT 1.1430 0.8190 0.5814 
FSDT 1.1504 0.8547 0.6231 
CLPT l.lfi04 0.7183 0.4681 

10 TSDT 1.1485 0.7586 0.5164 
FSDT 1.1504 0.7703 0.5307 
CLPT 1.1504 0.7183 0.4681 

0/90/0 5 TSDT 1.0874 0.8032 0.4556 
FSDT 1.0763 0.8155 0.4578 
CLPT 1.0312 0.4635 0.2512 

10 TSDT 1.0499 0.6142 0.3275 
FSDT 1.0460 0.6037 0.3211 
CLPT 1.0312 0.4635 0.2512 

0/90/ ... 5 TSDT 1.0336 0.7993 0.5623 
10 layers FSDT 1.0331 0.8191 0.5847 

CLPT 1.0331 0.6222 0.3914 

10 TSDT 1.0333 0.7101 0.4880 
FSDT 1.0331 0.7157 0.4949 
CLPT 1.0331 0.6222 0.3914 

11.6 Finite Element Model of Plates 
11.6.1 Introduction 

FF FS 

2.2812 1.5831 
2.2894 1.5859 
2.2935 1.6067 

2.2854 1.5931 
2.2928 1.5952 
2.2935 1.6067 

1.2652 1.2068 
1.2784 1.2170 
1.2639 1.2152 

1.2693 1.2145 
1.2736 1.2176 
1.2639 1.2152 

1.6687 1.3805 
1.6597 1.3698 
1.6645 1.3800 

1.6632 1.3757 
1.6640 1.3737 
1.6645 1.3800 

1.0733 1.0549 
1.0736 1.0549 
1.0681 1.0546 

1.0718 1.0556 
1.0722 1.0558 
1.0681 1.0546 

Recall from Eq. (11.2.24) that the primary variables of the third-order 
theory developed in Section 11.2 are (un,us,WO,WO,n = ow%n, cPn, cPs), where 
(un, us) denote in-plane normal and tangential displacements, and (cPn, cPs) are 
the rotations of a transverse line about the in-plane normal and tangent. A 
displacement finite element model based on Eqs. (11.2.16) through (11.2.20), 
with (uo, vo, wo, WO,n, cPx, cPy) as the primary variables, is called a displacement 
finite element model (see Phan and Reddy [30]), and it requires the Lagrange 
interpolation of (uo, vo, cPx, cPy) and Hermite interpolation of Wo. A conforming 
element will have eight degrees of freedom ( uo, vo, wo, wO,x, WO,y, WO,xy, cPx, cPy) 
whereas a nonconforming element will have (uo, Vo, wo, wO,x, WO,y, cPx, cPy) seven 
degrees of freedom per node. 



THIRD-ORDER THEORY OF LAMINATED COMPOSITE PLATES AND SHELLS 707 

Table 11.5.3: Nondimensionalized thermal stresses of cross-ply square plates 
subjected to sinusoidally distributed temperature. 

Stress Laminate b/h Theory SS SC CC FF FS FC 

axx 0/90/0 5 TSDT 0.1154 5.9126 14.6976 1.1490 0.6671 3.8065 
FSDT 0.4072 6.8460 15.6783 1.0220 0.7501 4.5545 
CLPT 0.0526 11.1264 15.2675 1.4489 0.8217 6.4107 

10 TSDT 0.0372 4.4944 7.5416 0.6291 0.3648 2.6993 
FSDT 0.0847 4.7320 7.7020 0.6103 0.3782 2.8579 
CLPT 0.0263 5.5632 7.6338 0.7245 0.4109 3.2052 

ayy 0/90 5 TSDT -0.5846 2.6319 5.0886 -1.8754 -1.2598 2.6457 
FSDT -0.6148 1.7502 3.6323 -1.7733 -1.2190 1.7814 
CLPT -0.6148 5.1916 8.8393 -2.1091 -1.4684 4.9149 

10 TSDT -0.3036 2.0911 3.6908 -1.0526 -0.7131 2.0023 
FSDT -0.3074 1.8991 3.3902 -1.0399 -0.7075 1.8168 
CLPT -0.3074 2.5958 4.4197 -1.0545 -0.7342 2.4575 

a-yz 0 5 TSDT 0.1109 0.1981 0.2909 -0.0332 0.0499 0.2332 
FSDT 0.0740 0.1279 0.1921 -0.0229 0.0331 0.1515 

10 TSDT 0.0347 0.0702 0.0903 -0.0085 0.0157 0.0784 
FSDT 0.0231 0.0466 0.060l -0.0058 0.0104 0.0520 

Alternatively, one can develop mixed finite element models of Eqs. (11.2.16)
(11.2.20), in which both generalized displacements and stress resultants become the 
nodal variables and require only Lagrange interpolation of all variables (see Reddy 
and his colleagues [58-61]). The number of primary degrees of freedom per node 
vary from eight to eleven depending on the formulation. The CO displacement finite 
element models of third-order theories can be found in the work of Pandya and Kant 
[61]. 

Here we present a displacement finite element model of the third-order theory in 
Eqs. (11.2.16)-(11.2.20). In view of the detailed discussion of finite element models 
of the classical and first-order theories presented in Chapter 10, only the salient 
features of the model are discussed here. 

11.6.2 Finite Element Model 

The Hamilton's principle or the dynamic version of the principle of virtual 
displacements [or a weak form of Eqs. (11.2.16)-(11.2.20)] of a typical plate finite 
element is given by 

0= r {NxxOuo,x + Nr;y (oUO,y + ovo,x) + Nyyovo,y + (Qx - C2Rx) owo.x }Ilc 
+ (Qy - c2Ry) oWO,y - Cl (Pxowo,xx + PyoWO,yy + 2Pxyowo,xy) - qOwo 

+ (Qx - c2Rx) o¢x + (Mx - c1Px) o¢x,x + (Mxy - CIP.ry) o¢x,y 

+ (Qy - c2Ry) o¢y + (Ma;y - c1Pxy ) oCPy,x + (Myy - c1Py) o¢y,y 

+ (louo + h¢x - clh1iio,x) Duo + (Ioijo + J1¢y - clhwo,y) oVo 
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+ (J1 Uo + K2¢x - Cd4WO,x) DcPx + (J1 VO + K 2¢y - Cd4WO,y) DcPy + IowoDwo 

+ C1 ( -huo - J4¢x + c1hwo,x) bwo,x + C1 ( -huo - J4¢y + c1hwo,y) bWO,y 

+ (Nxxwo,x + Nxywo,y) bWo,x + (Nxywo,x + NyywO,y) bWO,y}dxdy 

- j (NnbUn + NnxbUns ) ds - j (VnbWo + PnnbwO,n) ds Ire Ire 
- j (MnbcPn + MnsbcPns) ds (11.6.1) Ire 

where a comma followed by x or y denotes differentiation with respect to the 
coordinates, the superposed dot denotes differentiation with respect to time, and 

(i = 0, 1,2, ... ,6) (11.6.2) 

4 4 
C1 = 3h2 ' C2 = h2 ' Ji = Ii - C1 Ii+2, K2 = h - 2C1I4 + CIh (11.6.3) 

The resultants N a {3, M a {3, and so on are defined in Eq. (11.2.14), and they are known 
in terms of the generalized displacements through relations (11.2.28), (11.2.29) and 
(11.2.7); Na{3 are specified in-plane forces in the stability analysis. 

The generalized displacements are approximated over an element oe by the 
expressions 

m 

uo(x, y, t) = L uf(t)'l/Jf(x, y) 
i=l 
rn 

vo(x, y, t) = L vf(t)'l/J',f(x, y) 
i=l 
m 

Wo(x, y, t) = L ~f(t)<p',f(x, y) (11.6.4) 
i=l 
m 

cPx(x, y, t) = L Xf(t)'l/J',f(x, y) 
i=l 
m 

cPy(x, y, t) = L Yie(t)'l/Jf(x, y) 
i=l 

where 'l/Ji denote the Lagrange interpolation functions and <pi are the Hermite 
interpolation functions. Here we chose the same approximation for the in-plane 
displacements (uo, va) and rotations (cPx, cPy), although one could use different 
approximations for these two pairs. 

Substitution of Eq. (11.6.4) into the weak form (11.6.1) yields the finite element 
model 

[Kll] 
[K12]T 
[K 13 ]T 
[K 14f 
[K 15 ]T 

[K12] 
[K22] 
[K2:~]T 

[K24]T 
[K25 ]T 

[K13] 
[K23] 
[K33 ] 

[K34 ]T 
[K35]T 

[K14] 
[K24] 
[K34] 
[K44] 

[K45 ]T 

[K 15
] 

[K 25
] 

[K35 ] 

[K45
] 

[K 55 ] 
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[Mll] [0] [M13] [M14] [0] rue} ) [0] [M22] [M23] [0] [M 25 ] {vel 

+ [M 13 ]T [M23]T [M33] [M34] [M35] {Lie} 
[M14]T [0] [M34 ]T [M44] [0] {XC} 

[0] [M 25 ]T [M35 ]T [0] [M55 ] {ye} 

[0] [0] [0] [0] [0] r"'}) rF1

}) 
[0] [0] [0] [0] [0] {ve} {F2} 

+ [0] [0] [G] [0] [0] {lle} = {F3} (11.6.5) 
[0] [0] [0] [0] [0] {xe} {F4} 
[0] [0] [0] [0] [0] {ye} {F5} 

or, in compact form, we can write 

5 n(3 

L L (Ka(3 ll{3 + M al3 ii(3 + Sa(3 ll(3) - Fa = a 
lJ J 7J J 7J J 7 , i = 1,2, ... , na (11.6.6) 

{:J=l j=l 

where cy = 1,2,3,4,5; n1 = n2 = n4 = n5 = 4 and n3 = 16 for the conforming 
element. The nodal values ll~ are defined by 

(11.6.7) 

and the nonzero stiffness, mass, and geometric stiffness coefficients are defined by 

(11.6.8) 

MN = 10S~, MiY = 0, MiY = -c1hSfl, Mi~4 = J1Sfj , MH = a 
M 22 - 1 SO M23 - 1 soy M24 - a ~125 - J SO ij - 0 ij' ij - -C1 3ij' ij - , 1~ ij - 1 ij 

M 33 - 1 Sl 21 (sxx syy) M 34 - J Sox M:~5 J soy ij - 0 ij + C1 6 ij + ij' ij - -C1 4 ji' ij = -C1' 4 ji 

Mi~4 = K2Sfj, Mi~5 = 0, Mi~5 = K2Sfj (11.6.9) 

S33 G N sxx + N (SXy + syx) + N SYY ij = ij = xx ij xy ij ij YY ij 

Fl = .i, (Nxxnx + Nxyny) 7/Ji ds, F? = .ie (Nxynx + Nyyny) 7/Ji ds 

Fi4 = 1 (Mxxnx + Mxyny) 7/Ji ds, FP = 1 (Mxynx + Myyny) 7/Ji ds Ire Ire 
3 /" 1 (- a'Pi) Fi = Joe q'Pi dxdy + Ire Vn'Pi + Pnn an ds (11.6.10) 
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sOy = r 7/Ji 8"'i dxdy 
Z] ifle 8y 

S yy -1 8"'i 8"'j d d .. - x y 
Z] fle 8y 8y 

(11.6.11) 

In addition, we have 

(11.6.12) 
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(11.6.13) 

Fi = j. 'l/JiNn ds, F? = j 'l/JiNns ds Jr' Jre 
Fi4 = j 'l/JiMn ds, Fi5 = j 'l/JiMns ds 

~e ~. 

Fl = r q!.pi dxdy + j !.piQn ds In- ~. 
(11.6.14) 

In obtaining the numerical results presented in the next section, we used linear 
interpolation of (uo, Vo, wo, (PI, cP2) as well as the geometry 

n n 

X = L Xj'l/Jj, y = L Yj'l/Jj (11.6.15) 
j=1 j=1 

and Hermite cubic interpolation of woo In the case of the conforming element, the 
four nodal values associated with Wo are 

- ~2 = awo . - awo - a2wo 
~1 = WO, UX . ~3 = uy , ~4 = 8x8y (11.6.16) 

For the nonconforming element, the cross derivative is omitted. The conforming 
rectangular element with linear interpolation of the in-plane displacements and 
rotations has eight degrees of freedom per node. The corresponding nonconforming 
element has seven degrees of freedom per node. 
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11.6.3 Numerical Results 

For the purpose of comparison, the following lamina properties, typical of graphite
epoxy material, are used in all numerical examples presented here: 

Material 1: El = 25E2, G 12 = G 13 = 0.5E2, G23 = 0.2E2, V12 = 0.25 (l1.6.17a) 

Material 2: El = 40E2, G 12 = G13 = 0.6E2, G23 = 0.5E2, V12 = 0.25 (11.6.17b) 

The shear correction coefficients for the first-order theory are taken to be 5/6. The 
loading, in all cases, is assumed to be sinusoidal (see Figure 11.5.1 for the geometry 
and coordinate system): 

'TrX . 'Try 
q(x,y) = qocos~smb (11.6.18) 

The notation SC, for example, refers to the simply supported boundary condition 
on edge x = -a/2 and clamped boundary condition on edge x = a/2, while the 
other two edges (i.e., y = 0, b), in all cases, are simply supported. 

Bending Results 

The results for deflections and stresses are presented in tables using the following 
nondimensional form (see [51]): 

(11.6.19) 

where h is the total thickness of the laminate. 
Tables 11.6.1 through 11.6.4 contain numerical values of deflections and stresses 

obtained by the Levy or the Navier method, and the finite element model (Table 
11.6.4 does not include the FEM results). The reduced integration rule is used to 
evaluate the shear stiffness coefficients. Quarter-plate models with 2 x 2 mesh are 
used for SS, CC, and FF boundary conditions, and half-plate models with 4 x 2 
mesh are used for all other boundary conditions. The finite element results are in 
good agreement with the analytical solutions. 

Natural Vibration and Buckling Results 

Tables 11.6.5 and 11.6.6 contain nondimensionalized fundamental frequencies and 
critical buckling loads, respectively, of antisymmetric cross-ply square laminates for 
various boundary conditions. Both the Levy and finite element results are presented 
in the tables. A 2 x 2 mesh of nine-node quadratic elements is used in FSDT and a 
4 x 4 mesh of conforming elements is used in TSDT. The rotary inertia is accounted 
for in the vibration analysis. The first-order theory underpredicts fundamental 
frequencies and critical buckling loads when compared to the third-order theory. 
Table 11.6.7 contains natural frequencies of a two-layer (0/90) cantilever plate as 
predicted by various theories. Figures 11.6.1 and 11.6.2 contain a comparison of the 
finite element (FEM) results with the closed-form solutions (CFS) for antisymmetric 
angle-ply plates. 
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Table 11.6.1: Nondimensionalized center deflection (w) of antisymmetric cross
ply square plates with various boundary conditions. 

N b/h 

5 

2 

10 

5 

10 

10 

Theory Solution SS 

TSDTa Exact 
FEM 

FSDTb Exact 
FEM 

CLPT(' Exact 
FEM 

TSDT Exact 
FEM 

FSDT Exact 
FEM 

CLPT Exact 
FEM 

TSDT Exact 
FEM 

FSDT Exact 
FEM 

CLPT Exact 
FEM 

TSDT Exact 
FEM 

FSDT Exact 
FEl'vI 

CLPT Exact 
FEM 

1.667 
1.667 

1.758 
1.759 

1.064 
1.043 

1.216 
1.214 

1.237 
1.238 

1.064 
1.043 

1.129 
1.135 

1.137 
1.137 

0.442 
0.444 

0.616 
0.619 

0.615 
0.616 

0.442 
0.444 

SC 

1.333 
1.317 

1.477 
1.478 

0.664 
0.648 

0.848 
0.838 

0.883 
0.883 

0.664 
0.648 

1.001 
0.995 

1.045 
1.045 

0.266 
0.266 

0.473 
0.471 

0.480 
0.480 

0.266 
0.266 

CC 

1.088 
1.068 

1.257 
1.257 

0.429 
0.417 

0.617 
0.605 

0.656 
0.657 

0.429 
0.417 

0.879 
0.869 

0.945 
0.945 

0.167 
0.169 

0.375 
0.372 

0.385 
0.386 

0.167 
0.169 

FF 

2.624 
2.647 

2.777 
2.776 

1.777 
1.786 

1.992 
2.002 

2.028 
2.027 

1.777 
1.786 

1.651 
1.670 

1.663 
1.662 

0.665 
0.686 

0.916 
0.926 

0.915 
0.914 

0.665 
0.686 

FS 

2.211 
2.221 

2.335 
2.334 

1.471 
1.465 

1.658 
1.662 

1.687 
1.687 

1.471 
1.465 

1.450 
1.461 

1.460 
1.460 

0.579 
0.59:3 

0.801 
0.808 

0.800 
0.800 

0 .. 579 
0.593 

FC 

1.733 
1.728 

1.897 
1.897 

0.980 
0.977 

1.184 
1.180 

1.223 
1.223 

0.980 
0.977 

1.214 
1.214 

1.258 
1.258 

0.380 
0.391 

0.607 
0.609 

0.612 
0.612 

0.380 
0.:391 

a Finite element results are obtained using meshes of quadrilateral elements with linear interpolation 
of (uo, Va, CPx, cPy) and Hermite cubic interpolation of Wo. 
b Finite element results are obtained using meshes of nine-node quadrilateral elements with equal 
interpolation of (uo, Va, wo, CPx, cPy)· 
C Finite element results are obtained using meshes of quadrilateral elements with linear interpolation 
of (uo, va) and Hermite cubic interpolation of woo 

y y 6 y 

}'- a 
v w dWI) dWo a2wo 

14). 0' OJ t/J", (A 'Tx""' -a.Y' i-hCb' 

;.4-- a --,-4 __ ...,~.,./ 2 

uu,vo,wo,f/J,,(A 

a 

uo,uo,wo• awo , dWo, a2wo 
ax ;ry ax;ry 
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Table 11.6.2: N ondimensionalized axial stress (0-xx) of antisymmetric cross-ply 
square plates with various boundary conditions (see the foot notes 
of Table 11.6.1). 

N b/h Theory Solution SS SC CC FF FS FC 

TSDT Exact 8.385 6.816 5.679 3.171 5.349 3.727 
FEM 7.669 6.732 5.060 2.722 5.231 3.544 

5 FSDT Exact 7.157 5.338 3.911 2.469 4.430 2.434 
FEM 6.948 5.465 3.707 2.359 4.479 2.542 

CLPT Exact 7.157 5.660 4.800 2.403 4.442 3.042 
FEM 6.659 5.782 4.348 2.034 4.288 2.991 

2 
TSDT Exact 7.468 5.910 4.952 2.624 4.669 3.158 

FEM 6.829 5.914 4.346 2.212 4.537 3.054 

10 FSDT Exact 7.157 5.494 4.450 2.442 4.435 2.790 
FEM 6.948 5.668 4.222 2.331 4.491 2.895 

CLPT Exact 7.157 5.660 4.800 2.403 4.442 3.042 
FEM 6.659 5.782 4.348 2.034 4.288 2.991 

TSDT Exact 6.340 5.196 4.025 2.482 3.946 2.608 
FEM 5.762 5.047 3.584 2.124 3.855 2.420 

5 FSDT Exact 5.009 3.707 2.275 1.712 2.957 1.343 
FEM 4.864 3.755 2.154 1.639 2.993 1.427 

CLPT Exact 5.009 3.829 3.167 1.725 2.986 1.865 
FEM 4.611 3.911 2.798 1.324 2.806 1.700 

10 
TSDT Exact 5.346 4.066 3.193 1.924 3.221 1.954 

FEM 4.842 4.030 2.770 1.597 3.102 1.839 

FSDT Exact 5.009 3.642 2.692 1.723 2.968 1.594 
10 FEM 4.863 3.754 2.550 1.648 3.010 1.674 

CPT Exact 5.009 3.829 3.167 1.725 2.986 1.865 
FEM 4.611 3.911 2.798 1.324 2.806 1.700 

11.6.4 Closure 

We close this section with a few comments on the third-order plate theory. The 
main merit of the third-order plate theory is that the transverse shear stress 
distributions are accurately represented through the laminate thickness and thus 
no shear correction factors are required. However, the accuracy gained over the 
FSDT in predicting the displacements, buckling loads and fundamental frequencies 
is not significant. For additional numerical results, one may consult [33-52,63-66]. 
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Table 11.6.3: N ondimensionalized axial stress (a yy) of antisymmetric cross-ply 
square plates with various boundary conditions. 

N b/h Theory Solution SS SC CC FF FS FC 

TSDT Exact 8.385 6.725 ,').,')05 13.,')51 11.324 8.919 
FEM 7.669 6.285 4.886 13.142 10.182 9.215 

5 FSDT Exact 7.157 6.034 5.153 11.907 9.848 8.047 
FEM 6.948 5.914 4.990 11.675 9.140 8.367 

CLPT Exact 7.157 4.483 2.914 11.849 9.837 6.560 
FEM 6.659 4.393 2.615 11.614 8.878 7.181 

2 TSDT Exact 7.468 5.219 3.803 12.295 10.218 7.314 
FEM 6.829 4.932 3.345 11.890 9.138 7.725 

10 FSDT Exact 7.157 5.109 3.799 11.884 9.847 7.150 
FEM 6.948 5.082 3.661 11.654 9.1201 7.610 

CLPT Exact 7.157 4.483 2.914 11.849 9.837 6.560 
FEM 6.659 4.393 2.615 11.614 8.878 7.181 

TSDT Exact 6.340 5.635 4.963 9.454 8.252 6.934 
FEM 5.762 5.209 4.410 9.113 7.424 6.994 

5 FSDT Exact 5.009 4.628 4.212 7.583 6.590 5.706 
FEM 4.864 4.511 4.086 7.429 6.141 5.844 

CLPT Exact 5.009 3.025 1.911 7.480 6.531 4.284 
FEM 4.611 2.942 1.694 7.395 5.935 4.782 

10 TSDT Exact 5.346 4.110 3.260 8.005 6.987 5.299 
FEM 4.842 3.817 2.871 7.708 6.246 5.483 

10 FSDT Exact 5.009 3.904 3.135 7.533 6.566 5.029 
FEM 4.863 3.852 3.031 7.384 6.097 5.279 

CLPT Exact 5.009 3.025 1.911 7.480 6.531 4.284 
FEM 4.611 2.942 1.694 7.395 5.935 4.782 

Table 11.6.4: N ondimensionalized transverse shear (a yz) of antisymmetric cross-
ply square plates with various boundary conditions. 

N b/h Theory Solution SS SC CC FF FS FC 

5 TSDT Exact 3.155 2.543 2.095 4.457 3.893 :3.048 
FSDT Exact 2.729 2.297 1.958 :t901 :3.:390 2.748 

2 
10 TSDT Exact 3.190 2.290 1.725 4.489 3.927 2.805 

FSDT Exact 2.729 1.993 1.523 3.882 3.383 2.449 

5 TSDT Exact 3.362 2.974 2.601 4.784 4.234 3.535 
FSDT Exact 2.729 2.498 2.248 3.883 3.437 2.951 

10 
10 TSDT Exact 3.408 2.622 2.083 4.814 4.275 3.225 

FSDT Exact 2.729 2.126 1.708 3.853 3.421 2.605 
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Table 11.6.5: Effect of side-to-thickness ratio on the dimensionless frequencies, 
w = w(b2 Ih)J pi E 2 , of antisymmetric cross-ply square plates 
(Material 2). 

N b/h Theory Solution FF FS FC SS SC CC 

2 5 TSDT Exact 6.128 6.387 6.836 9.087 10.393 11.890 
FEM 6.172 6.192 6.648 9.103 10.582 12.053 

FSDT Exact 5.952 6.213 6.638 8.833 9.822 10.897 
FEM 5.955 6.219 6.646 8.837 9.899 10.906 

CLPT Exact 7.124 7.450 8.041 10.721 13.627 17.741 
FEM 7.150 7.279 7.802 11.192 15.357 18.694 

10 TSDT Exact 6.943 7.277 7.810 10.568 12.870 15.709 
FEM 6.915 7.134 7.680 10.594 13.180 15.914 

FSDT Exact 6.881 7.215 7.741 10.473 12.610 15.152 
FEM 6.886 7.222 7.714 10.480 12.791 15.181 

CLPT Exact 7.267 7.636 8.228 11.154 14.223 18.543 
FEM 7.262 7.345 7.821 11.383 14.828 19.053 

10 5 TSDT Exact 8.155 8.288 8.966 11.673 12.514 13.568 
FEM 7.989 7.998 8.694 11.664 12.633 13.710 

FSDT Exact 8.139 8.264 8.919 11.644 12.197 12.923 
FEM 8.143 8.270 8.925 11.647 12.239 12.928 

CLPT Exact 11.459 11.815 13.618 12.167 23.348 30.855 
FEM 12.156 11.260 11.980 18.624 24.118 31.855 

10 TSDT Exact 10.893 11.074 11.863 15.771 18.175 20.831 
FEM 10.906 11.088 11.788 15.787 18.214 20.493 

FSDT Exact 10.900 11.079 11.862 15.779 18.044 20.471 
FEM 10.906 11.088 11.788 15.787 18.214 20.493 

CLPT Exact 12.680 12.906 13.779 18.492 23.971 31.709 
FEM 12.419 11.283 11.983 18.637 23.991 31.912 

Table 11.6.6: Effect of side-to-thickness ratio on the dimensionless critical 
buckling loads, N = NEy E~~3' of antisymmetric cross-ply square 
plates under uniaxial compression (Material 2). 

N b/h Theory Solution FF FS FC SS SC CC 

2 5 TSDT Exact 3.905 4.283 4.908 8.769 10.754 11.490 
FEM 3.979 4.375 5.022 8.985 11.241 12.318 

FSDT Exact 3.682 4.054 4.632 8.277 9.309 9.757 
FEM 3.719 4.094 4.667 8.328 9.650 9.949 

CLPT Exact 5.425 6.003 6.968 12.957 21.116 31.280 
FEM 5.616 6.292 7.203 14.520 23.869 37.106 

10 TSDT Exact 4.940 5.442 6.274 11.562 17.133 21.464 
FEM 5.090 5.621 6.487 12.011 18.257 24.262 

FSDT Exact 4.851 5.351 6.166 11.353 16.437 20.067 
FEM 4.916 5.420 6.234 11.485 18.338 21.916 

CLPT Exact 5.425 6.003 6.968 12.957 21.116 31.280 
FEM 5.616 6.292 7.203 14.520 23.869 37.106 

Table continued on the next page 
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Table continued from the J2revious J2age 

N b/h Theory Solution FF FS FC SS SC CC 

10 5 TSDT Exact 6.780 7.050 8.221 12.109 12.607 13.254 
FEM 6.802 7.089 8.278 12.224 12.800 13.659 

FSDT Exact 6.750 7.020 8.143 11.494 11.495 11.628 
FEM 6.791 7.064 8.174 11.172 11.181 11.216 

CLPT Exact 16.426 17.023 19.389 35.232 59.288 89.770 
FEM 16.457 17.141 19.422 36.384 60.406 90.8:3:3 

10 TSDT Exact 12.077 12.506 14.351 25.423 32.885 35.376 
FEM 12.248 12.699 14.568 25.828 33.662 36.657 

FSDT Exact 12.092 12.524 14.358 25.450 32.614 34.837 
FEM 12.226 12.661 14.480 25.647 33.970 36.129 

CLPT Exact 16.426 17.023 19.389 35.232 59.288 89.770 
FEM 16.457 17.141 19.422 36.384 60.406 90.833 

Table 11.6.7: Fundamental frequencies, w = w(b2 /h)J p/ E 2 , of a cantilever plate 

b/a 

1 
2 
3 

(0/90) as predicted by various theories (Material 2). 

CLPT FSDT TSDT 

b/h = 100 b/h = 10 b/h = 100 b/h = 10 b/h = 100 

2.6285 2.6250 2.6103 2.5334 2.6378 
10.5138 10.4588 10.4318 9.3501 10.5385 
23.6548 23.3775 23.4354 18.8491 23.6666 
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Figure 11.6.1: Nondimensionalized uniaxial critical buckling load versus side
to-thickness ratio for simply supported antisymmetric angle-ply 
(45/ - 45)n (n = 1,3) square plates (Material 2). 
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Figure 11.6.2: Nondimensionalized fundamental frequency versus side
to-thickness ratio for simply supported antisymmetric angle-ply 
(45/ - 45)n (n = 1,3) square plates (Material 2). 

11.7 Equations of Motion of the Third-Order Theory 
of Doubly-Curved Shells 

Here we present the governing equations of the third-order shell theory. The 
development is made brief by the fact that we have discussed the geometric and 
kinematic relations of shells in Chapter 8, and the kinematics of the third-order 
theory in Section 11.2. We will not present any numerical results of the theory, and 
the interested readers may consult [67-74]. 

We begin with the following displacement field (see Reddy and Liu [67]): 

U = Uo + (¢l - (3 3~2 (¢l + 00:0 ) 

v = vo + (¢2 - (3 3~2 (¢2 + 00:0) 

W =Wo (11.7.1) 

where (u, v, w) are the displacements along the orthogonal curvilinear coordinates 
such that the 6 and 6 curves are lines of principal curvature on the midsurface 
( = 0, (uo, vo, wo) are the displacements of a point on the middle surface, ¢l and 
¢2 are rotations at ( = 0 of normals to the midsurface with respect to the 6 and 
6 -axes, respectively, and (x, y) are the planeform coordinates. The parameters Rl 
and R2 denote the values of the principal radii of curvature of the middle surface. 
All displacement components (uo, vo, Wo, ¢l, ¢2) are functions of (x, y, t). 
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The strain-displacement relations of the third-order shell theory are 

(11.7.2) 

where 

1 ( awo uo) c5 = -Cl 1>1 + -- - -. ax Rl 
(11.7.3) 

and Cl = 4/h2 and C2 = cI/3. 
Using Hamilton's principle, the equations of motion of the third-order shell theory 

are obtained as 

aNxx aNxy Qx Cl (apxx apxy) J," J ;;.. I aiVo -- + -- + - + - -- + -- = Ouo + 1 'f/x - Cl 3--
ax ay R 1 R 1 ax ay ax 

(11.7.4) 

(11. 7. 7) 

(11.7.8) 

where q is the distributed transverse mechanical load, and all other quantities are the 
same as those defined in Eqs. (11.2.21)-(11.2.23). The displacement finite element 
model of these equations can be developed using the steps outlined in Section 9.4.2. 
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Problems 
11.1 Suppose that the displacements (u,v,w) along the three coordinate axes (x,y,z) in a 

laminated beam can be expressed as 

u(x, z) = uo(x) + z [co d;:ro + Cl¢(X)] + c2z21jJ(X) + c3 G) 3 (¢ + d;:ro) 

v(x,z) = 0 

w(x,z)=wo(x) (1) 

where (uo,wo) denote the displacements of a point (x,y,O) along the x and z directions, 
respectively, ¢ denotes the rotation of a transverse normal about the y-axis. Show that the 
nonzero linear strains are given by 

where 

Exx = E~<;l + ZE~~ + z2E~~ + z3E~~ 
IXZ = ,~~) + Zl~;) + z2,~~) (2a) 

(2b) 

11.2 (Continuation of Problem 11.1.) Use the principle of virtual displacements to derive the 
equations of equilibrium and the natural and essential boundary conditions associated with 
the displacement field of Exercise 1. In particular show that 

8uo: 

8¢ : 

8wo: 

and the boundary conditions involve specifying 

Nx 

C3 
c1Mx + h3PX 

C2 L x 

- d~ (coMx + ~~ Px) + (1 + co)Qx + ~: Sx 

where 

C3 
coMx + h3PX 

or 

or 

or 

or 

or 

(1) 

u 

¢ 

1jJ 

wo 

dwo 
dx 

(2) 

Qx = 10"xzdA, Rx = 1 O"xz Z dA, Sx = 10"xz z2 dA (4) 

Note that the displacement field of Problem 11.1, hence the equations of equilibrium (1), 
contain those of the classical (Euler-Bernoulli) beam theory (co = -1, cl = 0, c2 = 0, c3 = 
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0), the first-order (Timoshenko) beam theory (co = 0, C1 = 1, c2 = 0, c3 = 0), and the 
third-order (Reddy) beam theory (co = 0, Cl = 1, C2 = 0, C3 = -4h/3). 

11.3 (Continuation of Problems 11.1 and 11.2) Assume linear elastic constitutive behavior and 
show that the laminated beam's constitutive equations are given by 

where 

{ 

I'~~) } 
(1 ) 

'Yxz 
(2) 

'Yxz 

(All, Bll,Dll,Fll,Gll,Hll) = r E l (1,z,z2,z4,z5,zo) dA 
.fA 

(A55,B55,D55,E55,F55) = 1 G l :,(1,z,z2,z3,z4) dA 

(1) 

(2) 

(3) 

11.4 Show that for a general laminate composed of multiple isotropic layers, the laminate stiffnesses 
B 16 , B 26 , E 16 , E 26 , F 16 , and F26 are zero. 

11.5 Specialize the equations of Problem 11.2 to the case in which Co = 0, Cl = 1, c2 = ° and 
C3 = -4h/3, and express the equations in terms of the displacements. 

11.6 Simplify the equations of motion in Eqs. (11.2.16)-(11.2.20) to cylindrical bending of plate 
strips. 

11. 7 Specialize the equations of motion and boundary conditions of the third-order theory of 
Reddy (see Section 11.2.3) to static bending of beams. Discuss the consequence of neglecting 
the higher-order resultant Pxx (but not Rx) on the equations and boundary conditions. 

11.8 Develop the Navier solution of the third-order theory of laminated beams derived in Problem 
11.5. 
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Layerwise Theory and 
Variable Kinematic Models 

12.1 Introduction 
12.1.1 Motivation 

The analysis of fiber-reinforced, laminated composite structures presents the analyst 
with many challenges. Unlike their homogeneous isotropic counterparts, the 
heterogeneous anisotropic constitution of laminated composite structures often 
results in the appearance of many unique phenomena that can occur on vastly 
different geometric scales, i.e., at the global or laminate level, the ply level, 
or the fiber/matrix level. For example, the global deformation of laminated 
composite structures is often characterized by complex coupling between the 
extension, bending, and shearing modes. Further, due to their characteristically low 
transverse shear stiffness, composite laminates often exhibit significant transverse 
shear deformation at lower thickness-to-span ratios than do similar homogeneous 
isotropic plates and shells. At the ply level, laminated composites often exhibit 
transverse stress concentrations near material and geometric discontinuities (the so
called free edge effect) that can lead to damage in the form of delamination, matrix 
cracking, and adhesive joint separation. Once significant damage occurs at the ply 
level, the kinematic and material description of the problem must be changed before 
further analysis can proceed. At the fiber/matrix level, stress concentrations can 
cause fiber/matrix separation, radial matrix cracking, and other forms of cumulative 
damage that degrade the stiffness of individual laminae, thus causing a complex load 
redistribution. 

When the main emphasis of the analysis is to determine the global response 
of the laminated component, for example, gross deflections, critical buckling 
loads, fundamental vibration frequencies, and associated mode shapes, such global 
behavior can often be accurately determined using relatively simple equivalent
single-layer laminate theories (ESL theories), especially for very thin laminates. Two 
commonly used examples of simple ESL theories are the classical and the first-order 
shear deformation theories discussed earlier. 

As laminated composite materials undergo the transition from secondary 
structural components to primary critical structural components, the goals of 
analysis must be broadened to include a highly accurate assessment of localized 
regions where damage initiation is likely. The simple ESL laminate theories that 
often prove adequate for modeling secondary structures are of limited value in 
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modeling primary structures for two reasons. First of all, most primary structural 
components are considerably thicker than secondary components; thus even the 
determination of the global response may require a refined laminate theory that 
accounts for thickness effects. Second, the assessment of localized regions of potential 
damage initiation begins with an accurate determination of the three-dimensional 
state of stress and strain at the ply level, regardless of whether damage prediction 
and assessment is desired at the ply level or at the fiber/matrix level. The simple 
ESL laminate theories are most often incapable of accurately determining the 3-
D stress field at the ply level. Thus the analysis of primary composite structural 
components may require the use of 3-D elasticity theory or a layerwise laminate 
theory that contains full 3-D kinematics and constitutive relations. 

From the equilibrium of interlaminar forces, it follows that the following 
continuity conditions hold between the stress fields of adjacent layers at their 
interface (see Figure 12.1.1): 

{ 

(}xx }(k) {(}XX } (k+I) {(}XZ }(k) _ {(}XZ } (k+I) 
(}yy -I- (}yy ,(}yz - (}yz 

(}xy (}xy (}zz (}zz 

(12.1.1) 

These conditions in turn imply, since [Q(k)] -I- [Q(k+I)] in general, that the strain 
fields of adjacent layers satisfy the following conditions: 

{ 

~:: } (k) -I- { ~:: } (k+I) 

Ezz Ezz 

(12.1.2) 

In all equivalent single-layer laminate theories based on assumed displacement 
fields, it is assumed that the displacements are continuous functions of the thickness 
coordinate. This in turn results in continuous transverse strains, contrary to the 
requirement (12.1.1). Hence, all stresses in equivalent-single layer theories are 
discontinuous at layer interfaces. More important, the transverse stresses at the 
interface of two layers, called interlaminar stresses, are discontinuous: 

{ }

(k) { } (k+I) (}xz (}xz 

(}yz -I- (}yz 

(}zz (}zz 

(12.1.3) 

For thin laminates the error introduced due to discontinuous interlaminar stresses 
can be negligible. However, for thick laminates, the ESL theories can give erroneous 
results for all stresses, requiring use of layerwise theories. 

12.1.2 An Overview of Layerwise Theories 

In contrast to the ESL theories, the layerwise theories are developed by assuming 
that the displacement field exhibits only CO-continuity through the laminate 
thickness. Thus the displacement components are continuous through the 
laminate thickness but the derivatives of the displacements with respect to the 
thickness coordinate may be discontinuous at various points through the thickness, 
thereby allowing for the possibility of continuous transverse stresses at interfaces 
separating dissimilar materials. Layerwise displacement fields provide a much 
more kinematically correct representation of the moderate to severe cross-sectional 
warping associated with the deformation of thick laminates. 
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(k+l) (k) 
O"ZZ = O"ZZ 

Figure 12.1.1: Equilibrium of interlaminar stresses. 

The displacement-based layerwise theories can be subdivided into two classes: 
(1) the partial layerwise theories that use layerwise expansions for the in-plane 
displacement components but not the transverse displacement component, and (2) 
the full layerwise theories that use layerwise expansions for all three displacement 
components. Compared to the ESL theories, the partial layerwise theories provide 
a more realistic description of the kinematics of composite laminates by introducing 
discrete layer transverse shear effects into the assumed displacement field. The full 
layerwise theories go one step further by adding both discrete layer transverse shear 
effects and discrete layer transverse normal effects. 

The use of the partial and full layerwise theories for the analysis of thick 
laminated composite plates is widely accepted. Such theories allow the in
plane displacements to vary in a layerwise manner through the thickness of the 
laminate. The layerwise theories can represent the zigzag behavior of the in-plane 
displacements through the thickness. This zigzag behavior is more pronounced for 
thick laminates where the transverse shear modulus changes abruptly through the 
thickness and can be seen in the exact 3-D elasticity solutions obtained by Pagano 
[1,2]' Pagano and Hatfield [3], Srinivas and Rao [4,5]' Noor [6,7], and Savoia and 
Reddy [8] for the bending of rectangular laminated plates, and by Varadan and 
Bhaskar [9] and Ren [10] for the bending of laminated shells. 
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Whitney [11] used a layerwise quadratic variation of the transverse stresses 
for improving the gross behavior of laminated plates. This led to a layerwise 
cubic variation of the in-plane displacements. The use of the necessary continuity 
conditions resulted in the same number of variables as in the FSDT. However, the 
equations of equilibrium were taken to be those of the classical lamination theory, 
and thus they were not consistent in an energy sense. The numerical results obtained 
for deflections, natural frequencies, and buckling loads were found to be in good 
agreement with available exact elasticity solutions. 

In a series of papers, Swift and Heller [12] studied laminated beams by assuming 
layerwise constant shear strains and a continuous transverse displacement through 
the thickness. A similar approach was used by Durocher and Solecki [13] to study 
transversely isotropic plates with two or three layers. Seide [14], and Choudhuri 
and Seide [15] extended the work of Swift and Heller to laminated plates (also see 
[16-20]). The approach involves writing the equilibrium equations for kth lamina in 
terms of the force and moment resultants 

aN~';J + (k+l) _ (k) _ 0 aQ~k) + (k+l) (k) - 0 
a 

O"a3 O"a3 - , -a-- 0"33 - 0"33 -
X~ Xa 

(12.1.4a) 

a (k) 
Ma~ (k+l) (k) k _ 

-a-- + O"a3 Zk+l - O"a3 Zk - Qa - 0 
X~ 

(12.1.4b) 

for k = l,2,···,N and 00,/3 = 1,2 (Xl = X,X2 = y,X3 = z), where N is the total 
number of layers, and 

(12.1.5b) 

(12.1.5b) 

(12.1.6) 

Here Zk denotes the z-coordinate of the bottom of the kth layer. Then the continuity 
of the displacements and transverse stresses at layer interfaces and the traction 
boundary conditions at the top and bottom of the laminate are used to obtain 
2(N + 1) + 1 = 2N + 3 equations in (Uk, Vb w). 

Several other layerwise models for laminated plates have been presented by Mau 
[21], Chou and Carleone [22], Di Sciuva [23-25], Murakami [26], and Ren [27]. Di 
Sciuva [23-25] used ideas similar to those of [12-15] to formulate a displacement
based theory, called the zigzag theory or discrete-layer theory. The displacement 
field is assumed to be of the form 

Ua(X~, X3, t) = u~(x~, t) - X3U~,a(X~, t) + fa"((x3)rP"((x~, t) 
U3(X~, X3, t) = u~(x~, t) (12.1.7) 

where a, /3, and I take the values of 1 and 2, and (Xl = X, X2 = y, X3 = z). 
The functions f a"( and rP"( are then determined such that the displacements and 
transverse stresses are continuous at the layer interfaces. The functions f a"( are 
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shown to depend only on X3 and the layer stiffnesses. The resulting laminate theory 
contains only five dependent unknowns (also see Zukas and Vinson [28], and Waltz 
and Vinson [29]), as in the first-order theory or the third-order theory of Reddy 
[30]. The layerwise cubic model of Ren [27] required two variables more than the 
FSDT but it produced results which agreed well with those from exact elasticity. 
These models demonstrated that layerwise functions are necessary for determining 
the zigzag thickness distribution of the in-plane displacements. 

Using an explicit approximation for the transverse shear stresses within each 
layer, Hsu and Wang [31] proposed a layerwise model for laminated cylindrical 
shells consisting of orthotropic layers. The transverse shear stresses satisfied the 
traction boundary conditions on the top and bottom surfaces, and the equilibrium 
conditions at the layer interfaces of the shell. Rath and Das [32] extended this model 
to symmetrically laminated generally orthotropic shells. However, the number of 
equations increases with the number of layers. 

Mau et al. [33] used a layerwise theory in the context of hybrid-stress finite 
element analysis of thick laminated plates. The theory is based on assumed stresses 
within each layer, resulting in a large number of variables. Spilker [34,35] used the 
idea of Mau et al. in developing an eight-node hybrid-stress element. In this model, 
the higher-order distributions of stresses through the thickness were characterized 
by as many as 67 stress parameters, and different shear strains are assumed within 
each layer. Using cubic spline functions to approximate the thickness variation of 
displacements, Hinrichsen and Palazotto [36] proposed a layerwise finite element 
model for the nonlinear analysis of thick laminated plates. Use of spline functions 
or Hermite cubic functions, which include continuity of the derivatives, violates the 
required discontinuity of the interlaminar strains between layers. 

A more direct method of achieving a layerwise displacement field was proposed 
by Reddy [37], who represented the transverse variation of the displacement 
components in terms of one-dimensional Lagrangian finite elements. The resulting 
strain field is kinematically correct in that the in-plane strains are continuous 
through the thickness while the transverse strains are discontinuous through the 
thickness, thereby allowing for the possibility of continuous transverse stresses as the 
number of layers is increased. The layerwise field proposed by Reddy is very general 
in that any desired number of layers, distribution of layers, and order of interpolation 
can be achieved simply by specifying a particular mesh of one-dimensional finite 
elements through the thickness. The theory was extended by Barbero, Reddy, and 
Teply [38] to laminated composite cylindrical shells. Owen and Li [39,40] used the 
layerwise displacement idea similar to that of Reddy [37] to develop a continuum 
shell element (also see [41,42]). 

Lee et al. [43,44] presented a partiallayerwise model for laminated plates with a 
layerwise cubic variation of the in-plane displacements. By imposing the continuity 
of the interlaminar shear stresses, the number of unknowns is reduced to the same 
number and type of variables as in FSDT. While the numerical results for the 
maximum in-plane stresses at the free surfaces showed very good agreement with 
3-D elasticity solutions for the cylindrical bending of thick symmetric cross-ply 
laminates, the displacements and stresses at the interfaces were not accurate enough. 
The theory predicts even more inaccurate results for unsymmetric laminates. The 
theory was extended to laminated shells by Xavier et al. [45,46]. 
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The displacement-based partial layerwise laminate theories, in which the 
transverse normal strain is neglected, provide a more realistic description of 
the kinematics of composite laminates when compared to the ESL theories by 
introducing discrete layer transverse shear effects into the assumed displacement 
field. However, these models are not capable of accurately determining interlaminar 
stresses near discontinuities such as holes or cut-outs, traction free edges, and 
delamination fronts. In modeling these localized effects, inclusion of the transverse 
normal strain is important for two reasons. First of all, the transverse normal stress 
is usually a significant, if not dominant, stress in these regions. Secondly, layerwise 
models that neglect transverse normal strain do not satisfy traction-free boundary 
conditions for transverse shear stresses at the laminate edge. Examination of the 
natural boundary conditions associated with the governing differential equations 
of a partial layerwise theory reveals that the transverse shear stresses satisfy the 
traction-free boundary conditions at the laminate edge only in the integral sense 
and not in the local sense (despite the level of refinement through the thickness). In 
contrast to the partial layerwise theories, full layerwise theories [37] use layerwise 
expansions for all three displacement components, and thus include both discrete 
layer transverse shear effects and discrete layer transverse normal effects. 

In this chapter we present the displacement-based fulllayerwise theory of Reddy, 
develop its finite element model, and present some numerical results to illustrate the 
accuracy. It should be noted that the fulllayerwise finite element model is equivalent 
to the displacement finite element model of 3-D elasticity. Following the layerwise 
theory, a variable kinematic model that incorporates both equivalent single-layer 
theories and layerwise theories is also presented. 

12.2 Development of the Theory 
12.2.1 Displacement Field 

In the layerwise theory of Reddy, the displacements of the kth layer are written as 

m 

uk(x, y, z, t) = L uJ(x, y, t)¢J(z) 
j=1 
m 

vk(x, y, z, t) = L v](x, y, t)¢](z) 
j=1 

n 

wk(x, y, z, t) = L w](x, y, t)1/J](z) 
j=1 

(12.2.1) 

where uk, vk, and wk represent the total displacement components in the x, y 
and z directions, respectively, of a material point initially located at (x, y, z) in the 
undeformed laminate, and ¢J (z) and 1/J] (z) are continuous functions of the thickness 

coordinate z. In general, 1/Jk 0; ¢k. 
The functions ¢J (z) and 1/J] (z) are selected to be layerwise continuous functions. 

For example, they can be chosen to be the one-dimensional Lagrange interpolation 
functions of the thickness coordinate, in which case, (uJ, v], wj) denote the values 
of (uk, vk, wk) at the jth plane (see [37,47-52]). The number of nodes, n, through 
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the layer thickness define the polynomial degree p = n + 1 of 1fJj(z), which are 
defined only within the kth numerical layer (see Figure 12.2.1). The functions 
uj(x, y, t), vJ(x, y, t), and wJ(x, y, t) represent the displacement components of all 
points located on the jth plane (defined by Z = Zj) in the undeformed laminate. 

Since the thickness variation of the displacement components is defined in terms 
of piecewise Lagrangian interpolation functions, the displacement components will 
be continuous through the laminate thickness, but the transverse strains will be 
discontinuous across the interface between adjacent thickness subdivisions. This 
leaves the possibility that the transverse stresses may be continuous across the 
interface between layers. Note that the use of piecewise Hermite interpolation 
through the thickness is kinematically incorrect for general laminates since the 
transverse strains are forced to be continuous through the thickness. 

Any desired degree of displacement variation through the thickness is easily 
obtained by either adding more one-dimensional finite element subdivisions 
through the thickness (h- refinement) or using higher order Lagrangian interpolation 
polynomials (p-refinement) through the thickness. The layerwise concept introduced 
here is very general in that the number of subdivisions through the thickness can 
be greater than, equal to, or less than the number of material layers through the 
thickness and each layer can have linear, quadratic, or higher-order polynomial 
variations of the displacements. Note that the sublaminate concept can be used 
(i.e., the number of thickness subdivisions is less than the number of material layers ); 
however, each sublaminate will be represented as an equivalent, single, homogeneous 
layer. 

z 

", 
"'" ....... ' 

, ......... 

u I-I 
...... 

Figure 12.2.1: Displacement representation and the linear approximation 
functions <'pI (z) used in the layerwise theory. 
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The total displacement field of the laminate can be written as 

N 

U(X, y, Z, t) = L UI(X, y, t)!J>I (Z) 
1=1 
N 

V(X, y, Z, t) = L VI(X, y, t)!J>I (Z) 
1=1 
M 

W(X, y, Z, t) = L WI(X, y, t)WI (Z) 
1=1 

(12.2.2) 

where (UI' VI, WI) denote the nodal values of ( u, v, w), N is the number of nodes and 
<I>I are the global interpolation functions (see Figure 12.2.1) for the discretization 
of the in-plane displacements through thickness, and M is the number of nodes 
and WI are the global interpolation functions for discretization of the transverse 
displacement through thickness. For linear and quadratic variation through each 
numerical layer these functions are given below [53] (Ne denotes the number of 
numerical layers through the thickness): 

Linear functions (N = Ne + 1): 

!J>l(Z) = 1)!i1) (z), Zl::; z ::; Z2 

{
1/J~I-l)(Z)' ZI-l :s; Z :S;ZI 

<I>I(Z) = (I=2,3,"',Ne) 
1/Jii)(z), ZI:S; Z :s; ZI+l 

(12.2.3a) 

!J>N(z) = 1)!~Ne)(z), ZN-1 ::; Z < ZN 

"/,(k) = 1 _ Z 
'1-'1 hk ' 

"/,(k) - ~ 0 < z < hk 
'1-'2 - h

k
' (12.2.3b) 

Quadratic functions (N = 2Ne + 1): 

<I>l(Z) = 1)!i1) (z), Zl ::; z ::; Z3 

!J>21 (z) = 1)!~I)(z), Z21-1 ::; Z ::; Z2l+1 (I = 1,2"", Ne) 

{
1/J~i)(Z)' Z21-1 :s; Z :S;Z2I+1 

!J>2I+1(z) = (1 = 1,2,"" Ne - 1) 
1/JiI+l) (z), Z2I+l:S; Z :s; Z2I+3 

!J>N(Z) = 1)!~Ne)(z), ZN-1 ::; Z ::; ZN (12.2.4a) 

1)!.(k) = _~ (1 _ 2Z) 
J hk hk 

(12.2.4b) 

where hk is the thickness of the kth layer, Z = Z - zf, and zf denotes the 
z-coordinate of top of the kth numerical layer. Independent approximations for the 
in-plane and transverse displacements are assumed in order to include the possibility 
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of inextensibility of transverse normals. The inextensibility of transverse normals 
can be included by setting M = 1 and WI = 1 for all z. 

12.2.2 Strains and Stresses 

The von Karman nonlinear strains associated with the displacement field (12.2.2) 
are 

(12.2.5a) 

(12.2.5b) 

(12.2.5c) 

(12.2.6) 

(12.2.7a) 

(12.2. 7b) 

Note that the strains are discontinuous at the layer interfaces because of the 
layerwise definition of the functions <pI and WI. 

The stresses in the kth layer may be computed from the 3-D stress-strain 
equations. For the kth (orthotropic) lamina we have [from Eq. (2.3.19)] 

O"xx 
(k) 011 012 0 13 0 0 016 (k) 

cxx - O:xxflT 
(k) 

O"yy 021 022 02:~ 0 0 026 Cyy - O:yyflT 

0" zz 031 032 033 0 0 036 czz - O:zzflT 

O"yz 0 0 0 044 045 0 ryz 

O"xz 0 0 0 045 055 0 rxz 

O"xy 016 02G 0:~6 0 0 06G rxy - 2O:xyflT 

(12.2.8) 

where the Oi~) are the transformed elastic coefficients in the (x, y, z) system, which 
are related to the elastic coefficients in the material coordinates, Cij by Eq. (2.3.18). 
If inextensibility of transverse normals is assumed, one may use the plane stress
reduced stiffness in place of the 3-D stiffnesses. Note that the strains at a layer 
interface depend on the layer; i.e., {c}i i= {c} ~+ 1 at a point P on the interface of 
layers k and k + 1. 
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12.2.3 Equations of Motion 

The governing equations of motion for the present layerwise theory can be derived 
using the principle of virtual displacements 

0= foT (oU + oV - oK)dt (12.2.9) 

where the virtual strain energy oU, virtual work done by applied forces OV, and the 
virtual kinetic energy oK are given by 

8U = 10
0 
[[~ (axxoExx + ayyOcyy + azzOEzz + 

a xyo"(xy + a xzo"(xz + a yzo"(yz ) dZ] dxdy 

= 1 {~[NI f)OUI N 1 f)OVI N1 (f)8U1 f)OV1) 
~ xx ~ + yy ~ + xy ~ + ~ no 1=1 ux uy uy uX 

QI s:u QI s:v ] ~ [Q- I f)OWI Q-I f)oW [ + XU I + yU I + ~ x ~ + y ~ 
1=1 uX uy 

Q- lOW (ifIJf)WI ifIJf)WI) f)oWJ 
+ z I + xx f)x + xy f)x f)x 

(
ifIJf)WI j\TIJf)WI) f)OWJ]}d d 

+ xy f)x + yy f)y f)y x y 

oV = - r [qb(X, y) 8w(x, y, -~) + qt(x, y) ow(x, y. ~)] dxdy Joo 2 2 
h -[I: [cTnnOUn + cTns8us + cTnzOW] dzds 
2 

= - r (qb OWl + qt oW M ) dxdy JOo 

-[[t, (if~noUF+if~souJ) + t,Q~8WI] ds 

h 

oK = r j2h Po (u8u + vOV + wow) dz dxdy 
JOo -2 

~ 1.0 l~, IIJ (Ur8(h + Vr8VJ ) + r~l jl.1WrOWJ] dxdy 

(12.2.10) 

(12.2.11) 

(12.2.12) 

M 

N1 = "" [l!.- (ifIJf)WJ + j\TIJf)WJ ) + l!.- (j\TIJf)WJ + j\TIJf)WJ)] (12.2.13) 
~ f)x xx f)x xy f)x f)y xy f)x yy f)y 

(12.2.14) 
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{ QJ } = j~ {(J'xz} diP! dz, 
Q y _~ (J'yz dz 

(12.2.15) 

h 

jIJ = [2!l PO\[!I\[!J dz 
2 

(12.2.16) 

Substituting Eqs. (12.2.10)-(12.2.12) into Eq. (12.2.9), and deriving the Euler
Lagrange equations, we obtain 

(12.2.17) 

(12.2.18) 

(12.2.19) 

The natural (force) boundary conditions of the theory are: 

(12.2.20) 

where 

(12.2.21) 

P- I = ~ [(NIJOWJ NIJOWJ) (NIJOWJ N IJOWJ ) ] L XX!Cl + xY!Cl nx + xY!Cl + yy!Cl ny 
J=1 uX uX uX uy 

(12.2.22) 

Thus, the primary variables (displacements) and secondary variables (forces) of the 
layerwise theory are 

Primary Variables: 

Secondary Variables: (12.2.23) 

Note that the form of the natural boundary conditions guarantees that the 
transverse shear stresses will satisfy the traction-free edge conditions on a "local" 
basis as the number of subdivisions through the thickness is increased (unlike the 
partial layerwise theories that neglect discrete layer transverse normal strain). The 
2-D equations of motion can be expressed in terms of the dependent variables 
(UI(X,y,t), VI(X,y,t), WI(X,y,t)) by replacing the stress components with the 3-
D stress-strain relations and strain-displacement relations. The resulting system of 
3n equations represent the semidiscretized version of Navier's equations of motion. 
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12.2.4 Laminate Constitutive Equations 

The laminate constitutive equations for the layerwise theory can be derived using 
the lamina constitutive equations (12.2.8) and the definition of stress resultants 
(12.2.14) and (12.2.15). We obtain 

N 

[

AIJ 
11 

- '" A1J - ~ 12 

J=l AU 

M 

[

DIJKP 
11 

+ L D{{KP 

K,P=l DUKP 

_ '" 55 N ([EJI - ~ J3JI 
J=l 45 

(12.2.24) 

lJ
1J

] {~}) 45 o;c 
lJIJ oWJ 

44 Dil 
(12.2.27) 
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where Ne is the number of physical layers in the laminate, zt and z} are coordinates 
of the bottom and top of the kth layer, and the laminate stiffnesses are defined as 
follows: 

dipI \)IJ dz 

dz ' 

Ne Z" 
-IJ 2:1 t -(k) 1 J D· = C· \)I \)I dz (12.2.29) 

Z] k Z] 

k=1 Zb 

N,. lzk d,T,K 
- IJK = '" .t -(k) 'T,I'T,J_'±'~ dz 

Bt] L k GZ] '±' '±' dz 
k=1 Zb 

(12.2.30) 

for i,j = 1,2,6. Note that when the von Karrmin nonlinearity is not included, all 
laminate stiffnesses with three and four superscripts will not enter the governing 
equations. 

For the nonisothermal case, the thermal stress resultants are defined as 

{ l(T)} [Cll 012 013 

C r ru r N xx Ne zk 

Q~: a yy /).T ipl dz NI(T) _ 2: t G 12 0 22 0 23 
;;jT) - H 1: 0 16 026 C:~6 G azz 

66 2axy 

C
TJCT1

} 

[eu 0 12 On 

C rr""r ZJJ(T) = t /:~ q12 0 22 0 23 Q~~ a yy /).T \)II \)I.l dz 

il J(T) k=1 Zb GIG 026 0:36 
G a zz 

xy 66 2a xy 

Note that the sum over the number of layers in the definition of the laminate 
stiffnesses is limited to the numerical layers over which the functions ipI and \)II 

are defined. The functions ipI and \)II are defined at the most over two adjacent 
numerical layers [see Eqs. (12.2.3) and (12.2.4)]. For example, for the choice of 
linear interpolation functions, when ipI = \)II (]l..1 = N), the following expressions 
are obtained for a typical layer: 

-(k) 1] [X](k)=Gij [-1 
2' D 2-1 

(12.2.32a) ~ ] 
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C(k) -(k) 

[AJ(k) = ---.3:L [1 -1] [A J(k) = C33 [1 -11] 
!J hk -1 1 ' 33 hk-1 

(12.2.32b) 

-(k) -(k) 
-(k)_Cij [1 -1] -.. (k)_Cij hk [21] 

[BzJJ - 2 1 -1 ' [DzJJ - 6 1 2 (12.2.32c) 

If a laminate consists of more than one layer, the above matrices must be assembled 
(see Reddy [53]). For example, [Ad for a two-layer laminate takes the form 

Similar expressions hold for the other coefficients in Eq. (12.2.30). 

12.3 Finite Element Model 
12.3.1 Layerwise Model 

(12.2.33) 

(12.2.35) 

The displacement finite element model corresponding to the fulliayerwise theory is 
developed by substituting an assumed interpolation of the displacement field into 
the principle of virtual displacements (12.2.9) for a representative finite element of 
the plate. Suppose that the displacement field is interpolated as 

p 

UI(x, y, t) = LUi (t)1jJj(X, y) 
j=l 

p 

VI(X, y, t) = L VJ(t)1jJj(x, y) 
j=l 

q 

WI(x, y, t) = L wi (t)'P1(X, y) 
1=1 

(12.3.1) 

where p and q are the number of nodes per 2-D element used to approximate the 
in-plane and transverse deflections, respectively, and Ui(t), VJ(t), and WJ(t) are the 
values of the displacements UI, VI, and WI, respectively, at the jth node of the 2-
D finite element representing the !th plane of the plate element. The functions 
1jJ1(x,y) (j = 1,2,···,p) and 'P1(x,y) (j = 1,2,···,q) are the two-dimensional 
Lagrangian interpolation polynomials associated with the jth node of the two
dimensional finite element. 
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The semidiscrete finite element equations are obtained by substituting equation 
(12.3.1) into the principle of virtual work in Eq. (12.2.9). Then the fully discretized 
equations, for the transient case, are obtained using a time approximation scheme, 
as discussed earlier. Here we limit our discussion to the static problems, and the case 
in which the same interpolation is used for all three displacements: CPj = 4)j (p = q) 
and WI = CPI (M = N). 

The following two-dimensional finite elements (N = M) are used here with 
isoparametric formulations: 

E4: Four-node Lagrange quadrilateral element. 

E8: Eight-node serendipity quadrilateral element. 

E9: Nine-node Lagrange quadrilateral element. 

E12: Twelve-node serendipity quadrilateral element. 

E16: Sixteen-node Lagrange quadrilateral element. 

Each of these elements may be used in conjunction with one or more linear, 
quadratic, or cubic (denoted L,Q,C respectively) I-D Lagrange elements through 
the thickness to create a wide variety of different layerwise finite elements. We 
use the notation E12-L6 to denote a two-dimensional E12 element with six linear 
subdivisions through the thickness; likewise, E9-Q3 denotes a two-dimensional E9 
element with three quadratic subdivisions through the thickness. 

12.3.2 Full Layerwise Model Versus 3-D Finite Element Model 

The full layerwise finite element model is the same as a conventional 3-D 
displacement finite element model in terms of interpolation capability and problem 
size for a 3-D body with parallel top and bottom surfaces. A variable thickness 
plate must be approximated as an elementwise constant-thickness plate in order to 
use the present element. Virtually in all practical cases, a laminated plate structure, 
including a structure with dropped plies, is made up of constant-thickness laminae, 
and therefore the present element can be used to model such structures. The 
layerwise element has some analysis advantages over the conventional 3-D elements. 
The layerwise format maintains a 2-D type data structure similar to finite element 
models of 2-D ESL theories. This provides several advantages over conventional 
3-D finite element models. First the volume of the input data is reduced. Secondly, 
the in-plane 2-D mesh and the transverse 1-D mesh can be refined independently of 
each other without having to reconstruct a 3-D finite element mesh. The 2-D type 
data structure also allows efficient formulation of the element stiffness matrices as 
is discussed in the next section. 

Since the present layerwise plate model is developed to provide the same modeling 
capability as a conventional 3-D finite element model of laminated plates, it is 
informative to investigate the similarities and differences in these two models. First, 
consider the theories used to develop each model. The conventional 3-D finite 
element model is based on the 3-D theory of elasticity, and the associated governing 
equations of motion are Navier's equations. The fulllayerwise, 2-D laminate theory 
used to develop the present layerwise model is governed by a set of 3n coupled partial 
differential equations that can be viewed as the semidiscretized version of Navier's 
equations. Thus the governing equations of motion of the present layerwise theory 
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are necessarily an approximation to the exact 3-D equations of motion; however, 
the approximation can be made as close as desired by increasing the number of 
subdivisions through the thickness and/or increasing the order of interpolation 
through the thickness. 

In contrast to the differences that exist between the governing equations of motion 
for these two theories both finite element models represent fully discretized versions 
of their respective theories; thus the modeling capabilities of the two finite element 
models are essentially the same. A comparison of the interpolation capability of 
the two finite element models reveals a close similarity. Not~ that both models use 
actual displacement components (Ul,U2,U3) as the primary variables (nodal degrees 
of freedom) and both require CO-continuity of these variables across element (or 
layer) boundaries. Further, if one compares similar element types from the two 
models, the interpolation of the primary variables is exactly the same. For example, 
an E9-Q3 layerwise element exhibits the same interpolation as a stack of three, 
27 node, Lagrangian hexahedrons; an E12-L6 exhibits the same interpolation as a 
stack of six, 24 node, hexahedrons with cubic serendipity interpolation in the planar 
coordinates and linear Lagrangian interpolation in the transverse direction. Thus 
it is not surprising that the resulting global system of equations and subsequent 
solution produced by these two finite element models are exactly the same as long 
as the meshes, element types, and integration schemes are equivalent. 

Obviously the 3-D finite element model is more general than the layerwise finite 
element model; the latter actually represents a special case of the former. The 
layerwise model assumes that the displacements, material properties, and element 
geometry can be approximated by a sum of conveniently separable interpolation 
functions (i.e., each individual 3-D interpolation function can be written as the 
product of a 2-D interpolation function and a 1-D interpolation function). This 
restriction does not imply that the displacement solution itself can be separated 
into the product of an in-plane function of x and y and an out-of-plane function of 
Z; however, in computing all volume integrals, the layerwise model can use separated 
numerical integration (i.e., the integration with respect to the thickness coordinate 
is performed independent of the integration with respect to the planar coordinates). 
The results from a single integration through the thickness can then be used at 
each Gauss point in the subsequent in-plane integration. This separated integration 
allows the element stiffness matrix to be computed using only a fraction of the 
operations required to form the stiffness matrix for a conventional 3-D finite element. 

To illustrate the computational savings of the simplified, separated integration 
afforded by the layerwise model, the number of operations needed to form the 
element stiffness matrix for equivalent layerwise elements and conventional 3-D 
elements (see Figure 12.3.1) are tabulated in Table 12.3.1. Full quadrature is used in 
each case. As illustrated in Table 12.3.1, the layerwise model's separated numerical 
integration requires significantly fewer operations to form the element stiffness 
matrix. Elements 2a and 2b (see Table 12.3.1) both have 81 degrees of freedom 
and exhibit complete quadratic interpolation in all three coordinate directions. To 
form the element stiffness matrix for element 2a (i.e., 27-node, 3-D isoparametric 
quadratic hexahedron), a 3-D interpolation function subroutine must be called 27 
times since there are 27 Gaussian quadrature points. Each time the 3-D interpolation 
function subroutine is called, 27 different interpolation functions must be evaluated 
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(Ia) 

(2a) 

Cubic 
serendipity 

element 

(in-plane) 

Quadratic 
serendipity 

element 

(in-plane) 

Linear 
Lagrange 
element 

(through thickness) 

(Ib) 

Quadratic 
Lagrange 
element 

(through thickness) 

(2b) 

Figure 12.3.1: Various 3-D and layerwise elements used m the numerical 
comparison. 

Table 12.3.1 Comparison of the number of operations needed to form the element 
stiffness matrices for equivalent elements in the conventional 3-D 
model and the layerwise 2-D model. Full quadrature is used in each 
case. 

Element Type t Multiplications Additions Assignments 

la (3-D) 1,116,000 677,000 511,000 
Ib (LWPT) 423,000 370,000 106,000 

2a (3-D) 1,1H2.000 819,000 374,000 
2b (LWPT) 284.000 270.000 69,000 

Element la: 72 degrees of freedom, 24-node 3-D isoparametric hexahedron with cubic in-plane 
interpolation and linear transverse interpolation. 

Element Ib: 72 degrees of freedom, EI2-Ll layerwise element. 

Element 2a: HI degrees of freedom, 27-node 3-D isoparametric hexahedron with quadratic 
interpolation in all three directions. 

Element 2b: HI degrees of freedom, E9-Ql layerwise clement. 
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and thus 272 or 729 individual interpolation functions must be evaluated. To 
form the element stiffness matrix for element 2b (i.e., nine-node 2-D layerwise 
quadrilateral element with a single quadratic layer), a 1-D interpolation function 
subroutine must be called 3 times and a 2-D interpolation function subroutine 
must be called 9 times, since there are 3 and 9 Gaussian quadrature points in 
the 1-D and 2-D elements, respectively. This is obviously less work than required 
by the 3-D element. The efficiency of the layerwise model increases (relative to 
the 3-D model) as more elements and/or layers are added, or as the order of the 
interpolation through the thickness is increased. Note that this efficient, separated 
integration uses standard Lagrangian interpolation through the thickness; thus 
certain commonly used 3-D finite elements do not have layerwise counterparts 
(e.g., the 20-node quadratic serendipity hexahedron element and the 32-node cubic 
serendipity hexahedron element). 

12.3.3 Considerations for Modeling Relatively Thin Laminates 

First a comment concerning "thin" and "thick" laminates is in order. In the present 
study we call a laminate domain thick if the local span-to-thickness ratio a/h is 
less than 20. In computing the span-to-thickness ratio, one should use the in
plane dimension of the local domain that is being modeled. Layerwise plate models 
are primarily intended for thick laminate situations where the simple ESL plate 
theories (e.g., CLPT or FSDT) are known to be inaccurate. In the analysis of thick 
laminates, the added computational expense of a layerwise model is justified by 
its improved predicting capabilities. Although a layerwise model may be primarily 
intended for thick plate situations, it is important to determine the limits of the 
layerwise model's applicability to thin plate situations since finite element models 
of refined plate theories have proven to be problematic whenever the thickness 
dimension of the structure is greatly reduced relative to the planar dimensions. In 
particular, finite elements which possess full three-dimensional modeling capability 
can exhibit spurious transverse shear stiffness, spurious transverse normal stiffness, 
and ill-conditioned stiffness matrices as the span-to-thickness ratio of the structure 
increases. Each of these undesirable phenomena will now be discussed within the 
context of full layerwise finite elements and selective integration techniques will be 
suggested to alleviate the spurious transverse stiffnesses. 

The spurious shear stiffness phenomenon is caused by an interpolation 
inconsistency that prevents the finite element from modeling a state of zero 
transverse shear stress in the presence of general nonzero bending strains. As 
the plate's span-to-thickness ratio approaches the thin plate limit, the transverse 
shear deformation must tend toward zero relative to the bending deformation (i.e., 
the Kirchhoff condition). The degree to which a particular finite element fails 
in approximating this condition determines the amount of spurious shear stiffness 
the element will exhibit while deforming in a bending mode. Thus elements that 
are poor approximators of this condition are known to exhibit shear locking while 
elements which are better approximators of this condition may simply exhibit a 
slight overstiffness. 

Next we examine the assumed form of the transverse shear strains Exz and Eyz 

used in the layerwise finite elements to determine whether or not the Kirchhoff 
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condition can be satisfied in the thin plate limit. Within a specific layer of a typical 
finite element, the Kirchhoff condition requires that 

(12.3.2a) 

(12.3.2b) 

where k ranges from 1 to the number of Gaussian integration points in the xy-plane 
of the element; M is the number of nodes through the thickness of the numerical 
layer; p is the number of nodes in the 2-D element. Note that Eq. (12.3.2a) exhibits 
an interpolation inconsistency with respect to both the y and z directions, while Eq. 
(12.3.2b) exhibits an interpolation inconsistency with respect to both the x and z 

directions. In general, these interpolation inconsistencies prevent Eqs. (12.3.2a,b) 
from being satisfied at all Gaussian integration points in the element xy-plane. Thus, 
as the span-to-thickness ratio increases, the computed solution tends to suppress 
the higher-order terms of the interpolation so that the Kirchhoff condition can be 
satisfied (i.e., spurious constraints are introduced into the model). If a reduced 
quadrature is used to evaluate terms contributing to the transverse shear energy 
(i.e., any terms containing a constitutive matrix component Qij where i,j = 4,5), 
then the Kirchhoff condition will not be enforced as stringently as in the case of full 
quadrature, since Eqs. (12.3.2a,b) will be enforced at fewer points in the domain. 
Thus the displacements are allowed more freedom to utilize their full interpolation 
capability. 

In practice, reduced quadrature is required only when integrating the transverse 
shear terms with respect to x and y (not the thickness coordinate z), because 
the integrated effect of the transverse interpolation inconsistencies is insignificant 
compared with the contributions from the in-plane interpolation inconsistencies. 
Consider expanding Eqs. (12.3.2a,b) so that all of the interpolation functions are 
expressed as summations of simple polynomial terms. As the span-to-thickness ratio 
is increased, any terms that contain the transverse coordinate (z) will tend toward 
zero in comparison with terms that do not contain z; therefore, the transverse 
interpolation inconsistency does not adversely affect the solution and therefore does 
not need or benefit from reduced quadrature with respect to the z direction. 

Another problem that arises when modeling thin plates with finite elements 
possessing 3-D capability is that the accuracy of the computed transverse normal 
stress deteriorates rapidly as the span-to-thickness ratio increases. For relatively 
thick plates, the transverse normal stress is computed quite accurately; however, 
as the span-to-thickness ratio increases, the computed transverse normal stress 
actually diverges from the correct value. This phenomenon arises because of an 
interpolation inconsistency that prevents the finite element from modeling a state 
of zero transverse normal stress in the presence of general nonzero bending strains. 

As the span-to-thickness ratio increases toward the thin plate limit, the strain 
energy associated with transverse normal strain tends toward zero relative to the 
bending energy. Thus the transverse normal strain must approach a functional form 
that is consistent with the combined Poisson effects from the dominating in-plane 
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strains. Setting CTzz equal to zero in the constitutive equations and solving for Ezz , 

we have 
1 ~ ~ ~ 

E zz = - Q~ (Q31 Exx + Q32Eyy + 2Q36E:l'Y) 
33 

(12.3.3a) 

where Qij are the transformed elastic stiffnesses. On the other hand, from the 
strain-displacement relations we have 

(12.3.3b) 

Equations (12.3.3a,b) represent a constraint that is imposed on the solution as the 
thin plate limit is approached. 

Expressing the strain component Ezz of Eq. (12.3.3b) in terms of the finite 
element approximations within a typical element layer, we have 

(12.3.4) 

for k = 1,2,···, G, where G is the number of Gaussian integration points in the 
element xy-plane. Note that Ezz exhibits a higher-order in-plane interpolation 
and a lower-order transverse interpolation than the in-plane strains. In general, 
these interpolation inconsistencies prevent Eq. (12.3.4) from being satisfied at all 
Gaussian integration points in the element layer domain. As the span-to-thickness 
ratio increases toward the thin plate limit, the computed solution tends to suppress 
the higher-order terms of the interpolation so that Eq. (12.3.4) can be satisfied (i.e., 
spurious constraints are introduced into the model). 

If a reduced quadrature is used to evaluate the terms contributing to the energy 
associated with transverse normal strain (i.e., any terms containing a Q3i or Qi3 
constitutive matrix component), then the condition given by Eq. (12.3.4) will not 
be enforced as stringently as in the case offull quadrature, since Eq. (12.3.4) will be 
enforced at fewer points in the domain. Thus the displacements are allowed more 
freedom to utilize their full interpolation capability. 

Although selective integration can efficiently alleviate the problem of spurious 
transverse shear and normal stresses, such inexact integration can result in element 
stiffness matrices that have an excess number of zero eigenvalues. Note that the 
eigenvalues of an element stiffness matrix are representative of the magnitude of 
the force vector needed to maintain a particular mode of deformation represented 
by the associated eigenvector. An unconstrained layerwise finite element should 
have six zero eigenvalues corresponding to the six independent modes of rigid body 
motion (three translations and three rotations). Any additional zero eigenvalues 
are associated with eigenvectors representing spurious deformation modes that 



LAYERWISE THEORY AND VARIABLE KINEMATIC MODELS 745 

produce no strain at the Gaussian integration points used in computing the element 
stiffness matrix. These spurious deformation modes can be superimposed on the 
true displacement solution without affecting the system of equations as a whole. 
The displacements computed in such a system may look nothing like the true 
solution due to the addition of one or more spurious displacement modes of arbitrary 
magnitude. The imposition of essential boundary conditions (necessary to prevent 
rigid body displacement) may or may not prevent these spurious displacement 
modes from occurring; thus it may be possible for spurious displacement modes to 
exist unsuppressed in an assembled structure that is constrained against rigid body 
displacement. Thus elements that possess an excessive number of zero eigenvalues 
must be used with caution. 

An eigenvalue analysis of the layerwise finite elements is performed to determine 
the effect of various numerical integration schemes on the existence of spurious 
displacement modes. For this purpose, it is sufficient to consider a layerwise 
element containing a single layer. The following numerical integration schemes are 
considered. 

F = All terms in the element stiffness matrix are computed using full 
integration. 

Sl = A selective integration scheme in which all terms in the element stiffness 
matrix which contain the transverse shear stiffnesses Q44, Q45, or Q55 are 
computed using reduced integration. All remaining terms in the clement 
stiffness matrix are computed using full integration. 

S2 = A selective integration scheme in which all terms in the element stiffness 
matrix which contain the stiffnesses Qi3, Qi4' or Qi5 (i = 1,2,···,6) are 
computed using reduced integration. Thus all terms related to transverse 
shear effects or transverse normal effects are computed using reduced 
integration. All remaining terms in the element stiffness matrix, including 
those terms which correspond to strictly in-plane effects, are computed 
using full integration. 

R = All terms in the element stiffness matrix are computed using reduced 
integration. 

Recall from the earlier discussion that integration scheme S 1 is used to remove 
spurious shear stress from the finite element model when the span-to-thickness ratio 
is large. Integration scheme S2 is used to remove both spurious transverse shear 
stress and spurious transverse normal stress from the finite element model when 
the span-to-thickness ratio is large. Integration scheme R, while not necessary, is 
included for comparison. Also recall that these different integration schemes are 
only necessary for the in-plane integration. All integrations through the thickness 
of the element are performed using the full integration scheme. 

Table 12.3.2 shows the number of excess zero eigenvalues (i.e., the number 
of spurious displacement modes) exhibited by various elements under various 
integration schemes. Note that the three Lagrangian elements (E4, E9, E16) 
can exhibit spurious displacement modes unless full integration is used. The two 
serendipity elements do not exhibit any spurious modes except for the special case 
of a single isolated E8 element under uniform reduced integration. 
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Table 12.3.2: Number of excess zero eigenvalues that exist for various types 
of single, unconstrained, layerwise elements under different 
integration schemes. 

Element In-Plane Integration Scheme 
Type 

F Sl S2 R 

E4-L1 0 2 3 7 
ES-L1 0 0 0 2t 
ES-Q1 0 0 0 3t 

E9-L1 0 1 2 S 
E9-Q2 0 1 3 12 
E12-L1 0 0 0 0 
E12-Q1 0 0 0 0 
E12-C1 0 0 0 0 
E16-L1 0 1 2 S 
E16-Q1 0 1 3 12 
E16-C1 0 1 4 16 

t For the ES elements, these spurious displacement modes can exist only for the case of a single 

isolated element. If more than one element is present, then no spurious displacement modes can 

exist. 

12.3.4 Bending of a Simply Supported (0/90/0) Laminate 

In order to investigate the influence of element type and numerical integration 
scheme on the accuracy of the layerwise finite element solution, a square, simply 
supported, symmetric cross-ply (0/90/0) laminated plate subjected to a sinusoidally 
distributed transverse load on the upper surface is selected. The domain of the plate 
is 0 < x < a, 0 < y < a, 0 < z < h. The layers are assumed to be of equal thickness 
(hk = h/3) and have the following material properties in the principal material 
coordinate system: 

G 12 = 0.5 X 106 psi, G13 = G23 = 0.2 X 106 psi, V12 = Vl:1 = V23 = 0.25 (12.3.5) 

This particular problem has an exact 3-D elasticity solution (see Pagano [1]) which 
is used to verify the displacements and stresses obtained using the layerwise finite 
element model. The finite element stresses are computed at the reduced Gauss points 
within each thickness subdivision of each element, using the computed displacements 
and the constitutive equations. 

Due to the symmetry of the problem, only one quadrant (a/2 < x < a, 
a/2 < y < a, 0 < z < h) of the plate is modeled using the uniform, coarse meshes 
described in Table 12.3.3. The boundary conditions used are 

u(x, a, z) = u(a/2, y, z) = 0 

v(a, y, z) = v(x, a/2, z) = 0 

w(x, a, z) = w(a, y, z) = 0 (12.3.6) 
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Table 12.3.3 Finite element meshes used in the analysis of simply supported 
(0/90/0) plates under sinusoidally distributed transverse load. 

Mesh No. Element Type Mesh Density Total D.O.F. 

1 E4-L6 6x6 1,029 
2 E8-Q3 3x3 840 
3 E9-Q3 3x3 1,029 
4 E12-Q3 2x2 693 
5 E16-Q3 2 x 2 1,029 

Note that all five meshes contain the same nodal density along the edges of the 
computational domain, while the three meshes of Lagrangian elements contain 
the exact same nodal distribution throughout the domain. Five different span
to-thickness ratios are considered to test a wide range of plate-bending behavior 
(a/h = 4,10,20,50,200). Two different numerical integration schemes are compared 
(types F and 82 discussed earlier). Note that while the three Lagrangian elements 
are capable of exhibiting spurious displacement modes under 82 integration, the 
simply supported boundary conditions of this particular example problem prevent 
any of these modes from arising. 

A comparison of the computed maximum transverse displacement and exact 
maximum transverse displacement, which occur at the centroid of the upper surface 
of the plate, are presented in Table 12.3.4. Note that when full quadrature is used, all 
elements except the E16 element (Mesh 5) exhibit a noticeable amount of artificial 
shear stiffening as the span-to-thickness ratio increases to 200, with the E4 element 
(Mesh 1) actually beginning to lock. For large span-to-thickness ratios, the spurious 
shear stiffening is significantly reduced by using the 82 integration scheme as shown 
in Table 12.3.4. 

Table 12.3.4: Ratio of computed transverse displacement to exact transverse 
displacement at (a/2,a/2,h) 1Il a square, simply supported 
(0/90/0) laminate under sinusoidal transverse load. 

Mesh Integration Span-to-Thickness Ratio, a/h 
Scheme 

4 10 20 50 200 

F 0.9815 0.9732 0.9284 0.6975 0.1280 
2 F 0.9901 0.9979 0.9981 0.9959 0.9807 
:3 F 0.9906 0.9985 0.9987 0.9959 0.9845 
4 F 0.9880 0.9960 0.9968 0.9953 0.9615 
5 F 0.9907 0.9988 1.0006 l.0004 1.0001 
1 S2 0.9900 0.9952 0.9945 0.9943 0.9942 
2 S2 0.9873 0.9978 0.9992 0.9995 0.9992 
:3 S2 0.9880 0.9984 0.9998 1.0001 1.0001 
4 S2 0.9980 0.9959 0.9966 0.9952 0.9650 
5 S2 0.9906 0.9988 0.9997 1.0000 1.0000 
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Table 12.3.5 contains a comparison of computed in-plane normal stress CTxx 

with the exact analytical value at the reduced Gauss point nearest to the point 
(a/2, a/2, h) where CTxx attains a maximum. The computed transverse normal stress 
CJzz is compared in Table 12.3.6 with the exact analytical value at the reduced Gauss 
point nearest to the point (a/2, a/2, h) where CJzz attains a maximum. Note that 
as the span-to-thickness ratio increases, the computed CJ3 diverges for all elements 
when full quadrature is used. However, the 82 integration scheme allows accurate 
transverse normal stresses to be computed, even for large span-to-thickness ratios. 
Table 12.3.7 contains a comparison of computed transverse shear stress CJ xz with the 
exact analytical value at the reduced Gauss point nearest to the point (a, 0, a/2). 

Table 12.3.5: Ratio of computed CJxx to exact CJxx in a square, simply supported 
(0/90/0) laminate under sinusoidally distributed transverse load. 
The stresses are computed at the reduced Gauss point closest to 
the centroid of the upper surface of the plate (a/2, a/2, h). 

Mesh Integration 
Scheme 

Span-to-Thickness Ratio, a / h 

4 10 20 50 200 

1 F 1.0402 0.9727 0.9207 0.6900 0.1265 
2 F 1.0377 1.0177 1.0135 0.9922 0.9695 
3 F 1.0377 1.0177 1.0135 0.9924 0.9728 
4 F 1.0402 1.0055 1.0031 1.0035 0.9828 
5 F 0.9960 1.0043 1.0022 1.0042 1.0147 
1 82 1.0481 0.9959 0.9902 0.9888 0.9885 
2 82 1.0380 1.0187 1.0158 0.9997 0.9992 
3 82 1.0380 1.0187 1.0158 0.9997 0.9996 
4 82 1.0401 1.0055 1.0020 1.0000 0.9780 
5 82 1.0038 1.0038 1.0010 1.0004 1.0000 

Table 12.3.6: Ratio of computed CJzz to exact CJzz in a square, simply supported 
(0/90/0) laminate under sinusoidally distributed transverse load. 
The stress is computed at the reduced Gauss point closest to the 
centroid of the upper surface of the plate (a/2, a/2, h). 

Mesh Integration Span-to-Thickness Ratio, a/h 
8cheme 

4 10 20 50 200 

1 F 0.9738 0.9823 0.9979 1.0724 1.2549 
2 F 0.9887 1.0076 0.9959 0.8184 -4.5795 
3 F 0.9887 1.0076 0.9959 0.8181 -4.6023 
4 F 0.9897 0.9972 1.0055 1.0525 0.8495 
5 F 0.9895 0.9947 0.9958 1.0128 1.2058 
1 82 0.9835 0.9872 0.9879 0.9881 0.9881 
2 82 0.9872 1.0059 1.0058 1.0056 0.9931 
3 82 0.9872 1.0059 1.0058 1.0054 0.9898 
4 82 0.9894 0.9965 1.0031 1.0420 1.6675 
5 82 0.9893 0.9954 0.9985 0.9962 0.9962 
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Table 12.3.7: Ratio of computed CYxz to exact CYxz in a square, simply supported 
(0/90/0) laminate under sinusoidal transverse load. The stress is 
computed at the reduced Gauss point closest to (a, a/2, h/2). 

Mesh Integration Span-to-Thickness Ratio, a/h 
Scheme 

4 10 20 50 200 

F 0.9754 0.9714 0.9360 0.7597 0.3267 
2 F 0.9860 1.0135 1.0145 1.0021 1.0276 
3 F 0.9860 1.0135 1.0145 1.0023 1.0296 
4 F 0.9873 0.9999 1.0030 1.0210 1.2883 
5 F 0.9867 0.9989 1.0000 1.0014 1.0103 
1 S2 0.9857 0.9975 0.9987 0.9990 0.9990 
2 S2 0.9861 1.0138 1.0148 0.9988 0.9982 
3 S2 0.9861 1.0138 1.0148 0.9987 0.9970 
4 S2 0.9873 0.9990 1.0030 1.0205 1.2693 
5 S2 0.9868 0.9989 1.0000 1.0000 1.0000 

Several generalizations can be made from the results presented in Tables 12.3.4 
through 12.3.7. For relatively thick plates that undergo both bending and transverse 
shearing about both in-plane axes, all five element types yield accurate results using 
full integration and relatively coarse meshes. For relatively thin plates that undergo 
bending about both in-plane axes, the S2 integration scheme effectively alleviates 
both the spurious transverse shear stress and spurious transverse normal stress, 
thus allowing accurate displacements and stresses to be computed. The Lagrangian 
elements (E4, E9, and E16) can exhibit spurious displacement modes under S2 
integration; thus one must be very cautious with these elements since it is difficult 
to predict whether or not the boundary conditions for a particular problem will 
prevent these modes from appearing. 

For this simply supported cross-ply (0/90/0) laminate under sinusoidally 
distributed transverse load, exact solutions exist for the following three theories: 
(1) 3-D elasticity theory, (2) classical laminate theory (CLPT), and (3) first-order 
shear deformation theory (FSDT). The exact solutions from these three theories 
will be compared with the layerwise finite element solution of this problem. One 
quadrant of the thick plate (a/h = 4) is modeled using two finite element meshes 
that differ only in the refinement through the thickness. Full integration is used for 
both meshes. Mesh 1 (see Figure 12.3.2) features a 2 x 2 uniform 2-D mesh of E8-Q3 
elements (i.e., one quadratic layer for each distinct material layer) for a total of 441 
global degrees of freedom. Mesh 2 (not shown) features a 2 x 2 uniform 2-D mesh 
of E8-Q6 elements (i.e., two quadratic layers for each material layer) for a total of 
969 global degrees of freedom. 

The layerwise finite element stresses are computed via the constitutive relations 
at the reduced Gauss points in each finite element. For the E8-Qi elements, the 
reduced Gauss points correspond to the 2 x 2 integration points within the domain 
of each layer of each element. Figures 12.3.3 through 12.3.6 show the distribution 
of various nondimensionalized stresses CYxx , CYzz , CYyz , and CYxz , respectively, through 
the thickness of the plate at the reduced Gauss points closest to the position where 
each stress attains a maximum. Thus for Mesh 1, the stresses are computed at six 
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Figure 12.3.2: Mesh 1 of layerwise elements used in the finite element modeling 
of a quadrant of (0/90/0) laminate. 

different points through the thickness, while for Mesh 2, the stresses are computed 
at 12 different points through the thickness. The nondimensionalized stresses, along 
with the corresponding reduced Gauss points, are 

h2 1 
o-xx = (}xx(A, A, z)--2' o-zz = (}zz(A, A, z)-

qoa qo 
h h 

o-yz = (}yz(A, B, z)-, o-xz = (}xz(B, A, z)-
qoa qoa 

A = 1.105662 (~), B = 1.894338 (~) (12.3.7) 

We note an excellent agreement between the layerwise finite element solution 
and the exact three-dimensional elasticity solution shown in Figures 12.3.3 through 
12.3.6. Although not shown here, the two remaining in-plane stresses, (}yy and (}xy, 
predicted by the layerwise finite element model also showed very close agreement 
with the 3-D elasticity solution. All of the stress distributions predicted by the 
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Figure 12.3.3: In-plane normal stress O'xx distribution through the thickness of 
a simply supported (0/90/0) laminate subjected to sinusoidally 
distributed transverse load (a/h = 4). 
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Figure 12.3.4: Transverse normal stress O'zz distribution through the thickness 
of a simply supported (0/90/0) laminate subjected to sinusoidally 
distributed transverse load (a/h = 4). 
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Figure 12.3.5: Transverse shear stress jjyz distribution through the thickness of 
a simply supported (0/90/0) laminate subjected to sinusoidally 
distributed transverse load (a/h = 4). 
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Figure 12.3.6: Transverse shear stress jjxz distribution through the thickness of 
a simply supported (0/90/0) laminate subjected to sinusoidally 
distributed transverse load (a/h = 4). 
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single-layer theories (CLPT and FSDT) show considerable error for this thick plate 
(a/h = 4). Note that the transverse shear stresses predicted by CLPT and FSDT 
are computed via integration of the 3-D equilibrium equations after determining the 
in-plane stress field. These "equilibrium" shear stresses can also be computed for 
the layerwise model, thus yielding layerwise smooth shear stresses using relatively 
coarse refinements through the thickness; however, only the constitutive transverse 
shear stresses are shown here. 

12.3.5 Free Edge Stresses in a (45/-45)5 Laminate 

Consider a symmetric angle-ply laminated plate strip (45/-45)s of length 2a, width 
2b, and total laminate thickness 4h, and subjected to in-plane displacements along 
the length at the ends. In the analysis, it is assumed that a = lOb and b = 4h. 
Each of the four material layers is of equal thickness hk = h and is idealized as a 
homogeneous, orthotropic material with the following properties (expressed in the 
principal material coordinate system): 

(12.3.8) 

The xy-plane is taken to be the midplane of the laminate, with the origin of the 
coordinate system at the centroid of the 3-D laminate. The x-coordinate is taken 
along the length of the plate (-a ::; x ::; a); the y-coordinate is taken along the 
width (-b ::; y ::; b); and the z-coordinate is taken through the thickness of the 
plate (-2h ::; z ::; 2h). The displacement boundary conditions for the laminate are 

u(a,y,z) = Uo, u(-a,y,z) = 0, v(-a,y,z) = v(a,y,z) = 0, w(x,y,O) = 0 
(12.3.9) 

Since the geometry and loading are symmetric about the xy-plane, only the upper 
half of the strip is modeled. Thus the computational domain is defined by 
(-a < x < a, -b < y < b, 0 < z < 2h). The traction-free boundary conditions for 
the laminate are 

O"zz(x, y, 2h) = 0, 

O"yz(x, y, 0) = 0, 

O"xz(x, y, 0) = 0, 

O"yz(x, -b, z) = 0, 

OO"zz 
az(x,y,O) = 0 

O"yz(x, y, 2h) = 0 

O"xz(x, y, 2h) = 0 

O"yz(x, b, z) = 0 

(12.3.10a) 

(12.3.10b) 

(12.3.10c) 

(12.3.10d) 

Most of the numerous analytical and numerical studies of the free edge effect 
have focused on problems that allow the use of quasi-3D analyses, for example, an 
infinitely long, symmetric, angle-ply plate strip subjected to an imposed uniform 
axial strain [i.e., cl(X,y,Z) = co]. For the (45/-45)s laminate, Wang and Choi 
[57,58] have a quasi-3D analytical solution and Whitcomb et al. [59] have a quasi-
3D finite element solution. In such cases the strains and stresses are assumed 
to be independent of the axial coordinate x. Thus the analyst only has to be 
concerned with two independent variables. It should be noted that the purpose 



754 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

of this numerical example is not to compare the efficiency of the layerwise finite 
element solution with the various quasi-3D solutions for this particular problem. 
The purpose of this example is simply to illustrate the ability of the layerwise plate 
model to accurately describe three-dimensional effects (such as free edge stresses) 
which are unaccounted for in conventional 2-D plate models. 

The layerwise finite element model is used to compute the interlaminar stresses 
occurring in the boundary region near the traction-free edges in the composite strip. 
No attempt is made to cast the layerwise finite element model into a quasi-3D format, 
thus a full 3-D analysis of the finite length, composite strip is performed. The 
layerwise finite element solution will obviously be more computationally expensive 
than a comparable quasi-3D analysis; however, it is useful to verify the layerwise 
solution using problems which have received much attention in the literature. The 
finite element mesh consists of 75, two-dimensional E8-Q6 elements (5 elements 
along the length, 15 elements across the width, 4 quadratic subdivisions through the 
thickness of each material layer). All elements have the same length (2a/5); however, 
the width of the elements decreases as either of the free edges is approached. The 
widest elements (those elements centered on the x axis) have a width of 0.75b (or 
12hk). The narrowest elements (the last two rows of elements adjacent to either of 
the free edges) have a width of 0.00782b (or hk/8). The results of this analysis are 
presented in Figures 12.3.7 through 12.3.12, and they are discussed next. 

Figures 12.3.7 through 12.3.12 show transverse stresses ((Tzz, (Tyz, (Txz) computed 
using the layerwise finite element model. As in the previous example, the stresses 
are computed via the constitutive relations at the reduced Gauss points within each 
thickness subdivision of each element. All stresses have been nondimensionalized 
according to 

(T. 1 
(jij = 20 2 -

EO El 

where EO denotes the nominal axial strain induced in the strip by the applied axial 
displacement of the ends (i.e., EO = uo/2a). It should be noted that the stresses 
presented in Figures 12.3.7 through 12.3.12 were taken only from the center row 
of fifteen elements across the width of the strip (i.e., elements centered on the line 
x = a in the 2-D mesh. Within these elements, the axial strain (Exx) experienced 
a maximum variation of only 0.27%; thus the condition of uniform axial strain (as 
used in the quasi-3D analyses) is approximately met within this row of elements. 

Figures 12.3.7 through 12.3.12 show the variation of the transverse stresses 
through the thickness of the strip as the free edge is approached. These stresses 
are computed at the reduced Gauss points which lie closest to the global yz-plane. 
Note that all three interlaminar stresses exhibit apparent singular behavior near the 
intersection of the +45/-45 interface and the free edge. In this particular problem, 
the transverse shear stress (Txz exhibits the largest magnitude of the interlaminar 
stresses, followed by the transverse normal stress (T zz. The stress distributions in 
Figures 12.3.7 through 12.3.9 show good qualitative agreement with results reported 
by Wang and Choi [58], who presented an exact elasticity solution for the associated 
quasi-3D problem, and Whitcomb et al. [59], who presented a displacement-based 
finite element solution ofthe associated quasi-3D problem (also see [60,61]); however, 
their results are not reproduced here. 
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An examination of Figures 12.3.7 through 12.3.9 reveals that traction-free 
boundary conditions equations (12.3.10a) through (12.3.10c) are apparently satisfied 
(within the context of the relatively coarse mesh used). Figure 12.3.9 shows that 
Eq. (12.3.lOd) is satisfied over most of the thickness of the free edge, except in 
the immediate vicinity of the singular point. Note that even though Eq. (12.3.lOd) 
is violated near the singular point, this boundary condition is still satisfied in the 
integral sense. Whitcomb et al. [59] suggest that this behavior is caused by the 
fact that the stress tensor does not have to be symmetric at a singular point (where 
the stress derivatives are unbounded) while most numerical methods are developed 
assuming a symmetric stress tensor. Whitcomb et al. [59] further reported that 
the region of boundary condition violation is restricted to the two elements nearest 
to the singular point and that this region can be made as small as desired through 
mesh refinement. 

Figures 12.3.10 through 12.3.12 show the variation of the interlaminar stresses 
along the width coordinate (y) of the composite plate strip at various values of the 
thickness coordinate (z). There are six lines corresponding to six different z values, 
all of which occur in the uppermost material layer (+45). Note that all of these 
transverse stresses decay to zero as the distance from the free edge increases. Also 
note that only the stresses closest to the 45/-45 interface appear unbounded as the 
free edge is approached. The transverse shear stress O'yz shown in Figure 12.3.12 
appears to satisfy Eq. (12.3.lOd) except at z = 1.014hk (again the reduced Gauss 
point nearest to the singular point). The transverse stress distributions shown in 
Figures 12.3.10 through 12.3.12 show good qualitative agreement with the quasi-3D 
elasticity solution presented by Wang and Choi [58], although their results are not 
presented here. 

For this problem, the layerwise finite element stresses agree with the classical 
laminate theory solution for points sufficiently far from the free edge. For example, 
the nondimensionalized in-plane stresses at the reduced Gauss points nearest to the 
centroid of the strip (i.e., x = 0.1I55a, y = 0.2165b) are (depending on z) 

Layerwise FEM 

2.956 < O'xx < 2.975 

1.143 < O'xy < 1.164 

0.0 < O'yy < 0.012 

CLPT 

O'xx = 2.96 

O'xy = 1.15 

O'yy = 0.0 

While highly accurate, the layerwise models are computationally expensive, thus 
preventing their general use in modeling entire laminates. Fortunately, unless a 
laminate is extremely thick, significant three-dimensional states of stress are usually 
restricted to localized regions near geometric and material discontinuities such as 
free edges, cut-outs, delamination fronts, and matrix crack fronts, or in localized 
regions of intense loading. However, the localization of these 3-D stress fields does 
not diminish their importance, for it is in these very areas that damage initiation 
and propagation are most likely to occur. Therefore, we must develop procedures 
where a suitable theory can be used for local as well as global regions. 
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12.4 Variable Kinematic Formulations 
12.4.1 Introduction 

The ESL models, partiallayerwise models, and fulliayerwise models each have their 
own advantages and disadvantages in terms of solution accuracy, solution economy, 
and ease of implementation. Used alone, none of these three types of models is 
suitable for general laminate analysis; each is restricted to a limited portion of the 
composite laminate modeling spectrum. However, by combining all three model 
types in a multiple model analysis or global-local analysis, a very wide variety of 
laminate problems can be solved with maximum accuracy and minimal cost. The 
term "multiple model analysis" is used here to denote any analysis method that uses 
rlifferent mathematical models and/or distinctly different levels of discretization 
for different subregions of the computational domain. The phrase "global-local 
analysis" refers to a special case of the more general multiple model analysis; the 
former term is typically used when there exists a particular subregion of interest 
that occupies a small portion of the computational domain. 

All multiple model methods represent an attempt to distribute limited 
computational resources in an optimal manner to achieve maximum solution 
accuracy with minimal solution cost, subject to certain problem-specific constraints. 
This task often requires the joining of incompatible finite element meshes and/or 
incompatible mathematical models. Note that for the case of joining incompatible 
mathematical models, the numerical methods used to implement each of the 
mathematical models may be the same or different; often the finite element method 
is used to implement each of the models. The traditional difficulty with multiple 
model analyses is the maintenance of displacement continuity and force equilibrium 
along boundaries separating incompatible subregions. 

A wide variety of multiple model methods have been reported in the literature. 
The analysis of composite laminates has provided the incentive for the development 
of many of the reported multiple model methods [62-72], due mainly to the 
heterogeneous nature of composite materials and the wide range of scales of interest 
(i.e., micromechanics level, lamina level, laminate level, and structural component 
level). In general, the broad spectrum of multiple model methods can be divided into 
two categories: (1) the sequential or multistep methods, and (2) the simultaneous 
methods. 

Most of the sequential multiple model methods reported to date are developed 
for global-local analysis. Typically the global region (i.e., the entire computational 
domain) is analyzed with an economical, yet adequate model (often an ESL laminate 
model) to determine the displacement or force boundary conditions for a subsequent 
analysis of the local region (i.e., a small subregion of particular interest). The local 
region might be modeled with a highly refined mesh of the same ESL laminate 
elements or it might be modeled with 3-D finite elements. Two-dimensional to 
three-dimensional sequential global-local methods for laminated composite plates 
were employed, for example, by Thompson and Griffin [62], who modeled the 
global region using the first order shear deformation finite elements, while the local 
region was modeled using 3-D finite elements. The displacement field from the 
FSDT finite element solution of the global region was used to impose displacement 
boundary conditions on the local 3-D finite element model. To simplify the analysis, 



760 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

the in-plane finite element discretizations of the global model and the local model 
were required to be compatible along the global-local boundary. One of the main 
criticisms of these non-iterating sequential methods [63] is that the influence of the 
local region on the global region is not accounted for. Specifically, displacement 
continuity is maintained across the global-local boundary, while the equilibrium of 
forces along the global-local boundary is not maintained. 

This lack of force equilibrium along the global-local boundary has prompted the 
development of iterative, sequential, multiple model methods by Mao and Sun [64] 
and Whitcomb and Woo [65,66]. These sequential multiple methods attempt to 
iteratively establish force equilibrium along the global-local boundary, in addition 
to imposing displacement continuity. Each of the iterative sequential methods use 
the same type of mathematical model for both the global region and the local region. 
The method proposed by Whitcomb and Woo [65,66] requires a compatible finite 
element discretization along the global-local boundary while the method proposed 
by Mao and Sun [64] does not. 

A number of simultaneous multiple model methods have been reported in the 
literature [67-72]. These methods are characterized by a simultaneous analysis ofthe 
entire computational domain where different subregions are modeled using different 
mathematical models and/or distinctly different levels of domain discretization. The 
simultaneous methods explicitly account for the full interaction of the different 
subregions and are thus directly extendible to nonlinear analysis. One simple type 
of simultaneous global-local method prompted by composite laminate analysis is 
the concept of selective ply grouping or sublaminates [67-71]. In this technique, 
the local region of interest is identified as a specific group of adjacent material 
plies, within which accurate stresses are desired. The local region spans the entire 
planar dimensions of the laminate. The global region is identified as that part of 
the computational domain lying outside the local region. Each of the material plies 
within the local region is individually modeled with 3-D finite elements, while the 
remaining plies in the global region are grouped into one or more sublaminates 
and modeled with 3-D finite elements. This technique amounts to modeling the 
sublaminates in the global region with an ESL finite element model that assumes 
transverse shear and transverse normal strains that are CI-continuous with respect 
to the thickness coordinate, while the individual plies in the local region are modeled 
using 3-D finite elements. This ply grouping concept has the disadvantage of 
requiring the use of 3-D finite elements over the entire planar dimensions of the 
laminate. 

Another means for developing simultaneous multiple model methods is the use 
of multipoint constraint equations or Lagrange multipliers. In this technique, 
the variational statement is supplemented with additional integral(s) that serve 
to enforce compatibility between adjacent subregions. Consequently additional 
variables (Lagrange multipliers) are introduced into the system of algebraic 
equations. Within the context of ESL plate and shell models, Aminpour et al. [72] 
used an assumed I-D interface function in conjunction with a hybrid variational 
formulation to couple subregions with incompatible mesh discretizations. In this 
study, only 2-D problems were addressed, and both subregions used the same 
type of 2-D mathematical model. The subregions differed only in their levels of 
discretization. While the Lagrange multiplier approach can be used to couple 
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subregions that use different mathematical models (e.g., 2-D /3-D modeling of plates 
or shells) the general implementation becomes much more cumbersome than a strict 
2-D modeling; consequently this method is not often used for connecting different 
mathematical models. 

Currently, most simultaneous 2-D to 3-D modeling of plates and shells is carried 
out using special transition elements [73-76]. The special transition elements are 
more convenient than multipoint constraints for joining subregions that use different 
types of mathematical models; however, they have two disadvantages. First, a 
different type of transition element is needed for each pair of different mathematical 
models that might need to be connected in a simultaneous analysis. Further, if 
the subregion interface has corners, then two different transition elements will be 
needed to complete the interface, i.e., one type for straight or curved sides and 
another type for corners. Second, in modeling composite laminates, a significant 
amount of transitioning (with respect to the transverse coordinate) is required to 
achieve a discrete layer 3-D representation in localized subregions of interest. The 
need for transitioning can be avoided by developing a transition element to connect a 
first-order shear deformation element (both with and without a quadratic thickness 
stretch) with a stack of 3-D finite elements. Davila [76] developed such a transition 
element and incorporated the functional interface method [72] to permit abrupt 
changes in the level of discretization between standard first-order shear deformation 
elements and the first-order shear deformation edges of the 2-D to 3-D transition 
elements. 

Several types of simultaneous multiple model methods have been based on the 
hierarchical use of multiple assumed displacement fields. The earliest example of 
employing multiple assumed displacement fields is clue to Mote [77] who combined 
an assumed global Ritz field with a local finite element field in the solution of beam 
and plate problems. Dong [78] generalized the idea of combining classical Ritz fields 
and finite element fields and surveyed applications of this technique. 

While both full layerwise finite elements and conventional 3-D finite elements 
permit an accurate determination of 3-D ply level stress fields, they are 
computationally expensive to use; thus it is most often impractical to discretize 
an entire laminate with these types of elements. Fortunately, for most laminate 
applications, significant 3-D stress states are usually present only in localized regions 
of complex loading or geometric and material discontinuity. To accurately capture 
these localized 3-D stress fields in a tractable manner, it is usually necessary to 
resort to a simultaneous multiple model approach in which different subregions of the 
laminate are described with different types of mathematical models. The objective 
of such a simultaneous multiple model analysis is to match the most appropriate 
mathematical model with each subregion based on the physical characteristics, 
applied loading, expected behavior, and level of solution accuracy desired of each 
subregion. Thus solution economy can be maximized without sacrificing solution 
accuracy. In the previously mentioned works that use some form of hierarchical, 
multiple assumed displacement fields, both displacement fields are based on the same 
mathematical model; hence the subregions differ only in the level of refinement of 
the interpolated solution. Reddy and Robbins [79-81] were the first ones to employ 
hierarchical multiple assumed displacement fields to model different subregions with 
different mathematical models (e.g., FSDT and LWPT), which is discussed next. 
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12.4.2 Multiple Assumed Displacement Fields 

Although simultaneous multiple model methods are simple in concept, the actual 
implementation of such techniques is complicated and cumbersome due mainly 
to the need for maintaining displacement continuity across subregion boundaries 
separating incompatible subdomains. To avoid such difficulties, a new hierarchical, 
variable kinematic finite element that provides the framework for a very general, 
robust, simultaneous multiple model methodology for laminated composite plates, 
is developed. The variable kinematic finite elements possess the following attributes: 

1. The kinematics and constitutive relations of the element can be conveniently 
changed, thus allowing the element to represent a variety of different 
mathematical models from the very simple to the very complex. 

2. Different types of elements can be conveniently connected together in the same 
computational domain, thus permitting different subregions to be described 
by different mathematical models. One might also think of the variable 
kinematic finite element as a very sophisticated, adaptable, transition element 
that circumvents the need for more than one type of transition element. 

The hierarchical, variable kinematic finite element is developed using a multiple 
assumed displacement field approach, i.e., by superimposing two or more different 
types of assumed displacement fields in the same finite element domain. In general, 
the multiple assumed displacement field can be expressed as 

(12.4.1) 

where i = 1,2,3, and Ul = U, U2 = v, and U3 = ware the displacement 
components in the x, y, and z directions, respectively. The reference plane of the 
plate coincides with the xy-plane. The underlying foundation of the displacement 
field is provided by ufSL, which represents the assumed displacement field for any 
desired equivalent single-layer (ESL) theory. The second term ufWT represents the 
assumed displacement field for any desired full layerwise theory. The layerwise 
displacement field is included as an optional, incremental enhancement to the 
basic ESL displacement field, so that the element can have full 3-D modeling 
capability when needed. Depending on the desired level of accuracy, the element 
may use none, part, or all of the layerwise field to create a series of different 
elements having a wide range of kinematic complexity. For example, discrete layer 
transverse shear effects can be added to the element by including ufWT and u§'WT. 
Discrete layer transverse normal effects can be added to the element by including 
ufWT Displacement continuity is maintained between these different types of 
elements by simply enforcing homogeneous essential boundary conditions on the 
incrementallayerwise variables, thus eliminating the need for multipoint constraints, 
penalty function methods, or special transition elements. It should be noted that 
a conventional 3-D finite element displacement field could be used instead of the 
full layerwise field in equation (12.4.1); however, the 2-D data structure of the full 
layerwise finite elements permits much easier coupling with the 2-D ESL field. 

To illustrate the usefulness of a finite element based on the assumed displacement 
field ofEq. (12.4.1), consider a specific case where the individual displacement fields 
are selected as follows: 
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UfSL: First-Order Shear Deformation Field 

UfSL(X, y, z) = 'uo(x, y) + zrPx(x, y) 

ufSL(x, y, z) = vo(x, y) + zrPy(x, y) 

ufSL(x, y, z) = wo(x, y) 

UfWT: Layerwise Field of Reddy [37] 

N 

ufWT (x, y, z) = L UI(X, y)<I>I (z) 
1=1 
N 

ufWT (x, y, z) = L VI (x, y)<I>I (z) 
1=1 
M 

uftWT (x, y, z) = L WI(x, y)\[II (z) 
1=1 

(12.4.2) 

(12.4.3) 

where (UI' VI, WI) denote the nodal values of (U1' U2, U3)=(U, v, w), N is the number 
of nodes (or N -1 is the number of subdivisions) through thickness, and <I>I are the 1-
D (global) interpolation functions for the discretization of the in-plane displacements 
through thickness, and M and \[II have similar meaning for the discretization of the 
transverse displacement through thickness. A detailed discussion of displacement
based finite element models of the theory based solely on the displacement field 
in Eq. (12.4.3) was presented in the previous section. It should be noted that 
the layerwise field given by Eq. (12.4.3) is sufficiently general to model any of the 
deformation modes that can be modeled by the ESL field given in Eq. (12.4.2); thus 
for elements that use all the variables shown in Eqs. (12.4.2) and (12.4.3), there will 
be five redundant variables that must be set to zero (or ignored) to permit a unique 
solution for the remaining variables. The ESL variables are essential for connecting 
different types of elements. Therefore, the following five of the layerwise variables 
should be set to zero (see Figure 12.4.1): 

(12.4.4) 

Parts (a) and (b) of Figure 12.4.1 illustrate a possible in-plane deformation 
(component u = U1 only) of a transverse normal material line obtained by adding 
a piecewise linear layerwise displacement field to a first-order shear deformation 
displacement field. In this particular case, the reference plane is arbitrarily chosen 
to coincide with the bottom surface ofthe plate, and there are five nodes (i.e., planes) 
distributed through the thickness to define the layerwise portion of the composite 
displacement field. Note that in hoth parts (a) and (b) of Figure 12.4.1 the layerwise 
displacements UI provide an incremental enhancement to the displacement ufLS 
predicted by the first-order shear deformation theory as a result of setting U1 and 
UN to zero. The particular pair of UI that are zeroed is arbitrary. The same final 
deformation is achieved in both parts (a) and (b); however, different pairs of U I are 
zeroed, thus changing the numerical values of the remaining five nonzero variables. 
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Figure 12.4.1: Superposition of a first-order shear deformation displacement field 
and a linear layerwise displacement field. In-plane deformation of 
transverse normal AB. (a) U1 = U5 = O. (b) U2 = U3 = O. 

The location of the reference plane (z = 0) is arbitrary although its location affects 
the numerical values of the in-plane first-order shear deformation variables. If the 
displacements of the first-order shear deformation theory had been set to zero, then 
the layerwise displacements would be interpreted as total displacements. 

12.4.3 Incorporation of Delamination Kinematics 

A commonly occurring phenomenon in composite laminates is delamination. A 
delamination is simply a debonding or separation that occurs between individual 
material plies of a laminate (i.e., an interlaminar crack). Delaminations can occur 
as a result of manufacturing defects or from interlaminar normal and shear stresses 
brought about by local anomalies or transverse impacts. Often there may be multiple 
delaminations distributed through the thickness of a laminate, especially in the 
region surrounding an impact site. The subject of fracture mechanics has proven to 
be particularly useful in characterizing the severity of delaminations. For a general 
review of composite delamination research, the reader is referred to O'Brien [82]. 
The total energy release rate and its individual components have been successfully 
used to predict delamination onset and growth by O'Brien [82-85]. 

Since delamination is a common occurrence in laminates, the kinematics of single 
and multiple delamination should be incorporated into any general laminate model. 
The present multiple assumed displacement field of Eq. (12.4.1) also permits the 
modeling of delamination kinematics by using two or more layerwise expansions 
through the thickness instead of one. In this case, a separate layerwise expansion 
would be used for each sublaminate created by the delamination(s). Alternatively, 
one can model the kinematics of delamination by supplementing the composite 
displacement field with a simple, piecewise constant, discontinuous displacement 
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field that uses unit step functions of the thickness coordinate (see Barbero and 
Reddy [50]). Both of these methods introduce the same number of additional 
dependent variables. The second method is chosen here because the additional 
dependent variables are physically meaningful in that they represent the jump 
discontinuity in the displacement components across the delamination. Further, 
the second method allows easier modeling of multiple delaminations and easier 
implementation of various no-penetration contact algorithms for the delaminated 
surfaces (see Robbins and Reddy [52]). The supplemented composite displacement 
field thus becomes 

Ui(X,y,Z) = ufSL(x,y,z) +urWT(x,y,z) +up(x,y,z) 

D 

uf(x, y, z) = L UI(X, y)HI (z) 
1=1 
D 

u!i(x, y, z) = L VI(x, y)HI (z) 
1=1 

D 

uf(x, y, z) = L WI(X, y)HI (z) 
1=1 

(12.4.5) 

(12.4.6) 

and HI (z) are the Heaviside step functions, HI (z) = 1 for z 2: zI and HI (z) = 0 
for z < zI, and D is the number of delaminations distributed through the 
laminate thickness. Equation (12.4.6) represents displacement components that 
are piecewise constant through the laminate thickness. The delaminations are 
located at coordinates z = zI (I = 1,2"", D). Note that the I in zI serves 
as a superscript and not an exponent, thus distinguishing the locations of the 
delaminations (zI, I = 1, 2, ... , D) from the locations of the nodes (z.l, J = 
1,2" .. ,N) in the layerwise expansion. Three dependent variables (UI' VI, WI) 
are introduced for each delamination. The dependent variables (UI' VI, WI) are 
interpreted as the jump discontinuities in the displacement components (U1' u2, U3) 
at z = zI (I = 1,2"", D). The variable WI(X, y) is the delamination opening 
displacement, thus the condition WI 2: 0 constitutes a no-penetration boundary 
condition for delaminated surfaces of the Ith delamination. The delamination front 
for the Ith delamination is defined as a curved or straight line in the xy-plane along 
which the essential boundary conditions UI = VI = WI = 0 are enforced. 

The effect of introducing the delamination field of Eq. (12.4.5) into the composite 
displacement field is illustrated in Figure 12.4.2, which shows the x-component of the 
deformation of a transverse normal material line AB. The overall deformation of line 
AB is similar to that of Figure 12.4.1 with the exception of a single delamination 
located at z = zl, where the jump discontinuity Ul is introduced. These jump 
discontinuities can be introduced as many times as desired for multiple delaminations 
(see Barbero and Reddy [50]). 

In the next section we shall discuss a displacement-based finite element model 
of the variable kinematic displacement field in (12.4.5). A practical problem often 
has several regions, each requiring a different mathematical model, and the variable 
kinematic model allows modeling of each of them. 
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B 
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Translation 

Zl ------------- ________________________ f __ 

A 

Figure 12.4.2: Superposition of a first-order shear deformation displacement 
field, a linear layerwise displacement field, and a piecewise 
constant delamination displacement field. In-plane deformation 
of transverse normal AB. Delamination occurs at z = zl. 

12.4.4 Finite Element Model 

A hierarchy of three distinct types of plate elements can be obtained from the 
composite displacement field of Eq. (12.4.5), where the individual displacement 
expansions are defined by Eqs. (12.4.2), (12.4.3) and (12.4.6). The first and simplest 
type of element is the first-order shear deformation element (or FSDT element). 
This element is formed using Eq. (12.4.2) for ufSL and suppressing ufWT and up. 
The second type of element is the Type I layerwise element (or LWT1 element), 
which is formed using Eq. (12.4.5) but ignoring up and the expansion for ufWT 
in Eq. (12.4.3). Thus, LWT1 is a partial layerwise element. Four of the layerwise 
variables should be set to zero (or simply ignored) to remove the redundancy from 
the composite displacement field (e.g., UI = UN = VI = VlV = 0). Like the FSDT 
element, the LWT1 element assumes a state of zero transverse normal stress and 
thus does not explicitly account for transverse normal strain. This is implicitly 
achieved by using a reduced constitutive matrix similar to the FSDT element. The 
inclusion of Eqs. (12.4.3a) and (12.4.3b) in the LWT1 element provides discrete 
layer transverse shear effects, unlike the simple gross transverse shear effect included 
in the FSDT element. Thus the LWT1 element is applicable to thick laminates and 
often yields results comparable to 3-D finite elements while using approximately two 
thirds the number of degrees of freedom. The third and most complex element is 
the Type II layerwise element (or LWT2 element). This element is formed using 
both Eqs. (12.4.2) and (12.4.3), thus it is a full layerwise element. The composite 
displacement field contains five redundant variables, thus five layerwise variables 
are chosen (e.g., UI, UN, VI, VN , WI) and set to zero or simply ignored. The LWT2 
element explicitly accounts for all six strain components in a kinematically correct 
manner; i.e., the in-plane strains are CI-continuous through the laminate thickness 
while the transverse strains are CO-continuous through the laminate thickness. The 
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inclusion of the full layerwise field provides the LWT2 element with both discrete 
layer transverse shear effects and discrete layer transverse normal effects. The LWT2 
element uses a full constitutive matrix (Qij = Cij ), and it is equivalent in accuracy 
and cost to a stack of conventional 3-D finite elements. 

If delaminations are present, then both the LWT1 and LWT2 finite elements 
can make use of the delamination expansion of Eq. (12.4.5). The FSDT element 
cannot be used to model delamination since the deformation above and below the 
delamination cannot be separately prescribed due to the GI-continuity of the FSDT 
displacement expansion through the thickness. 

Note that the various element types are created by hierarchically adding variables 
to the basic first-order shear deformation field. The matrix form of the finite element 
equations that result from the hierarchical use of Eqs. (12.4.2), (12.4.3), and (12.4.6) 
within a single element domain is given by 

(12.4.7) 

where [KEEl represents the element stiffness matrix for an equivalent single-layer 
FSDT element, [KLL] represents the element stiffness matrix for a full layerwise 
element, and [KDD] represents the element stiffness matrix for an element based 
solely on the delamination field of Eq. (12.4.6). The remaining submatrices 
represent coupling stiffnesses between the three different displacement fields. Based 
on the particular type of element desired, the appropriate terms in the composite 
stiffness matrix are identified and computed. Since all three element types possess 
the first-order shear deformation variables of Eq. (12.4.2), these different types of 
elements can easily be simultaneously connected in the same computational domain 
by simply setting certain layerwise variables of Eq. (12.4.3) to zero along the 
incompatible boundary. 

Figure 12.4.3 illustrates a hypothetical 2-D finite element mesh of variable 
kinematic finite elements where all three element types (FSDT, LWT1, and LWT2) 
are simultaneously present. The hierarchical nature of the variable kinematic 
elements allows interelement compatibility to be achieved by simply enforcing 
homogeneous boundary conditions on some or all of the incremental layerwise 
variables along the boundary separating two incompatible subregions. Subregion 
compatibility can be enforced in a strict sense or a relaxed sense by specifying the 
essential boundary conditions as defined below (also see Figure 12.4.3). 

Strict subregion compatibilit'y (SSG) 

• At nodes on FSDT /LWT1 boundary, set UI = 0, VI = ° 
• At nodes on FSDT /LWT2 boundary, set UI = 0, VI = 0, WI = ° 
• At nodes on LWT1/LWT2 boundary, set UI = 0, VI = 0, WI = ° 

Relaxed subregion compatibilit.Y (RSG) 

• At nodes on FSDT /LWT1 boundary, set UI = 0, VI = ° 
• At nodes on FSDT /LWT2 boundary, set UI = 0, VI = ° 
• At nodes on LWT1/LWT2 boundary. set UI = 0, VI = ° 
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---- ----X X 

At nodes., set Uj =Vj =O,j=1,2, .. ,n At nodes., set Uj =Vj =O,j=1,2, .. ,n 

At nodes D, set Wj =O,j=1,2, .. ,n 

(a) Enforcing strict subregion 
compatibility 

(b) Enforcing relaxed subregion 
compatibility 

Figure 12.4.3: A simple 2-D mesh of variable kinematic finite elements. All three 
element types (FSDT, LWT1, and LWT2) are simultaneously 
present in the mesh. 

for I = 1,2, ... , N. When maintaining strict subregion compatibility (SSC), all three 
displacement components are continuous across all types of subregion boundaries 
(FSDT/LWT1, LWT1/LWT2, and LWT2/FSDT). In contrast, relaxed subregion 
compatibility (RSC) maintains total continuity of the in-plane displacement 
components across all types of subregion boundaries, but it does not maintain 
total continuity of the transverse displacement component across FSDT /LWT2 
or LWT1/LWT2 boundaries. This relaxation is often useful for obtaining 
accurate transverse normal stresses within LWT2 subregions, near FSDT /LWT2 or 
LWT1/LWT2 boundaries, since it eliminates the transverse pinching or stretching 
of the laminate near these boundaries, and effectively allows the transverse normal 
strain to react to the local dominant in-plane strains. Within those portions of LWT2 
subregions sufficiently removed from FSDT /LWT2 or LWT1/LWT2 boundaries, 
both strict and relaxed conditions yield the same stress distributions. 

The enforcing of strict or relaxed subregion compatibility via application of the 
appropriate homogeneous essential boundary conditions is easily automated in a 
finite element program and can thus be removed from the concern of the user. A 
significant advantage afforded by the variable kinematic elements is that once the 
in-plane mesh is defined, the user can then assign any of the three element types 
(FSDT, LWT1, and LWT2) to any of the elements in the 2-D mesh. Subsequent 
changes in the type of any element or group of elements can be performed with 
minimal effort. 
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12.4.5 Illustrative Examples 

The problem of determining the free edge stress fields in laminates subjected to In
plane extension or bending is used to illustrate the variable kinematic finite element 
(VKFE) model methodology. The free edge problem is ideally suited for global
local analysis, because the 3-D stress field exists only in a boundary region (i.e., free 
edge) of the laminate and elsewhere only a 2-D stress state exists. Thus, the LWT2 
elements can be used in the free edge (local) region and ESL elements can be used 
everywhere else (global region) to capture the stress fields accurately. 

Free Edge Stresses in Laminates in Extension 

To demonstrate the accuracy and economy afforded by the variable kinematic finite 
elements, a global-local analysis is performed to determine the nature of the free 
edge stress field in three different laminates subjected to axial extension: (45/-45),,, 
(45/0/-45/90)8' and (45/0/--45/90/90/-45/0/45)s. The three laminates have length 
2a, width 2b, and thickness 2h. Each of the three laminates has a length-to-width 
ratio of 10 (i.e., alb = 10). The material plies in each laminate are of equal thickness 
hk . The following geometric differences exist among the three laminates: 

( 45 / -45) 8 laminate: 
b b 
- =4 h = 2hb -=8 
h ' hk 

(45/0/-45/90)8 laminate: 
b 
- = 15 
h ' 

h = 4hk, 
b 

- =60 
hk 

(45/0/-45/90)28 laminate: 
b 

h = 8hk , 
b 

(12.4.8) - = 15 - = 120 h . hk 

Each of the material plies in the three laminates is idealized as a homogeneous, 
orthotropic material; the material properties (expressed in the principal material 
coordinate system) are defined below. 

Material plies in the four-layer laminate: 

E1 = 20 x 106 psi, E2 = E3 = 2.1 X 106 psi 

G12 = G23 = G13 = 0.85 X 106 psi, 1/12 = 1/23 = 1/13 = 0.21 

Material plies in the eight- and sixteen-layer laminates: 

E1 = 19.5 X 106 psi, E2 = E:3 = 1.48 x 106 psi 
6 . G12 = G23 = G1:3 = 0.8 x 10 pSI, 1/12 = 1/23 = 1/13 = 0.3 

(12.4.9a) 

(12.4.9b) 

The origin of the global coordinate system coincides with the centroid of each of 
the 3-D composite laminates. The x-coordinate is taken along the length, the y
coordinate is taken across the width, and the z-coordinate is taken through the 
thickness of the laminate. Since the laminate is symmetric about the xy-plane, 
only the upper half of each laminate is modeled. Thus the computational domain 
is defined by (-a < x < a, -b < y < b,O < z < h). The displacement boundary 
conditions for all three laminates are 

1L1(a,y,z) = lLo, lLl(-a,y,z) = 1L2(-a,y,z) = 1L2(a,y,z) = 1L3(X,y,0) = 0 
(12.4.10) 
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The slight differences in geometry and material properties among the three laminates 
allow comparison with solutions published in the literature. For the (45/-45)8 
laminate, Wang and Choi [57,58] have developed a quasi-3D elasticity solution, 
while Whitcomb et al. [59] produced a solution from a highly refined, quasi-3D finite 
element model. For the (45/0/-45/90) sand (45/0/--45/90/90/-45/0/45) 8 laminates, 
Whitcomb and Raju [61] obtained quasi-3D finite element solutions using a highly 
refined mesh. 

The variable kinematic finite elements are used in a simultaneous multiple model 
analysis (global-local analysis) of these three laminates in order to accurately yet 
efficiently determine the free edge stresses near the middle of one of the two free 
edges. The global region is modeled using first-order shear deformable elements 
(FSDT); the local region, where accurate 3-D stresses are desired, is modeled with 
LWT2 elements. 

First the (45/-45)8 laminate will be used to assess the effects of subregion 
compatibility type (SSC or RSC) and size of the local LWT2 subregion on 
the accuracy of the computed transverse stresses near the free edge. For this 
purpose, five different finite element meshes are created. The 2-D, in-plane 
discretization for all five meshes is exactly the same, consisting of a 5 x 11 
mesh of eight-node, quadratic, 2-D, quadrilateral finite elements (see Figure 
12.4.4). All elements have the same length (2a/5); however, the width of the 
elements decreases as the free edge at (x, b, z) is approached. The widths of 
the eleven rows of elements, as one moves away from the refined free edge, 
are hk/16, hk/16, hk/8, hk/4, hk/2, hk' hk' 2hk , 3hk, 3hk, and 5hk (hk=ply thickness). 
The five meshes differ only in the width of the local region where LWT2 elements 
are used. The LWT2 elements used in the local region employ eight quadratic 
layers through the laminate thickness (four per material layer) as shown in Figure 
12.4.5. The thickness of the numerical layers decreases as the +45/-45 interface 
is approached. From bottom to top, the layer thicknesses are 0.533hk, 0.267hk, 
0.133hk, 0.083hk, 0.083hk , 0.133hk, 0.267hk, and 0.533hk. 

Table 12.4.1 summarizes the five meshes used for the (45/-45)8 laminate. Note 
that mesh 5 is not a global-local mesh. Mesh 5 uses LWT2 elements throughout 
the entire computational domain, thus serving as a control mesh for judging the 
accuracy of the four global-local meshes. In meshes 1 through 4, the local region 
(LWT2 elements) is adjacent to the free edge (x, b, z) and is centered about the 
plane (0, y, z). In meshes 1 through 4, the length of the local region spans three 
fifths of the total length of the laminate; however, the width of the local region 
differs in each mesh ranging from hk/2 to 3hk. Two runs are made with each of 
the four global-local meshes, the first using strict subregion compatibility along the 
FSDT-LWT2 boundary, and the second using relaxed subregion compatibility along 
the FSDT -LWT2 boundary. 

The stresses are computed via the constitutive relations at the reduced Gauss 
points within the individual layers of each LWT2 element. All stresses are 
nondimensionalized as follows: 

(12.4.10) 
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a = lOb 

b = 4h = 8hk 
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c:::J Local Region (LWT2) 
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Figure 12.4.4: The 2-D mesh of variable kinematic finite elements used to model 
a (45/-45)" laminate under axial extension. All elements are eight
node quadrilaterals. 
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~I·---b----~+----b--~ 
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y 

Figure 12.4.5: Discretization within the local LWT2 region, on the yz-plane. The 
eight-node LWT2 elements in the local region use quadratic layers. 
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Table 12.4.1: Description of global-local meshes for the (45/-45)8 laminate 
under axial extension. 

Remarks Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

N umber of Elements 
in Local LWT2 Region 3x4 3x5 3 x 6 3x7 5 x 11 

Width of Local Region ~hk hk 2hk 3hk 16hk 

Length of Local Region 2a 
5 

2a 
5 

2a 
5 

2a 
5 2a 

Total Number of Active 
DoF in VKFE Mesh 1,986 2,400 2,814 3,228 9,116 
(Strict Compatibility) 

Total Number of Active 
DoF in VKFE Mesh 2,354 2,800 3,246 3,690 9,116 
(Relaxed Compatibility) 

hk = thickness of a single material ply. All five VKFE meshes have the exact same 
in-plane discretization (5 x 11); DoF = Degrees of Freedom. 

where co is the nominal applied axial strain of uo/(2a). The stress distributions 
shown in Figures 12.4.6 through 12.4.8 are generated by computing the 
nondimensionalized stresses at a series of adjacent reduced Gauss points, and then 
connecting these points with straight lines. 

Figures 12.4.7 and 12.4.8 show the distribution of the interlaminar stresses O'zz 

and O'xz near the free edge. The results in these two figures were obtained using 
relaxed subregion compatibility conditions. The stresses presented in Figure 12.4.6 
are computed at the reduced Gauss points near the middle of the refined free edge, 
i.e., along the line (-0.115a, 0.998b, z). This is also the reduced Gauss point located 
farthest from the FSDT /LWT2 boundary. The stresses presented in Figure 12.4.7 
are computed at the reduced Gauss points closest to the line (0, y, hk), i.e., along 
the line (-0.115a, y, 1.014hk)' All four of the global local meshes are successful 
in identifying the spikes in 0' zz and 0' xz that occur at the 45/-45 interface. The 
results of meshes 3 and 4 are graphically indistinguishable from the results of the 
control mesh, mesh 5. While meshes 1 and 2 exhibit some error, they do capture 
the qualitative nature of the transverse stress distributions near the free edge. In 
meshes 1 and 2, the transverse shear stresses are predicted more accurately than 
the transverse normal stresses. The results also indicate that the boundary layer 
thickness (or the width of the local region) should be at least 2hk to capture both 
interlaminar stresses accurately. 

Figure 12.4.8 shows the effect of subregion compatibility type (strict or relaxed) 
on the accuracy of the transverse normal stress within the local LWT2 subregion. 
Only the transverse normal stress distributions are shown since similar transverse 
shear stress distributions were computed for both strict and relaxed subregion 
compatibility. Figure 12.4.8 shows the distribution of 0' zz across the width of the 
laminate, near the +45/-45 interface, as the free edge is approached. The stresses 
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Figure 12.4.6: Interlaminar stress distribution through thickness of the (45/-45)8 
laminate near free edge. Results computed for meshes 1 through 
5 with relaxed subregion compatibility. 
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Figure 12.4.7: Interlaminar stress distribution across the width of the (45/-
45)8 laminate near the upper 45/-45 interface (z = 1.014hk). 
Results computed for meshes 1 through 5 with relaxed subregion 
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Figure 12.4.8: Stress distributions across width of the (45/-45)8 laminate near 
the upper 45/-45 interface (z = l.Ul4hk). Results computed 
for (a) mesh 3 and (b) mesh 4 using both strict subregion 
compatibility and relaxed subregion compatibility. 
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are computed along the same line of adjacent reduced Gauss points as in Figure 
12.4.7. The use of strict subregion compatibility causes significant error in the 
transverse normal stress near the FSDT /LWT2 boundary. This error is caused 
by the enforced transverse inextensibility of the laminate along the FSDT /LWT2 
boundary. The FSDT elements enforce a condition of Ezz = 0 on the edges of the 
LWT2 elements that form the FSDT /LWT2 boundary, thus artificially pinching or 
stretching the laminate thickness along the FSDT /LWT2 boundary. In contrast, the 
use of relaxed subregion compatibility allows the edges of the LWT2 elements that 
lie on the FSDT /LWT2 boundary to expand or contract in the thickness direction 
in response to the compatible in-plane displacement field. Thus the use of relaxed 
subregion compatibility permits accurate transverse normal stresses to be computed 
across the entire width of the LWT2 region, even near the FSDT /LWT2 boundary. 
The use of relaxed subregion compatibility results in a slight increase in the number 
of active degrees of freedom since the WI (I = 1,2, ... , N) are not zeroed along 
the FSDT/LWT2 boundary (see Table 12.4.1). Thus the analyst may wish to 
use strict subregion compatibility provided that the LWT2 subregion is sufficiently 
large and provided that accurate transverse normal stresses are not needed near the 
FSDT /LWT2 boundary. 

To illustrate the accuracy of the variable kinematic elements in determining the 
free edge stress field for more complex laminates, a simultaneous multiple model 
analysis is performed on an eight-ply (45/0/-45/90)8 laminate, and a sixteen-ply 
(45/0/-45/90/90/-45/0/45)8 laminate. Both of these laminates are subjected to 
axial extension similar to the previously examined (45/-45).5 laminate. The in-plane 
discretization consists of a 5 x 11 2-D mesh of eight-node quadrilateral elements as 
shown previously in Figure 12.4.4. The local region is discretized with a 3 x 6 
mesh of LWT2 elements. For the (45/0/-45/90)8 laminate, the LWT2 elements 
contain 12 quadratic layers (three per material ply). Within each material ply the 
three quadratic layers have thicknesses of 0.25hk, 0.5hk, and 0.25hk from bottom 
to top. For the (45/0/-45/90/90/-45/0/45)8 laminate, the LWT2 elements contain 
16 quadratic layers (two per material ply). Within each material ply both of the 
quadratic layers have thicknesses of 0.5hk' The (45/0/-45/90)8 model contains 4,382 
acti ve degrees of freedom while the (45/0/-45/90/90/-45/0/45).5 model contains 
5,638 active degrees of freedom. 

The computed transverse shear stress and transverse normal stress distributions 
for these two laminates are shown in Figures 12.4.9 and 12.4.10. The present results 
show excellent agreement with the quasi-3D finite element solutions of Whitcomb 
and Raju [61] (not included in the figure). For both laminates the maximum 
transverse normal stress occurs at the intersection of the 90/90 interface and the 
free edge, while the maximum transverse shear stress occurs at the intersection of 
the 45/0 and 0/-45 interfaces with the free edge. Both of these laminates have 
enough distinct material plies to make a full 3-D analysis prohibitively expensive, 
thus a sequential or simultaneous multiple model analysis is the only reasonable 
alternative. Many laminates have a very large number of distinct material plies, 
thus even with a multiple model analysis, the investigator may have to resort to 
using the sublaminate approach (i.e., ply grouping) within the local LWT2 region. 
In this case the investigator would identify a target group of adjacent material plies 
that would receive one or more numerical layers each, while the remaining plies 
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are grouped into one or more numerical layers and effectively homogenized. By 
performing several of these analyses, one can piece together a picture of the 3-D 
stress state through the laminate thickness within the local LWT2 region. 
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Figure 12.4.9: Interlaminar stress distributions in (45/0/-45/90)5 laminate under 
axial extension. (a) Through the thickness near the free edge 
(x = -0.115a, y = 0.998b). (b) Across the width (x = -0.115a). 
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Figure 12.4.10: Interlaminar stress distributions in (45/0/-45/90/90/-45/0/45)8 
laminate under axial extension. (a) Through the thickness near 
the free edge (x = -0.115a,y = 0.998b). (b) Across the width 
(x = -0.115a). 
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Free Edge Stresses in a (45 / ~45) 8 Laminate in Bending 

All of the previous examples involve the determination of free edge stress fields 
in laminates subjected to axial tension. To demonstrate the effectiveness of the 
variable kinematic finite elements for determining free edge stresses in laminates 
subjected to bending, consider a simply supported (45/-45)8 laminate subjected to 
a uniform transverse load. The physical dimensions and material properties of the 
(45/-45)8 laminate will be the same as in the axial extension example, with the 
exception that the origin of the coordinate system will be placed at the bottom 
center of one of the ends of the laminated strip. Thus the laminate occupies the 
domain (0 < x < 2a, ~b < y < b,O < z < 4h) where a = lOb = 40h = 80hk and hk 
is the thickness of a material ply. The displacement boundary conditions are 

The uniform transverse load qo is applied to the upper surface of the laminate and 
acts in the negative z direction. Note that there are no planes of symmetry in this 
problem, thus the computational domain consists of the entire laminate. 

To accurately yet efficiently capture the free edge stresses, a global-local analysis 
is performed using a 2-D mesh of variable kinematic finite elements, where FSDT 
elements make up the majority of the computational domain, and a small patch 
of LWT2 elements is used to resolve the free edge stress field within a localized 
region of interest, which is one of the free edges. The objective of this example is 
to determine the effect of the width of the LWT2 region on the accuracy of the 
computed free edge stresses. 

To investigate the effect of reducing the length of the LWT2 subregion, 
four different global-local meshes are created. Each mesh has a total in-plane 
discretization of 9 x 11 elements (9 clements along the laminate length, 11 elements 
across the laminate width). As in the previous analyses of the (45/-45) 8 laminate 
under axial extension, the in-plane mesh is highly refined over one of the free edges 
and is coarse over the other free edge. Note that the collective length of the central 
three rows of equal length elements is denoted as au. The remaining six rows of 
elements are of equal length (2a ~ ao)/6. The in-plane discretization of the five 
meshes differ in the value of ao; specifically ao = 2h, 4h, 8h, and 16h for meshes 1 
through 4, respectively. Each of the four in-plane meshes is used with both a 3 x 6 
LWT2 subregion and 5 x 6 LWT2 subregion (i.e., three or five LWT2 elements in 
the x direction and six LWT2 elements in the y direction). The width of the LWT2 
subregion is h in each case. Each of the LWT2 elements employs eleven quadratic 
layers through the laminate thickness: three layers in the bottom +450 ply, five 
layers in the two collective middle -45/-45 plies, and three layers in the top +450 ply. 
From bottom to top, the layer thicknesses are 0.6hk' 0.3hk' O.lhk, O.lhk, 0.3hk' 1.2hk, 
0.3hk, O.lhk, O.lhk, 0.3hk' and 0.6hk. By comparing the results of the 3 x 6 and 5 x 6 
LWT2 subregions for each of the four meshes, the effect of LWT2 subregion length 
on solution accuracy can be established. Each of the global-local meshes uses relaxed 
subregion compatibility. 

The transverse stress distributions obtained with mesh 1 (ao = 2h) are shown 
in Figure 12.4.11. Mesh 1 (ao = 2h) consists of both 3 x 6 and 5 x 6 LWT2 
subregions. Note that while the response predicted by the 3 x 6 and 5 x 6 LWT2 
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subregions are qualitatively the same, there is a small quantitative difference between 
the two responses. This quantitative difference indicates that the shorter 3 x 6 LWT2 
subregion (length = 2h) is not quite adequate to capture accurately the local 3-D 
stress field. In particular, Figure 12.4.11b shows that the transverse shear stress 
distribution predicted with the 3 x 6 LWT2 subregion is not smooth across the 
FSDT/LWT2 interface which occurs at y/b = 0.75. Figure 12.4.11b also shows 
that the LWT2 subregion is not quite wide enough (width = h) to show clearly the 
point where (J'zz decays to zero. Figures 12.4.12a,b show the same results for mesh 2 
where ao = 4h, with the exception that the width of the LWT2 subregion has been 
increased to 1.5h by using 3 x 7 and 5 x 7 LWT2 subregions as opposed to 3 x 6 
and 5 x 6 LWT2 subregions. Note that the quantitative difference between the 3 x 7 
and 5 x 7 responses is considerably smaller than for mesh 1. In Figure 12.4.12b, the 
disruption in the transverse shear stress distribution at the FSDT /LWT2 interface 
is barely detectable. Further, the increased widths of the LWT2 subregions are 
adequate to show the complete decay of (J' zz. 

12.5 Application to Adaptive Structures 
12.5.1 Introduction 

New structural concepts are emerging in which sensors and actuators are embedded 
or bonded to composite laminates for high-performance structural applications. 
These structures are termed adaptive structures, which monitor their own health. 
Adaptive structures are particularly useful for operations in remote or hazardous 
locations, process monitoring, vibration isolation and control, and medical 
applications, to name only a few. A laminated composite structure with piezoelectric 
actuators and sensors, for example, receives actuation through an applied electric 
field (to the actuators) and sends electric signals (electric field developed in the 
sensors) that can be used to measure the laminate response. Actuation and sensing 
materials exhibit a strong coupling between their mechanical response and electrical, 
magnetic or thermal behavior [86]( e.g., the application of an electric field produces 
a deformation and deformation of the material produces an electric field). The 
layerwise theory is capable of representing the 3D kinematics of laminated composite 
structures with active elements. 

The currently available analyses of piezo-laminated structures can be divided 
into the following classes [87-90]: 

• Uncoupled ESL models: models that do not consider the electro-mechanical 
coupling. The mechanical problem is solved using an ESL theory (often CLPT) 
where the piezoelectric actuators actions are treated as a load (similar to a 
thermal stress problem). The electrical problem is not solved and the voltages 
in the sensors are calculated a posteriori from the solution of the mechanical 
problem. 

• Coupled ESL models: models for which the mechanical problem is solved with 
an ESL theory, and the electrical problem is solved assuming distributions of the 
electric variables for each lamina of the laminate in a layerwise form. 

• Coupled Layerwise models: models in which the full electro-mechanical coupled 
problem is solved using a layerwise approach. 
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Heyliger, Ramirez and Saravanos [89] used the layerwise theory of Reddy [37] 
to develop a general finite element formulation for the coupled electromechanical 
problem of piezoelectric laminated plates. Numerical results were presented for 
the static behavior of a thick composite plate including two piezoelectric layers. 
A linear variation was assumed for each variable and models with constant and 
variable transverse displacement were considered. Each lamina was discretized in 
the thickness using two or three sublayers. Three meshes were studied and full 
integration was used for all terms. The stresses and electrical displacements were 
computed at Gauss points using the constitutive law. The results are in agreement 
with an exact solution but the model with constant transverse displacement is less 
accurate. In a similar work, Saravanos, Heyliger and Hopkins [90] extended the 
previous finite element formulation [89] to the dynamics case. 

The main objective of this section is to study an application of the layerwise 
displacement finite element model to adaptive structures composed of composite 
materials and piezoelectric inserts. The formulation includes full electromechanical 
coupling and allows different polynomial approximations through the thickness as 
well as an independent and arbitrary interpolation in the surface of the laminate 
[91]. Only the static linear elastic case is considered. The results obtained by the 
developed finite element model for a benchmark problem are discussed and compared 
with the respective three-dimensional closed-form solutions [91]. 

12.5.2 Governing Equations 

Consider a laminated plate with thickness H and built with piezoelectric laminae 
or patches and laminae of different linear elastic materials. The piezoelectric inserts 
may work as sensors or actuators. A global rectangular reference frame (x, y, z), 
with the z-axis aligned with the laminate thickness is used. The top and bottom 
planes of the laminate are denoted DT and DB, respectively, and the edge D x H 
includes the laminate thickness and boundary r of D. The constitutive relations of 
piezoelectric materials in a piezo-laminated structure bring the electro-mechanical 
coupling. 

The mechanical problem is governed by the 3-D equilibrium equations (the 
meaning of the variables should be obvious) 

aO"ji + Fi = 0 
aXj 

The boundary conditions involve specifying 

(12.5.1) 

(12.5.2) 

For the electrical problem, an electro-quasi-static approximation is adopted (see 
Haus and Melcher [92]). This means the coupling with magnetic fields is disregarded, 
which is often a very good assumption for the frequencies of structural problems with 
piezoelectric patches (see Tiersten [86]). The electrical problem is governed by the 
following two differential equations (Hans and Melcher [92]): 

aDi -a -Pc=O 
X 1, 

(12.5.3) 
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where Ei are the electric field components, Di are the electric displacement 
components, Pc is the free electric charge per unit volume, and Eijk is the permutation 
symbol. The first equation in (12.5.3) implies that the electric field is irrotational; 
hence, it can be represented as the gradient of a scalar function rp, called the electric 
potential. With the introduction of the electric potential rp, the first equation 
in (12.5.3) is identically satisfied. Thus the governing equations for the electrical 
problem become 

(12.5.4) 

The boundary condition of the electrical problem is of the form 

(12.5.5) 

where We is the electric free surface charge per unit area and ni is the ith direction 
cosine of the unit normal vector n to the surface separating mediums (a) and 
(b), directed from medium (b) to (a). The boundary condition for the electric 
displacement involves the knowledge of the electric displacement outside the domain 
of interest. In order to obtain a value for this, an electrical problem would have to 
be solved for the space outside the laminate. Usually, if the laminate is surrounded 
by air or vacuum and the electric field in the outside is small, it is a good assumption 
to consider that the electric displacement vanishes outside the laminate (see Bisegna 
and Maceri [93]). The material within each layer of the laminate is assumed to be 
homogeneous, generally anisotropic and linear elastic. The constitutive relations for 
a composite material layer in the global reference frame are 

(12.5.6) 

and for a piezoelectric material layer the constitutive equations are 

(12.5.7) 

where Cijmn are the components of the fourth-order tensor of elastic moduli, eCij 

are the components of the third-order tensor of piezoelectric moduli and ~iC are the 
components of the tensor of dielectric moduli for the kth lamina. The displacements 
and electric potential must be continuous from point to point in the structure, and 
conservation of electric charge requires 

D (k+1) - D(k) = W 
z z c (12.5.8) 

We shall use the following layerwise expansions for the displacement field and 
electric potential [see Eq. (12.2.2)] 

Nip 

u(x, y, z) = LUI (x, y) <pI (z), 
1=1 
Nw 

w(x, y, z) = L WI (x, y) WI (z), 
1=1 

Nip 

v(x, y, z) = L VI (x, y) <pI (z) 
1=1 

Ne 
rp(x, y, z) = L rpI (x, y) e I (z) (12.5.9) 

1=1 
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where the numbers of functions Nip, N'Ji and Ne considered depend on the number 
of layers and the degree of the assumed approximation along the thickness of each 
layer for the respective primary variables. 

12.5.3 Finite Element Model 

The finite element model presented here is similar to the one presented earlier, 
except that we have included the electro-mechanical coupling terms. We begin with 
the virtual work statement 

(12.5.10) 

where ne denotes the midplane of a typical finite element and r e denotes the 
boundary of the 3-D element. The stresses (Tij, strains Eij and electric displacements 
Di are all known in terms of the displacements (u, v, w) and electric potential <p 
through Eqs. (12.5.4h, (12.5.6), (12.5.7) and the strain-displacement relations 

Next, we use the following finite element approximation of (UI , VI, WI, <pI) in 
the plane of the laminate [see Eq. (12.3.1)]: 

N{;v N{;v 
U I (x, y) = L Uk ak(x, y), VI (x, y) = L vI ak(x, y) 

K=l K=l 

(12.5.11) 

where ak(x, y), bk(x, y) and ck(x, y) are interpolation functions used for (UI , VI), 
WI and <pI, respectively, and (N&v,Nfv,N~) denote the associated number 
of degrees of freedom per element. Figure 12.5.1 illustrates a CO-continuous 
approximation of displacement component u through the thickness direction. The 
points (or nodes) used for the definition of the Lagrange polynomials are identified 
along the thickness. The number of such points is Nip and equals the number 
of layerwise approximation functions <1>1. The function <1>1 (z), for example, 
corresponding to a point ZI laying at the interface connecting kth layer, where 
it is given by a quadratic Lagrange polynomial, and (k + l)st layer, where a cubic 
Lagrange polynomial is considered. This function is nonzero inside layers k and 
(k + 1), and zero outside of these two layers. 

Substituting the above approximation into the virtual work statement (12.5.10), 
we arrive at the following discrete equations for a typical element: 
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Figure 12.5.1: Examples of layerwise approximation functions <1>1. 

These equations can be cast into the standard form 

[K]{~} = {F} (12.5.16) 
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12.5.4 An Example 

Numerical results of one example problem are presented here [91]. In reasons of 
brevity limited results are included here, and for additional results and examples, 
the reader may consult the recent paper by Semedo Garcao et al. [91]. The laminate 
consists of a square, cross-ply, simply supported plate, with piezoelectric laminae. 
The exact solution was included in [91], following a development similar to the ones 
presented in [93,94]. 

Both Lagrange and conforming Hermite interpolations (continuity of the first 
and mixed derivatives) associated with rectangular elements are used to interpolate 
(UI,vI,WI,cpI); see Reddy [53]. The stiffness matrix and load vectors are evaluated 
using full integration. No numerical tricks such as selective reduced integration that 
proved efficient in previous works are considered here. Various interpolation schemes 
used for the in-plane discretizations, and through-thickness approximation of a 
lamina are presented in Table 12.5.1. The column entitled "Plane" indicates the in
plane interpolation considered. This interpolation is made with Lagrange elements 
with 9 (quadratic), 16 (cubic) or 25 (quartic) nodes, or with Hermite elements with 
4 degrees of freedom per node (function and its derivatives, f, i,x, f,y, f,xy). The 
column entitled "Thick" indicates the degree of Lagrange polynomials used in the 
thickness of each lamina or sublayer. The last two columns indicate, respectively, the 
number of nodes and degrees of freedom associated with the layerwise interpolation 
scheme for a typical lamina or sublayer. The layerwise interpolation scheme IlO 
considers a Lagrange element with 16 nodes and with a thickness approximation of 
degree 4 for (u, v); a Hermite element with a thickness approximation of degree 3 for 
w; and a 16 node element with a degree 3 thickness approximation for cpo In the case 
of scheme Il3, a 16-node element and cubic thickness approximation is considered 
for all the variables. This has the same characteristics as a cubic solid Lagrange 
element with 64 nodes. 

The mechanical and electrical properties of the materials considered are presented 
in Table 12.5.2. The piezoelectric material is the PVDF and its properties are 
taken from [94]. In this table, the contracted notation is used for the definition of 
the constitutive law. The values presented refer to the material properties in the 
principal material coordinates. 

The values used for various geometric parameters are: thickness H = 10 mm, 
and planar dimensions a = b = 0.04 m. The lamination scheme is (0/90/0) with 
equal thickness (H/3) layers. The domain modeled is ° :::; x :::; a, ° :::; y :::; band 
-h/2 :::; z :::; h/2. The geometric boundary conditions used are 

u(x, 0, z) = u(x, b, z) = 0; v(O, y, z) = v(a, y, z) = ° 
w(O,y,z) = w(a,y,z) = w(x,O,z) = w(x,b,z) = ° (12.5.17) 

Either mechanical loading or electrical input are used. When mechanical load is 
llsed, cp is set to zero on the entire boundary of the laminate. The mechanical load 
is taken to be 

" . TrX . Try 
t z (x, y) = 3 x lOLl sm ~ sm b (12.5.18) 

at z = h/2 and used stress-free boundary conditions on all other faces where 
displacements are not specified. When applied electric potential is used, we take 
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cp(O,y,z) = cp(a,y,z) = cp(x,O,z) = cp(x,b,z) = ° 
h h 'TrX 'Try 

cp(x, y, -"2) = 0, cp(x, y, "2) = 200 sin -;; sin b (12.5.19) 

The finite element discretizations used for the solution of this problem are shown 
in Table 12.5.3. In the column entitled "Plane" contains the in-plane discretization, 
number of subdivisions in the x direction times the number of subdivisions in 
the y direction, and the consideration of symmetry requires consideration of just 
one quarter of the plate. The column entitled "Thick" indicates the number of 
subdivisions considered in the thickness of each lamina. The number of nodes and 
degrees of freedom indicates the size of the problem. The discretization M4t2I9 
consists of a mesh in which 4 elements are used in the x direction (4s if structural 
symmetry is used), with 2 subdivisions in the thickness of each lamina, considering 
the 19 interpolation scheme. Discretization M2tII5 uses 2 subdivisions in the x and 
y directions for the complete plate, with each thickness subdivision coincident with 
a lamina, considering the 15 interpolation scheme. 

Results are presented in Table 12.5.4-12.5.6 and Figures 12.5.2-12.5.5. The 
results obtained by Lage et al. [95] using a mixed layerwise finite element models are 
included for comparison. In the mixed model [95], displacements (u, v, w), electric 
potential cp, stresses (0" zx, 0" zy, 0" zz) and electric displacement D z are used as the 
dependent unknowns. Here we consider for comparison the results obtained with 
five meshes [95], which discretize the complete plate. Bi-quadratic (eight-node) 
serendipity elements in the (x, y) plane and quadratic approximation in the thickness 
with 2 subdivisions per ply (6760 DoF) was used. 

Table 12.5.4 contains values of the displacement variables at specific points, where 
z indicates the position in the thickness direction. All the values have errors less 
than 5.3% and, in general, the results are good for all the primary variables. Results 
for electric potential are better than for displacements. The following additional 
observations can be made from the numerical results presented in the tables and 
figures (see [91] for additional details): 

• Comparing meshes M4st2I1, M4st2I2 and M4st2I3, which have only different 
thickness approximations, it is observed that the cubic approximation gives better 
results, although the quadratic approximation also yields very good results; but 
the linear approximation is poor. 

• Meshes M4st2I6, M4st2I7 and M4st2I9 show that cubic thickness approximation 
is, in this case, more accurate than the 5th degree and quadratic approximations. 

• Meshes M4st2I2 and M4st2I3 use 9-node elements while M4st2I6 and M4st2I7 
use Hermite elements in the plane. The results for meshes M4st2I2 and M4st2I6 
are very similar but M4st2I2 is slightly better. M4st2I7 is slightly more accurate 
than M4st2I3 for all except w. 

• The in-plane interpolation and discretization influences the results, but since the 
plate is thick, the differences in the results are small. 

• Results obtained with the mixed models [95] are all very similar but a quadratic 
approximation in the thickness gives better results. Comparing LL1 with 
M4st2I1, the accuracy in terms of displacements is the same. 
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Table 12.5.1: Finite element interpolation schemes for each lamina. 

Interpolation u v w <p Number of Number of 
Schemes Surf. Thick. Surf. Thick. Surf. Thick. Surf. Thick. Nodes DoFs 

11 L9 1 L9 L9 L9 1 18 72 
12 L9 2 L9 2 L9 2 L9 2 27 108 
13 L9 3 L9 3 L9 3 L9 3 36 144 

14 L9 4 L9 4 L9 3 L9 3 63 162 
15 L9 4 L9 4 L9 4 L9 4 45 180 
16 H4-4 2 H4-4 2 H4-4 2 H4-4 2 12 192 
17 H4-4 3 H4-4 3 H4-4 3 H4-4 3 16 256 
18 H4-4 4 H4-4 4 H4-4 4 H4-4 4 20 320 
19 H4-4 5 H4-4 5 H4-4 5 H4-4 5 24 384 

110 U6 4 U6 4 H4-4 3 U6 3 112 288 
III L9 3 L9 3 L25 2 L9 3 93 183 
112 L9 3 L9 3 L25 3 L9 3 100 208 
113 U6 3 U6 3 U6 3 U6 3 64 256 

Li : Lagrange interpolation using i nodes. 
Hi-j : Hermite interpolation using i nodes and j degrees of freedom per node. 
Surf. : Surface directions interpolation. 
Thick. : Thickness approximation polynomial degree. 
DoFs : Degrees of Freedom. 

Table 12.5.2: Material properties in the material coordinates. 

Material 
Cll C22 C33 C 12 C13 C23 C 44 Css C 66 

[CPa] [CPa] [CPa] [CPa] [CPa] [CPa] [CPa] [CPa] [CPa] 
1 320.00 10.6 5.60 1.50 0.95 1.20 1.15 2.40 16.30 
2 238.00 23.6 10.6 3.98 2.19 1.92 2.15 4.40 6.43 
3 173.53 7.39 7.39 2.31 2.31 1.87 1.38 3.45 3.45 

Material e15 e 24 e 31 e 32 e 33 1;11 1;22 1;33 
[C/ml] [C/m2] [C/ml] [C/m2] [C/m2] [EF/m] [EF/m] [EF/m] 

1 0.0 0.0 0.0 0.0 0.0 30.65 26.55 26.55 
2 -0.01 -0.01 -0.13 -0.14 -0.28 110.68 106.07 106.07 
3 0.0 0.0 0.0 0.0 0.0 22.55 22.55 16.00 

Table 12.5.3: Finite element discretizations. 

Discretization 
Subdivisions per Ply Number of 

Problem DoFs 
Surf. Thick. Nodes 

App. Load 
M4st211 4x4-S 2 567 1664 
M2t1I2 2x2 175 318 
M4st212 4x4-S 2 1053 3200 
M4st2I3 4x4-S 2 1539 4736 
M2t1I5 2x2 325 606 
M4st216 4x4-S 2 395 3032 
M4st217 4x4-S 2 475 4484 
M1st1I8 1x1-S 52 176 
Mlst1I9 1x1-S 64 218 
M4st219 4x4-S 2 775 7388 
App. Potential 
M4st1I4 4x4-S 1539 2816 

S: indicates that structural symmetry is accounted for, 
only one quarter of the plate is solved. 
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Table 12.5.4: Displacement components u, V, wand electric potential rp. 

U v w rp 

(0, b/2, z) Error [%j (a/2, 0, z) Error [%j (a/2, b/2, z) Error [%j (a/2, b/2, z) Error[%j 

App. Load z =S.Omm z = 5.0 mm z = 5.0 mm z=O.Omm 
Units [nm] [nm] [11m ] [V] 

Exact Sol. -171.8735 343.2618 1.5285 127.9787 

M4st2I1 -162.8555 5.247 334.5762 2.530 1.5034 1.645 126.1271 1.447 
M2t1I2 -172.6304 -0.440 349.8217 -1.911 1.5232 0.351 130.5900 -2.040 
M4st212 -171.6852 0.110 343.1651 0.028 1.5277 0.055 127.9461 0.025 
M4st2I3 -171.9435 -0.041 343.4970 -0.069 1.5285 0.003 128.0024 -0.019 
M2t1IS -177.4721 -3.257 354.4165 -3.250 1.5330 -0.292 131.1849 -2.505 
M4st216 -171.6530 0.128 342.9547 0.089 1.5275 0.067 127.9132 0.051 
M4st217 -171.9032 -0.017 343.2639 -0.001 1.5283 0.014 127.9697 0.007 
Mlst1I8 -170.3784 0.870 331.5940 3.399 1.4970 2.063 127.9929 -0.011 
Mlst1I9 -170.4093 0.852 331.5952 3.399 1.4970 2.062 127.9933 -0.011 
M4st219 -171.9291 -0.032 343.2786 -0.005 1.5283 0.014 127.9700 0.007 
Ref. [28] -172.5 -0.35 1.552 -1.54 128.1 -0.09 

App. Poten. z =S.Omm z=S.Omm z=S.Omm Z= O.Omm 
Units [pm] [pm] [nm] [V] 

Exact Sol. -322.2624 -775.2442 3.3131 86.8948 

M4st1I4 -322.3629 -0.031 -775.6559 -0.053 3.3129 0.004 86.8953 -0.001 
LQ[9S] -320.8 0.46 -771.9 0.43 3.316 -0.09 

11m = 10-6 m; nm = 10-9 m; pm = 10-12 m. 

E [91] (Exact-Numeric) 100 
ITOfo= x. 

Exact 

Table 12.5.5: Stress components O'xx I O'zz I O'zy and O'xv· 

axx azz azy axy 

(a/2, b/2, z) Error [%j (a/2, b/2, z) Error [%j (a/2,0, z) Error [%j (0,0, z) Error [%j 

App. Load z = 5.0 mm z = 5.0 mm z=O.Omm z = -S.Omm 
Units [MPa] [KPa] [KPa] [KPa] 

Exact Sol. 3.3714 300.0000 261.4302 256.0911 

M4st2I1 3.2398 3.902 308.5588 -2.853 228.2469 12.693 250.6412 2.128 
M2tII2 3.6678 -8.793 334.8719 -11.624 296.6836 -13.485 301.9324 -17.900 
M4st212 3.4078 -1.081 306.7711 -2.257 288.2271 -10.250 259.2187 -1.221 
M4st2I3 3.4097 -1.136 300.8379 -0.279 266.7481 -2.034 259.5132 -1.336 
M2t1IS 3.6779 -9.091 322.6479 -7.549 340.6215 -30.292 307.6620 -20.138 
M4st216 3.3994 -0.831 307.1000 -2.367 285.9422 -9.376 255.1144 0.381 
M4st217 3.4032 -0.943 301.2016 -0.401 264.4981 -1.174 255.3850 0.276 
Mlst1I8 3.9890 -18.318 310.2845 -3.428 302.6049 -15.750 231.6142 9.558 
Mlst1I9 3.9913 -18.389 309.9735 -3.324 302.0710 -15.546 231.6143 9.558 
M4st219 3.4036 -0.955 300.5023 -0.167 265.2955 -1.479 255.3939 0.272 
Ref. [28] 3.559 -5.56 301.3 -0.43 273.1 -4.47 

App. Poten. z=S.Omm z = 0.0 mm z = 1.67mm z =S.Omm 
Units [KPa] [Pal [Pal [Pal 

Exact Sol. 4.2638 -36.2925 -232.8282 -554.2529 

M4st1I4 4.3388 -1.759 -35.3944 2.474 -228.0751 2.041 -561.5975 -1.325 
LQ[9S] 4.073 4.48 -37.21 -2.53 -228.0 2.09 -537.7 2.98 
KPa = 103 Pa; MPa = 106 Pa. 
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Table 12.5.6: Stress component O"zx and electric displacement components Dr and D,. 

O'zx O'zx Dx 

(0, Ly/2, z) Error [%j (0, Ly/2, z) Error [%j (0, Ly/2, z) Error [%j 

App. Load z =O.Omm z =2.33 mm z =O.Omm 
Units [KPa] [KPa] [JlC/m2] 

Exact Sol. 289.6226 308.0846 -2.4137 

M4st2I1 292.5942 -1.026 305.2003 0.936 -2.4255 -0.489 
M2t1I2 326.2845 -12.659 392.0923 -27.268 -2.7553 -14.152 
M4st212 292.6253 -1.037 306.8741 0.393 -2.4410 -1.130 
M4st2I3 292.7234 -1.071 314.6006 -2.115 -2.4419 -1.168 
M2t115 331.1318 -14.332 380.2878 -23.437 -2.7886 -15.534 
M4st2I6 291.4412 -0.628 304.7103 1.095 -2.4360 -0.923 
M4st2I7 291.5314 -0.659 312.4126 -1.405 -2.4369 -0.961 
MlstlI8 309.0909 -6.722 357.7194 -16.111 -2.6178 -8.454 
Mlst1I9 309.1057 -6.727 358.7619 -16.450 -2.6178 -8.456 
M4st219 291.5245 -0.657 312.3642 -1.389 -2.4369 -0.959 
Ref. [95] 310.1 -0.64 -2.537 -5.10 

App. Potential z = -3.0 mm z = 3.0mm z = 5.0mm 
Units [Pal [Pal [JlC/m2] 

Exact Sol. -218.5833 292.4657 -1.7389 

M4st1I4 -223.8003 -2.387 300.4777 -2.739 -1.7610 -1.267 
Ref. [95] 292.5 0.00 -1.695 2.55 

JlC/m2 = 10.6 C/m2. 

I 
N 
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0.004 

0.003 ~Exact501. 
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-+ - - M1st1l9 
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-0.001 - 0- M4st216 

-0.002 - -.- - M4st211 
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Figure 12.5.2: Shear stress O"xz across the thickness (Applied Load). 
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0.005 

0.004 

0.003 

0.002 

I 
0.001 

0.000 
N 

-0.001 

-0.002 

-0.003 - D- M4st216 

-0.004 

-0.005 

O.OE+OOO 1.0E+005 2.0E+005 3.0E+005 
(Jzy(Lx/2, 0, z) [Pal 

Figure 12.5.3: Shear stress CTyz across the thickness (Applied Load). 
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Figure 12.5.4: The electric displacement Dz across the thickness (Applied Load). 
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Figure 12.5.5: Shear stress CTxz across the thickness (Applied Potential). 
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• Comparing models M2t1I2 and SQ1 it is found that M2t1I2 provides more 
accurate results for the displacements and electric potential, with similar 
computational effort. 

• The mixed model (most accurate of those used in [95]) is not superior to the 
displacement models in the prediction of displacements and electric potential. 

• The results obtained with M4st1I4 for the applied potential case are good and 
better than the ones provided by the mixed model. 

• The accuracy of in-plane stresses (O'xx,O'xy) and electric displacement Dx 

component is more influenced by the in-plane discretization than by the thickness 
approximation. Although not shown, the same is true for (O'yy, Dy). 

• The accuracy of (O'xz, O'yz, O'zz, D z ) is equally influenced by the in-plane and 
thickness approximations. 

• Figures 12.5.4-12.5.6 show the stress and electric displacement distributions 
through thickness obtained with meshes M4st2Il, M2t1I2 and M4st216, for 
which only linear and quadratic polynomial approximation are assumed through 
the thickness. They show that the exact distribution is not captured, even 
if the in-plane discretization is very good. For meshes M4st2Il, M4st212 and 
M4st216, the in-plane discretization is sufficient and the distributions agree with 
the exact. Note that mesh M4st2Il provides highly irregular and discontinuous 
distributions. Meshes M4st212 and M4st2I6 approximate the exact solution 
better for O'yz (Figure 12.5.5); however, the correct solution for D z is not captured 
(see Figure 12.5.6). 

• Results for meshes M4st2Il, M4st2I2 and M4st2I3 show that interpolation 13 
with cubic approximation through thickness is the most equilibrated, giving good 
results for all the secondary variables. Some values obtained with M4st2Il and 
M4st2I2 are slightly better than the ones for M4st2I3, but Figures 12.5.4-12.5.6 
show the differences. 

• The results for meshes M4st2I2 and M4st2I6 indicate that the 9-node and 
Hermite elements provide similar results; M4st2I6 produces slightly better results 
with a little less number of degrees of freedom. Also, between M4st213 and 
M4st2I7 the Hermite interpolation behaves a little better with less number of 
degrees of freedom. The Hermite interpolation provides better estimate of O'xy. 

• Figures 12.5.4--12.5.6 indicate that interpolations 15 and 18, with 4th degree 
approximation through thickness, predict the correct form of the exact solution. 
Hence, the lack of accuracy verified with meshes M2t1I5 and M1st1I8 is due to 
the coarse in-plane discretization. 

• In Table 12.5.5, one of the columns shows the approximation of the boundary 
condition at the top surface of the laminate for O'zz. A good in-plane 
discretization and cubic or higher approximation produces good results. 

• For the case of applied potential, the distribution of stresses is self-equilibrated 
since there are no applied external stresses. One may note the good agreement for 
the strain and piezoelectric induced stress contributions. The tables indicate that 
the displacement model with interpolation 14, using fourth degree approximation 
for (u, v) and cubic approximation for (w, <p) provides good results. 
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12.6 Layerwise Theory of Cylindrical Shells 
12.6.1 Introduction 

In this section an extension of the layerwise theory developed in the previous 
sections for laminated plates to laminated circular cylindrical shells without and 
with equally-spaced axial and circumferential stiffeners (see [96-110] and references 
therein) is presented with special emphasis on general buckling and post buckling 
analysis. We use the "smeared stiffener" approach of Hutchinson and Amazio [98] 
(also see [99-104]). This approach is very effective when the stiffeners have identical 
cross section and their spacing is small compared to the buckling wave length (i.e., no 
skin wrinkling before global buckling). The contribution of the stiffeners is brought 
into the governing equations through energy considerations. The material included 
here comes largely from the author's publications [105-109]. 

12.6.2 Unstiffened Shells 

Displacements and Strains 

The displacement field (U 1, U2, U3) in the shell is expressed as 

N+l 

Ul(X,y,Z) = L Uj(x,y)q}(z) = Ujcj? 
j=l 

N+l 

U2(X, y, z) = L Vj(x, y)q} (z) = Vjq} 
j=l 

N+l 

U3(X, y, z) = L Wj(x, y)q} (z) = Wjq? 
j=l 

(12.6.1 ) 

where N is the total number of mathematical layers (N + 1 interfaces), (Uj, Vj, Wj) 
are the values of the displacements (Ul' U2, U3) the jth interface, and q} (z) are global 
approximation functions with local support. In Eq. (12.6.1) summation on repeated 
subscripts and superscripts is used. 

The strains, accounting for the von Karman nonlinear terms in the strain
displacement relations, are given by (sum on repeated indices is implied) 

(12.6.2) 
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Equations of Equilibrium at Buckling 

The equations of equilibrium at buckling are derived using the principle of virtual 
displacements (or the principle of minimum total potential energy). We have 

o = 8IT = 8U + 8V (12.6.3) 

where 8U is the virtual strain energy and 8V is the virtual work done by the pre
buckling stresses 

(sum on i) (12.6.4a) 

(12.6.4b) 

Here p denotes the pressure, and I = 1, when pressure is internal and I = N + 1 
for external pressure, and quantities with a hat are specified. Substituting for 8U 
and 8V into the total potential energy principle (12.6.3), we obtain the governing 
equations of buckling are 

where 8ij denotes the Kronecker delta symbol and 

and JI,'(y are the resultants due to specified stresses (ja. 

Constitutive Equations 

(12.6.5) 

(12.6.6a) 

(12.6.6b) 

The laminated cylindrical shell is assumed to be made up of orthotropic layers with 
the principal material coordinates of each layer oriented arbitrarily with respect to 



796 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS 

the shell axis. The layer constitutive equations referred to the shell coordinates are 
given by 

gd~ [ C11 
C12 C13 

C16] r} C12 C22 C23 C26 E2 {~4 } [C44 C45] { E4 } (12.6.7) 
C13 C23 C33 C36 E3 ' ~5 - C45 C55 E5 

C16 C26 C36 C66 E6 

For specially orthotropic cylinders with material principal axes coinciding with the 
coordinates of the cylinder, we have C16 = C26 = C36 = C45 = O. Using the layer 
constitutive equations (12.6.7), the resultants in Eq. (12.6.6) can be expressed in 
terms of the strains. We have, 

(12.6.8) 

(12.6.9) 
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(12.6.10) 

Mij _ DijkaUk Dijk (aVk 1 ) D-ijk Dijk (aUk aVk) 
1 - 11 ax + 12 ay + R Wk + 13 Wk + 16 ay + ax 

+ ~ Dijke aWk aWe + ~ D ijke aWk aWe + Dijk£ aWk awg 
2 11 ax ax 2 12 ay ay 16 ax ay 

M ij _ D ijk aUk Dijk (aVk 1 ) D-ijk Dijk (aUk aUk) 
2 - 12 ax + 22 ay + R Wk + 23 Wk + 26 ay + ax 

1 Dijk£ aWk aWe 1 D ijke aWk aWe ijk€ aWk aWe 
+ 2" 12 ax ax + 2" 22 ay ay + D 26 ax ay 

Mij = DijkaUk + Dijk (aVk + ~ ) + j)ijk + Dijk (aUk + aVk) 
6 16 ax 26 ay R Wk 36 Wk 66 ay ax 

1 Dijk€ aWk awg 1 Dijk£ aWk aWe ijk€ aWk aWe +- --+- --+D--2 16 ax ax 2 26 ay ay 66 ax ay 

h 

D~{3 = ['i!l. Ca{3¢irjY dz, 
2 

h 

D~;€ = ['i!l. Ca(3¢irjY¢k¢edz, 
2 

!l. d~k 
-ijk 12 i~j 'P 

Dn!3 = _!l. Cn {3¢ 'V dz dz, 
2 

(12.6.11 ) 

(12.6.12) 

Note that D~{3' D~{3, D;?% and D~;e are symmetric m their subscripts and 
superscripts: 

D ij - Dji D ij D ij Dijk - D jik - Dkji - Dikj t a{3 - n{3' {3a - n{3' a{3 - a{3 - n(J - a{3' e c. (12.6.13) 

The symmetry with respect to the superscripts is due to the definition of the 
integrals, and the symmetry due to the subscripts is the result of the symmetry 
of material stiffnesses: Qn{3 = Qa{3. The coefficients with a single bar over them are 
not symmetric with respect to the superscripts. 

The evaluation of D';1(3 and tJ';1!3' for example, is discussed in detail here for 

information. First we recognize that ¢i are the global interpolation functions 
associated with the ith interface, and they can be expressed in terms of the 
approximation functions of the layer on either side of the ith interface. For linear 
interpolation, we have 

(12.6.14) 
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Thus, each mathematical layer is viewed as a 1-D finite element through the 

thickness, and 'IjJ~) are the interpolation functions of the ith element (0: = 1,2). 
Consequently, [D oo,6], for example can be viewed as the assembled coefficient matrix 

of the element coefficients (D~,6)k of the kth element, 

(Dij) = l zk
+

1 
Q(k) o/,(k) rI,(k) d 

00,6 k oo,6'f/z 'f/J Z, 
Zk 

The assembled matrix is given by 

[D ] = Q(k)hk [2 
00,6 k 00,6 6 1 ~] 

_ 1 (1) 

[

2h Q(l) 
1 00,6 

[Doo,6] - 6 hI ~oo,6 

h Q(l) 
1 00,6 

2h Q(I) + 2h Q(2) 
1 00,6 2 00,6 

h Q(2) 
2 00,6 

0] 

Similarly, we have 

(lJij ) = l Zk
+

1 
Q(k) rl,i d¢1 d 

00,6 k oo,6'f/ d Z, 
Zk Z 

and 

[lJ 1 =Q(k)~[-l 
00,6 k 2-1 

Q(l) 0 
00,6 

Q
(l) _ Q(2) Q(2) 
00,6 00,6 00,6 
_Q(l) 

00,6 

0] 
Similarly, other coefficients can be computed. 

12.6.3 Stiffened Shells 

Displacements and Strains in the Stiffeners 

(12.6.15) 

(12.6.16) 

(12.6.17) 

(12.6.18) 

Now consider a cylindrical shell reinforced by eccentric axial and ring stiffeners. The 
stiffeners are assumed to behave like beam elements. The kinematic description of 
the beam elements is based on the Euler-Bernoulli beam theory: 

Axial Stiffeners 
aWl U1 = UI - Z7JX 

U3 = WI 

Ring Stiffeners 
U2 = VI - z9f:
U3 = WI (12.6.19) 

Here (UI' V I, WI) denote the displacement components at the Ith nodal location 
through the shell thickness. For example, the Ith node can be that on the surface 
of the shell. 

The strains associated with the stiffeners are 

Ea == E1 = OUI + ~ (OWI)2 _ zo2WI 
ox 2 ox ox2 

Ec == E2 = OVI + ~ (OWI)2 + WI _ z02WI 
oy 2 oy R oy2 

(12.6.20) 
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where the subscripts "a" and "c" refer to axial and circumferential stiffeners, 
respectively. The uniaxial stress-strain equations are used for stiffeners: 

Virtual Strain Energy of Stiffeners 

The virtual strain energy for the axial stiffeners is given by 

where (see Figure 12.6.1) 

Sa = stiffener spacing (27f R/ Na; Na = number of axial stiffeners) 

fa = moment of inertia of the stiffener about the reference surface (z = 0) 
= fa + (za)2 Aa; fa = moment of inertia about the centroid of the stiffener 

za = distance from the stiffener to the reference surface 

Ja = Torsional constant (GaJa = torsional rigidity) Similarly, the virtual strain 
energy of the circumferential stiffeners is 

where Se is the stiffener spacing, Se = /:;c' Nc is the number of ring stiffeners, 
and L is the length of the cylinder. 
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Note: (r,B,z) <=> (z,y,x) 

R 

Figure 12.6.1: Schematic of a circular cylindrical shell with axial and 
circumferential stiffeners [101]. 

Equations of Equilibrium 

The governing equations of stiffened composite shells with equally spaced ring and 
axial stiffeners can be derived using the principle of minimum total potential energy. 
The first variation of the total potential energy of the stiffened shell according to 
the linear layerwise theory is 
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where 
Hi = (Ni)shcll + (Ni)stiffeners 

N1 = axial force, N2 = lateral force 

We shall assume, for buckling analysis, that 

We have 

N1 = -1, N2 = 0, buckling under axial compressive load. 

]\[1 = 0, ]\[2 = -1, buckling under lateral pressure. 

(12.6.24) 

(12.6.25) 

(12.6.26) 

The principle of total potential energy (oIl = 0) gives the following differential 
equations governing buckling: 

aMI aM;' _ Qi EaAa (a2ul _ - a3Wl) D. _ 
ax + ay 1 + Sa aX2 Za aX3 II - ° 
aM~ aM~ _ Qi K~ EeAe [(a2Vl ~ aWl) _ - a3Wl] 0 _ ax + ay 2 + R + Se ay2 + R ay Ze ay3 II - ° 
aKf aK~ Qi M~ {N' a2Wl N' a2Wl --+--- 3--+ 1--+ 2--ax ay R ax2 ay2 

where Oil is the Kronecker delta symbol. 

The Navier Solution 

(12.6.27) 

Here we develop exact analytical solutions of the linear theory [i.e., neglect the 
nonlinear terms in Eqs. (12.6.8)-(12.6.11)] of buckling using the Navier solution 
procedure. Exact analytical solutions can be developed only for simply-supported 
boundary conditions and for cross-ply lamination schemes. 

First, we express the equilibrium equations (12.6.27) in terms of displacements: 

(12.6.28) 
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Ui = ui
mn cos amx cos (3nY 

Vi = Vimn sin amx sin (3nY 

W mn . (3 
Wi = i Slllamx cos nY 

(12.6.29) 

(12.6.30) 

(12.6.31) 

where am = m7r / Land (3n = n/ R where Urn, Vimn , and lvi
mn amplitudes to be 

determined for each mode (m, n). Substituting Eq. (12.6.31) into Eqs. (12.6.28)-
(12.6.30) and collecting coefficients of like functions, we obtain (for D~~ = D~ = 
D=ij - D-ij - D-ij - 0)' 

45 - 36 - 45 - . 

(12.6.32a) 
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(12.6.32b) 

(12.6.32c) 

For each mode (m, n), Eqs. (12.6.32a-c) represent the eigenvalue problem 

M12 

M22 

M 2:, 
(12.6.33) 

where the submatrices S'::/ = Sjf and A('/ = Mj~(1 (o:{3 = 1,2.3) can be easily 

identified from Eqs. (12.6.32). Note that A('/ = 0 for all except for ct = (J = 3. and 
:,:, - 2 - 2 

Mij = N1O: i + N 2(Jj . 
We note for the case n = 0, we have V]Hr! = 0, and the eigenvalue problem 

becomes 

(12.6.34) 

where sn(1 and i133 are obtained from the corresponding So!] and AJ33 by setting 
all terms with (In to zero. The solution of Eq. (12.6.34) gives the eigenvalues Amn , 

and the minimum eigenvalue is the critical buckling load. 
As an example consider a simply-supported isotropic cylindrical shell (see Table 1 

of Baruch and Singer [90]). The results for general instability pressure are presented 
in Table 12.6.1. The following geometric and material properties are used: 

h L Ab Aa 
R 

= 0.01217, - = 4.5391, - = - = 0.1471, 
R Sbh Sah 

fa = h = 0.7819 

Z}:L ~ ±1.6"3, Zb 6 ,- v h = ±1.653, E = 30 x 10 psi, v = 0.3 (12.6.35) 

where f = (Sh:) /12), h being the total thickness, R is the radius, and L is the length 
of the shell, Sa is the distance between the frames (i.e., ring stiffeners), Sb is the 
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distance between stringers (i.e., axial stiffeners), and Zb and Za are the distances 
between the centroid of the stiffener cross section and middle surface of the shell for 
stringers and frames, respectively (see Figure 12.6.1). The negative sign for Za and 
Zb indicates internal stiffeners. It is clear that frames on the inside of the shell give 
general instability loads about 10-15 percent greater than frames on the outside of 
the shell. Stringers are much less effective in stiffening a shell under hydrostatic 
pressure. Outside stringers yield critical loads greater than inside stringers. 

The layerwise shell theory, which accounts for 3-D kinematics, gives lower 
buckling loads when compared to the single-layer shell theories. The classical shell 
theory overpredicts the buckling loads by 6 to 10 percent. An exception to this is 
seen when only one layer through the entire thickness is used. For one layer model 
with the layerwise shell theory, the transverse displacement is given by 

W = WI¢I + W2¢2, WI i- W2 

Table 12.6.1: General buckling pressures (lb/in2) of stiffened isotropic (E = 
30 x 106 psi, 1/ = 0.3) circular cylindrical shells (h/ R = 0.01217, 

R = 82.1693, L = 372.9745, Na = 516 Nc = 373)t. 

Shell Ref. 100 CST FST LWT Mode Error * * 

U nstiffened 102 103 103 111.4 (1)* (1,4) -10% 
97.8 (2) 
94.4 (4) 
93.5 (8) 

Ring-stiffened 326 335 334 323.6 (1,3) 
(External) 316.1 

314.2 
313.7 -6.8% 

Ring-stiffened 370 380 379 367.6 (1,3) 
(Internal) 359.9 

358.0 
357.5 -6.3% 

Longitudinally 106 108 108 116.1 (1,4) 
Stiffened 102.5 
(External) 99.1 

98.3 -9.9% 

Longitudinally 103 104.5 104.5 112.5 (1,4) 
Stiffened 99.0 
(Internal) 99.5 

94.7 -10.3% 

Combined 346 355 354.6 333.9(8) (1,3) -6.3% 
(External) 

Combined 377 387 386.7 365 (8) (1,3) -6.0% 
(Internal) 

t CST = classical shell theory; FST = First-order shear deformation shell theory; LWT = layerwise 
shell theory. 

* The numbers in parentheses refer to the number of (numerical) layers. 
** Percentage error = (LWT-CST)100jLWT . 
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For thin shells, inextensibility of transverse normals requires WI = W2. This 
constraint cannot be met in the layerwise theory with one layer model unless several 
layers are included in the model. Thus, it is recommended that two or more layers 
be used, even for isotropic shell to model with the layerwise shell theory. Note that 
no shear correction factors are used in the layerwise theory. 

The stability of a ring-stiffened cylindrical shell considered by Jones [91] is 
studied next. The shell, laminated of two different isotropic layers and subjected to 
hydrostatic pressure, is considered. The properties of the two layers are: 

Layer 1: 

Layer 2: 

E = 44 X 106 psi, v = 0.0, hI = 0.04 in. 

E = 2 X 106 psi, v = 0.4, h2 = 0.3 in. 

The rings are of rectangular cross section with a height of h = 0.25 in. and a 
thickness of t = 0.06 in., and they have the same material properties as the layer 
one. The inertias I and J are calculated using the relations, 

th3 

1=-
12 ' 

ht3 

J=-
3 

The radius and length of the shell are 6 in. and 12 in., respectively. 

The hydrostatic buckling pressures of the shell, as obtained by the classical and 
layerwise shell theories, are plotted against the ring spacing (see Figure 12.6.2) 
for internally-stiffened and externally stiffened cylinders. The buckling pressures 
obtained with the classical shell theory are larger by 7 to 9 percent for internally
stiffened shells and 7 to 20 percent for the externally stiffened shells. 
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Figure 12.6.2: Hydrostatic buckling pressure of a ring-stiffened, two-layer circular 
cylindrical shell according to classical and layerwise shell theories. 
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Next, we consider an orthotropic and three-layer cross-ply (0/90/0) cylindrical 
shells without and with stiffeners. Table 12.6.2 contains a comparison of the 
buckling loads obtained with the classical shell theory and the layerwise shell theory. 
Figures 12.6.3 and 12.6.4 contain plots of the hydrostatic buckling pressure and axial 
buckling load versus stiffener spacing for orthotropic and cross-ply laminated shells. 
The differences between the exact solutions of the layerwise theory and the classical 
theory are clearly large enough to warrant the use of the layerwise shell theory. 

Table 12.6.2: General buckling loads for orthotropic and cross-ply laminated 
graphite-epoxy circular cylindrical shells (R = 10 in., L = 34.64 
in., h = 0.12 in., El = 30 X 106 psi, E2 = 0.75 X 106 psi, 
G 12 = 0.375 X 106 psi, lI12 = 0.25). 

Laminate Axial force (k2 = 0) Lateral pressure (kl = 0) 

CST LWT (4) CST 

US* 1,600.6 1,582.4 60.374 
(3,7)t (3,7) (1,6) 

0 Sa = 500 3,922.0 3,624.1 93.047 
(1,5) (1,5) (1,7) 

Sa = 1,000 3,922.0 3,624.1 93.047 
(1,5) (1,5) (1,7) 

US 2,008.8 1,978.0 107.35 
(3,6) (3,6) (1,5) 

0/90/0 Sa = 500 4,904.6 4,801.3 155.6 
(1,4) (1,4) (1,6) 

Sa = 1,000 5,656.6 5,551.4 175.25 
(1,4) (1,4) (1,6) 

t Mode number 

*US = Unstiffened; Sa = number of axial stiffeners (outside). 

12.6.4 Post buckling of Laminated Cylinders 

Introduction 

LWT(4) 

58.337 
(1,6) 

90.985 
(1,7) 

90.985 
(1,7) 

102.17 
(1,5) 
150.26 
(1,6) 
169.85 
(1,6) 

In the previous section we studied linearized (eigenvalue) buckling analysis using the 
layerwise shell theory. The development is extended here to post buckling analysis. 
The displacements are expanded in the surface of the shell by means of a double 
trigonometric expansion, and the Ritz method is used to obtain the nonlinear set of 
algebraic equations. Numerical results are presented for the post buckling response 
of axially compressed multilayered cylinders for different values of shell imperfection 
(see Savoia and Reddy [108,109]). 

Governing Equations 

Consider a laminated circular cylindrical shell of total thickness h, mean radius 
R, and length L. The shell is laminated of N orthotropic layers with 00 or 900 

orientations. The cylinder is simply supported on its edges. A local coordinate 
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stiffened, orthotropic cylindrical shell according to the classical 
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system (x, y, z) is used (see Figure 12.6.5), in which x and yare in the axial and 
circumferential directions and z is in the direction of the outward normal to the 
middle surface; the corresponding displacements are designated by u, v and w. In 
addition w denotes the radial deviation (i.e., geometric imperfection) of the shell 
from the perfectly cylindrical shape. 

Considering a small shell thickness when compared with the radius of curvature 
R (i.e., shallow shell theory) and taking into account the nonlinear strains due to 
large radial displacements, the following nonlinear strain-displacement relations (see 
Donnell [100]) are obtained: 

Cl = au + aw (~aw + aW) C2 = av + w + aw (~aw + aW) 
ax ax 2 ax ax' ay R ay 2 ay ay 
aw av aw v au aw 

C3 = az' C4 = az + ay - R' C5 = az + ax 

C6 = au + av + aw (~aw + aw) + aw (~aw + aw) (12.6.36) 
ay ax ax 2 ay ay ay 2 ax ax 

Virtual Wark Statement 

Suppose that the circular cylindrical shell is subjected to axial load distribution q at 
the ends and internal and external pressure distributions Pb and Pt. The minimum 
total potential energy principle is used to obtain the Ritz equations. The minimum 
total potential energy principle states that 8rr = 0, where 8rr is the first variation 
of the total potential energy, 

lo
L lo27r R jh/2 lo27r R jh/2 

8rr = (Ji Dei dzdydx - [q(y, z) 8ul x=o + q(y, z)8ulx=Ll dzdy 
o 0 -h/2 0 -h/2 

rL r27rR 

- J
o 

J
o 

[Pb(X, y) 8wlz=-h/2 + Pt(x, y) 8wlz=h/2] dyd:r 

L 

1 

x, u 
~==::6..... h 

(z, y, x) - (r, B, z) 

y, v 

(12.6.37) 

Figure 12.6.5: Geometry and coordinate system used for a cylindrical shell. 
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Substituting for the strains from Eq. (12.6.36) into (12.6.37) and carrying out 
integration through the shell thickness, we obtain 

(12.6.38) 

where the axial load q is assumed to be constant through the thickness, and Ti is 
defined as 

1 
tl i = 1 

Ti = J~ q} dz = ti+~i+l 2::; i ::; N 
II. 
2 

tN+l i = N + 1 -2-

(12.6.39) 

Here ti denotes the thickness of the ith layer. The laminate resultants Jl.;1~, Jl.;1:l, 
Q;, and K~ are defined as follows: 

h 

M~ = h2 
O"n q/ dz (a = 1,2,6) 

2 

II. 

Mj} = J2 O"n ¢iq) dz (a = 1,2,6) 
II. 
2 

h . 
i {2 d¢t 

Qn = JIJe O"n dz dz (n = 3,4,5) 
2 

h 

K~ = h2 
O"n¢i dz (a = 4,5) 

2 

(12.6.40) 

We assume that the laminated cylindrical shell is made of orthotropic layers 
with elastic symmetry with respect to the mean surface of the shell and material 
principal axes coincident with the axial and circumferential directions x and y (i.e., 
the cylinder is made of cross-ply lamination scheme). 
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The stress resultants in Eq. (12.6.40) can be expressed in terms of the generalized 
displacements as 

(12.6.42) 

where the laminate stiffnesses appearing in Eqs. (12.6.42) are defined as 

(12.6.43) 

where i, j, k = 1,2, ... , N + 1 and 0:, {3 = 1,2. The explicit form of these coefficients 
is given in Appendix 1 of [107]. The effect of the stiffeners can be included in the 
same way as was done in the buckling analysis (see [107-109]). 
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Ritz Equations and Numerical Examples 

Suppose that the circular cylindrical shell is subjected to axial load distribution q 

at the ends and internal and external pressure distributions Pb and Pt. The wall 
imperfection is represented in terms of an increment to the radial deflection, and 
the increment W is assumed to be in the same form as the displacement field. For 
simply-supported boundary conditions, the following solution form, which satisfies 
the boundary conditions Ui = ° at x = L/2), Vi = 0, Wi = 0 and Wi = 0 at x = 0, L 
is used: 

Ui = Urm cos arnX cos (3nY (rn = 0, ... , ]1,1; n = 0, ... , N) 

Vi = Virnn sinarnx sin(3nY (m = 1, ... , !vI; n = 1, ... , N) 
- wrnn s· n, S (3 ( 1 ~1 0 N) Wi - i 1nurnX co, nY rn = , ... ,1V; n = , ... , 

Wi =Wirnnsinamxcos(3nY (m=I, ... ,!vI; n=O, ... ,N) (12.6.44) 

Substitution of (12.6.44) into (12.6.42), and the result into the variational 
statement (12.6.38), we obtain a set of nonlinear algebraic equations (see [98,99]). 
Up to twelve buckling modes have been included in the analysis. The nonlinear 
equations are solved making use of the Riks-Wempner incremental iterative scheme 
in order to follow the equilibrium path through limit points. The tangent stiffness 
matrix, which is evaluated at each load step and iteration, can be found in [107 -109]. 

A cross-ply (0/90/0) laminated cylindrical shell subjected to axial compression is 
chosen to study the effect of axial and/ or ring stiffeners on the post buckling behavior. 
The cylinder has the following geometric parameters, L = 300 cm, R = 95.49 cm 
and thickness h = 1 cm. The individual layers have equal thicknesses hi = h/3, 
and the elastic coefficients are those typical of a high-modulus graphite-epoxy 
composite material: E1 = 150GPa, E2 = 7GPa, G12 = 3.5GPa, G2:3 = 1.4GPa, 
1/12 = 1/23 = 0.3, where subscripts "1" and "2" denote the directions along the length 
and transverse to the fibers, respectively. The geometric and material characteristics 
of the I -shaped steel stiffeners adopted here are 

Ea = Ee = 210GPa, Ga = Ge = 80.8GPa 

2 - - 4 
Aa = Ac = 1.2cm, Ia = Ie = 7.2cm 

Za = Zc = 3.5crn 

Four cases are considered: (a) unstiffened cylinder, (b) cylinder with 40 axial 
stiffeners, (c) cylinder with 40 ring stiffeners, and (d) cylinder with 40 axial and 
40 ring stiffeners. 

Figures 12.6.6-12.6.9 contain plots of the axial deflection versus the axial applied 
load for different values of the mode imperfections, with reference to the unstiffened, 
axially stiffened, ring stiffened, and axial and ring stiffened cylinders, respectively. 
The deformed shapes in the postbuckling path are also depicted. Note that the 
maximum load can be reached for very small geometric imperfections only. 
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For the unstiffened cylinder (Figure 12.6.6) the maximum buckling load qmax and 
the minimum post-buckling load qmpb are almost coincident, and are approximately 
60% of the buckling load. The postbuckling path is related to the coupling of modes 
( 4,7) and (4,8), and its stiffness in the axial direction is approximately one-half of the 
membrane stiffness. For the axially stiffened cylinder (Figure 12.6.7) the reduction 
in the load-carrying capacity due to the smaller geometrical imperfection is only 
20%. But unlike the previous case, qmpb is considerably lower than qmax, and the 
postbuckling branch is characterized by a stiffness which is comparable to that of 
the pre buckling path; this is essentially due to the very high bending rigidity of the 
shapes involved during buckling (i.e., modes (1,4),(1,5),(1,6)). Moreover, it should 
be noted that for this cylinder, whose critical mode is characterized by a prevailingly 
inward radial displacement, a positive barreling 3 Arn = 1O-2cm causes a reversal 
of the radial displacement during post buckling and an increment of stiffness in the 
post buckling path (Hutchinson and Frauenthal [99]). 

The ring stiffened cylinder (Figure 12.6.8) shows the highest reduction of the 
load-carrying capacity, namely, 44% of the buckling load. In addition, the deformed 
shape is almost axisymmetric, with a high number of axial waves (modes (14,1), 
(14,2) and (14,3)); no minimum postbuckling load has been reached, and the 
postbuckling branch rapidly decreases. Higher values of the maximum load have 
been obtained for very small values of the geometrical imperfections 3 Arn < 10-7 

cm. Then, in this case the linearized buckling analysis cannot yield any information 
about the real load-carrying capacity of the cylinder. Moreover, even the b-factor 
initial post buckling analyses (Koiter [96]; Hutchinson and Amazigo [98]; Hutchinson 
and Frauenthal [99]) are valid in the neighborhood of the maximum load for small 
values of geometrical imperfections only, so that they cannot be used to predict this 
decreasing behavior. Finally, if axial and ring stiffeners are used (Figure 12.6.9), not 
only the buckling load is rapidly increased, but also a low imperfection-sensitivity 
occurs, and the reduction in the load-carrying capacity is approximately 20%. 

12.7 Closure 

In this chapter a generalized layerwise theory proposed and advanced by the 
author and his colleagues is described and analytical and finite element solutions 
of the theory are presented. The layerwise theory of Reddy [37] is based on 
assumed displacement field, in which the thickness variation is represented using 
one-dimensional finite elements and thereby reducing the 3-D continuum to a 2-D 
problem. The procedure has the advantage of using independent approximation of 
thickness variations from in-plane discretizations. Otherwise, the layerwise theory 
is indeed the same as the traditional 3-D displacement finite element model. 

A hierarchical, displacement-based, global-local finite element model that 
permits an accurate, efficient, and convenient analysis of localized three-dimensional 
effects in laminated composite plates is also presented. By superimposing a hierarchy 
of assumed displacement fields in the same finite element domain, a variable 
kinematic finite element model is developed. All displacement fields in the hierarchy 
share the same assumed in-plane variation but differ in their assumed transverse 
variation. 
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The underlying foundation of the variable kinematic element's composite 
displacement field is provided by a two-dimensional "equivalent single-layer" plate 
theory (e.g., the first-order shear deformation theory). The layerwise displacement 
field of Reddy [37] is included as an optional, incremental enhancement to the 
displacement field of the two-dimensional plate theory, so that the element can have 
full three-dimensional modeling capability when needed. Depending on the desired 
level of accuracy, an element can use none, part, or all of the layerwise field to create 
a hierarchy of different elements having a wide range of kinematic complexity and 
representing a number of different mathematical models. Discrete layer transverse 
shear effects and discrete layer transverse normal effects can be independently 
added to the element by including appropriate terms from the layerwise field. The 
delamination kinematics can also be included as described by Barbero and Reddy 
[50] and Robbins and Reddy [52]. 

In a 2-D mesh of variable kinematic finite elements, each one of the elements 
is capable of simulating any of the element types in the hierarchy. Due to 
the hierarchical nature of the multiple assumed displacement fields, displacement 
continuity can be maintained between different types of elements in the hierarchy 
(i.e., elements based on different mathematical models) by simply enforcing 
homogeneous essential boundary conditions on certain terms in the composite 
displacement field along the incompatible boundary. This simple process can easily 
be automated and subsequently removed from the concern of the user/analyst. 
Thus, in a single 2-D mesh of variable kinematic finite elements, it is possible 
to designate several different subregions that are described by elements that 
are based on different mathematical models. The variable kinematic elements 
circumvent the inconvenience and problems associated with the traditional methods 
of maintaining displacement continuity across incompatible subdomains (e.g., 
multipoint constraints, special transition elements, and penalty methods). 

The layerwise theory was applied in Section 12.5 to study adaptive laminated 
composite structures composed of composite layers and active materials. As 
expected, the layerwise theory yields very accurate results for displacements as well 
as stresses when compared to the solutions obtained with plate theories. 

The layerwise theory was extended in Section 12.6 to study buckling and 
post buckling of circular cylindrical shells with or without stiffeners. Linear general 
buckling and nonlinear (post buckling) analysis results are presented. In the 
postbuckling analysis (the Ritz method was used to reduce the continuum problem 
to a set of nonlinear algebraic equations, which are then solved using the Riks 
Wempner iterative technique) it is observed that the magnitude of imperfection has 
an effect on the load-carrying capacity of the shells. The maximum load-carrying 
capacity of a shell can be achieved only for small imperfection (say 10-5 

rv 10-4 

times the thickness of the shell). For large imperfections, the shell does not exhibit 
any obvious elastic limit load; the nonlinear load-deflection curves indicate softening 
structural response. Numerical results for stiffened and unstiffened cylinders show 
that imperfection-sensitivity is strictly related to the number of nearly simultaneous 
buckling modes. 

We note that the variable kinematic modeling approach described here has a great 
potential for multi-scale modeling of composite laminates. A form of the layerwise 
finite element model is being incorporated into a standard commercial code. 
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Effect of orthotropy: 
on buckling load, 220, 277, 289, 

290, 395, 321, 322, 336, 352, 355, 
420, 699 

on deflection, 218, 314, 318, 331, 
333, 350, 406, 418, 426, 427, 538, 
695 

on frequency, 284, 285, 289, 290, 
324, 340, 352, 354, 400, 420, 429, 
697 
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on stresses, 314, 331, 406 
Effect of plate aspect ratio: 

on buckling load, 276, 277, 278, 
321, 322, 336, 355 

on deflection, 253, 313, 315, 318, 
332, 392 

on frequency, 285, 325, 340, 352, 
354 

on stresses, 253, 313, 315, 316 
Effect of radius-to-thickness: 

on deflection, 467, 468, 555, 557, 
559 

on stress, 555, 557, 559 
Effect of rotary inertia: 

on natural frequency, 285, 398, 399 
Effect of shear deformation: 

on buckling load, 395, 410, 421, 716 

on deflection, 385-387, 405, 406, 
437, 536, 538, 691, 695, 696, 705, 
713 

on frequency, 223, 398-400, 410, 
420,697-700,716,717 

on stresses, 385-387, 405, 406, 437, 
537, 692, 693, 705, 707, 714, 715 

on thermal deflection, 706 
Effect of stacking sequence: 

on buckling load, 186, 212 
on deflection, 186, 212 
on natural frequency, 186, 212 

Eigenfunctions, 264, 269-271, 360 
Eigenvalue problem, 67, 287, 323, 337 
Eigenvalues, 68 
Eigenvectors, 68see Eigenfunctions 
Elastic, 22 
Elastic compliances, 24, 27, 35 

transformed, 97, 98 
Elastic coefficients, 24 

transformed, 101, 119 
Electric displacement vector, 100 
Electric potential, 101 
Electroelasticity, 36 
Electrostriction, 222 
Engineering constants, 27-30, 86, 677 
Engineering notation, 24 

Enthalpy function, 37 
Entropy density, 35 
Epsilon-delta (1':-8) identity, 5 
Equations of equilibrium, 19 

cylindrical bending, 
(CLPT),203 
(FSDT), 215 

elasticity, 19 
Euler-Bernoulli beam theory, 

46, 169 
specially orthotropic plates, 246 
Third-order beam theory, 224 
Timoshenko beam theory, 224 

Equations of motion of: 
antisymmetric angle-ply plates, 

(FSDT), 421, 422 
antisymmetric cross-ply plates, 

(CLPT),342 
classical plate theory, 119-124, 297, 

568 
cylindrical bending, 

(CLPT), 1:31 
(FSDT), 141, 142 

elastici ty (3D), 19 
Euler-Bernoulli beam theory, 

46-49, 226 
first-order plate theory, 134-142, 

377, 378, 575 
layerwise plate theory, 734 
shells, 457-460, 463, 473, 620, 719 
specially orthotropic plates, 246 
symmetric laminates, 356, 357 
Timoshenko beam theory, 57, 226 
Third-order beam theory, 57, 226 
Third-order plate theory, 674-676 

Equivalent single-layer theory, 109 
Error criterion, 585 
Essential boundary condition, 

see Boundary conditions 
Euler-Bernoulli beam theory, 46, 

167, 168, 224 
Euler-Bernoulli hypotheses, 46 
Euler-Lagrange equations, 44, 46, 49, 

52, 55, 124, 136, 675, 735 



Eulerian description, 13 
Exact solution, 165 
Extensional stiffnesses, 128, 138 

Failure analysis, 648 
Failure criterion: 

maximum stress, 648 
Tsai-Wu, 649 

Failure mode, 654 
Fiber, 1, 81 
Fick's second law, 35 
Finite element method, 487, 567 
Finite element model of: 

layerwise theory, 738, 785 
plates (CLPT), 488, 572 
plates (FSDT), 516, 578 
plates (TSDT), 706 
shells, 543, 622, 633 
variable kinematic formulation, 766 

Finite strain, 15 
First-order shear deformation theory 
(FSDT): 

boundary conditions, 137 
displacement field, 132 
equations of motion, 134-142, 575 
finite element model of, 515 
strains, 133, 134 

First law of thermodynamics, 34 
First Piola-Kirchhoff stress, 18 
First-ply failure, 655 
First variation, 40 
Flexure stress formula, 20 
Force boundary condition, 43 
Force resultants, 122 
Fourier's heat conduction law, 34 
Fox-Goodwin scheme, 363 
Free edge stresses, 753, 769, 779 
Frequency, see Vibration 
Full layerwise theory, 727 
Functional, 41 

extrema of, 42 
linear, 41 
quadratic, 41 

Functionally graded plates, 613 
Fundamental lemma, 42 
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Galerkin's method, 65, 66, 279 
363, 502 

Gauss points, 508 
Gauss quadrature, 506 
Generalized Hooke's law, 22-33, 85 
Generalized displacements, 133 
Generally orthotropic layer, 146, 150, 

680 
Geometric boundary condition, 

see Boundary conditions 
Gibb's free energy function, 37 
Global coordinates, 503 
Global-local analysis, 759 
Gradient operator, 6 
Gradient theorem, 11 
Green-Lagrange strain tensor, 

14-16 

Hamilton's principle, 53-57, 457, 
707,719 

Heat conduction equation, 34 
Heat flux, 45 
Helmholtz free-energy function, 35 
Hermite interpolation, 495 
Heterogeneous body, 22 
Homogeneous, 22 
Hooke's law, 

see Generalized Hooke's law 
Hygroscopic expansion coefficients, 

36 
Hygrothermal elasticity, 35 
Hyperelastic, 22, 23, 50 
Ideally elastic, 23 
Ill-conditioned matrix, 348, 478 
Index notation, 5 
Infinitesimal strain tensor, 16 
Initial conditions, 127, 137, 291, 441 
In-plane inertia, 323 
Integral relations, 10 
Interlaminar stresses, 726 

see Transverse stresses 
Internal virtual work, 44 
Internal work, 39, 44 
Interpolation functions, 487 
Invariant, 3 
Isoparametric approximation, 504 
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Isotropic material, 2, 31, 32 

Jacobian matrix, 506 
Jacobian, 506 
Jordan canonical form, 478 
Kinematics, 12-16, 455 
Kinetic energy, 53 
Kinetics, 12, 454 
Kirchhoff assumptions, 113 
Kirchhoff free-edge condition, 127 
Kronecker delta, 5 

Lagrange interpolation, 491 
Lagrange multiplier method, 521 
Lagrangian description, 13 
Lame coefficients, 452 
Lame constants, 32 
Lamina (ply), 2, 83 
Laminate constitutive equations, 

127-129, 137-139,461,736 
Laminated beams, 167, 187 
Laminated element, 567 
Laminated plate theories: 

classical (CLPT), 112-131 
first order (FSDT), 132-142 
third order, 112 

Laminates: 
antisymmetric, 144, 152-155,301, 

326 
asymmetric, 144 
angle-ply, 150, 155, 326 
balanced, 156 
cross-ply, 150, 154, 301 
generally orthotropic, 150 
single-layer, 144-147 
specially orthotropic, 149, 150, 245 
symmetric, 145-151 

Lamination scheme, 83 
Laplace transform, 293 
Layerwise theory: 

displacement field of, 730 
constitutive equations of, 736 
equations of motion of, 734 
finite element model of, 738, 785 
of Reddy, 730 

stiffnesses of. 736-738 
strains of, 733 

Least squares method 65 66 , , 
Levy's method, 255, 286, 475 
Levy solutions: 

antisymmetric angle-ply plates, 
(CLPT),353 
(FSDT), 423 

antisymmetric cross-ply plates, 
(CLPT),342 
(FSDT), 413 
(TSDT),699 

specially orthotropic plates, 
255-262, 286 

Linear acceleration method, 363, 502 
Linear functional, 41 
Linearly independent set, 59 
Local coordinates, 503 
Locking: 

membrane, 594 
shear, 523 

Macromechanical behavior 85 , 
Magnetostriction, 222 
Mass diffusitJvity tensor, 35 
Mass diffusitivity, 35 
Mass inertias, 122, 227, 458, 473 
Master element, 504 
Material coordinates, 13 
Material compliance matrix, 97, 98 

transformed, 97, 98 
Material properties, 

aluminum, 88 
boron-epoxy, 88 
glass-epoxy, 88 
graphite-epoxy (AS), 88 
graphite-epoxy (T), 88 
graphite fabric-carbon, 30, 102 
material I, 525, 625, 689 
material 2, 320, 532, 625, 694 
steel, 88 

Material stiffnesses, 23-33 
transformed, 96, 119 

Material strengths, 649 
Material symmetry, 25 



Matrix material, 1, 81 
Maximum stress criterion, 648 
Maxwell's relations, 36 
Mean stress, 32 
Membrane locking, spp Locking 
Membrane strains, 117 
Mesh generation, 488 
Metric, 450 
Micromechanics, 85 
Mindlin plate theory, 

see First-order plate theory 
Minimum total potential energy, 50 
Mixed finite element model, 521 
Moisture concentration, 35 
Moment resultants, 122 
Monoclinic material, 25, 85 
Multiple model analysis, 

see Global-local analysis 
Multiple model methods, 109, 759, 

762 
Multistep methods, 759 

Natural boundary condition, 43, 126 
127, 137, 735 

Natural coordinates, 494, 504 
Navier's method, 247 
Navier's solutions: 

antisymmetric angle-ply plates, 
(CLPT),326 
(FSDT),402 
(TSDT),687 

antisymmetric cross-ply plates, 
(CLPT), 301 
(FSDT),379 
(TSDT),684 

beam, 228 
cylindrical shell, 801 
doubly curved shells, 465 
specially orthotropic plates, 

247, 272 
Newmark's integration schemes, 362, 

502, 583 
Newton's second law, 7, 19, 44, 53 
Newton-Raphson iteration scheme, 

584 
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modified, 585 
Nonconforming element: 

rectangular, 497 
triangular, 496 

N onion form, 9 
Nonlinear analysis of: 

bending of plates, 596 
buckling of plates, 608, 645 
transient response, 612 
shell, 625, 638 

Normal derivative, 12 
Normal stress, 7, 31 
Normalized coordinates, 504 
Numerical integration, 506 
Numerical time integration, 

see Time approximation schemes 

Orthotropic lamina, 100 
Orthotropic material, 26, 85 
Orthotropic piezoelectric lamina, 118 

Partial layerwise theory, 727 
Particular solution, 59 
Particulate composites, 81 
Penalty function method, 520 
Penalty parameters, 521 
Period of vibration, 363 
Permutation symbol, 5 
Petrov-Galerkin method, 65 
Physical components, 4 
Piezoelectric effect, 36 
Piezoelectric moduli, 37, 100 

transformed, 102, 119, 438 
Piezoelectric resultants, 129, 569 
Plane of material symmetry, 25 
Plane strain, 165 
Plane stress reduced stiffnesses, 

33, 100, 677 
Plane stress, 33, 165 
Plates, 131 

classical theory of, 112-131 
first-order theory of, 132 -142 
equivalent single-layer, 110 
specially orthotropic, 145, 149, 245 
third-order theory of, 671-677 

Ply, 97 
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Poisson effect, 119 
Polarization charge, 36 
Polarization vector, 36 
Polyads, 10 
Post buckling response, 645, 806 
Potential energy, 53 
Primary variables, 43, 126, 137, 

227, 490, 516, 546, 676, 735 
Principle: 

of conservation of energy, 34 
of minimum total potential energy, 

44, 50-53 
of superposition, 27 
of virtual displacements, 44, 45, 120 

134, 457, 631, 707, 734, 795 
thermodynamics, 34-37 

Progressive failure, 645 
Pure extension, 17 
Pure shear, 17 
Pyroelectric constants, 37 
Pyroelectric effect, 36 

Quadratic functional, 41 
Quasi-isotropic laminate, 156 

Reciprocal relations, 28 
Rectangular Cartesian, 4 
Reddy's layerwise theory, 730 
Reddy's third-order beam theory, 224 
Reddy's third-order plate theory, 

671-677 
Reduced integration, 523 
Referential description, 13 
Residual, 584 
Resultants: 

force, 122 
higher-order, 677 
moment, 122 
piezoelectric, 129 
thermal, 128, 146, 147 

Riks-Wempner method, 585 
Ritz approximation, 62, 279, 280 

see Ritz method 
Ritz method, 58-62 
Rotatory inertia, 

see Rotary inertia 
Rotary inertia, 125 

Sanders shell theory, 449 
Scalars, 3 
Scalar product, 5 
Second law of thermodynamics, 34 
Second-order plate theory, 111 
Second Piola-Kirchhoff stress 19 , 
Secondary variables, 43, 126, 137, 

227, 490, 516, 546, 676, 735 
Self-starting scheme, 364 
Semidiscrete finite element model 

499, 547 
Separable solution, 361 
Sequential methods, 759 
Serendipity elements, 495 
Series solution, 166 

, 

Set of admissible configurations, 38 
Shear correction coefficient, 57, 135 
Shear correction factors, 455 
Shear coupling, 168 
Shear-extensional coupling, 26 
Shear locking, see Locking 
Shear stress, 7, 31 
Shell, 449 
Simplified third order theory, 57 
Single subscript notation, 24, 85 
Spanning set, 59 
Spatial description, 13 
Specific heat, 34 
Specially orthotropic laminate, 245 
Specially orthotropic layer, 

145, 150, 151, 679, 681 
Specially orthotropic plates, 

245, 382 
Specially orthotropic solution, 335 
Spherical shell panel, 639, 641, 644 
Stability, see Buckling 
Stability, numerical, 502 
Stable equilibrium, 176 
Stacking sequence, 83 

see lamination scheme 
State-space approach, 260, 288, 

345, 414, 425, 477, 703 
Static condensation, 308 



Stiffnesses: 
bending, 128 
bending-extensional, 128 
extensional, 128, 138 
of antisymmetric angle-ply plates, 

682 
of antisymmetric cross-ply plates, 

682 
of asymmetric laminates, 144 
of balanced laminate, 156 
of quasi-isotropic laminate, 156 
of single isotropic layer, 145, 678 
of single-layer plates, 144-147, 678 
of symmetric laminates, 680 
laminate, 142-157 
layerwise theory, 736, 737 

Strain-displacement relations, 13-16 
Strain: 

Green-Lagrange, 14-16, 629 
infinitesimal, 16 
hygrothermal, 36 
moisture, 35 
transformation of, 93, 94 
thermal, 35, 36 

Strain compatibility, 18 
Strain energy, 3, 40, 50 

complementary, 40 
Strain energy density, 23, 33, 50 
Strain gages, 87 
Strain rate tensor, 34 
Stress, 

Cauchy, 8, 18 
deviatoric, 32 
dyadic, 8 
mean, 32 
measures, 18 
first Piola-Kirchhoff, 18 
second Piola-Kirchhoff, 19, 629 
single subscript notation, 24, 91 
tensor, 8 
transformation of, 90, 91 
vector, 7 

Stress computation: 
of antisymmetric angle-ply plates, 

(CLPT),330 
(FSDT),403 
(TSDT),688 
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of antisymmetric cross-ply plates, 
(CLPT),309 
(FSDT),381 
(TSDT), 686 

of beams, 169-172 
of plates (FEM), 510, 524 
of specially orthotropic plates, 250, 

383 
Subparametric formulation, 504 
Summation convention, 5, 15 
Superparametric formulation, 504 
Surface metrics, 450 
Symmetric laminate, 143, 148-151, 
680 
Tangent stiffness matrix, 584 
Tensor product, 509 
Tensor, 3, 7-10 

first-order, 10 
Green-Lagrange strain, 14, 15 
mass diffusivity, 35 
proollct, SOg 
second-order, 10 
third-order, 10 
transformation of, 10 
transpose of, 9 
unit, 10 
zeroth-order, 10 

Thermal coefficients of expansion, 35 
transformed, 99, 101, 119 

Thermal conductivity tensor, 34 
Thermodynamics, 12, 34-37 
Third-order beam theory, 55-57, 224 
Third-order plate theory, 671-677 

bending of, 689, 712 
buckling of, 698, 712 
displacement field of, 671-673 
equations of motion of, 674 
finite element model of, 706 
stiffnesses of, 676-682 
Levy solution, 699 
strains of, 674 
vibration of, 696, 712 
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Three-point bending, 172 
Time approximation schemes, 

362-364 
Timoshenko beam theory, 57, 187, 

188, 224 
Total Lagrangian formulation, 568, 

627 
Total potential energy, 44, 50-53, 

266, 279, 522 
Transformation of: 

material coefficients, 25, 96, 97 
strains, 93, 94 
stresses, 90, 91 
tensor components, 10 

Transformation matrix, 26, 636 
Transient analysis, 290, 361, 430, 

612 
Transverse force resultants, 122, 135 
Transverse stresses from: 

constitutive relations, 190, 403 
686 

equilibrium equations, 170-172, 
250, 310, 382, 384, 403, 686, 688 

Tsai-Wu criterion, 649 

Uncoupled ESL models, 780 
Undetermined parameters, 58 
Uniaxial compression, 274 
Unstable equilibrium, 176 
Unsymmetric laminate, 145 
Updated Lagrangian formulation, 

568, 627 

Variables, 
primary, 43, 126, 137, 

227, 490, 516, 546, 676, 735 
secondary, 43, 126, 137, 

227, 490, 516, 546, 676, 735 
Variable kinematic formulation, 759 
Variational operator, 40--42 

properties of, 41 
Variational methods, 58 

collocation, 65, 67, 69 
Galerkin, 65, 66, 68, 279 
least squares, 65, 66, 69 

Ritz, 58-62, 68, 262, 279, 280, 358 
weighted-residual, 64-68 

Vector product, 5 
Vectors, 3 

basis, 4 
cross product of, 5 

Vector space, 3 
Velocity feedback control, 226, 438 
Vibration, natural: 

of antisymmetric angle-ply plates, 
(CLPT), 337, 354 
(FSDT), 406, 428 

of antisymmetric cross-ply plates, 
(CLPT), 323, 346, 351 
(FSDT), 394, 419 

of beams, 182-187, 197-200 
of circular cylindrical shells, 

473 
of doubly curved shells, 468 
of plates (FEM), 501, 515, 540 
of specially orthotropic plates, 

282, 285, 397 
Vibration suppression, 

of doubly curved shells, 469 
of laminated beams, 222 
of laminated plates, 437 

Virtual complementary strain energy, 
40 

Virtual displacements, 38, 44, 45 
principle of, 44, 45, 120, 134, 674 

Virtual forces, 40 
Virtual strain energy, 40, 120, 134, 

457, 674 
Virtual work, 38, 45, 54, 120, 134, 

266, 675 
Virtual work principles, 38-46, 120 
Viscous dissipation, 34 
Voit-Kelvin notation, 24 
von Karman nonlinearity, 567, 620, 

794 
von Karman strains, 117, 620 
Weak forms for: 

laminated plates (CLPT), 488 
laminated plates (FSDT), 515 
laminated plates (TSDT), 707 



midplane symmetric plates, 357 
specially orthotropic plate, 266 
shells, 543 

Weight functions, 64 
Weingarten-Gauss relations, 451 
Whiskers, 1, 81 
Work: 

external, 45 
internal, 39, 45 
virtual, 38, 45, 54 
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