VIECHANICS of
L AMINATED COMPUOSITE
PLATES and SHELLS

Theory and Analysis
~ SECOND EDITION




MECRHANICS of
LAMINATED COMPOSITE
PLATES and SHELLS

Theory and Analysis
SECOND EDITION

J.N. REDDY

CRC PRESS




Library of Congress Cataloging-in-Publication Data

Reddy, J. N. (Junuthula Narasimha), 1945-
Mechanics of laminated composite plates and shells : theory and analysis / J.N. Reddy. —
2nd ed.
p. cm.
Rev. ed. of: Mechanics of laminated composite plates. ¢1997.
Includes bibliographical references and index.
ISBN 0-8493-1592-1 (alk. paper)

1. Plates (Engineering) —Mathematical models. 2. Shells (Engineering)—Mathematical
models. 3. Laminated materials—Mechanical properties-—Mathematical models. 4.
Composite materials—Mechanical properties —Mathematical models. 1. Reddy, J. N.
(Junuthula Narasimha), 1945-. Mechanics of laminated composite plates. II. Title.

TA660.P6R42 2003
624.1'7765—dc22 2003061067

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2004 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1592-1
Library of Congress Card Number 2003061067
Printed in the United States of America 1 2 3 4 56 78 90
Printed on acid-free paper



To the Memory of

My parents,
My brother,
My brother in-law,
My father in-law,
Hans Eggers,

Kalpana Chawla, ...






About the Author

J. N. Reddy is a Distinguished Professor and the inaugural holder of the Oscar
S. Wyatt Endowed Chair in the Department of Mechanical Engineering at Texas
A&M University, College Station, Texas. Prior to his current position, he worked
as a postdoctoral fellow at the University of Texas at Austin (1973-74), as a
research scientist for Lockheed Missiles and Space Company (1974), and taught
at the University of Oklahoma (1975-1980) and Virginia Polytechnic Institute and
State University (1980-1992), where he was the inaugural holder of the Clifton C.
Garvin Endowed Professorship.

Professor Reddy is the author of over 300 journal papers and 13 text books
on theoretical formulations and finite-element analysis of problems in solid and
structural mechanics (plates and shells), composite materials, computational fluid
dynamics and heat transfer, and applied mathematics. His contributions to
mechanics of composite materials and structures are well known through his research
on refined plate and shell theories and their finite element models.

Professor Reddy is the first recipient of the University of Oklahoma College
of Engineering’s Award for Outstanding Faculty Achievement in Research, the
1984 Walter L. Huber Civil Engineering Research Prize of the American Society of
Civil Engineers (ASCE), the 1985 Alumni Research Award at Virginia Polytechnic
Institute, and 1992 Worcester Reed Warner Medal and 1995 Charles Russ Richards
Memorial Award of the American Society of Mechanical Engineers (ASME). He
received German Academic Exchange (DAAD) and von Humboldt Foundation
(Germany) research awards. Recently, he received the 1997 Melvin R. Lohmann
Medal from Oklahoma State University’s College of Engineering, Architecture
and Technology, the 1997 Archie Higdon Distinguished Educator Award from the
Mechanics Division of the American Society of Engineering Education, the 1998
Nathan M. Newmark Medal from the American Society of Civil Engineers, the
2000 Ezcellence in the Field of Composites Award from the American Society
of Composite Materials, the 2000 Faculty Distinguished Achievement Award for
Research, the 2003 Bush Fxcellence Award for Faculty in International Research
award from Texas A&M University, and 2003 Computational Structural Mechanics
Award from the U.S. Association for Computational Mechanics.

Professor Reddy is a fellow of the American Academy of Mechanics (AAM),
the American Society of Civil Engineers (ASCE), the American Society of
Mechanical Engineers (ASME), the American Society of Composites (ASC),
International Association of Computational Mechanics (IACM), U.S. Association of
Computational Mechanics (USACM), the Aeronautical Society of India (ASI), and
the American Society of Composite Materials. Dr. Reddy is the Editor-in-Chief of
the journals Mechanics of Advanced Materials and Structures (Taylor and Francis),
International Journal of Computational FEngineering Science and International
Journal Structural Stability and Dynamics (both from World Scientific), and he
serves on the editorial boards of over two dozen other journals.






Contents

Preface to the Second Edition ............. ... ... ... ... .. ............. Xix

Preface to the First Edition........ .. ... ... ... ... ... ... .......... xxi
1 Equations of Anisotropic Elasticity, Virtual Work Principles,

and Variational Methods ............. ... .. . .. . . . 1

1.1 Fiber-Reinforced Composite Materials .................................. 1

1.2 Mathematical Preliminaries......... ... ... . i i 3

1.2.1 General Comments. ....... ..o i 3

1.2.2 Vectors and Tensors. . ..ot e 3

1.3 Equations of Anisotropic Entropy.........cccooi i 12

1.3.1 Introduction . . ..o oo 12

1.3.2 Strain-Displacement Equations............. ... ... .. ... ... 13

1.3.3 Strain Compatibility Equations............... ... . ... ... ...... 18

1.3.4 Stress Measures . ..ottt 18

1.3.5 Equations of Motion ......... ... .o i 19

1.3.6 Generalized Hooke’s Law ......... ... ... oo, 22

1.3.7 Thermodynamic Principles.......... ... il 34

1.4 Virtual Work Principles . ....... oo i 38

1.4.1 Introduction . ... 38

1.4.2 Virtual Displacements and Virtual Work ........................ 38

1.4.3 Variational Operator and Euler Equations....................... 40

1.4.4 Principle of Virtual Displacements............ ... ... ... ... .. 44

1.5 Variational Methods....... ... .. 58

1.5.1 Introduction ... ..o 58

1.5.2 The Ritz Method ........... .. 58

1.5.3 Weighted-Residual Methods............... ... ... oo .. 64

1.6 SUIMIMATY © oottt e e e e e 71

Problems . ... 72

References for Additional Reading........... .. ... ... il 78

2 Introduction to Composite Materials .................................. 81

2.1 Basic Concepts and Terminology .............. .o it 81

2.1.1 Fibers and Matrix ... 81

2.1.2 Laminae and Laminates.............. ... i, 83

2.2 Constitutive Equations of a Lamina ................................... 85

2.2.1 Generalized Hooke’s Law . ... i 85

2.2.2 Characteristics of a Unidirectional Lamina....................... 86



X CONTENTS

2.3 Transformation of Stresses and Strains..................cooiiiiiiian... 89
2.3.1 Coordinate Transformations.............. ... coiiiiriiiion... 89
2.3.2 Transformation of Stress Components ....................coou.n. 90
2.3.3 Transformation of Strain Components........................... 93
2.3.4 Transformation of Material Coefficients.......................... 96

2.4 Plan Stress Constitutive Relations................ ... ..., 99

Problems . ... 103

References for Additional Reading............ ... .. ... ... ... ... 106

3 Classical and First-Order Theories of Laminated
Composite Plates ... 109

3.1 Introduction . ... e 109
3.1.1 Preliminary Comments. .........ouueiiie i, 109
3.1.2 Classification of Structural Theories............................ 109

3.2 An Overview of Laminated Plate Theories............................ 110

3.3 The Classical Laminated Plate Theory................ ... . ... ..... 112
3.3.1 ASSUMPEIONS . o oottt e e 112
3.3.2 Displacements and Strains .............i i, 113
3.3.3 Lamina Constitutive Relations ................... ... ... ....... 117
3.3.4 Equations of Motion .......... ... i, 119
3.3.5 Laminate Constitutive Equations....................cooiiennn.. 127
3.3.6 Equations of Motion in Terms of Displacements ................ 129

3.4 The First-Order Laminated Plate Theory.......... ... ... ... . ..... 132
3.4.1 Displacements and Strains ............ ..., 132
3.4.2 Equations of Motion . ... ... i 134
3.4.3 Laminate Constitutive Equations............................... 137
3.4.4 Equations of Motion in Terms of Displacements ................ 139

3.5 Laminate Stiffnesses for Selected Laminates........................... 142
3.5.1 General DiSCUSSION . . . ...ttt 142
3.5.2 Single-Layer Plates. ... i 144
3.5.3 Symmetric Laminates.............. i 148
3.5.4 Antisymmetric Laminates............ ... it 152
3.5.5 Balanced and Quasi-Isotropic Laminates ....................... 156

Problems . ... e 157

References for Additional Reading............. ... ... ... ... 161

4 One-Dimensional Analysis of Laminated Composite Plates ......... 165

4.1 Introduction . ... ... ot 165

4.2 Analysis of Laminated Beams Using CLPT ........................... 167
4.2.1 Governing Equations. ....... .. ..o i i 167
4.22Bending . ... e 169
423 Buckling. ..o 176

4.2.4 VIbration .. ..ot 182



CONTENTS xi

4.3 Analysis of Laminated Beams Using FSDT ............. ... ... ... 187
4.3.1 Governing Equations........... ... i 187
432 Bending .. ... 188
4.3.3 Buckling .. ... 192
4.3.4 VIDration .. ... 197

4.4 Cylindrical Bending Using CLPT ... ... ... . o i 200
4.4.1 Governing Equations....... ... i 200
442 Bending . ... 203
443 Buckling. . ... 208
4.4.4 Vibration . ... ..o e 209

4.5 Cylindrical Bending Using FSDT ... ... .. oot 214
4.5.1 Governing Equations. ... ... ... .. .o i i 214
4.5.2 Bending ..o 215
453 Buckling. ... 216
4.5.4 VIDration . ... e e 219

4.6 Vibration Suppression in Beams........... ... 222
4.6.1 Introduction . ... ... e 222
4.6.2 Theoretical Formulation.............. ... .. .. i .. 222
4.6.3 Analytical Solution ......... ... . i 227
4.6.4 Numerical Results ........ ..o i 230

4.7 Closing Remarks . . ..o e 232

Problems . ... 232

References for Additional Reading.......... ... ... ... ... .. ... 242

5 Analysis of Specially Orthotropic Laminates Using CLPT .......... 245

5.1 Introduction ... ..o e 245

5.2 Bending of Simply Supported Rectangular Plates..................... 246
5.2.1 Governing Equations........ ... ... i 246
5.2.2 The Navier Solution ... 247

5.3 Bending of Plates with Two Opposite Edges Simply Supported ....... 255
5.3.1 The Lévy Solution Procedure ............... ... ... ... ...... 255
5.3.2 Analytical Solutions. ... ... 257
5.3.3 Ritz Solution ... ..o 262

5.4 Bending of Rectangular Plates with Various Boundary Conditions . ... 265
5.4.1 Virtual Work Statements........... ... ... i 265
5.4.2 Clamped Plates. ... ... i e 266
5.4.3 Approximation Functions for Other Boundary Conditions. ...... 269

5.5 Buckling of Simply Supported Plates Under Compressive Loads....... 271
5.5.1 Governing Equations. ... 271
5.5.2 The Navier Solution ........ ... .. . i 272
5.5.3 Biaxial Compression of a Square Laminate (k=1) ............. 273
5.5.4 Biaxial Loading of a Square Laminate .......................... 274

5.5.5 Uniaxial Compression of a Rectangular Laminate (k =0)....... 274



xii CONTENTS

5.6 Buckling of Rectangular Plates Under In-Plane Shear Load ........... 278
5.6.1 Governing Equation.......... ... . .. 278
5.6.2 Simply Supported Plates........... ... ... . . 278
5.6.3 Clamped Plates. ... i i 280

5.7 Vibration of Simply Supported Plates ................................ 282
5.7.1 Governing Equations......... ... ... . i 282
5.7.2 S0lution . ..o 282

5.8 Buckling and Vibration of Plates with Two Parallel Edges
Simply Supported . ... 285
5.8.1 Introduction ... ... e 285
5.8.2 Buckling by Direct Integration ................................. 287
5.8.3 Vibration by Direct Integration ................................ 288
5.8.4 Buckling and Vibration by the State-Space Approach........... 288

5.9 Transient Analysis ... ... e 290
5.9.1 Preliminary Comments. ..., 290
5.9.2 Spatial Variation of the Solution ............................... 290
5.9.3 Time Integration......... .. . i, 292

5.10 CloSUTE . .\ttt e e 293

Problems . ... 293

References for Additional Reading......... .. ... ... ... ... ... ..., 296

6 Analytical Solutions of Rectangular Laminated Plates
Using CLP T ... e e 297

6.1 Governing FEquations in Terms of Displacements ...................... 297

6.2 Admissible Boundary Conditions for the Navier Solutions............. 299

6.3 Navier Solutions of Antisymmetric Cross-Ply Laminates .............. 301
6.3.1 Boundary Conditions ........... ..o, 301
6.3.2 Solution ... 304
6.3.3 Bending ... ..ot 308
6.3.4 Determination of Stresses ... 309
6.3.5 Buckling . .. ... oot e 317
6.3.6 Vibration . ... .. ..o 323

6.4 Navier Solutions of Antisymmetric Angle-Ply Laminates.............. 326
6.4.1 Boundary Conditions ...t 326
6.4.2 SOIULION .« oo 328
6.4.3 Bending . ...t e 329
6.4.4 Determination of Stresses............. .. ... ... i, 330
6.4.5 Buckling . ... i 335
6.4.6 VIDration ... .. ..o 337

6.5 The Lévy Solutions. ...... ..o i 339
6.5.1 Introduction . ... ..o i e 339
6.5.2 Solution Procedure............. ... .. i 342
6.5.3 Antisymmetric Cross-Ply Laminates............................ 348

6.5.4 Antisymmetric Angle-Ply Laminates ........................... 353



CONTENTS  xiii

6.6 Analysis of Midplane Symmetric Laminates........................... 356
6.6.1 Introduction ... ... e 356
6.6.2 Governing Equations......... ... ... ... . 356
6.6.3 Weak Forms . ... .. 357
6.6.4 The Ritz Solution........ ..o 358
6.6.5 Simply Supported Plates............ ... ... i, 358
6.6.6 Other Boundary Conditions.............. ... ... ... ... ... .. 360

6.7 Transient Analysis ... i 361
6.7.1 Preliminary Comments. ..., 361
6.7.2 Equations of Motion ............ .. i 361
6.7.3 Numerical Time Integration................ ..o, 362
6.7.4 Numerical Results ........ ... . 364

6.8 SUMMIATY . ..ottt e e e e e 371

Problems . ... 371

References for Additional Reading........... ... ... ... i 375

7 Analytical Solutions of Rectangular Laminated Plates
Using FSD T . 377

T Introduction .. ..o 377

7.2 Simply Supported Antisymmetric Cross-Ply Laminated Plates........ 379
7.2.1 Solution for the General Case .......... ... ... ..o iiiiin... 379
722 Bending . ..o 381
723 Buckling. ... o 388
T7.24 Vibration .. ... 394

7.3 Simply Supported Antisymmetric Angle-Ply Laminated Plates........ 400
7.3.1 Boundary Conditions . ...t 400
7.3.2 The Navier Solution ............ ... 402
733 Bending . ... 404
734 Buckling. ..o 405
7.3.5 Vibration .. ..o 406

7.4 Antisymmetric Cross-Ply Laminates with Two Opposite
Edges Simply Supported. ... 412
741 Introduction . ... 412
7.4.2 The Lévy Type Solution ................ ... i .. 413
7.4.3 Numerical Examples ......... ... .. . i 415

7.5 Antisymmetric Angle-Ply Laminates with Two Opposite
Edges Simply Supported. ... ... 421
7.5.1 Introduction . ... 421
7.5.2 Governing Equations. ........... ... i 421
7.5.3 The Lévy Solution ....... ... . . i i 423
7.5.4 Numerical Examples..... ... o . 425

7.6 Transient Solutions. ........ ..o 430

7.7 Vibration Control of Laminated Plates ............................... 437
7.7.1 Preliminary Comments. ...... ..ot 437

7.7.2 Theoretical Formulation...... ... ... ... .. 438



xiv. CONTENTS
7.7.3 Velocity Feedback Control............... ... i 438
7.7.4 Analytical Solution ...... ... oo i i 439
7.7.5 Numerical Results and Discussion.............................. 441
T8 SUIMIMALY ettt ettt et et e e e et e et 442
Problems . ..o 444
References for Additional Reading........... ... ... ... . L. 445
8 Theory and Analysis of Laminated Shells ............................ 449
8.1 Introduction .. ... 449
8.2 Governing Equations. ... ... i 450
8.2.1 Geometric Properties of the Shell .............................. 450
8.2.2 Kinetics of the Shell ....... ... 454
8.2.3 Kinematics of the Shell ............... ... ... .. .o i i 455
8.2.4 Equations of Motion ...... .. ..o e 457
8.2.5 Laminate Constitutive Relations ............... ... ... ... .... 461
8.3 Theory of Doubly-Curved Shells.......... ... ... ... oo, 462
8.3.1 Equations of Motion ............c i 462
8.3.2 Analytical Solution ......... ... ..o 463
8.4 Vibration and Buckling of Cross-Ply Laminated
Circular Cylindrical Shells.......... ... i e 473
8.4.1 Equations of Motion ......... .. o i i 473
8.4.2 Analytical Solution Procedure. ..., 475
8.4.3 Boundary Conditions ........... ... it 479
8.4.4 Numerical Results ........ ... 480
Problems . ..o e 483
References for Additional Reading............ ... ..o i 483
9 Linear Finite Element Analysis of Composite Plates and Shells ....487
0.1 Introduction . ... 487
9.2 Finite Element Models of the Classical Plate Theory (CLPT)......... 488
0.2.1 Weak FOrms . ... e e 488
9.2.2 Spatial Approximations ............ccoiiiiii i 490
9.2.3 Semidiscrete Finite Element Model .............. ... ... ... ... 499
9.2.4 Fully Discretized Finite Element Models........................ 500
9.2.5 Quadrilateral Elements and Numerical Integration.............. 503
9.2.6 Post-Computation of Stresses .........c.ovvvevieeeiiiniiaiinnn. 510
9.2.7 Numerical Results ... .. ... . 510
9.3 Finite Element Models of Shear Deformation Plate Theory (FSDT)...515
9.3.1 Weak Forms . ...t 515
9.3.2 Finite Element Model............. ... .o, 516
9.3.3 Penalty Function Formulation and Shear Locking............... 520
9.3.4 Post-Computation of Stresses .........c.oieiiiiiiiieeiinnnn 524
9.3.5 Bending Analysis .......... i 525
9.3.6 Vibration Analysis........ ... 540

9.3.7 Transient Analysis....... ..o, 542



CONTENTS XV

9.4 Finite Element Analysis of Shells........... ... ... ... .. ... 543
9.4.1 Weak Forms ... ... 543
9.4.2 Finite Element Model ... ... .. .. . 546
9.4.3 Numerical Results ...... ... ... 549

0.0 SUINIITIALY o ottt t ettt e e e et e e n e e e e e e e 558

Problems . . ... 560

References for Additional Reading........... ... ... ... i 560

10 Nonlinear Analysis of Composite Plates and Shells ................ 567

10.1 Introduction . ... e 567

10.2 Classical Plate Theory ...... ... i 568
10.2.1 Governing Equations. .......... ... .. . i 568
10.2.2 Virtual Work Statement .......... ..., 569
10.2.3 Finite Element Model ..... ... ... .. ... . . 572

10.3 First-Order Shear Deformation Plate Theory ........................ 575
10.3.1 Governing Equations...............ooi i 575
10.3.2 Virtual Work Statements ...t 576
10.3.3 Finite Element Model...... ... ... ... . ., 578

10.4 Time Approximation and the Newton-Raphson Method.............. 583
10.4.1 Time ApproxXimations. ...........oeiiiiiiin i, 583
10.4.2 The Newton-Raphson Method ...................... ... ... ... 584
10.4.3 Tangent Stiffness Coefficients for CLPT .......... ... ... . ... 586
10.4.4 Tangent Stiffness Coefficients for FSDT ....... ... ... ... ... 590
10.4.5 Membrane Locking ........ .. ... ... 594

10.5 Numerical Examples of Plates........ ... .. ... . . i, 596
10.5.1 Preliminary Comments ..........c.ovvieremniiiiiiiiinena... 596
10.5.2 Isotropic and Orthotropic Plates ........... ... ... . ... 596
10.5.3 Laminated Composite Plates............... ... it 601
10.5.4 Effect of Symmetry Boundary Conditions on Nonlinear

ReSpOnSe . .o 604
10.5.5 Nonlinear Response Under In-Plane Compressive Loads ....... 608
10.5.6 Nonlinear Response of Antisymmetric Cross-Ply Laminated

Plate Strips . ..o e 608
10.5.7 Transient Analysis of Composite Plates ....................... 612

10.6 Functionally Graded Plates.......... ... ... . . ... 613
10.6.1 Background. .. ... .. 613
10.6.2 Theoretical Formulation ............... . ... .. .. ..., 615
10.6.3 Thermomechanical Coupling ......... ... ... ... ... ... ..... 616
10.6.4 Numerical Results ....... .. .o 617

10.7 Finite Element Models of Laminated Shell Theory................... 621
10.7.1 Governing Equations............... ... it 621
10.7.2 Finite Element Model.......... ... ... o i 622

10.7.3 Numerical Examples...... ... ..o i 625



xvi

CONTENTS

10.8 Continuum Shell Finite Element..................................... 627
10.8.1 Introduction ... i i 627
10.8.2 Incremental Equations of Motion...............ocooiiiuni.an. 628
10.8.3 Continuum Finite Element Mode. ............................. 631
10.8.4 Shell Finite Element ........ ... ... ... ... .. i i ... 633
10.8.5 Numerical Examples........ ... .o i i 638
10.8.6 ClOSUIE . . v vt vttt e e e 644

10.9 Postbuckling Response and Progressive Failure of Composite
Panels in Compression. . ....... i 645
10.9.1 Preliminary Comments ...ttt 645
10.9.2 Experimental Study..........coiiiiiiiii i 645
10.9.3 Finite Element Models.......... ... ... ... i .. 647
10.9.4 Failure Analysis . ... i 648
10.9.5 Results for Panel C4......... ... .. .. i, 650
10.9.6 Results for Panel H4...........0 ... . ... o i 655

1010 CloSUTE - . o oottt e et e e 658

Problems .. ... o 658

References for Additional Reading........... ... ... . ... i, 664

11 Third-Order Theory of Laminated Composite Plates and Shells ..671

11.1 Introduction . .....ooo 671
11.2 A Third-Order Plate Theory ..., 671
11.2.1 Displacement Field ............ ... . i 671
11.2.2 Strains and Stresses. ... ...ouiut i 674
11.2.3 Equations of Motion .......... ... oo, 674
11.3 Higher-Order Laminate Stiffness Characteristics..................... 677
11.3.1 Single-Layer Plates . ... i 678
11.3.2 Symmetric Laminates. .......... .. i 680
11.3.3 Antisymmetric Laminates....... ... ... ... . i 681
11.4 The Navier Solutions. ... ... il i i 682
11.4.1 Preliminary Comments ....... ..ottt 682
11.4.2 Antisymmetric Cross-Ply Laminates........................... 684
11.4.3 Antisymmetric Angle-Ply Laminates .......................... 687
11.4.4 Numerical Results ....... ... .o 689
11.5 Lévy Solutions of Cross-Ply Laminates .............................. 699
11.5.1 Preliminary Comments . ..........o.iiiiiinr i 699
11.5.2 Solution Procedure ........ ... 701
11.5.3 Numerical Results ........... . 704
11.6 Finite Element Model of Plates........ ... ... ... ... .. ..o ... 706
11.6.1 Introduction ... 706
11.6.2 Finite Element Model........... ... ... ... ... ... ............ 707
11.6.3 Numerical Results ...... ..o i 712

11.6.4 ClOSULE . . .ottt e e e e e e 714



CONTENTS  xvii

11.7 Equations of Motion of the Third-Order Theory of Doubly-Curved

SHEllS . o 718
Problems . ... 720
References for Additional Reading................... o i i 721

12 Layerwise Theory and Variable Kinematic Models ................. 725
12.1 Introduction . ... ... e 725

12. 1.1 Motivation. . ... 725

12.1.2 An Overview of Layerwise Theories ........................... 726
12.2 Development of the Theory....... ... .. . . i i 730

12.2.1 Displacement Field ........ .. ... o 730

12.2.2 Strains and Stresses. . ... ... e 733

12.2.3 Equations of Motion ..... ... ..o i 734

12.2.4 Laminate Constitutive Equations............. ... ... ... ...... 736
12.3 Finite Element Model....... ... .. o i 738

12.3.1 Layerwise Model ... ... .. i 738

12.3.2 Full Layerwise Model Versus 3-D Finite Element Model ....... 739

12.3.3 Considerations for Modeling Relatively Thin Laminates ....... 742

12.3.4 Bending of a Simply Supported (0/90/0) Laminate............ 746

12.3.5 Free Edge Stresses in a (45/-45); Laminate.................... 753
12.4 Variable Kinematic Formulations.............. .. ...t 759

12.4.1 Introduction . ... ..o 759

12.4.2 Multiple Assumed Displacement Fields........................ 762

12.4.3 Incorporation of Delamination Kinematics..................... 764

12.4.4 Finite Element Model........ ... ... ... . ... 766

12.4.5 Nlustrative Examples ... i, 769
12.5 Application to Adaptive Structures............. ... oL, 780

12.5.1 Introduction ... e 780

12.5.2 Governing Equations. . ... i 783

12.5.3 Finite Element Model.......... ... ... .. i 785

12.5.4 An Example . ..o 787
12.6 Layerwise Theory of Cylindrical Shells............ ... ... ... ... ... 794

12.6.1 Introduction . ... e 794

12.6.2 Unstiffened Shells......... ..o 794

12.6.3 Stiffened Shells . ... ... . 798

12.6.4 Postbuckling of Laminated Cylinders.......................... 806
127 CLOSUTE « . v ettt e e e e e e 812
References for Additional Reading............ .. ... . i i, 816

Subject Index . ... ... 821






PREFACE TO THE SECOND EDITION  Xix

Preface to the Second Edition

In the seven years since the first edition of this book appeared some significant
developments have taken place in the area of materials modeling in general
and in composite materials and structures in particular. Foremost among these
developments have been the smart materials and structures, functionally graded
materials (FGMs), and nanoscience and technology - each topic deserves to be
treated in a separate monograph. While the author’s expertise and contributions
in these areas are limited, it is felt that the reader should be made aware of
the developments in the analysis of smart and FGM structures. The subject of
nanoscience and technology, of course, is outside the scope of the present study.
Also, the first edition of this book did not contain any material on the theory and
analysis of laminated shells. It should be an integral part of any study on laminated
composite structures.

The focus for the present edition of this book remains the same — the education of
the individual who is interested in gaining a good understanding of the mechanics
theories and associated finite element models of laminated composite structures.
Very little material has been deleted. New material has been added in most
chapters along with some rearrangement of topics to improve the clarity of the
overall presentation. In particular, the material from the first three chapters is
condensed into a single chapter (Chapter 1) in this second edition to make room for
the new material. Thus Chapter 1 contains certain mathematical preliminaries, a.
study of the equations of anisotropic elasticity, and an introduction to the principle
of virtual displacements and classical variational methods (the Ritz and Galerkin
methods). Chapters 2 through 7 correspond to Chapters 4 through 9, respectively,
from the first edition, and they have been revised to include smart structures and
functionally graded materials. A completely new chapter, Chapter 8, on theory
and analysis of laminated shells is added to overcome the glaring omission in the
first edition of this book. Chapters 9 and 10 (corresponding to Chapters 10 and
13 in the first edition) are devoted to linear and nonlinear finite element analysis,
respectively, of laminated plates and shells. These chapters are extensively revised to
include more details on the derivation of tangent stiffness matrices and finite element
models of shells with numerical examples. Chapters 11 and 12 in the present edition
correspond to Chapters 11 and 12 of the first edition, which underwent significant
revisions to include laminated shells. The problem sets essentially remained the
same with the addition of a few problems here and there.

The acknowledgments and sincere thanks and feelings expressed in the preface
to the first edition still hold but they are not repeated here. It is a pleasure to
acknowledge the help of my colleagues, especially Dr. Zhen-Qiang Cheng, for their
help with the proofreading of the manuscript. Thanks are also due to Mr. Romén
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Arciniega for providing the numerical results of some examples on shells included in
Chapter 9.

J. N. Reddy
College Station, Texas
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Preface to the First Edition

The dramatic increase in the use of composite materials in all types of engineering
structures (e.g., aerospace, automotive, and underwater structures, as well as in
medical prosthetic devices, electronic circuit boards, and sports equipment) and the
number of journals and research papers published in the last two decades attest to
the fact that there has been a major effort to develop composite material systems,
and to analyze and design structural components made from composite materials.

The subject of composite materials is truly an interdisciplinary area where
chemists, material scientists, chemical engineers, mechanical engineers, and
structural engineers contribute to the overall product. The number of students
taking courses in composite materials and structures has steadily increased in recent
years, and the students are drawn to these courses from a variety of disciplines. The
courses offered at universities and the books published on composite materials are
of three types: material science, mechanics, and design. The present book belongs
to the mechanics category.

The motivation for the present book has come from many years of the author’s
research and teaching in laminated composite structures and from the fact there
does not exist a book that contains a detailed coverage of various laminate theories,
analytical solutions, and finite element models. The book is largely based on the
author’s original work on refined theories of laminated composite plates and shells,
and analytical and finite element solutions he and his collaborators have developed
over the last two decades.

Some mathematical preliminaries, equations of anisotropic elasticity, and virtual
work principles and variational methods are reviewed in Chapters 1 through 3. A
reader who has had a course in elasticity or energy and variational principles of
mechanics may skip these chapters and go directly to Chapter 4, where certain
terminology common to composite materials is introduced, followed by a discussion
of the constitutive equations of a lamina and transformation of stresses and strains.
Readers who have had a basic course in composites may skip Chapter 4 also.

The major journey of the book begins with Chapter 5, where a complete
derivation of the equations of motion of the classical and first-order shear
deformation laminated plate theories is presented, and laminate stiffness
characteristics of selected laminates are discussed. Chapter 6 includes applications
of the classical and first-order shear deformation theories to laminated beams
and plate strips in cylindrical bending. Here analytical solutions are developed
for bending, buckling, natural vibration, and transient response of simple beam
and plate structures. Chapter 7 deals with the analysis of specially orthotropic
rectangular laminates using the classical laminated plate theory (CLPT). Here,
the parametric effects of material anisotropy, lamination scheme, and plate aspect
ratio on bending deflections and stresses, buckling loads, vibration frequencies, and
transient response are discussed.
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Analytical solutions for bending, buckling, natural vibration, and transient
response of rectangular laminates based on the Navier and Lévy solution approaches
are presented in Chapters 8 and 9 for the classical and first-order shear deformation
plate theories (FSDT), respectively. The Rayleigh-Ritz solutions are also discussed
for laminates that do not admit the Navier solutions. Chapter 10 deals with finite
element analysis of composite laminates. One-dimensional (for beams and plate
strips) as well as two-dimensional (plates) finite element models based on CLPT
and FSDT are discussed and numerical examples are presented.

Chapters 11 and 12 are devoted to higher-order (third-order) laminate theories
and layerwise theories, respectively. Analytical as well as finite element models are
discussed. The material included in these chapters is up to date at the time of this
writing. Finally, Chapter 13 is concerned about the geometrically nonlinear analysis
of composite laminates. Displacement finite element models of laminated plates with
the von Kérman nonlinearity are derived, and numerical results are presented for
some typical problems.

The book is suitable as a reference for engineers and scientists working in industry
and academia, and it can be used as a textbook in a graduate course on theory
and/or analysis of composite laminates. It can also be used for a course on stress
analysis of laminated composite plates. An introductory course on mechanics of
composite materials may prove to be helpful but not necessary because a review of
the basics is included in the first four chapters of this book. The first course may
cover Chapters 1 through 8 or 9, and a second course may cover Chapters 8 through
13.

The author wishes to thank all his former doctoral students for their research
collaboration on the subject. In particular, Chapters 7 through 13 contain results of
the research conducted by Drs. Ahmed Khdeir, Stephen Engelstad, Asghar Nosier,
and Donald Robbins, Jr. on the development of theories, analytical solutions, and
finite element analysis of equivalent single-layer and layerwise theories of composite
laminates. The research of the author in composite materials was influenced by many
researchers. The author wishes to thank Professor Charles W. Bert of the University
of Oklahoma, Professor Robert M. Jones of the Virginia Polytechnic Institute and
State University, Professor A. V. Krishna Murty of the Indian Institute of Science,
and Dr. Nicholas J. Pagano of Wright-Patterson Air Force Base. It is also the
author’s pleasure to acknowledge the help of Mr. Praveen Grama, Mr. Dakshina
Moorthy, and Mr. Govind Rengarajan for their help with the proofreading of the
manuscript. The author is indebted to Dr. Filis Kokkinos for his dedication and
innovative and creative production of the final artwork in this book. Indeed, without
his imagination and hundreds of hours of effort the artwork would not have looked
as beautiful, professional, and technical as it does.

The author gratefully acknowledges the support of his research in composite
materials in the last two decades by the Office of Naval Research (ONR), the Air
Force Office of Scientific Research (AFOSR), the U.S. Army Research Office (ARO),
the National Aeronautics and Space Administration (NASA Lewis and NASA
Langley), the U.S. National Science Foundation (NSF), and the Oscar S. Wyatt
Chair in the Department of Mechanical Engineering at Texas A&M University.
Without this support, it would not have been possible to contribute to the subject
of this book. The author is also grateful to Professor G. P. Peterson, a colleague
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and friend, for his encouragement and support of the author’s professional activities
at Texas A&M University.

The writing of this book took thousands of hours over the last ten years. Most
of these hours came from evenings and holidays that could have been devoted to
family matters. While no words of gratitude can replace the time lost with family,
it should be recorded that the author is grateful to his wife Aruna for her care,
devotion, and love, and to his daughter Anita and son Anil for their understanding
and support.

During the long period of writing this book, the author has lost his father,
brother, brother in-law, father in-law, and a friend (Hans Eggers) - all suddenly.
While death is imminent, the suddenness makes it more difficult to accept. This
book is dedicated to the memory of these individuals.

J. N. Reddy
College Station, Texas

All that is not given is lost
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Equations of Anisotropic Elasticity,
Virtual Work Principles, and
Variational Methods

1.1 Fiber-Reinforced Composite Materials

Composite materials consist of two or more materials which together produce
desirable properties that cannot be achieved with any of the constituents alone.
Fiber-reinforced composite materials, for example, contain high strength and high
modulus fibers in a matriz material. Reinforced steel bars embedded in concrete
provide an example of fiber-reinforced composites. In these composites, fibers
are the principal load-carrying members, and the matrix material keeps the fibers
together, acts as a load-transfer medium between fibers, and protects fibers from
being exposed to the environment (e.g., moisture, humidity, etc.).

It is known that fibers are stiffer and stronger than the same material
in bulk form, whereas matrix materials have their usual bulk-form properties.
Geometrically, fibers have near crystal-sized diameter and a very high length-to-
diameter ratio. Short fibers, called whiskers, paradoxically exhibit better structural
properties than long fibers. To gain a full understanding of the behavior of fibers,
matrix materials, agents that are used to enhance bonding between fibers and
matrix, and other properties of fiber-reinforced materials, it is necessary to know
certain aspects of material science. Since the present study is entirely devoted to
mechanics aspects and analysis methods of fiber-reinforced composite materials, no
attempt is made here to present basic material science aspects, such as the molecular
structure or inter-atomic forces those hold the matter together. However, an abstract
understanding of the material behavior is useful.

Materials are studied at various levels: atomic level, nano-level, single-crystal
level, a group of crystals, and so on. For the purpose of gaining some insight into
the material behavior, we consider a basic unit of material as one that has properties,
such as the modulus, strength, thermal coefficient of expansion, electrical resistance,
etc., whose magnitudes depend on the direction. The directional dependence of
properties is a result of the inter-atomic bonds, which are “stronger” in one direction
than in other directions. Materials are “processed” such that the basic units are
aligned so that the desired property is maximized in a given direction. Fibers provide
an example of such materials. When a property is maximized in one direction, it
may be achieved at the expense of the same property in other directions and other
properties in the same direction. When materials are processed such that the basic
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units are randomly oriented, the resulting material tends to have the same value of
the property, in an average statistical sense, in all directions. Such materials are
called isotropic materials. A matrix material, which is made in bulk form, provides
an example of isotropic materials. Material scientists are continuously striving to
develop better materials for specific applications. The fibers and matrix materials
used in composites are either metallic or non-metallic. The fiber materials in use
are common metals like aluminum, copper, iron, nickel, steel, and titanium, and
organic materials like glass, boron, and graphite materials.

Fiber-reinforced composite materials for structural applications are often made
in the form of a thin layer, called lamina. A lamina is a macro unit of material whose
material properties are determined through appropriate laboratory tests. Structural
elements, such as bars, beams or plates are then formed by stacking the layers to
achieve desired strength and stiffness. Fiber orientation in each lamina and stacking
sequence of the layers can be chosen to achieve desired strength and stiffness for a
specific application. It is the purpose of the present study to develop equations
that describe appropriate kinematics of deformation, govern force equilibrium, and
represent the material response of laminated structural elements.

Analysis of structural elements made of laminated composite materials involves
several steps. As shown in Figure 1.1.1, the analysis requires a knowledge
of anisotropic elasticity, structural theories (i.e., kinematics of deformation) of
laminates, analytical or computational methods to determine solutions of the
governing equations, and failure theories to predict modes of failures and to
determine failure loads. A detailed study of the theoretical formulations and
solutions of governing equations of laminated composite plate structures constitutes
the objective of the present book.

Anisotropic Elasticity
Equations

Structural Theories )

Analysis of Laminated

Composite Structures

Analytical and Computational
Methods

Damage / Failure Theories

Figure 1.1.1: Basic blocks in the analysis of composite materials.
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Following this general introduction, a review of vectors and tensors, integral
relations, equations governing a deformable anisotropic medium, and virtual work
principles and variational methods is presented, as they are needed in the sequel.
Readers familiar with these topics can skip the remaining portion of this chapter
and go directly to Chapter 2.

1.2 Mathematical Preliminaries

1.2.1 General Comments

The quantities used to express physical laws can be classified into two classes,
according to the information needed to specify them completely: scalars and
nonscalars. The scalars are given by a single number. Nonscalar quantities
require not only a magnitude specified, but also additional information, such as
direction. Time, temperature, volume, and mass density provide examples of scalars.
Displacement, temperature gradient, force, moment, and acceleration are examples
of nonscalars.

The term vector is used to imply a nonscalar that has magnitude and “direction”
and obeys the parallelogram law of vector addition and rules of scalar multiplication.
Vector in modern mathematical analysis is an abstraction of the elementary notion
of a physical vector, and it is “an element from a linear vector space.” While the
definition of a vector in abstract analysis does not require the vector to have a
magnitude, in nearly all cases of practical interest the vector is endowed with a
magnitude. In this book, we need only vectors with magnitude. Some nonscalar
quantities require the specification of magnitude and two directions. For example,
the specification of stress requires not only a force, but also an area upon which
the force acts. A stress is a second-order tensor. Sometimes a vector is referred
to as a tensor of order one, and a tensor of order 2 is also called a dyad. First-
and second-order tensors (i.e., vectors and dyads) will be of primary interest in the
present study (see [1-8] for additional details). We also encounter third-order and
fourth-order tensors in the discussion of constitutive equations. A brief discussion
of vectors and tensors is presented next.

1.2.2 Vectors and Tensors

In the analytical description of physical phenomena, a coordinate system in the
chosen frame of reference is introduced, and various physical quantities involved
in the description are expressed in terms of measurements made in that system.
The description thus depends upon the chosen coordinate system and may appear
different in another type of coordinate system. The laws of nature, however, should
be independent of the choice of a coordinate system, and we may seek to represent
the law in a manner independent of a particular coordinate system. A way of
doing this is provided by vector and tensor notation. When vector notation is
used, a particular coordinate system need not be introduced. Consequently, use
of vector notation in formulating natural laws leaves them invariant to coordinate
transformations.
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Vectors

Often a specific coordinate system is chosen to express governing equations of a
problem to facilitate their solution. Then the vector and tensor quantities are
expressed in terms of their components in that coordinate system. For example, a
vector A in a three-dimensional space may be expressed in terms of its components
(a1,a2,a3) and basis vectors (e1,e2,e3) (e; are not necessarily unit vectors) as

A = qie; + ases + ages (1.2.1)

When the basis vectors of a coordinate system are constants, i.e., with fixed lengths
and directions, the coordinate system is called a Cartesian coordinate system. The
general Cartesian system is oblique. When the Cartesian system is orthogonal, it is
called rectangular Cartesian. The Cartesian coordinates are denoted by

(x1,x2,23) or (x,y,z) (1.2.2)

The familiar rectangular Cartesian coordinate system is shown in Figure 1.2.1. We
shall always use a right-hand coordinate system. When the basis vectors are of unit
lengths and mutually orthogonal, they are called orthonormal. In many situations
an orthonormal basis simplifies calculations. We denote an orthonormal Cartesian
basis by

(él,ég,ég) or (ém,éy,éz) (123)

For an orthonormal basis the vectors A and B can be written as
A = A1 + Aréy + Asés
B = B1é&; + Byéy + B3éj

where &; (i = 1,2, 3) is the orthonormal basis, and A; and B; are the corresponding
physical components (i.e., the components have the same physical dimensions as the
vector).

X3=2

Xy=X

Figure 1.2.1: A rectangular Cartesian coordinate system, (z1,x2,z3) = (,¥, 2);
(€1,€2,€3) = (&,,€,,€,) are the unit basis vectors.
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Summation Convention

It is convenient to abbreviate a summation of terms by understanding that a
repeated index means summation over all values of that index. For example, the
component form of vector A

A =a'e; +d’es + dley

where (e1,es,e3) are basis vectors (not necessarily unit), can be expressed in the

form
3

A= Zajej = dle; (1.2.4)
j=1
The repeated index is a dummy index in the sense that any other symbol that is not
already used in that expression can be employed:

A =de; = ave, = a™ey,

The range of summation is always known in the context of the discussion. For
example, in the present context the range of j,k and m is 1 to 3 because we are
discussing vectors in a three-dimensional space.

In an orthonormal basis the scalar product (also called the “dot product”) and
vector product (also called the “cross product”) can be expressed in the index form
using the Kronecker delta symbol é;; and the alternating symbol (or permutation
symbol) €;;5:

A x B = (4;&;) x (B;&;) = A;Bjei 18 (1.2.5b)
where
. 1, ifi=j
5z‘jEei'ej={ 0 ifi?g:;' (1.2.6)

1, if 4,4,k are in cyclic order
and not repeated (i # j # k)

if 4, , k are not in cyclic order (1.2.7)
and not repeated (i # j # k)

0, if any of 4,7, k are repeated

I
|
—

€ijk =

Further, the Kronecker delta and the permutation symbol are related by the identity,
known as the e-0 identity,

€ijk€imn = OjmOkn — Ojnbkm (1.2.8)

Differentiation of vector functions with respect to the coordinates is a common
occurrence in mechanics. Most of the operations involve the “del operator,” denoted
by V. In a rectangular Cartesian system it has the form

.0 0 0
V:ez%—l—eya—y—l—eza (129)
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or, in the summation convention, we have

0

V = eiaxi

(1.2.10)

It is important to note that the del operator has some of the properties of a vector
but it does not have them all, because it is an operator. For instance V - A is a
scalar, called the divergence of A,

0 0A; 0A; OA;
A=(62) (A) = (&8, L0 = T 9% 1.2.11
\Y% (elaxi> ( ]e]) (e eJ) 8$l 8$@ axj ( )
whereas A -V
. . 0\ N a '8
AV =(4;8))- (eza—%> — 45 (8-&) 5o = A (1.2.12)

is a scalar differential operator. Thus the del operator does not commute in this
sense. The operation V¢(x) is called the gradient of a scalar function ¢ whereas
V x A(x) is called the curl of a vector function A.

We have the following relations between the rectangular Cartesian coordinates
(z,y, z) and cylindrical coordinates (r, 8, z) (see Figure 1.2.2):

x=rcosf, y=rsinf, z=2z (1.2.13)
é, =cosf &, +sinf &, &y = —sinf e, +costl &, e&,=¢e, (1.2.14)
0é, 0éy

= —sinf é; + cosf &, = &y, = —cosf &, —sinf &, = —&, (1.2.15)

o0 09

and all other derivatives of the base vectors are zero. For more on vector calculus,
see Reddy and Rasmussen [5] and Reddy [6], among other references.

Figure 1.2.2: Cylindrical coordinate system.
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Tensors

To introduce the concept of a second-order tensor, also called a dyad, we consider
the equilibrium of an element of a continuum acted upon by forces. The surface
force acting on a small element of area in a continuous medium depends not only on
the magnitude of the area but also upon the orientation of the area. It is customary
to denote the direction of a plane area by means of a unit vector drawn normal to
that plane. To fix the direction of the normal, we assign a sense of travel along the
contour of the boundary of the plane area in question. The direction of the normal is
taken by convention as that in which a right-handed screw advances as it is rotated
according to the sense of travel along the boundary curve or contour. Let the unit
normal vector be given by in. Then the area A can be denoted by A = An.

If we denote by AF(n) the force on a small area nAS located at the position r
(see Figure 1.2.3a), the stress vector can be defined as follows:

. AF(n)
Alégo AS

t(n) = (1.2.16)
We see that the stress vector is a point function of the unit normal n which denotes
the orientation of the surface AS. The component of t that is in the direction of
n is called the normal stress. The component of t that is normal to n is called a
shear stress. Because of Newton’s third law for action and reaction, we see that
t(—n) = —t(n). Note that t(n) is, in general, not in the direction of n.

It is useful to establish a relationship between t and n. To do this we now set
up an infinitesimal tetrahedron in Cartesian coordinates as shown in Figure 1.2.3b.
If —t;, —to, —t3, and t denote the stress vectors in the outward directions on the
faces of the infinitesimal tetrahedron whose areas are AS;, ASy, ASs3, and AS,
respectively, we have by Newton’s second law for the mass inside the tetrahedron,

tAS — t1AS) — t2ASy — t3A85 + pAVE = pAVa (1.2.17)

where AV is the volume of the tetrahedron, p the density, f the body force per unit
mass, and a the acceleration. Since the total vector area of a closed surface is zero

=

AF (1)

(a)

Figure 1.2.3: (a) Force on an area element. (b) Tetrahedral element in Cartesian
coordinates.
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(see Problem 1.3),
ASH — AS18; — ASzés — ASzé; = 0 (1.2.18)

it follows that
AS) = (n-&1)AS, ASy; = (n-é)AS, AS3=(n-é&3)AS (1.2.19)

The volume of the element AV can be expressed as

AV = %AS (1.2.20)

where Ah is the perpendicular distance from the origin to the slant face.
Substitution of Egs. (1.2.19) and (1.2.20) in (1.2.17) and dividing throughout by
AS reduces it to

. A Ah
t=(n-6&)t; +(n-é&)ts+ (h-é3)ts + p?(a —f) (1.2.21)

In the limit when the tetrahedron shrinks to a point, Ah — 0, we are left with
t=(n-&)t;+ (n-&)te+ (n-&3)t5 = (fi- &)t; (1.2.22)
It is now convenient to display the above equation as
t =n-(ét; + &ty + é3t3) (1.2.23)

The terms in the parenthesis are to be treated as a dyadic, called stress dyadic or
stress tensor o (we will not use the “double arrow” notation for tensors after this
discussion):

o = &1t] + éaty + é3ts (1.2.24)

Thus, we have

tth)=hn-o (1.2.25)

and the dependence of t on fi has been explicitly displayed.
It is useful to resolve the stress vectors ti,te, and ts into their orthogonal
components. We have

t; = Uilél + O'igéz + O'i3é3 = Uijé]' (1226)
for i = 1,2,3. Hence, the stress dyadic can be expressed in summation notation as
7 = éit; = 0,8, (1.2.27)

The component o;; represents the stress (force per unit area) on an area
perpendicular to the ith coordinate and in the jth coordinate direction (see Figure
1.2.4). The stress vector t represents the vectorial stress on an area perpendicular
to the direction f. Equation (1.2.25) is known as the Cauchy stress formula, and ¢
is termed the Cauchy stress tensor.
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“eeoasan | ecaccamd

X1

Figure 1.2.4: Notation used for the stress components in Cartesian rectangular
coordinates.

One of the properties of a dyadic is defined by the dot product with a vector. For
example, dot products of a second-order tensor ® with a vector A from the right
and left are given, respectively, by

A -d= (Akék) : ((I)z’jéiéj) = (I)iinéj
Thus the dot operation with a vector produces another vector. The two operations in
general produce different vectors. The transpose of a second-order tensor is defined
as the result obtained by the interchange of the two basis vectors:
o7 = (9,;6,6)T = 06,8, (1.2.28)
It is clear that we have

A-&=0T A, & A=A -®T (1.2.29)

We can display all of the components ®;; of a dyad ® by letting the j index run
to the right and the ¢ index run downward:

D = p11€1€1 + P12€1€2 + Pd13€1€3
+ $21€2€1 + P22€2€5 + P23€9€3
+ ¢31€3€1 + P32€3€2 + P3363€3 (1.2.30)

This form is called the nonion form. Equation (1.2.30) illustrates that a dyad
in three-dimensional space, or what we shall call a second-order tensor, has nine
independent components in general, each component associated with a certain dyad
pair. The components are thus said to be ordered. When the ordering is understood,
the explicit writing of the dyads can be suppressed and the dyad is written as an

array:

o11 P12 P13 e )"t é1

[@] = I:qbgl P29 (;523} and ¢ = { € } [‘I)] { €5 } (1.2.31)
®31 @32 P33 €3
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This representation is simpler than Eq. (1.2.30), but it is taken to mean the same.
A unit second order tensor I is defined by

I = 5,68 (1.2.32)

In the general scheme that is developed, vectors are called first-order tensors and
dyads are called second-order tensors. Scalars are called zeroth-order tensors. The
generalization to third-order tensors thus leads, or is derived from, triadics, or three
vectors standing side by side. It follows that higher order tensors are developed from
polyads. An nth-order tensor can be expressed in a short form using the summation
convention:

P = Pijpe.. €688 - (1.2.33)

Here we have selected a rectangular Cartesian basis to represent the tensor.
Tensors are sometimes defined by the transformation law for its components. For

example, a vector A has components A; with respect to the rectangular Cartesian

basis (€1, €9, €3); its components referred to another rectangular Cartesian basis

14

(&1, é5,&;) are A;j. The two sets of components are related according to

where ¢;; are called the direction cosines. Similarly, the components of a second-
order tensor ® transform according to the rule

! !

D5 = limljn P or [®] = [L][®][L]" (1.2.35)

If the components do not satisfy the above transformation law, then it is not a
tensor.

The double-dot product between tensors of second order and higher order is
encountered in mechanics. The double-dot product between two second-order
tensors ® and W is defined as

PP = (¢ijéiéj) : (wmnémén)
= ¢z’j¢mn(éj ) ém)(éi ’ én)
= GijPmnOjmbin
= (ﬁnmwmn
= Gijthji (1.2.36)

Integral Relations

Relations between volume integrals and surface integrals of the gradient (V) of a
scalar or a vector and divergence (V-) of a vector are needed in the later chapters.
We record them here for future reference and use.

Let €2 denote a region in space surrounded by the surface I', and let ds be a
differential element of the surface whose unit outward normal is denoted by n. Let
dv be a differential volume element. Let 1 be a scalar function and A be a vector
function defined over the region 2. Then the following integral identities hold (see
Figure 1.2.5):
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X1

Figure 1.2.5: A solid body with a surface normal vector n.

Gradient Theorem

/ Vi dv = ]{ ny ds (vector form) (1.2.37a)
Jo r
o
dv = }{ ny ds  (component form) (1.2.37b)
0 Ox; r

Divergence Theorem

/ V-Adv= jq{ n-Ads (vector form) (1.2.38a)
Jo r
DA,
dv = 7{ n;A; ds  (component form) (1.2.38b)
Jo Ox; Jr

In the above integral relations, §. denotes the integral on the closed boundary I of
the domain €2, and the component forms refer to the usual rectangular Cartesian
coordinate system. Equations (1.2.37) and (1.2.38) are valid in two as well as three
dimensions. The integral relations in Egs. (1.2.37) and (1.2.38) can be expressed
concisely in the single statement

/(V*F) dvz%(ﬁ*F) ds (1.2.39)
Q JT
where * denotes an appropriate operation, i.e., gradient, divergence or curl
operation, and F' is a scalar or vector function.

Some additional integral relations can be derived from Eqs. (1.2.37) and (1.2.38).
Let A = Vg in Eq. (1.2.38a), where ¢ is a scalar function, and obtain

V- (Vy) dv = / Vi dv = % n-(Vy)ds (vector form) (1.2.40a)
Ja Jo JT
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or, in component form

& [, 0%
= i d 1.2.40b
Q (9.%'8%1 dv r " 6.7:1‘ s ( )

The quantity 1 - Vi is called the normal derivative of ¢ on the surface I', and is
denoted by

0
% —a. V¢ (invariant form)
on
=nig (rectangular Cartesian component form)
i
Jp Op Op

The integral relations presented in this section are useful in developing the so-called
weak forms of differential equations in connection with the Ritz method and finite
element formulations of boundary value problems.

1.3 Equations of Anisotropic Elasticity
1.3.1 Introduction

The objective of this section is to review the governing equations of a linear
anisotropic elastic body. The equations governing the motion of a solid body can
be classified into four basic categories:

(1) Kinematics (strain-displacement equations)

(2) Kinetics (conservation of momenta)

(3) Thermodynamics (first and second laws of thermodynamics)
(4) Constitutive equations (stress-strain relations)

Kinematics is a study of the geometric changes or deformation in a body, without the
consideration of forces causing the deformation. Kinetics is the study of the static
or dynamic equilibrium of forces and moments acting on a body. This leads to
equations of motion as well as the symmetry of stress tensor in the absence of body
moments. The thermodynamic principles are concerned with the conservation of
energy and relations among heat, mechanical work, and thermodynamic properties
of the body. The constitutive equations describe thermomechanical behavior of
the material of the body, and they relate the dependent variables introduced in
the kinetic description to those in the kinematic and thermodynamic descriptions.
These equations are supplemented by appropriate boundary and initial conditions
of the problem.

In the following sections, an overview of the governing equations of an anisotropic
elastic body is presented. The strain-displacement relations, equations of motion,
and the constitutive equations for an isothermal state (i.e., no change in the
temperature of the body) are presented first. Subsequently, the thermodynamic
principles are considered only to determine the temperature distribution in a solid
body and to account for the effect of non-uniform temperature distribution on the
strains.

A solid body B is a set of material particles which can be identified as having
one-to-one correspondence with the points of a region 2 of Euclidean point space #t3.
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The particles of B are identified by their time-dependent positions relative to the
selected frame of reference. The simultaneous position of all material points of 5 at
a fixed time is called a configuration of the structure. The analytical description of
configurations at various times of a material body acted on by various loads results
in a set of governing equations.

Consider a deformable body B of known geometry, constitution, and loading.
Under given geometric restrictions and loading, the body will undergo motion and/or
deformation (i.e., geometric changes within the body). If the applied loads are time
dependent, the deformation of the body will be a function of time, i.e., the geometry
of the body will change continuously with time. If the loads are applied slowly so that
the deformation is only dependent on the loads, the body will take a definitive shape
at the end of each load application. Whether the deformation is time dependent or
not, the forces acting on the body will be in equilibrium at all times.

Suppose that the body B under consideration at time t = 0 occupies a
configuration C°, in which a particle X of the body B occupies a position X. Note
that X is the name of the particle that occupies the location X in the reference
configuration. At time ¢ > 0, the body assumes a new configuration C and the
particle X occupies the new position x.

There are two commonly used descriptions of motion and deformation in
continuum mechanics. In the referential or Lagrangian description, the motion
of a body B is referred to a reference configuration C*. Thus, in the Lagrangian
description the current coordinates (z1, 2, x3) are expressed in terms of the reference
coordinates (X1, X9, X3) and time t as

X:X(Xl,XQ,X3,t) (1.3.1)

Often, the reference configuration C® is chosen to be the unstressed state of the body,
i.e., C' =Y. The coordinates (X1, Xy, X3) are called the material coordinates.

In the spatial or Fulerian description of a body B, the motion is referred to the
current configuration C occupied by the body B. The spatial description focuses
attention on a given region of space instead of on a given body of matter, and is
the description most used in fluid mechanics, whereas in the Lagrangian description
the coordinate system X is fixed on a given body of matter in its undeformed
configuration, and its position x at any time is referred to the material coordinates
X;. Thus, during a motion of a body B, a representative particle X occupies a
succession of points which together form a curve in Euclidean space. This curve is
called the path of X and is given parametrically by Eq. (1.3.1).

1.3.2 Strain-Displacement Equations

The phrase deformation of a body refers to relative displacements and changes in
the geometry experienced by the body. Referred to a rectangular Cartesian frame
of reference (X, Xq, X3), every particle X in the body corresponds to a set of
coordinates X = (X1, X2, X3). When the body is deformed under the action
of external forces, the particle X moves to a new position x = (z1,22,23). The
displacement of the particle X is given by

u=x-X or u;=z; — X; (1.3.2)
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If the displacement of every particle in the body is known. we can construct the
current (deformed) configuration C from the reference (or undeformed) configuration
CY. In the Lagrangian description, the displacements are expressed in terms of the
material coordinates X;, and we have

ui( X1, X2, X3,t) = 24(X1, Xo, X3,t) — X (1.3.3)

A rigid-body motion is one in which all material particles of the body undergo the
same linear and angular displacements. A deformable body is one in which the
material particles can move relative to each other. The deformation (i.e., relative
motion of material particles) of a deformable body can be determined only by
considering the change of distance between any two arbitrary but infinitesimally
close points of the body.

Consider two neighboring material particles P and ) which occupy the positions
P : (X1,X2,X3) and Q : (X1 + dX1, X2 + dX3, X3 + dX3), respectively, in the
undeformed configuration C° of the body B. The particles are separated by the
infinitesimal distance dS = /dX;dX; (sum on i) in C% and dX is the vector
connecting the position of P to the position of (). These two particles move to
new places P and @, respectively, in the deformed body (see Figure 1.3.1). Suppose
that the positions of P and Q are (x1,22,73) and (21 + dzy, 2o + d2, 23 + dx3),
respectively. The two particles are now separated by the distance ds = v/dz;dx; in
the deformed configuration C, and dx is the vector connecting P to Q. The vector
dx can be interpreted as the position occupied by the deformed material vector dX.
When the material vector dX is small but finite, the line vector dx in general does
not coincide exactly with the deformed position of dX, which lies along a curve in
the deformed body. The deformation (or strains) in a body can be measured in
a number of ways. Here we use the standard strain measure of solid mechanics,
namely the Green-Lagrange strain E, which is defined such that it gives the change

Particle X A
) G (occupying
position X)

X2, X

/;_Cx

u =

C,(time £ = 0)

X X,

/ C (time ¢)

e

Particle X
(occupying
position x)

xl,Xl

Figure 1.3.1: Kinematics of deformation of a continuous medium.
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in the square of the length of the material vector dX

2dX - E - dX = (ds)? — (dS)? = dx - dx — dX - dX (1.3.4a)
and in rectangular Cartesian component form we have

2dX; Eij dX; = (ds)? — (dS)? = daidx; — dX;dX; (1.3.4b)

In Eq. (1.3.4b) and in the equations that follow, the summation convention on
repeated indices is used, and the range of summation is 1 to 3.

In order to express the strains in terms of the displacements, we use Eq. (1.3.2)
and write

X:X+u(X1,X2,X3,t) (135)

Since X is a function of X, its total differential is given by [using the chain rule of
differentiation and Eq. (1.3.5)]

dx =dX +dX -Vu=dX - (I+Vu) (1.3.6)

where V denotes the gradient operator with respect to the material coordinates, X.
Now the strain tensor or its components from Eqgs. (1.3.4a,b) can be expressed in
terms of the displacement vector or its components with the help of Eq. (1.3.6):

2dX - E - dX = dx - dx — dX - dX
= [dX - (I+ Vu)] - [dX - (I+ Vu)] — dX - dX
= dX - (I+Vu) - (I+Vu)’ - dX —dX dX
=dX - [(1+Vu) - (1+ Vu) — 1] -dX (1.3.7)

Thus the Green (or Green-Lagrange) strain tensor E is given in terms of the
displacement gradients as

E=[(I+Vu) 1+Vu)' -1

DO | b= DN —

[Vu +(Vu)" + Vu- (Vu)'] (1.3.8)

Note that the Green-Lagrange strain tensor is symmetric, E = ET (E;; = Ej;). The

strain components defined in Eq. (1.3.8) are called finite strain components because

no assumption concerning the smallness (compared to unity) of the strains is made.
The rectangular Cartesian component form is given by

1 ou; ou;
Eyp==|6;+— 6; — ) =6,
w= | (200 5% (u ) -

o 1 Buj n 8uk aum 8um
2\ 08X, 0X;, 0X; 09X,

(1.3.9)
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Explicit form of the six Cartesian components of strain are given by

m= 2o () (22)' (2]

b=l LG () (2]

po= L [(Dn) s (L (2

o b (2 g D Dot D b Ous O
o1 (Do O Dby O g s

Bo= 3 (G + Bt G a st o) (0910

If the displacement gradients are so small, |[Vu| << 1, that their squares and
products are negligible compared to |Vu|. Then the Green-Lagrange strain tensor
reduces to the infinitesimal strain tensor, E = ¢:

_1! T Lo Lo Oy
e=5 {Vu—% (Vu) } , &ij =5 (8% + 3$i> (1.3.11)

The explicit form of the infinitesimal strain components (1.3.11) is given by (v
denote the engineering shear strains)

8’(L1 8uQ 67.L3 _ (911,1 8U2
N G R g, W gy M= g ta
Ouy  Ougs Ouy  Ousg
=213= — + — =293 = — + — 1.3.12
Y13 €13 EIo + T Y23 €23 923 | Ozs ( )

Example 1.3.1:

(a) A square block is deformed as shown by dotted lines in Figure 1.3.2a. Assuming that the body
is very thin and the strains (due to the Poisson effect) associated with the thickness direction are
negligible, we wish to determine the two-dimensional strains.

A material particle which occupied position (X7, X5, X3) in the undeformed body takes the
position (21, zg,23) in the deformed body. The current coordinates of the material particle can be
expressed in terms of its original position as

x1 :X1+§X2, .’L'QIXQ, w3:X3 (1.3.13)
The displacements are
Uy ExlAXlngg, ug =29 —X9=0, ug=x3-X3=0 (1.3.14)

Then the Green-Lagrangian strains can be computed using Eq. (1.3.10). The only nonzero strain
component is (e = 0.2cm and a = 10cm)

Eip = % =0.01 cm/cm (1.3.15)
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x2’X2 xZ’XZ

—»l e 4— —Plec e

oo —af
|

Lot x17X1 - xl’Xl

(a)

%o, Xy %9,X5

>

- %, X,

fe—o—n

- x17X1

(b)

Figure 1.3.2: Undeformed and deformed configurations of a solid square block.
(a) Pure shear deformation. (b) Pure extensional deformation.

(b) Consider a square block, deformed as shown by dotted lines in Figure 1.3.2b. The current
coordinates of the material particle occupying position (X7, X5, X3) in the undeformed body can
be expressed as

3)1:X1+§X1, .’I/‘QZXQ, [153:X3 (1316)

The displacements are
Uy = — X1 = EXL Uy = Ty —XQ = O7 U3z =3 — X3 =0 (1317)
a
The only nonzero Lagrangian strain is

2
En=S41 (f) — (0.02 + 0.0002) cm/cm (1.3.18)

€
a 2\a

The strain is nonlinear. The nonlinear part of the strain is 0.02 percent.

This completes the kinematic description. In the coming chapters, we use only
the linear strains and the von Kdrmén nonlinear strains derived from Eq. (1.3.10).
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1.3.3 Strain Compatibility Equations

By definition, the components of the strain tensor can be computed from a
differentiable displacement field using Eq. (1.3.8) or Eq. (1.3.11). However, if
the siz components of strain tensor are given and if we are required to find the three
displacement components, the strains given should be such that a unique solution
to the six differential equations relating the strains and displacements exists. The
existence of a unique solution is guaranteed if the infinitesimal strain components
satisfy the following six compatibility conditions:

2. 2 2. 2. .
0%¢eij O%cpn  O%&m  O%jn _0 (1.3.19)
0xp,0x,  Ox;0x; Or;0x, Or;0ry,

for any 4, j,m,n = 1,2, 3. For the two-dimensional case, Eq. (1.3.19) reduces to the
following single compatibility equation
82511 82522 82512

- = 1.3.20
Oz’ 2 0x10x2 (1.3.20)

It should be noted that the strain compatibility equations are satisfied automatically
when the strains are computed from a displacement field. Thus, one needs to verify
the compatibility conditions only when the strains are computed from stresses that
are in equilibrium.

1.3.4 Stress Measures

Stress at a point was introduced in Section 1.2 as a measure of force per unit area.
Equation (1.2.16) indicates that the stress vector at a point depends on the force
vector (its direction and magnitude) and the surface area. The surface area in turn
depends on the orientation of the plane used to slice the body. It was shown that
the state of stress at a point inside a body can be expressed in terms of stress vectors
on three mutually perpendicular planes, say planes perpendicular to the rectangular
coordinate axes by Cauchy’s formula in Eq. (1.2.25).

In the above discussion, stress vector t at a point in a deformed body is measured
as the force per unit area in the deformed body. The area element As in the deformed
body corresponds to an area element AS in the reference configuration, in much the
same way X is the position of a material particle X in the deformed body whose
position in the reference configuration was X. Thus the Cauchy stress tensor o is
defined to be the current force per unit deformed area:

df =tda=da-o, where da=dan (1.3.21)

where Cauchy’s formula, t = o - 11, is used.
Expressing df in terms of a stress times the initial undeformed area dA requires
a new stress tensor P,

df = dA -P, where dA =dA N (1.3.22)

where N is the unit normal to the undeformed area dA. The stress tensor P is
called the first Piola—Kirchhoff stress tensor, and it gives the current force per unit
undeformed area. The first Piola—Kirchhoff stress tensor is not symmetric.
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The second Piola—Kirchhoff stress tensor S is introduced as follows. First, we
introduce the deformation gradient tensor F

: T
dx=F - dX =dX . FT where F = (g—;) = (V()X)T (1323)

and Vj is the gradient operator with respect to X. We also have

0X
dX =F ! .dx=dx - F~1, where F 7T = 5. = VX (1.3.24)
X
and V is the gradient operator with respect to x. Analogous to the transformation
between X and x, we can transform the force df on the deformed elemental area da
to the force dF on the undeformed elemental area dA (not to be confused between
the force dF and deformation gradient tensor F)

dF =F 1. df =F'.(dA - P)=dA-P-F '=dA-S (1.3.25)

Thus, the second Piola—Kirchhoff stress tensor gives the transformed current force
per unit undeformed area. The second Piola-Kirchhoff stress tensor is symmetric
whenever the Cauchy stress tensor is symietric.

1.3.5 Equations of Motion

The principle of conservation of linear momentum states that the rate of change of
the total linear momentum of a given continuous medinum equals the vector sum of
all the external forces acting on the body I3, which initially occupied a configuration
CY, provided Newton’s third law of action and reaction governs the internal forces.
The principle leads to the following equations of motion:

0%u
V.eo+f= pw (vector form) (1.3.26a)
0o s; 2y,
a?J + fi= pa@tg (Cartesian component form) (1.3.26b)

where p is the density in the deformed configuration and f is the body force vector
(measured per unit volume). The equations of equilibrium are obtained by setting
the time derivative term to zero:

V.o+f=0 (vector form) (1.3.27a)

Do j;

agﬂ + fi =0 (Cartesian component form) (1.3.27b)
Xy

For kinematically infinitesimal deformations, i.e., |Vu| << 1, we do not
distinguish between x and X, between ¢ and S and between ¢ and E, and we
use the first symbol of each pair. In much of this book we deal with kinematically
infinitesimal deformations (i.e., linearized elasticity).

The strain-displacement relations and the equations of motion in any coordinate
system can be obtained from the vector forms in Eqgs. (1.3.8), (1.3.11), (1.3.26a) and



20 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

(1.3.27a) by expressing o, f, u, and V in the chosen coordinate system. The vector
forms of equations are invariant, i.e., independent of the choice of the coordinate
system.

The principle of conservation of angular momentum, in the absence of any
distributed body couples, leads to the symmetry of the stress tensor:

oc=0ct (035 = 1)

Thus there are only six independent components of the Cauchy stress tensor. Since
the Cauchy stress tensor is a second-order tensor and symmetric, we may write it
with a “double arrow” notation as

o (1.3.28a)

This notation is meaningful and descriptive of the nature of the tensor; the notation
indicates that the quantity is a dyad (i.e., having two base vectors) and it is
symmetric:

Ef = éz Tij éj (1.3.28b)

Note that the equations of motion or equilibrium contain three equations relating
six stress components and therefore cannot be solved for all six components uniquely.
Additional equations are required. These include the strain-displacement relations
discussed in Section 1.3.2 and constitutive relations or stress-strain relations to be
discussed in the next section.

Example 1.3.2:
Consider the following stress field in a body that is in equilibrium:
3
011 = C1T1 +C2T2 + €321, 012 = —-2—(962)2 —C1Tp, 022 = C4T1 + €173

and all other components of stress are zero. We wish to determine if the stress field satisfies the
equations of equilibrium in the presence of body forces, f{ =0, fo = —¢1, and f3 = 0. We assume
that the body experienced only a small deformation. We have

_ (90'11 80'12 80’13
0= axl + 8%‘2 + 8233 +f1

= (c1 + c3x2) + (—c1 —¢c322) +0+0
o= 9012 | 902 | o

6%1 8m2 85133
=0+4+c¢;+0+0+(—cy)

Thus, the first two equations of equilibrium are identically satisfied for any choice of constants, ¢y,
ca, 3, and c¢4. The third equation of equilibrium is trivially satisfied.

Example 1.3.3:

Consider the cantilevered beam under an end load (see Figure 1.3.3). The bending moment about
the zo-axis at any distance x; is given by My = P(L — z1). Then the stress component 11 can be
calculated using the flexure stress formula from elementary strength of materials:

Myzs _ P
Iz Iy,

g11 = — (L—JZI).’E;_),ECl(L—.Tl)CI?g (1329)
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where Iy9 is area moment of inertia about the xs-axis. Assuming a two-dimensional state of
stress (with respect to the x; and x3 coordinates) in the beam, we wish to determine the stress
components 13 and o33 in the absence of body forces. Since the stress components o2, 092, and
093 are assumed to be zero, the first equation of equilibrium yields

80'13 o 8011 _
Boy © Omp 1
Integration with respect to x3 gives
c
o13 = 71(1’3)2 + flz1) (1.3.30)

where f is a function of 21 only. The second equation of equilibrium is trivially satisfied. The third
equation of equilibrium gives
80'33 . 80'13 . df

81'3 (9.731 d:l?l

Integration with respect to z3 yields

af
033=—d—ql‘3+9($1) (1.3.31)

The functions f and g can be determined using the boundary conditions of the beam. Note
that 013 and o33 must be zero on the top and bottom surfaces of the beam (i.e., at x5 = +h/2).
Vanishing of o33 at 3 = +h/2 gives

df , h
W g, Y R =0
dr;2 7970 g gl te
which imply that
d,
__f:(), g:O’ or f:CQ and g:O
dCEl
Vanishing of o3 at 3 = +h/2 gives
c A‘01h2
2778

Thus the two-dimensional state of stress is given by

P Ph? 2r3) 2
011:“E(L*I1)$37 N3 = gL, [1 (Ts) } , 033 =0 (1.3.32)

Figure 1.3.3: A cantilevered beam (i.e., fixed at one end and no support at the
other end) under an end load.
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Since the stress field is derived from stress equilibrium equations, it is necessary to see if the
strain compatibility condition in Eq. (1.3.20) is satisfied. Suppose that the strains £11,£13, and
€33 are related to the stress components o11,013, and o33 by the relations (see the next section for
details)

e11 = 811011 + S13033 + S15013
€33 = S13011 + 533033 + S35013
£13 = 515011 + 535033 + S55013

Then

P PR2 [ 225\ 2]
=Sy —(L - IR (28
€11 511[22 (L $1)$3+S158[22 ( o )

P Ph? 225\ 2
33 = —=S13+—(L — 3 )x3 + S35 0— |1 — (ﬁ)
122 8[22 |

€13 = 9515

P Ph? 225\ 2]
L— 55— |1 — | == 1.3.33
7 (b st Ssagr 1= (52 (1.3.33)

Substituting these strain components into the compatibility equation [see Eq. (1.3.20)],

(92511 82633 (92613
— =0 1.3.34
amg Bm% Ox1013 ( )
we obtain P P
Iop Iy

Thus the strains are compatible only if S;5 = 0, which is the case when the material is isotropic or
orthotropic with respect to the problem coordinates.

1.3.6 Generalized Hooke’s Law

The kinematic relations and the mechanical and thermodynamic principles are
applicable to any continuum irrespective of its physical constitution. Here we
consider equations characterizing the individual material and its reaction to applied
loads. These equations are called the constitutive equations.

Materials for which the constitutive behavior is only a function of the current
state of deformation are known as elastic. In the special case in which the work
done by the stresses during a deformation is dependent only on the initial state and
the current configuration, the material is called hyperelastic.

A material body is said to be homogeneous if the material properties are the same
throughout the body (i.e., independent of position). In a heterogeneous body, the
material properties are a function of position. For example, a structure composed of
several uniform thickness layers of different materials stacked on top of each other
and bonded to each other is heterogeneous through the thickness. An anisotropic
body is one that has different values of a material property in different directions
at a point; i.e., material properties are direction-dependent. An isotropic body is
one for which every material property in all directions at a point is the same. An
isotropic or anisotropic material can be nonhomogeneous or homogeneous.
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A material body is said to be ideally elastic when, under isothermal conditions,
the body recovers its original form completely upon removal of the forces causing
deformation, and there is a one-to-one relationship between the state of stress and
the state of strain in the current configuration. The constitutive equations described
here do not include creep at constant stress and stress relaxation at constant
strain. Thus, the material coefficients that specify the constitutive relationship
between the stress and strain components are assumed to be constant during the
deformation. This does not automatically imply that we neglect temperature effects
on deformation. We account for the thermal expansion of the material, which can
produce strains or stresses as large as those produced by the applied mechanical
forces. Here, we discuss the constitutive equations of linear elasticity (i.e., relations
between stress and strain are linear) for the case of infinitesimal deformation (i.e.,
|Vu| << 1). Hence, we will not distinguish between various measures of stress and
strain, and use S &~ ¢ for the stress tensor and E = ¢ for strain tensor in the material
description used in solid mechanics. The linear constitutive model for infinitesimal
deformation is referred to as the generalized Hooke’s law. Suppose that the reference
configuration has a (residual) stress state of 0”. Then if the stress components are
assumed to be linear functions of the components of strain, then the most general
form of the linear constitutive equations for infinitesimal deformations is

0 0
c=C:e+0", iy = C,jjkgékg + Tijs €kt = E¢k; (1.3.35)

where C is the fourth-order tensor of material parameters and is termed stiffness
tensor. There are, in general, 3* = 81 scalar components of a fourth-order tensor.
The number of independent components of C are considerably less because of the
symmetry of ¢, symmetry of €, and symmetry of C, as discussed next [6].

In the absence of body couples, the principle of conservation of angular
momentum requires the stress tensor to be symmetric, o;; = 0. Then it follows
from Eq. (1.3.35) that Cjj, must be symmetric in the first two subscripts. Hence
the number of independent material stiffness components reduces to 6(3)? = 54.
Since the strain tensor is symmetric (by its definition), €;; = ¢j;, then Cj;p, must
be symmetric in the last two subscripts as well, further reducing the number of
independent material stiffness components to 6 x 6 = 36.

If we also assume that the material is hyperelastic, i.e., there exists a strain
energy density function Up(e;;) such that

U ‘
Tij = g() = Clijreere + 03 (1.3.36)
1
we have ,
0<Up
=20 — i
a&i_jae’fu ikt

Since the order of differentiation is arbitrary, 82U0/85ij85kg = 82Uo/0€k58€i]-, it
follows that Cjjxs = Clyi;. This reduces the number of independent material stiffness
components to 21. To show this we express Eq. (1.3.35) in an alternate form using
single subscript notation for stresses and strains and two subscript notation for the
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material stiffness coefficients:

01 =011, 02 =022, 03 = 033, 04 =023 , 05 =013, 0 = 012
€1 = €11, €2 = €22, €3 = €33, €4 = 2€93, €5 = 2613, €6 = 2612 (1.3.37a)

111 22-2 3353 23—4 13—5 12—6. (1.3.37D)

It should be cautioned that the single subscript notation used for stresses and strains
and the two-subscript components C;; render them non-tensor components (i.e., o;,
gi, and Cj; do not transform like the components of a vector or tensor). The single
subscript notation for stresses and strains is called the engineering notation or the
Voigt-Kelvin notation. Equation (1.3.35) now takes the form

0; = Cijej + o? (1.3.38a)

where summation on repeated subscripts is implied (now from 1 to 6). In matrix
notation, Eq. (1.3.38a) can be written as

o1 Cii Cr2 Ciz Ciu Cis Cis €1 o?
o2 Co1 Caz Caz3 Cyy Cys Cop €2 0%
o3 C31 C33 Cs3 C3y Cszs Csg €3 o3

- 1.3.38b
o Cu Cao Cy3 Cyy Css Cag | | €4 + o} ( )
o5 Cs1 Cs2 Css Csy Css Cse €5 o
06 Ce1 Ce2 Cs3 Ces Cgs Copl \eg od

Now the coefficients Cj; must be symmetric (C;; = Cj;) by virtue of the assumption
that the material is hyperelastic. Hence, we have 6+5+443+2+1 = 21 independent
stiffness coeflicients for the most general elastic material.

We assume that the stress-strain relations (1.3.38a,b) are invertible. Thus, the
components of strain are related to the components of stress by

g = SijO'j + E?, E? = —SijU? (1.3.39&)
where S;; are the material compliance parameters with [S] = [C] ! (the compliance

tensor is the inverse of the stiffness tensor: S = C~!). In matrix form Eq. (1.3.39a)
becomes

€1 S Sz Sizs S Sis Sie o1 el
€2 So1 Sa2 Saz Soa Sz Soe 02 6%
e3 | _ |53 Sz S3z S3u S3s O3 o3 €3
ea [ | Su1 Siz Saz Ssa Sis Sse o4 + €9 (1.3.39b)
€5 Ss1 Ssa Ssz3 Ssa S5 Sse o5 ed
€6 Se1 Se2 Sez Sea Ses  Ses o6 el

In the following discussion we assume that the reference configuration is stress
free, 09 = 0 and strain free &Y = 0.
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Material Symmetry

Further reduction in the number of independent stiffness (or compliance) parameters
comes from the so-called material symmetry. Suppose that (z1,x2,z3) denote the
coordinate system with respect to which Eqgs. (1.3.38a,b) and (1.3.39a,b) are defined.
We shall call them material coordinate system. The coordinate system (z,y, z)
used to write the equations of motion and strain-displacement equations will be
called the problem coordinates to distinguish them from the material coordinate
system. Note that the phrase “material coordinates” used in connection with the
material description should not be confused with the present term. In the remaining
discussion, we will use the material description for everything, but we may use one
material coordinate system, say {z, vy, z), to describe the kinematics as well as stress
state in the body and another material coordinate system (x1,z2,z3) to describe
the stress-strain behavior. Both are fixed in the body, and the two systems are
oriented with respect to each other. When elastic material parameters at a point
have the same values for every pair of coordinate systems that are mirror images of
each other in a certain plane, that plane is called a material plane of symmetry (e.g.,
symmetry of internal structure due to crystallographic form, regular arrangement
of fibers or molecules, etc.). We note that the symmetry under discussion is a
directional property and not a positional property. Thus, a material may have
certain elastic symmetry at every point of a material body the properties may vary
from point to point. Positional dependence of material properties is what we called
the inhomogeneity of the material.

In the following we discuss various planes of symmetry and forms of associated
stress-strain relations. Note that use of the tensor components of stress and strain
is necessary because the transformation laws of the form (1.2.35) are valid only for
the tensor components. The fourth-order tensor, for example, transforms according
to the formula

z{jkl = gip qu Crr lis Cpqrs (1340)

where ¢;; are the direction cosines associated with the coordinate systems (1, x2, x3)
and (21, xy,23), and C};,; and Cpgrs are the components of the fourth-order tensor
C in the primed and unprimed coordinate systems, respectively.

Monoclinic Materials

When the elastic coefficients at a point have the same value for every pair of
coordinate systems which are the mirror images of each other with respect to a
plane, the material is called a monoclinic material. For example, let (z1, 22, 23) and
(@}, x5, z%) be two coordinate systems, with the z1, zo-plane parallel to the plane of
symmetry. Choose x4-axis such that 25 = —z3 (never mind about the left-handed
coordinate system as it does not affect the discussion) so that one system is the
mirror image of the other. The definitions and sign conventions of the stress and
strain components show that

/ / / /
Og3 = —023, 031 = —031, £93 = —€23, £33 =~ —&31
or, in single-subscript notation

/
oy = —04, Of=—05
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while all their independent stress and strain components remain unchanged in value
by the change from one coordinate system to the other. Using the stress-strain
relations of the form in Eq. (1.3.38b), we can write

! ! ! ! / ! /
o1 = Chie] + Ciagy + 01363 + 01464 + 01585 + 01656
o1 = Crie1 + Craez + Ci3ez — Craeq — Cises + Crees

But we also have
o1 = Cner + Craez 4+ Cizez + Craeq + Cises + Clecs

Note that the elastic parameters C}; are the same for the two coordinate systems
because they are the mirror images in the plane of symmetry. From the above two
equations (subtract one from the other) we arrive at

Chaeg + Ci5e5 = 0 for all values of €4 and &5

The above equation holds only if C14 = 0 and Cy5 = 0. Similar discussion with the
two alternative expressions of the remaining stress components yield Cos = 0 and
Cos = 0; C34 = 0 and C35 = 0; and Cy46 = 0 and Cs¢ = 0. Thus out of 21 material
parameters, we only have 21 — 8 = 13 independent parameters, as indicated below

Ci1 Ci2 Ciz 0 0 Cis
Ci2 Ca Coz3 0 0 Cy
Ciz Cog C33 0 0 Cs
0 0 0 Cys  Css 0
Cie Cp C3 0 0 Ceg

Note that monoclinic materials exhibit shear-extensional coupling; i.e., a shear strain
can produce a normal stress; for example, 011 = Cigeg = 2C16612. Therefore, the
principal axes of stress do not coincide with those of strain.

[C] = (1.3.42)

The result in Eq. (1.3.42) can also be obtained using the following transformation
matrix (which converts the unprimed coordinate system to the primed one) in Eq.
(1.3.40):

1 0 0
[L] = |:0 1 0 ] (OI‘ 611 = 622 = 1, 533 = —1, &J =0 fOI" ) #j) (1.3.43)
0 0 -1

Orthotropic Materials

When three mutually orthogonal planes of material symmetry exist, the number of
elastic coefficients is reduced to 9 using arguments similar to those given for single
material symmetry plane, and such materials are called orthotropic. The stress-
strain relations for an orthotropic material take the form

o1 Cnn Ci2 Ciz3 O 0 0 €1
o2 Cia Cz2 Co3 O 0 0 €2
o3| _|Ciz3 Co3 (33 0 0 0 €3
g4 N 0 0 0 C44 0 0 €4 (1'3'44)
g5 0 0 0 0 055 0 €5
g6 L O 0 0 0 0 C@G e
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The transformation matrices associated with the planes of symmetry are

1 0 0 -1 0 0 1 0 0
LO=10 1 o|; L®=] 0 1 0|; LP=]0 -1 0
0 0 -1 0 0 1 0 0 1

Most simple mechanical-property characterization tests are performed with a
known load or stress. Hence, it is convenient to write the inverse of relations in
(1.3.44). The strain-stress relations of an orthotropic material are given by

€1 St Siz Sz 0 0 0 o1
€2 Si2 S22 Sz O 0 0 02
ez | S13 Saz Sz 0 0 0 03
€4 - 0 0 0 544 0 0 g4 (1345)
&5 0 0 0 0 S55 0 05
€6 0 0 0 0 0 Ses o6

where S;; are the compliance coefficients ([C] = [S]™1)

S29533 — S3, 513523 — S12533

Cn = 5 Oy = =

Cz = %—3_5113;% Ciz = 512523 ; 513522

Ca3 = %“5%2 Cys = S12513 ; S93511
1 1 |

Cyq = S Css = [ Cop = o

S = 511522533 — S115%; — S205%; — S235% + 2512593513 (1.3.46)

Most often, the material properties are determined in a laboratory in terms of the
engineering constants such as Young’s modulus, shear modulus, and so on. These
constants are measured using simple tests like uniaxial tension test or pure shear test.
Because of their direct and obvious physical meaning, engineering constants are used
in place of the more abstract stiffness coefficients C;; and compliance coeflicients
Si;. Next we discuss how to relate the compliance coefficients .S;; to the engineering
constants.

One of the consequences of linearity (both kinematic and material linearizations)
is that the principle of superposition applies. That is, if the applied loads and
geometric constraints are independent of deformation, the sum of the displacements
(and hence strains) produced by two sets of loads is equal to the displacements (and
strains) produced by the sum of the two sets of loads. In particular, the strains
of the same type produced by the application of individual stress components can
be superposed. For example, the extensional strain 6&11) in the material coordinate
direction x1 due to the stress 17 in the same direction is 01,/ FE7, where E) denotes

Young’s modulus of the material in the x; direction. The extensional strain 5(121) due
to the stress o9 applied in the zo direction is —v91099/ Eo, where vg; is the Poisson

ratio
€11
Vo = ———

€22
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and E3 is Young’s modulus of the material in the xy direction. Similarly, o33
produces a strain Eﬁ) equal to —uv31033/F3. Hence, the total strain £1; due to

the simultaneous application of all three normal stress components is

(3) _ o111 022l 033031 (a)

1 2
f1= 6(11) + 6(11) e = B, Eo Es

where the direction of loading is denoted by the superscript. Similarly, we can write

_ onviz | 022 033V32 b
€90 = ———(— = B (b)
Ey 2 E3
01113 022123 033
€33 = — - + = c
£y Ey L (c)

The simple shear tests with an orthotropic material give the results

012 J13 023
2619 = =—, 2613= 5, 2603= 5~ d
G12 Gis3 Gas (@)

Recall that 2e;; (i # j) is the change in the right angle between two lines parallel
to the x; and z, directions at a point, o;; (i # j) denotes the corresponding shear
stress in the z;x; plane, and G;; (i # j) are the shear moduli in the z;z; plane.
Writing Egs. (a)-(d) in matrix form, we obtain

- 1

£9 B Ey Es 092

i O ey - L D K (1.3.47)
€4 0 0 0 GL% 0 0 o4 e
€5 0 0 0 0 & 0 |]|os

€6 L o 0 0 0 0 ]\

where F, FEs, F3 are Young’s moduli in 1, 2, and 3 material directions, respectively,
v;; is Poisson’s ratio, defined as the ratio of transverse strain in the jth direction
to the axial strain in the ith direction when stressed in the ith direction, and
Gos,G13, G2 are shear moduli in the 2-3, 1-3, and 1-2 planes, respectively. Since
the compliance matrix [S] is the inverse of the stiffness matrix [C] and the inverse of
a symmetric matrix is symmetric, it follows that the compliance matrix [S] is also a
symmetric matrix. This in turn implies that the following reciprocal relations hold

[see Eq. (1.3.47)):
v _v2 vn _ v ve _vm

B, E’ E; E E; E
or, in short
VELZ = %; (no sum on ¢,j) (1.3.48)
for 4,7 = 1,2,3. The 9 independent material coefficients for an orthotropic material

are
Ey, B3, E3, Ga3, Gi3, G2, V12, V13, V23 (1.3.49)
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It is important to note the difference, for example, between v;; and v;; for i # j
for an orthotropic material [10]. For example the difference between v15 and vg
for an orthotropic material is illustrated in Figure 1.3.4 with two cases of uniaxial
stress for a square element of length a. First a stress o is applied in the x;-direction
as shown in Figure 1.3.4a. The resulting strains are

JD_ 9y P12
= 22 o

where the direction of loading is denoted by the superscript and negative sign

indicates compression. Next, the same value of stress is applied in the zs-direction

as shown in Figure 1.3.4b. The strains are

(1.3.50)

2 21 2 ag
e = ~ 5,0 @) = 5 (1.3.51)

While it is obvious that 5(111) < 5%22) it £y > E5, we have no clue about the relative
(1) (2)

magnitudes of 5212 and £;;. However, the displacements associated with the two

loads are
ugl) = a% ugl) = —a%—fo (1.3.52a)
u§2) = -—CL%O’ u§2) = aEi2 (1.3.52b)

and the reciprocal relation (1.3.48) gives ugl) = u§2)

Betti’s reciprocity theorem (see Reddy [6]).

, which is the statement of

(a) o

ATTTTA

® a Lxl ;

Figure 1.3.4: Distinction between 115 and ;.
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Comparing Egs. (1.3.45) and (1.3.47), we note that

1 V12 V13
11 El ) 12 El 3 13 El
1 Vo3 1
S = —, S = ——, S = —
2= F 2 By 78T R,
Su= 4 G L Sep = — (1.3.53)
44 — G23 3 55 — G13 66 — G12 oJ.

and using Eq. (1.3.46) the stiffness coefficients can be expressed in terms of the
engineering constants

o 1 — 193103 P2 +vsives V12 + Vsalis
U TR EA T FolsAA E,E3A
O = V31 + Vo132 _ i3 + V12043
13 EyEsA E1EQA
oo — 1 —wvi3vs1 Ol — V32 +viovg1 _ ves + vaitig
2T TR EA T ELE3A ELE3A
1 —v1909
Ciz=——"", Cu=GCGy3 Cs55=Gs Ce=0G
33 EiEA 44 23 Css 31 Ces 12
1 — v19191 — o339 — V3113 — 2191132113
A= 1.3.54
ELEsEs ( )

Example 1.3.4:

The material properties of graphite fabric-carbon matrix layers, which are characterized as
orthotropic, are:

F1 =25.1x100 psi, Fy =4.8x10% psi, B3 =0.75 x 10% psi
Grz =1.36x 10 psi, Gi3 = 1.2 x 10 psi, Ggg = 0.47 x 108 psi

Vg = 0036, Vig = 0257 Vo3 = 0.171

The matrix of elastic coefficients for the material can be calculated using Eq. (1.3.54) as

25.16 0.2063 0.1934 0O 0 0
0.2063 4.8240 0.1304 O 0 0
(] = 0.1934 0.1304 4.8320 O 0 0 (mst)
0 0 0 047 0 0
0 0 0 0 12 O
0 0 0 0 0 1.36

A qualitative understanding of the anisotropic behavior of a material can be
obtained by simple tension and shear tests [10]. Application of a normal stress to
a rectangular block of isotropic or orthotropic material leads to only extension in
the direction of the applied stress and contraction perpendicular to it, whereas an
anisotropic material experiences extension in the direction of the applied normal
stress, contraction perpendicular to it, as well as shearing strain (see Figure 1.3.5).
Conversely, the application of a shearing stress to an anisotropic material causes



EQUATIONS OF ANISOTROPIC ELASTICITY 31

Normal Stress Shear Stress

Isotropic
and
Orthotropic

/
Y -

-——— -

Anisotropic

r— ==

Figure 1.3.5: Deformation of orthotropic and anisotropic rectangular block under
uniaxial tension.

shearing strain as well as normal strains. Normal stress applied to an orthotropic
material at an angle to its principal material directions causes it to behave like an
anisotropic material. The coupling between the two loading modes and the two
deformation modes plays a significant role in the testing, analysis, and design of
composite materials.

Isotropic Materials

When there exist no preferred directions in the material (i.e., the material has
infinite number of planes of material symmetry), the number of independent elastic
coefficients reduces to 2. Such materials are called isotropic. For isotropic materials
we have

Ei=FEy=FE3=FE, Gia=Gi3=Go3=G, vio=1l93=1i3=V (1.3.55)
Consequently, Eqgs. (1.3.44) and (1.3.47), in view of the relations (1.3.53), (1.3.54)
and (1.3.55), take the form

o1 (1 — v v v 0

0 0 £1
o v 1—wv v 0 0 0 €9
o3 v v 1—-v 0 0 0 €3
s ("M 0 0 0 la-2w 0 0 e
o5 0 0 0 0 (1 —2v) 0 €5
o6 L0 0 0 0 0 Ta-2v)] Leg

(1.3.56)
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€1 1 —v —v 0 0 0 o1
£2 -v 1 -—v 0 0 0 02
es| _ 1 v —-v 1 0 0 0 o3
aa{ E 0 0 0 14+v 0 0 o4 (1'3'57)
€5 0 0 0 0 1+v 0 o5
€6 0 0 0 0 0 14+v o2
where B
A (1.3.58)

T Q+v)(-2v)

Alternatively, the stress-strain relations can be written in more compact form
using the fact that a fourth-order isotropic tensor can be expressed as

Cijke = Nijbre + p1 (Oirbje + 61001 (1.3.59)

where A and p are called Lamé constants. Therefore, the stress-strain relation for
the isotropic case takes the form

i = Cijkg&‘kg = 2pei; + /\5kk5ij , o =2ue+ X tr(e)l (1.3.60)

The strain-stress relations are

1 A 1 A
= oy = — o], = — |0~ —tr(o)T 1.3.61
€ij 5 Oij ons 3)\)0;6;66]} € o [a TN tr(o) (1.3.61)

We note the following relations between the Lamé constants A and g and
engineering constants E, v and G for an isotropic material [8]:

B w(3X+ 2p) A

L v=—" G= 1.3.62
At DYy . (1.3.62)

The following definitions and constitutive relations are of interest in the sequel:

1
mean stress, & Eg"ii’ dilatation, e = ¢y (1.3.63)
1
deviatoric stress, ¢ =0 — &1, deviatoric strain, ¢ =¢ — gtr(e) (1.3.64)

2
oii = (BA+2u)ey;, 6 =Ke, K=X+ §'u (1.3.65)
where K is the bulk modulus and g = G is the shear modulus.

In view of the relations between the Lamé constants and engineering constants,
Egs. (1.3.60) and (1.3.61) can be written in terms of engineering constants:

E
Oij = T Eij t+ i Ekkbij, O = b €+ vh tr(e)I
1+v (I+2v)(1-2v) 1+v (I+v)(1—-2v)
(1.3.66)
1
& =% [(1+v)oy — vorkbiy], €= E [(1+v)o —vir(o)]] (1.3.67)
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The strain energy density for a linear isotropic material is given by

1
Up = icijkéfijgké = 503j€ij
1
=3 (011611 + 020892 + 033e33 + 2012612 + 2013613 + 2093¢23)  (1.3.68)

Plane Stress-Reduced Constitutive Relations

A state of generalized plane stress with respect to the zizs-plane is defined to be
one in which

O'ag = Uag($1,$2), Oq3 = O'ag(l‘l,xg), 033 — 0 (1.3.69)

where a and 8 take the values of 1 and 2. Although o33 = 0, £33 is not zero.

The strain-stress relations of an orthotropic body in plane stress state can be
written as [see Eq. (1.3.47)]

£1 5 B o1 Sii Sz 0 o1
exp=|-% & 0 |Soap=|S2 S» 0 |q0o (1.3.70a)
€6 0 0 1 g6 0 0 Se6 ol

and the transverse normal strain is given by
£33 = (81301 + Sa302) = ——~01 — -0 (1.3.70b)

The strain-stress relations (1.3.70a) are inverted to obtain the stress-strain relations
o1 Qu @iz O £1
o2 p = | Q12 Q22 O €2 (1.3.71)
o 0 0 Qesl Les

where the @);;, called the plane stress-reduced stiffnesses, are given by

S22 Ey S12 _ vizky

S1152 — 8%, 1 —viov 2 81159, — 5%, 1—wviovy
S11 Ey 1
Qo2 = = , Qe = — =G 1.3.72
S11822 — 82, 1 —v9va %™ Ses 2 ( )

Note that the reduced stiffnesses involve four independent material constants, F1,
Es, v12, and Gia.

The transverse shear stresses are related to the transverse shear strains in an
orthotropic material by the relations

{04} _ {Q(;M Q(;] {84 } . Qa4 = Ga3, Qss = Gus (1.3.73)

g5 €5
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1.3.7 Thermodynamic Principles

Of the four principles of thermodynamics, the first law of thermodynamics and the
second law of thermodynamics are important in the study of deformable solids. The
first law of thermodynamics, also known as the principle of conservation of energy,
states that the time rate of change of the total energy is equal to the sum of the rate
of work done by applied forces and the change of heat content per unit time. The
second law of thermodynamics places restrictions on the interconvertibility of heat
and work done. For irreversible processes, the second law states that the entropy
production is positive.

The thermodynamic principles can be expressed, in the Lagrangian description
of deformation of solid bodies, as

T
pcvaa—t:—v‘q+ Q+o:é€ (1.3.74)

where T is the temperature, q is the heat flux vector, ) is the internal heat
generation (measured per unit volume), p is the density, ¢, is the specific heat
at constant volume or constant strain, ¢ is the stress tensor, and € is the strain rate
tensor (or time rate of the strain tensor).

Equation (1.3.74), termed the generalized heat conduction equation, is used to
determine the temperature distribution in the body. The viscous dissipation couples
the thermal problem to the stress problem. Even when the viscous dissipation is
neglected, the thermal problem is coupled to the stress problem through constitutive
relations, as explained in the next section.

The thermal problem for the solid requires the temperature or the heat flux to
be specified on all parts of the boundary enclosing the heat transfer region as

T =1T(s,t) on I'r (1.3.75a)
n-q+h(T'—1T:) =dn(s,t) on I, (1.3.75b)

where T' is the total boundary enclosing the heat transfer region, I' = I'r U Ty,
I'r NIy =0, he is the convective heat transfer coefficient, T is a reference (or sink)
temperature for convective transfer, g, is the specified boundary flux, and s denotes
the position of a point on the boundary.

Thermoelasticity

The thermoelastic problem is governed by the strain-displacement equations of
Section 1.3.4, equations of motion of Section 1.3.5, thermodynamic equations of this
section, and the constitutive equations to be given in this section. The constitutive
equation of the thermal problem is the well known Fourier’s heat conduction law,
which states that heat flux is proportional to the gradient of temperature:

oT

q = -k -VT or q; = _kij— (1376)
an

where k denotes the thermal conductivity tensor of order two. The negative

sign in Eq. (1.3.51) indicates that heat flows from higher temperatures to lower

temperatures.
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The constitutive equations of thermoelasticity are derived by assuming the
existence of the Helmholtz free-energy function Wo = Wo(e;,T) (see [11-14])

Wo(eij, 1) = Uy — 0T

1 pC' 2
= §Cijkl €ij €ke — Pij €ij0 — QTZH (1.3.77a)
such that .
Tij = _851»9 = Cijke €kt — Bij 0 (1.3.77b)
J

where 0 = T — Ty, Tp is the reference temperature, 7 is the entropy density, and j3;;
are material coefficients. It is assumed that n and o;; are initially zero. Equation
(1.3.77b) is known as the Duhamel-Neumann law for an anisotropic body. Inverting
relations (1.3.77b), we obtain

Eij = Sijke Oke + ij 0 (1.3.78)

where Sj;xe are the elastic compliances, and «;; are the thermal coefficients of
expansion and related to 8;; by 8;; = Cijre oupe.

Hygrothermal Elasticity

Temperature and moisture concentration in fiber-reinforced composites cause
reductions of both strength and stiffness [15-18]. Therefore, it is important to
determine the temperature and moisture concentration in composite laminates under
given initial and boundary conditions. As described in the previous section, the
heat conduction problem described by equations (1.3.74)-(1.3.76) can be used to
determine the temperature field.

The moisture concentration problem is mathematically similar to the heat

transfer problem. The moisture concentration ¢ in a solid is described by Fick’s
second law:

Oc
5 = -V -qy + ¢f (1.3.79a)

qr=—-D Ve (1.3.79b)

where D denotes the mass diffusitivity tensor of order two, q; is the flux vector, and
¢y is the moisture source in the domain. The negative sign in Eq. (1.3.79b) indicates
that moisture seeps from higher concentration to lower concentration. The boundary
conditions involve specifying the moisture concentration or the flux normal to the
boundary:

c=¢(s,t) on T (1.3.80a)
n-qf =qgs(s,t) on I'y (1.3.80b)

where I' = T'y UT,, and 'y NTy = @) and quantities with a hat are specified functions
on the respective boundaries.

The moisture-induced strains {e}* are given by

{3 = {an}e (1.3.81)
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where {apr} is the vector of coefficients of hygroscopic expansion. Thus, the
hygrothermal strains have the same form as the thermal strains [see Eq. (1.3.76)].
The total strains are given by

{e} = [SHo} +{ar (T = To) + {an}(c = co) (1.3.82)

where Ty and ¢y are reference values from which the strains and stresses are
measured. In view of the similarity between the thermal and moisture strains,
we will use only thermal strains to show their contribution to governing equations
in the sequel.

Electroelasticity

Electroelasticity deals with the phenomena caused by interactions between electric
and mechanical fields. The piezoelectric effect is one such phenomenon, and it is
concerned with the effect of the electric charge on the deformation [14-16]. A
laminated structure with piezoelectric laminae receives actuation through an applied
electric field, and the piezoelectric laminae send electric signals that are used to
measure the motion or deformation of the laminate. In these problems, the electric
charge that is applied to actuate a structure provides an additional body force to
the stress analysis problem, much the same way a temperature field induces a body
force through thermal strains.

The piezoelectric effect is described by the polarization vector P, which represents
the electric moment per unit volume or polarization charge per unit area. It is related
to the stress tensor by the relation (see [14-17])

P=d-o or P = dijkajk (13833)

where d is the third-order tensor of piezoelectric moduli. The inverse effect relates
the electric field vector £ to the linear strain tensor £ by

£ = E-d or Ez'j = dkijgk (1383b)

Note that dy;; is symmetric with respect to indices ¢ and j because of the symmetry
of ¢;; (note that 4,j,k =1,2,3).

The pyroelectic effect is another phenomenon that relates temperature changes

to polarization of a material. For a small temperature change AT, the change in
polarization vector AP is given by

AP = pAT (1.3.84)

where p is the vector of pyroelectric coefficients.

The coupling between the mechanical, thermal, and electrical fields can be
established using thermodynamical principles and Maxwell’s relations. Analogous
to the strain energy function Uy for elasticity and the Helmholtz free-energy function
¥, for thermoelasticity, we assume the existence of a function &g

(130(81']',52',1—‘) = U() — g -D - 77T

1
= §Cijk£ Eij €kt — €ijk €ijEk — Bij €izf
1
— ere Exo — préxd — D7 (1.3.85a)

2 2To
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which is called the electric Gibbs free-energy function or enthalpy function, such that

0dg 0dq 0% 0Pg
==, Dj=——r == 1.3.85b
K T g 1T T ar 80 ( )
where o;; are the components of the stress tensor, D; are the components of the
electric displacement vector, and 7 is the entropy. Use of Eq. (1.3.85a) in Eq.
(1.3.85b) gives the constitutive equations of a deformable piezoelectric medium:

oij = Cijke €xe — €ijn€r — Biy0 (1.3.86a)

Dy = ej1, €55 + €xele + prb (1.3.86b)
C

1= Bij €ij + Prlr + ’)T;H (1.3.86¢)

where Cjj, are the elastic moduli, e;;; are the piezoelectric moduli, €;; are the
dielectric constants, py are the pyroelectric constants, 3;; are the stress-temperature
expansion coeflicients, ¢, is the specific heat per unit mass, and Ty is the reference
temperature. In single-subscript notation, Egs. (1.3.86a-c) can be expressed as

o; = Cijej — el — Bib (1.3.87a)
Dy = eri€; + exee + pio (1.3.87b)
n = Bigi + pr&i + % (1.3.87¢)

0

Note that the range of summation in (1.3.87a—c) is different for different terms:
i,7 = 1,2,---,6;k,£ = 1,2,3. For the general anisotropic material, there are 21
independent elastic constants, 18 piezoelectric constants, 6 dielectric constants, 3
pyroelectric constants, and 6 thermal expansion coefficients.

Maxwell’s equation governing the electric displacement vector is given by
V-D=0 (1.3.88)

It is often assumed that the electric field £ is derivable from an electric scalar
potential function :
E=-Vy (1.3.89)

This assumption allows us to write Eq. (1.3.88), in view of Eq. (1.3.87b), as

0 8_1/} 0 oY 0 ( o > B
D, (61181‘1) + 8—562 <€228—$2> + D5 6338_563 + fe=0 (1.3.90a)
where 9
Je=—5— (exece + pit) (1.3.90b)
T

This completes a review of the basic equations of solid mechanics. In the coming
chapters reference is made to many of the equations presented here.
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1.4 Virtual Work Principles
1.4.1 Introduction

In solid mechanics some of the laws of physics take several alternative forms. For
example, the principle of conservation of linear momentum, which requires that
the vector sum of all applied forces acting on a body be equal to the total time
rate of momentum of the body, is known in mechanics as Newton’s second law
and it is also derivable from a variational principle. The use of Newton’s laws to
determine the governing equations of a structural problem requires isolation of a
typical volume element of the structure with all its applied and reactive forces (i.e.,
the free-body diagram of the element). TFor complicated systems the procedure
becomes more cumbersome and intractable. In addition, the type of boundary
conditions to be used in conjunction with the derived equations is not always clear.
In a variational approach, the governing equations are obtained by the principle of
virtual displacements or by seeking the minimum of the total potential energy of
the system. The variational approach, applicable to linear or nonlinear theories, is
useful both in deriving governing equations and boundary conditions, and obtaining
approximate solutions by variational methods.

In the context of the present study, the principle of virtual displacements will be
used to derive the equations of motion of laminated plates. Hence, it is useful to
study variational principles and methods (see Reddy [6] for additional details). We
begin with the concepts of virtual displacements and forces.

1.4.2 Virtual Displacements and Virtual Work

From purely geometrical considerations, a given mechanical system can take many
possible configurations consistent with the geometric constraints of the system. Of
all the possible configurations, only one corresponds to the actual configuration,
and it is this configuration that satisfies Newton’s second law (i.e., equations of
equilibrium or motion of the system). The set of configurations that satisfy the
geometric constraints but not necessarily Newton’s second law is called the set of
admissible configurations. These configurations are restricted to a neighborhood of
the true configuration so that they are obtained from infinitesimal variations of the
true configuration. During such variations, the geometric constraints of the system
are not violated and all the forces are fixed at their actual values. When a mechanical
system experiences such variations in its configuration, it is said to undergo virtual
displacements from its true or actual configuration. These displacements need not
have any relationship to the actual displacements that might occur due to a change
in the applied loads. The displacements are called virtual because they are imagined
to take place (i.e., hypothetical) while the actual loads acting at their fixed values.
The virtual displacements at the boundary points at which the geometric conditions
(or displacements) are specified, are necessarily zero.

The work done by the actual forces moving through virtual displacements is
called wvirtual work. The virtual work done by actual forces F in a body € in
moving through the virtual displacements éu is given by

oW = F-déudv (1.4.1)
Qg
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where dv denotes the volume element dv = dxidxedzs in the material body .

The external virtual work done due to virtual displacements éu in a solid body
Qg subjected to body forces f per unit volume and surface tractions t per unit area
of the boundary I’y is given by

5vz—</ f-éudv+/ t-éuds) (1.4.2)
J Qg s

where ds denotes a surface element and I', denotes the portion of the boundary
on which stresses are specified. The negative sign in Eq. (1.4.2) indicates that the
work is performed on the body. It is understood that the displacements are specified
on the remaining portion T';, = ' — ', of the boundary I". Therefore, the virtual
displacements are zero on I'y,, irrespective of whether u is specified to be zero or not.
For example, a bar fixed at one end (z = 0) and subjected to an axial load at the
other end (z = L) can be imagined to have a virtual displacement éu(x), provided
6u(0) = 0, because the actual displacement is specified at = 0. Thus, one may
select du(x) = cx, where ¢ is an arbitrary constant.

Recall that the deformation of solid body acted upon by forces can be measured
in terms of strains and that the body experiences internal stresses. The forces
associated with the stress field move the material particles through displacements
corresponding to the strain field in the body, and hence work is done. The work done
by these internal forces in moving through displacements of the material particles
is called internal work. Note that the work done on the body is responsible for the
internal work stored in the body.

The internal virtual work due to the virtual displacement du can be computed as
follows. Suppose that an infinitesimal material element of volume dv = dzidzadxs
of the body experiences virtual strains é¢;; due to the virtual displacements du;,
where [see Eq. (1.3.12)]

) Obu;
beij = o (buij + bujq),  Ouiy = 5;’
J

(1.4.3)

The work done by the force due to actual stress o1y, for example, in moving through
the virtual displacement du; = de11dxy is

()’11d1‘2d$3 . 6811d931 = 0'11(581161’(}

Here €;; denote the strain components and o;; the stress components. Similarly, the
work done by the force due to stress o2 in the body is

Ulgdl‘gdl’g . 25512d1}1 = 0‘122(5612(11)
Thus, the total virtual work done by forces due to all the stresses in a volume
element (that originally occupied the material element dv) in moving through their

respective displacements is

(011 -6€11 + 099 - b9 + -+ 019 - 25612)(11} =05 - (56,’de (1.4.4)
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The total internal virtual work done is obtained by integrating the above expression
over the entire volume of the body

oU =/ 044 651’3’ dv (1.4.5)
Qo

Equation (1.4.5) is valid for any material body irrespective of its constitutive
behavior. The expression in Eq. (1.4.5) is called the wvirtual strain energy of a
deformable body.

The internal virtual work done by virtual stresses do;; in moving through the
actual strains &;; is

5U* ———/ Eij 60’1‘]' dv (1.4.6)
Qo

The expression in Eq. (1.4.6) is also known as the wvirtual complementary strain
energy. The virtual forces (0 f;, 6t;) and virtual stresses (6o;;) should be such that
the stress equilibrium equations [see Eq. (1.3.27b)] and stress boundary conditions
[see Eq. (1.2.25)] are satisfied:

[603'1']4 +6f;i =0 in (1.4.78,)
6ti = §ajinj =0 on Fa- (147b)

In the present study we will not consider complementary energy principles.

1.4.3 Variational Operator and Euler Equations

The delta symbol é used in conjunction with virtual displacements and forces can
be interpreted as an operator, called the variational operator. It is used to denote a
variation (or change) in a given quantity; i.e., éu denotes a variation in u. Thus §
is an operator that produces virtual change or variation du in a dependent variable
1, in much the same way as dz denotes a change in z, and éu is called the first
variation of u. The operator proves to be very useful in constructing virtual work
statements and deriving governing equations from virtual work principles, as will be
shown shortly.

There is an analogy between the variational operator é and the total differential
operator d. To see this consider a function F of the dependent variable w and its
derivative v’ = du/dz in one dimension. The total differential of F', for fixed z, is

8F ., OF, OF

The first variation of F' is

OF OF 102F 10°F
6F=—-9¢ — U 4 === (bu)? + =  LIEER 1.4.
5 u+8u’ u+28u2(u)+28u’2(6u)+ (1.4.9)
Since éu is small, terms involving squares and higher powers of éu can be neglected.
We have OF oF
6F = —bu+ —éu (1.4.10)

ou o'
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Since x is fixed during the variation of u to u+ éu, we have dz = 0 in Eq. (1.4.8) and
the analogy between §F in Eq. (1.4.10) and dF' in Eq. (1.4.8) becomes apparent:
the variational operator, 6, is a differential operator with respect to the dependent
variable, u. Indeed, the laws of variation of sums, products, ratios, powers, and so
forth, are completely analogous to the corresponding laws of differentiation. The
following properties of the variational operator should be noted:

§(Vu) = V(8u) (1.4.11)
6(/1uﬁ0 /6udQ (1.4.12)
§(FL+ Fy) = 6F) + 6F (1.4.13)
§(F\Fy) = 6Fy Fy + 1 6Fy (1.4.14)
s (%) = 6;;1 F <%) (1.4.15)
S(F)" =n(F)"16F, (1.4.16)

where [y = Fi(u) and Fy = Fy(u). If G = G(u,v,w) is a function of several
dependent variables (and possibly their derivatives), the total variation is the sum
of partial variations:

0G = 0,G + 6,G + 6, G (1.4.17)

where, for example, ¢, denotes the partial variation of G with respect to u.
Functionals

Integral expressions whose integrands are functions of dependent variables and their
derivatives are called functionals. Mathematically, a functional is a real number (or
scalar) obtained by operating on functions (dependent variables) from a given set
(or vector space). Thus, a functional I(-) is an operator which maps functions u of
a vector space H into a real number I(u) in the set of real numbers, R:

I:H—R (1.4.18)

For example, the integral expression

L
I(u):/O [au(z) + bu'(z) + cu”(z)] da

qualifies as a functional for all integrable and square-integrable functions u(z). Note
that I{u) is a number whose value depends on the choice of wu.

A functional is said to be linear if
IHau+ pv) = al(u) + BI(v) (1.4.19)

for all constants o and 3 and dependent variables w and v. A quadratic functional
is one which satisfies the relation

Iau) = o*I(u) (1.4.20)
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for all constants a and dependent variable w.

The first variation of a functional I{u) of u (and its derivatives) can be calculated
using the definition in Eq. (1.4.10). For instance consider the functional I(u) defined
in the interval (a,b)

I(u) = /ab F(z,u,u') dz (1.4.21)

where F' is a function, in general, of z, v and du/dz = u’. The first variation of the
functional I is

b b b
o1 = (5/ F dx = / OF dx = / <8—F6u + QE(SU’) dz (1.4.22)
a a a ou ou/

Thus, the variation of a functional can be readily calculated.
Fundamental Lemma of Variational Calculus

The fundamental lemma of calculus of variations can be stated as follows: for any
integrable function G, if the statement

b
/ G-nde=0 (1.4.23)
a

holds for any arbitrary continuous function n(z), for all z in (a,b), then it follows
that G = 0 in (a, b). A mathematical proof of the lemma can be found in most books
on variational calculus. A simple proof of the lemma follows. Since 7 is arbitrary,
it can be replaced by G. We have

b
/GQdmzo

Since an integral of a positive function is positive, the above statement implies that
G = 0. A more general statement of the fundamental lemma is as follows: If 7 is
arbitrary in @ < x < b and n(a) is arbitrary, then

b
it / Gn dz + B(a)n(a) = 0 (1.4.24a)
then G=0ina<xz<b and B(a)=0 (1.4.24b)

In most of our study in this book, we shall be interested in the use of Eqs. (1.4.24a,b)
because they provide the means to the determination of the governing equations and
boundary conditions and their solution by the variational methods.

Consider the question of finding the extremum (i.e., minimum or maximum) of
the functional

b
I{u) = /a F(z,u,u') dz, u(a) =us, u(b)=u (1.4.25)

The necessary condition for the functional to have a minimum or maximum is
(analogous to minima or maxima of functions) that its first variation be zero:

§1 =0 (1.4.26)
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Using Eq. (1.4.10) we obtain

b /OF oF _,
O—/{l <%6u+%5u> dx

Note that éu’ = §(du/dz) = d(éu)/dx. We cannot use the fundamental lemma in
the above equation because it is not in the form of Eq. (1.4.24). To recast the above
equation in the form of Eq. (1.4.24), we integrate the second term by parts and
obtain

b
02/ (8—F5u+8—F5u/> dzx

ou o’
broF OF déu
= [ (Gute ')
bIOF  d (OF or _1°
= [ 15~ e (o) Jw e+ 5t (1420
Let us first examine the boundary expression:
OF

There are two parts to this expression: a varied quantity and its coefficient. The
variable v that is subjected to variation is called the primary variable. The
coefficient of the varied quantity, i.e., the expression next to déu in the boundary
term, is called a secondary variable. The product of the primary variable (or its
variation) with the secondary variable often represents the work done (or virtual
work done). The specification of the primary variable at a boundary point is
termed the essential boundary condition, and the specification of the secondary
variable (OF/0u’) is called the natural boundary condition. In solid mechanics,
these are known as the geometric and force boundary conditions, respectively.
All admissible variations must satisfy the homogeneous form of the essential (or
geometric) boundary conditions: éu(a) = 0 and éu(b) = 0. Elsewhere, a < z < b,
du is arbitrary.

Returning to Eq. (1.4.27), we note that the boundary terms drop out because of
the conditions on éu. We have

broF d (OF
0= [ |50 - & (5] ow e
which must hold for any éu in (a,b). In view of the fundamental lemma of calculus
of variations (n = éu), it follows that

_OF d [OF ,

Thus the necessary condition for I(u) to be an extremum at u = u(z) is that u(x)
be the solution of Eq. (1.4.28).
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If u(a) = u, and éu(b) is arbitrary (i.e., u(a) is specified but u is not specified at
x = b), then du(a) = 0 and we have from Eq. (1.4.27) the result

brOF  d (OF OF
0= / [5.7; - <@)] Su dx + <%>x_b Su(b) (1.4.29)

Since éu is arbitrary in (a,b) and éu(b) is arbitrary, the above equation implies, in
view of Eq. (1.4.28), that both the integral expression and the boundary term be
zero separately:

or d F
I (%) =0, a<z<b (1.4.30a)

Both Eq. (1.4.30a) and Eq. (1.4.30b) are called the Euler-Lagrange equations.
Note that the boundary conditions that are a part of the Euler-Lagrange equations
always belong to the class of natural boundary conditions.

Now we have all the necessary concepts and tools in place to study the principles
of virtual work. In the next section, we discuss the principle of virtual displacements
and its special case, the principle of minimum total potential energy. For a discussion
of the principle of virtual forces and its special cases, consult Reddy [6].

1.4.4 Principle of Virtual Displacements

Recall that the virtual work due to virtual displacements is the work done by actual
forces in displacing the body through virtual displacements that are consistent
with the geometric constraints. All applied forces are kept constant during the
virtual displacements. Consider a rigid body acted upon by a set of applied
forces F1, Fo, ...F,, and suppose that the points of application of these forces
are subjected to the virtual displacements éduj, dug, ---, éuy, respectively. The
virtual displacement du; has no relation to éu; for i # j. The external virtual work
done by the virtual displacements is

oV = —[Fl oup +Fo-bug+---+F, - (5un] = — ZF’ -0y, (1.4.31)
=1

The internal virtual work done 6U is zero because a rigid body does not undergo
any strains (hence virtual strains are zero). In addition, the virtual displacements

buy, bug, -, bu, should all be the same, say du, for a rigid body. Thus, we have
n n

6V ==Y F;-bu; = — (Z F) +6u and SU =0 (1.4.32)
i=1 i=1

But by Newton’s second law, the vector sum of the forces acting on a body in
static equilibrium is zero. This implies that the total virtual work, éU + 6V, is
equal to zero. Thus, for a body in equilibrium the total virtual work done due to
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virtual displacements is zero. This statement is known as the principle of virtual
displacements. The principle also holds for continuous, deformable bodies, for which
U is not zero. In this section, the principle of virtual displacements and its special
case are described since they play an important role in the formulation of theories
(e.g., plate theories) and their analysis by variational methods of approximation.

Consider a continuous body B in equilibrium under the action of body forces f and
surface tractions t. Let the reference configuration be the initial configuration C°,
whose volume is denoted as Q. Suppose that over portion [, of the total boundary
I' of the region )y the displacements are specified to be 1, and on portion [', the
tractions are specified to be t. The boundary portions I';, and T, are disjoint (i.e.,
do not overlap), and their sum is the total boundary T'". Let u be the displacement
vector corresponding to the equilibrium configuration of the body, and let ¢ and
€ be the associated stress and strain tensors, respectively. The set of admissible
configurations are defined by sufficiently differentiable functions that satisfy the
geometric boundary conditions: u =1 on [',.

If the body is in equilibrium, then of all admissible configurations, the actual one
corresponding to the equilibrium configuration makes the total virtual work done
zero. In order to determine the equations governing the equilibrium configuration
C, we let the body experience a virtual displacement éu from the true configuration
C. The virtual displacements are arbitrary, continuous functions except that they
satisfy the homogeneous form of geometric boundary conditions; i.e., they must
belong to the set of admissible variations.

The principle of virtual displacements can be stated as: if a continuous body
is in equilibrium, the virtual work of oll actual forces in moving through a virtual
displacement is zero:

§U + 8V =6W =0 (1.4.33)

Just as we derived the Euler-Lagrange equations associated with the statement
81 = 0, we can derive them for the statement in Eq. (1.4.33). However, first
we must identify 6U and 6V for a given problem. The principle of virtual work is
independent of any constitutive law and applies to both elastic (linear and nonlinear)
and inelastic continua.

For a solid body, the external and internal virtual work expressions are given in
Egs. (1.4.2) and (1.4.5), respectively. The principle can be expressed as

/a:ésdv— f-6udv—/ t-duds=0 (1.4.34)
Q() Q0 a

where o : 6 denotes the “double dot product,” €}y is the volume of the undeformed
body, and dv and ds denote the volume and surface elements of . Writing in
terms of the Cartesian rectangular components, Eq. (1.4.34) takes the form

/ (0i50€i; — fidu;) dv —/ t;du; ds =0 (1.4.35)
Qo s
where the summation on repeated subscripts is implied.

The Euler-Lagrange equations associated with the statement (1.4.35) of the
principle of virtual displacements are nothing but the equilibrium equations of the
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3-D elasticity theory. Recall the strain-displacement equations from Eq. (1.3.11).
The virtual strains ée;; are related to the virtual displacements du; by

1 Obu;
(56@' = 5(5111@7]' + (5uj7i), 6ui,j = oz 'Z
J

(1.4.36)

Substituting ée;; from the above equation into Eq. (1.4.35), and using the divergence
theorem, Eq. (1.2.38), to transfer differentiation from éu; to its coefficient, one
obtains (0;; = 0j;)

o

= / (o,-jéui,j - fléul) dv —/ tiéui ds
Qo

o

1
0= / [—aij(éul-,j + 6u]"i) — f15u1:| dv — / tidu; ds
Qo L2

= —/ (Uij,j + fi)budv —/ tibu; ds + % o;jn;ou; ds (1.4.37)
Qo r

o

Since I' =T, UT, and éu; = 0 on I'y, we have
0= —/ (Uij’j + fz) bu; dv +/ (aijnj — ti) bu; ds (1.4.38)
Qo 'y

Because the virtual displacements are arbitrary in {0y and on T'y, Eq. (1.4.38) yields
the following equations [cf., Eq. (1.3.27b)]

0oi; .
Ef+f,:oms20 (1.4.39)
aijnj — ti =0 on FU (1.4.40)

Equations (1.4.39) and (1.4.40) are the Euler-Lagrange equations associated with
the principle of virtual displacements for a body undergoing small deformation. The
stress boundary conditions in Eq. (1.4.40) are the natural boundary conditions. The
principle of virtual displacements is applicable to any continuous body with arbitrary
constitutive behavior (i.e., elastic or inelastic).

Example 1.4.1: (Euler—Bernoulli beam theory)

Consider the bending of a beam of length L, Young’s modulus E and moment of inertia I, and
subjected to distributed axial force f(z) and transverse load g (see Figure 1.4.1). Under the
assumption of small strains and displacements, we derive the governing differential equation of the
beam using the Euler-Bernoulli hypotheses, which assumes that straight lines perpendicular to the
beam axis before deformation remain (1) straight, (2) perpendicular to the tangent line to the beam
axis, and (3) inextensible after deformation. These assumptions lead to the displacement field (see
Figure 1.4.1a)
v
dx’
where (u, v, w) are the displacements of a point (z,y, z) along the z, y and z coordinates, respectively,
and (ug, wq) are the displacements of the point (z,0,0). Under the assumption of smallness of strains

u=ug(x) - v=0, w=uwy(x) (1.4.41)
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Vix) V(x)+AV(x) Vix) V(x)+AV(x)
(b) (c)

Figure 1.4.1: Bending of beams. (a) Kinematics of deformation of an Euler-
Bernoulli beam. (b) Equilibrium of a beam element. (c) Definitions
(or internal equilibrium) of stress resultants.

and rotations, the only nonzero strain is

duo dZUJO
L 1.4.4
frr = Fda? (1.4.42)

First we derive the equilibrium equations using Newton’s second law of motion. Summing the
forces and moments on an element of the beam (see Figure 1.4.1b) gives the following equilibrium
equations:

dN .
dv
E F,=0: = q(x) (1.4.43b)
.. dM

where N(x) is the net axial force, M(x) the bending moment, and V(z) the shear force, which are
known as the stress resultants, and they are defined in terms of the stresses o, and o,. on a cross
section as (see Figure 1.4.1c)

N(z) = / Tuw dA, M(z) = / oz dA, V(z) = / OzzdA (1.4.44)
Ja Ja A

Here A denotes the area of cross section. Equations (1.4.43b) and (1.4.43¢c) can be combined into
the single equation so that Egs. (1.4.43a—c) reduce to

dN dZM
T dr = f(x), )

= q(x) (1.4.45a,b)
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The stress resultants (N, M) can be related back to the stress 0., using the linear elastic
constitutive relation for an isotropic material as [see Eq. (1.4.42)]

_ _ duo d2w0
Ogz = Fega = F (% e ) (1.4.46)
First, note that

duo duo
N@) = [ 0oe da=EZ0 [ 4a=pa®o (1.4.47a)

4 dz [, dx

2 2
M@) = [ owezdd=k [ (o _ 300 g4 prEwo (1.4.47b)
4 4\ dz dx? dx?

or
duo N d2w0 M
=0 = 1.4.48
de EA’  dxz? EI ( )
where I is the moment of inertia about the axis of bending (y-axis) and z is the transverse
coordinate. Note that the z-axis is taken through the geometric centroid of the cross section

so that fA zdA = 0. Using the relations in Eq. (1.4.48) in Eq. (1.4.46), we obtain

Tx — 3 —F 4.4
0o =T+ (1.4.49)

Next, we derive the governing equations (1.4.45a,b) using the principle of virtual displacements.
Note that for the problem at hand the only nonzero stress is o,,. Hence, the internal virtual work

done per unit length of the beam by the actual internal force o5, dA in moving through the virtual
displacements ée,, dx is given by 0z.dA - 6e..dx. The total internal virtual work done is

L
sU =/ / Ozz 0cxy dAdz (1.4.50)
0 A

where all other stresses are assumed to be zero; i.e., the Euler-Bernoulli assumptions are invoked.
The actual strain in the Euler-Bernoulli beam theory is given by Eq. (1.4.42). The virtual
strain e, is related to the virtual displacements (Sug, Swg) by Sewe = (dSuqg/dx) — 2(d26wo/dx?).
Substituting this expression into (1.4.50), we obtain

L 2 L 2
sU :/ / oo, [ G0u0 _ 5@;0 da :/ dbug _ 5 d 512“0 dz (1.4.51a)
o Ja dx dx 0 dz dz

The virtual work done by the external distributed forces f(z) and g(z) in moving through the
displacements dug and dwyg, respectively, is

L
5V = —/ (féug + qbwy) dz (1.4.51b)
0

The virtual work done by any applied point loads (and moments) must be added to 6V in Eq.
(1.4.51b). For example, the virtual work done by the counterclockwise moment My, at z = L in

rotating through the virtual rotation QZ_wQ(L) is
T

d6w0
ML (7 dw >L

and the virtual work done by an axial point load P in moving through éug(L) and a transverse
point load F, in moving through the virtual displacement dwq(L) is (see Figure 1.4.2)

— [PL(S'U,O(L) + FL(S'LU()(L)]
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Thus, the total external virtual work done is

d6w0
X

L
0 =L

The principle of virtual displacements states that if the beam is in equilibrium we must have
U+ 6V =0or

L .
dé’lto d26w0 déwo
N - M - —qb dr — My | - — Ppoug(L) — Frbéwg(L) =
/0 ( dr 22 féug — gdwg |} dx L( d >I:L roug(L) éwp(L) =0

(1.4.53)

To obtain the Euler-Lagrange equations associated with the virtual work statement (1.4.47),
integrate the first term by parts once and the second term by parts twice and obtain

L
dN d2M déwy  dM L
./0 [(_E_ )6u0+< e ~q> 6w0] dr + {N&uO—M i +~Jx—6w0}0

dé’wo
dx

M, <_ ) — Ppéug(L) — Fréwe(L) =0
r=L

Note from the boundary terms that ug, wg and dwg/dz are primary variables and N, dM/dx =V
and M are the secondary variables of the problem. We have

/OL {(_% - f) dug + <“% - q> éwo} dz + [N(L) — Pr]éug(L) — N(0)éun(0)
- - ) (B20)  wmo) (B0
+ Kdﬁ]\:cé)m - Fy] uo(L) - (d"d]\}{)zzo 5w (0) = 0 (1.4.54)

First, consider the integral expressions in (1.4.54). Since dug and éwg are independent and
arbitrary in 0 < z < L, we obtain the Euler equations

dN

5'&0: -‘%— :O, 0<1<L (14553)
2 A\,

bwg : —dAI—q:O,O<a:<L (1.4.55b)
dx?

which are the same as those in Egs. (1.4.45a,b).

uf0)=0
wy(0) =0
wy(0)=0

Figure 1.4.2: A cantilever beam with distributed loads f and ¢, and concentrated
loads Pr,, Fr and My at the right end.
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Next, consider the boundary expressions in (1.4.54). If the beam is fixed at # = 0 and subjected
to forces P, My, and Fpr, the virtual displacements éug and dwg must satisfy the conditions

Sup(0) =0, Ewp(0) =0, (d5w0> =0 (1.4.56)
dx z=0

and they are arbitrary at £ = L. Consequently, the second, fourth and sixth boundary expressions
vanish, and we have the (natural) boundary conditions resulting from the virtual work principle:

Sug(L): N(L)—PL=0, at =1L (1.4.57)

Swo(L) - (%) =0, ats=L (1.4.58)

(d‘S“’O) . M(L)-My =0, at =1L (1.4.59)
dI =L

We note that Eqs. (1.4.55a) and (1.4.57) together define axial deformation, while Egs. (1.4.55b),
(1.4.58) and (1.4.59) describe bending deformation of the beam. These sets of equations can be
solved independently as N is only a function of ug and M is a function of only wq [see Eq. (1.4.48)].

The Principle of Minimum Total Potential Energy

A special case of the principle of virtual displacements that deals with linear as
well as nonlinear elastic bodies is known as the principle of minimum total potential
energy. For elastic bodies (in the absence of temperature variations) there exists a
strain energy density function Uy such that

oUy oly
g=—F/—— Oor 0= 1.4.60

Oe Y (961']' ( )
Equation (1.4.60) represents the constitutive equation of an hyperelastic material.
The strain energy density Uy is a single-valued function of strains at a point
and is assumed to be positive definite. The statement of the principle of virtual
displacements, Eq. (1.4.34), can be expressed in terms of the strain energy density
Uo:

9o : OE dv — [ f-éudv+ t-éu ds} =0 (1.4.61a)
Q, Oe Q0 T,

or, in component form,

U0 5. du — [ / Fibui dv + / tius ds} —0 (1.4.61b)
Qo Ogij Qo T

The first integral is equal to

6Uqy dv = 6U
Qo

where U is the internal strain energy functional

U= Up dv (1.4.62a)
Qo
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Suppose that there exists a potential V' whose first variation is

5V = —

f~6udv+/ t~6uds}
Q0 T,

= - |: fz(suz dv +/ tidu,; dS:l (1462b)
Qo

Ly

Then the principle of virtual work takes the form
U+ 6V =6(U+V)=6I1=0 (1.4.63)

The sum U + V = 1I is called the total potential energy of the elastic body. The
statement in Eq. (1.4.63) is known as the principle of minimum total potential
energy. It means that of all admissible displacements, those which satisfy the
equilibrium equations make the total potential energy a minimum:

M(u) < [I(w) (1.4.64)

where u is the true solution and u is any admissible displacement field. The equality
holds only if u = .

Example 1.4.2:

We consider the cantilever beam problem of Example 1.4.1 (see Figure 1.4.2). The minimum total
potential energy principle requires us to construct the total potential energy (i.e., sum of the strain
energy and potential energy due to applied loads) of the beam and set its first variation to zero to
obtain the Euler-Lagrange equations of the functional.

The total strain energy stored in the beam is

L L 2 2
1 dug d%uy 1 dug d?wy
== = - M dr = = EA{Z= EI dx 1.4.65
v 2/0 ( dx dz? T3 0 ( dr ) + dx? v (1.4.65)

where Eq. (1.4.48) is used to write the last expression for U. The work done by external applied
loads f, q, M, Pr and Fp is

=

L
V=-_ U (fug + quo)da + Prug(L) + My (g%"_o) ¥ FLwO(L)} (1.4.66)
Jo X L

The total potential energy of the beam is given by

L 2 2 2
noey o [ () B () f}d
0
dwo

2 dx 2 dx?
— Prug(L) — M, (——) ~ Frwo(L) (1.4.67)
d'r =L

The total potential energy principle requires that §(U + V) = 0:

L 2 2
0= / <EAdﬂ dbug + EId wo d”0wy féug — q6wo> dx
0

dr dz dz?  dx?

~ Préug(L) — My, (-dfgo

) — Fréwy(L)
x=L
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Integration by parts of the first two terms, and use of Eq. (1.4.56) and the property that dug and
Swq are arbitrary both in (0, L) and at x = L, yields the Euler equations

d duo
_4 = 1.4.
dx(EAdx) f=0,0<z<L (1.4.68a)
d2 d2w0
& Er —q=0,0<z<L 1.4.68b
dz? ( dx? q r< ( )
duo
o P = 1.4.
(EA o )Z:L PL=0 (1.4.68¢)
2
_ErEo ~ My =0 (1.4.68d)
dx? L
d d2w0
_a bg P = 1.4.
[ = <EI — )]FL FL=0 (1.4.68¢)

Equations (1.4.55a,b), and (1.4.57)~(1.4.59) are the same as above when N and M are replaced in
terms of ug and wg using Eq. (1.4.47a,b), i.e., when the beam constitutive equations are used.

The minimum property of the total potential energy can be established by considering an
arbitrary admissible displacement field, (&, w)

@ =ug+avy, asmall, v1(0)=0 (1.4.69a)

@ = wo + Bug, B small, vy(0)=0, (%) =0 (1.4.69b)

For the example problem we have

H(a,w):/OL lETA(%)Zer;I <%)2wquw] dz — PLa(L) - My, (—Z—f)z:L—FLw(L)
SRR COREICOREE S R
EI | [ dwo\® o (v . d%wy d?vs
+7l dx2> +8 <dw2> +20—— dxz}vq(wo*F@W)}df
[(*%L (Ad_z) ] Fylwo(L) + Bua(L)]
2

L 2
EA rdv EI (d?v
- 244 (fan 2 2
= H(ug,wg) +/0 [a 3 ( e ) + 8 5 ( 72 ) :l dz

L
+a/ [EA%dﬂ—kEld wo d?vz fvl—qvg] dx
0

dr d dz? dz?
- [aPLul(L) + M, (J%) + ,BFng(L)} (1.4.70a)
=L

Now, consider the second integral and the boundary terms

a{/L (EAdﬂdﬂ - fvl) de — PLvl(L)}
o dr dz
L d2wqg d?vy dug
+,3{/0 (EI Tt —qvg) dr — My, ( d:c)l:LVFLvQ(L)}
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L
- d dug ) @ B ’
_ { [T (pa%e) - o ae e [(pae ) }}
I -
d2 dz’wo d2w0 ) dUQ
“3{/0 [ai <E1—d:1c2 “a|udos | B (-)

r=L

2
+ [% (EI%) FL} vo(L) (1.4.70b)
x=L

The boundary terms at & = 0 are zero because of the conditions in Eq. (1.4.69a,b). Since (ug, wg)
is the true solution of the problem, all terms in Eq. (1.4.70b) are zero. Thus, Eq. (1.4.70a) becomes

L 2 E d? ’ d
o EA d 1
(u, w) = O(ug,wg) / l 27 (El;_l) ﬁZT( ;)22> ] '
0 "

> H(UO,U}()) (1471)

and the equality holds only when @ = uy and @w = wq. Thus (4, w) is greater than I{ug, wg) when
w # wy and @ # ug, establishing the minimum character of the total potential energy of the beam.

One may note that in this example, we considered axial deformation of a bar (set wg = 0) as
well as pure bending of a beam (set ug = 0). These equations are uncoupled for the case of small
strains. The total potential energy is the minimum with respect to both ug and wg.

Hamilton’s Principle

Hamilton'’s principle is a generalization of the principle of virtual displacements to
dynamics of systems. The principle assumes that the system under consideration
is characterized by two energy functions; a kinetic energy K and a potential energy
II. For deformable bodies, the energies can be expressed in terms of the dependent
variables (which are functions of position) of the problem. Hamilton’s principle may
be considered as dynamics version of the principle of virtual displacements [6].

Newton’s second law of motion applied to deformable bodies expresses the global
statement of the principle of conservation of linear momentum. However, it should
be noted that Newton’s second law of motion for continuous media is not sufficient
to determine its motion u = wu(x,t); the kinematic conditions and constitutive
equations discussed in the previous sections are needed to completely determine
the motion.

Newton’s second law of motion for a continuous body can be written in general
terms as

F-ma=0 (1.4.72)

where m is the mass, a the acceleration vector, and F is the resultant of all forces
acting on the body. The actual path u = u(x,t) followed by a material particle
in position x in the body is varied, consistent with kinematic (essential) boundary
conditions, to u+ §u, where éu is the admissible variation (or virtual displacement)
of the path. We suppose that the varied path differs from the actual path except
at initial and final times, ¢; and tg, respectively. Thus, an admissible variation du
satisfies the conditions,

bu=0on S for all ¢ (1.4.73a)
du(x,t;) = du(x, ty) = 0 for all x (1.4.73b)
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where 51 denotes the portion of the boundary of the body where the displacement
vector u is specified. Note that the scalar product of Eq. (1.4.72) with éu gives
work done at point x, because F, a, and u are vector functions of position (whereas
the work is a scalar). Integration of the product over the volume (and surface) of
the body gives the total work done by all points.

The work done on the body at time t by the resultant force in moving through
the virtual displacement éu is given by

/f-(SudV+/ £-5ud5—/?;5?dv (1.4.74)
14 Sa v

where f is the body force vector, t the specified surface traction vector, and & and
€ are the stress and strain tensors. The last term in Eq. (1.4.74) represents the
virtual work of internal forces stored in the body. The strains §¢ are assumed to be
compatible in the sense that the strain-displacement relations (1.3.11) are satisfied.
The work done by the inertia force ma in moving through the virtual displacement
ou is given by

/p8t2 ou dV (1.4.75)

where p is the mass density (can be a function of position) of the medium. We have
the result

to 82
/t1 { 8t2 -ou dV —

/ (f-(su-}?:é?)dwr f,.&uds”dt:o
14 So

or
Ou Odu R
/ / Por ot av + / bu—o (‘55)dV+ SQt-(Su dS]dt—O (1.4.76)

In arriving at the expression in Eq. (1.4.76), integration-by-parts is used on the first
term; the integrated terms vanish because of the initial and final conditions in Eq.
(1.4.73b). Equation (1.4.76) is known as the general form of Hamilton’s principle
for a continuous medium (conservative or not, and elastic or not).

For an ideal elastic body, we recall from the previous discussions that the forces
f and t are conservative,

§V = — (/ f-6udV+ [ t-éu dS) (1.4.77a)
v So

and that there exists a strain energy density function Uy = Up(e;;) such that

oUy

9o, (1.4.77b)

Oij =
Substituting Egs. (1.4.77a,b) into Eq. (1.4.76), we obtain

5 [P1K = (v+ Ut =0 (1.4.78)

t1
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where K and U are the kinetic and strain energies:

podu du

(o GV U= /U0 v (1.4.79)

Equation(1.4.78) represents Hamilton’s principle for an elastic body (linear or
nonlinear). Recall that the sum of the strain energy and potential energy of external
forces, U + V, is called the total potential energy, II, of the body. For bodies
involving no motion (i.e., forces are applied sufficiently slowly such that the motion
is independent of time, and the inertia forces are negligible), Hamilton’s principle
(1.4.78) reduces to the principle of virtual displacements.

The Euler-Lagrange equations associated with the Lagrangian, L = K — II,
(I1 = U + V) can be obtained from Eq. (1.4.78):

to
0=9¢6 L(u,Vu,u) dt
t1
0%u A
=/ [/( P o d1v0—f>~6udV+ S(t—t)'(SUdS}dt (1.4.80)
! 2
where integration-by-parts, gradient theorems, and Eqs. (1.4.73a,b) were used in

arriving at Eq. (1.4.80) from Eq. (1.4.78). Because éu is arbitrary for ¢, t; <t < to,
and for x in V and also on S5, it follows that

9%u

pw—divg—f:0 in V

t—t=0 onS, (1.4.81)

Equations (1.4.81) are the Euler-Lagrange equations for an elastic body.

Example 1.4.3 ( Third-order beam theory)

Consider the displacement field

u(z, z,t) = ug(z, t) + z¢(x,t) — c12° (qg + d“’o)
w(z, z,t) = wy(z,t) (1.4.82)

where ¢; = 4/(3h?), ug is the axial displacement, wy the trausverse displacement, and ¢ the rotation
of a point on the centroidal axis z of the beam. The displacement field is arrived by (a) relaxing the
Euler-Bernoulli hypotheses to let the straight lines normal to the beam axis before deformation to
become (cubic) curves with arbitrary slope at z = 0, and (b) requiring the transverse shear stress to
vanish at the top and bottom of the beam. Thus, only restriction from the Euler-Bernoulli beam
theory that is kept is w(z, z,t) = wg(z,t) (i.e., transverse deflection is independent of the thickness
coordinate z). The displacement field (1.4.82) accommodates quadratic variation of transverse shear
strain €., and shear stress 0., through the beam height, as can be seen from the strains computed
next.

Now suppose that the beam is subjected to distributed axial force f(x) and transverse load of
g(x,t) along the length of the beam. Since we are primarily interested in deriving the equations of
motion and the nature of the boundary conditions of the beam that experiences a displacement ficld
of the form in Eq. (1.4.82), we will not consider specific geometric or force boundary conditions
here. The procedure to obtain the equations of motion and boundary conditions involves the
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following steps: (1) compute the strains, (ii) compute the virtual energies required in Hamilton’s
principle, and (iii) use Hamilton’s principle, derive the Euler-Lagrange equations of motion and
identify the primary and secondary variables of the theory (which in turn help identify the nature
of the boundary conditions).

Although one can use the general nonlinear strain-displacement relations, here we restrict the
development to small strains and displacements. The linear strains associated with the displacement
field are

Eoo =59 + 260y + 236l
Yoo =YD 4 224 (1.4.83a)

where

©_%uw (m_0% @3 _ ¢ | 0%wy
Exa — 6I , Ezd = 61‘ y Eza = —C1 (917 + 6152
O g4+ % 4D = (¢ + 8“’0) (1.4.83b)

and cg = 4/h%. Note that v,, = 2e4, is a quadratic function of 2. Hence, 0z, = Gz, is also
quadratic in z.

From the dynamic version of the principle of virtual displacements (i.e. Hamilton’s principle)
we have

0= / / / Oz 562(;) + 266501,) + 2366(3)> + Ozz (6%(53) + z26fy(2)>] dAdzdt

/// {uo+z¢—qz (¢+dwo)] [5ﬂo+25¢5—c123(5¢+3§£0

L
+ wobirg }dAdxdt - / / (féug + qbwg)dxdt
0 0

)

/ / Nm(se“’) 4 Maebel) + Powte® + 0.649 + R, 5%”) dadt

/ / Toiiobiig + [ngs —el, (¢ + o )] 56+ foug + q5w0} dzdt

c1 I4¢ —cilg (¢ + = Ot )} (5¢ + ngo) + Iowo§1bo} dxdt

ON.e 5%y, OM,. 024 By
/ / {( _f+[0 82)60+< 8 +QI+K28t2 C1J48$8t2 6¢)

2P 0Q- 33 8ty 0w
+ [Cl 502 oz —q+c <J48.’L‘8t2 61[68 2962 + Iy 8t2 Swy pdxdt

L
T
- Obwy = OP;s F220) FBw
+/0 {szaug +Mm6¢—clPN 9z -+ |:Qz +Cl ( oz — J4 8t2 +01[66 8t2 5’(1)0 di
0

(1.4.84)

where all the terms involving [ - | vanish on account of the assumption that all variations and
their derivatives are zero at t = 0 and ¢ = T, and the new variables introduced in arriving at the
last expression are defined as follows:

Nzo h/2 1 Q h/2 1
Mo :/ 2 Y0z dz, { z } :/ { 9 }o’zz dz (1.4.85)
Py, —n/2 | 23 R —n2 L5
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- = 4 4
A{m:r =Mz — C]Pa:m s Qa: = Q:z: — CQRI, cl = W , Co = ﬁ (1486&)
h/2
Ji=1y—clg, Ko=1Iy2c1Iy+c3lg, I, = / p(2) dz (1.4.86b)
—~h/2
Note that I; are zero for odd values of i (i.e., [y = I3 =I5 =0).
Thus, the Euler-Lagrange equations are
ONgx 82u0
: = 1.4.8
bug Il (Rvs) (1.4.87)
0Qq 0?2 Py
bwy : 9 +c 522 +q
d2wg 3¢ g
= lp—— — ¢ 1.4.88
g+ (‘L‘ 02082~ 10942012 (1.4.88)
X OMye - 929 33wy
: — Qe = —_— = _— 1.4.88
b0: g ~ O =lagm —aligge (1.4.88b)

The last line of Eq. (1.4.84) includes boundary terms, which indicate that the primary variables
of the theory are (those with the variational symbol) ug, wg, ¢, and dwg/dz. The corresponding
secondary variables are the coefficients of dug, dwq, 6¢, and ddwq/dz:

0Py
or

— J45t7 + 01[6—— Mzam _Clpwz (1'4'89)

- 02 ABw _
Nez, Q”Cl( ; 3$8t%>’

When ¢; =0 in Eq. (1.4.82), it corresponds to the displacement field of the Timoshenko beam
theory. Thus, the equations of motion of the Timoshenko beam theory can be obtained directly
from Egs. (1.4.87) and (1.4.88a,b) by setting ¢; = ¢ = 0

ONgy 0%y
- +f=1 8t20 (1.4.90)
Q. 52
gi +q=1, 8;“30 (1.4.91a)
OMyz b2
oy We=1 _atf (1.4.91b)

The primary and secondary variables of the Timoshenko beam theory are: (ug,wg,¢) and
(Nyw,Qqz, Myz). Note that the Timoshenko beam theory accounts for transverse shear strain
vz =Y, and hence Q.. In the Timoshenko beam theory @, is defined, in place of the definition
(1.4.85), by

Q. =K / GardA (1.4.92)
A

where K is the shear correction factor.

A simplified third-order beam theory can be obtained from Egs. (1.4.87) and (1.4.88a,b) by
setting ¢; = 0 (but not ¢3):

ON” 82u0

oo+ f =l (1.4.93)
8QI 0211)()
= 1.4.¢
9z +4q I() 812 ( 34)
OMey  ~ o D%
81’ - Q;I: — 12 _8t2 (1495)

These equations are lower-order than those in Eqgs. (1.4.87) and (1.4.88a,b).
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1.5 Variational Methods
1.5.1 Introduction

In Section 1.4, we saw how virtual work and variational principles can be used to
obtain governing differential equations and associated boundary conditions. Here
we study the direct use of the variational principles in the solution of the underlying
equations. The methods to be described here are known as the classical variational
methods. In these methods, we seek an approximate solution to the problem in
terms of adjustable parameters that are determined by substituting the assumed
solution into a variational statement equivalent to the governing equations of the
problem. Such solution methods are called direct methods because the approximate
solutions are obtained directly by applying the same variational principle that was
used to derive the governing (i.e., Euler-Lagrange) equations.

The assumed solutions in the variational methods are in the form of a finite linear
combination of undetermined parameters with appropriately chosen functions. This
amounts to representing a continuous function by a finite set of functions. Since the
solution of a continuum problem in general cannot be represented by a finite set of
functions, error is introduced into the solution. Therefore, the solution obtained is
an approximation to the true solution of the equations describing a physical problem.
As the number of linearly independent terms in the assumed solution is increased,
the error in the approximation will be reduced, and the assumed solution converges
to the exact solution.

It should be understood that the equations governing a physical problem are
themselves approximate. The approximations are introduced by several sources,
including the geometry, representation of specified loads and boundary conditions,
and material behavior. Therefore, when one thinks of permissible error in an
approximate solution, it is understood to be relative to exact solutions of the
governing equations that inherently contain approximations. The variational
methods of approximation to be described here are limited to the Ritz method. and
the weighted-residual methods (e.g., the least-squares method, collocation method,
and so on). The weighted-residual methods will be visited only briefly. Interested
readers may consult the references at the end of the chapter for additional details
[6].

1.5.2 The Ritz Method

As noted in Section 1.4 the principle of virtual displacements gives the equilibrium
equations as the Euler-Lagrange equations. These governing equations are in the
form of differential equations that are not always solvable by exact methods of
solution. There exists a number of approximate methods that can be used to solve
differential equations (e.g., finite-difference methods, the finite element method,
etc.). The most direct methods are those which bypass the derivation of the Euler—
Lagrange equations, and go directly from a variational statement of the problem to
the solution of the equations. One such direct method was proposed by Ritz [26].
The Ritz method is based on variational statements, such as those provided by the
principles of virtual displacements or the minimum total potential energy, which are
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equivalent to the governing differential equations as well as the natural boundary
conditions, and they are also known as the weak forms.

The basic idea of the Ritz method is described here using the principle of virtual
displacements or the minimum total potential energy principle. In the Ritz method
we approximate a dependent unknown (e.g., the displacement) u of a given problem
by a finite linear combination of the form

N

ur Uy = ¢jp;+ %o (1.5.1)
j=1

and then determine the parameters c¢; by requiring that the principle of virtual
displacements holds for the approximate solution, i.e., minimize II(Uy) with respect
to¢j, j =1,2,---,N. In Eq. (1.5.1) ¢; denote undetermined parameters, and ¢
and ¢; are the approzimation functions, which are appropriately selected functions
of position z. Equation (1.5.1) can be viewed as a representation of u in a finite
component form; ¢; are termed the Ritz coefficients. The selection of ¢; is discussed
next.

Properties of Approximation Functions

Substitution of Eq. (1.5.1) into II(u) for u and the minimization of II(¢;) results
in a set of algebraic equations among the parameters c;. In order to ensure that
the algebraic equations resulting from the Ritz procedure have a solution, and the
approximate solution converges to the true solution of the problem as the number
of parameters N is increased, we must choose ¢; (j = 1,2,3,---,N) and ¢y such
that they meet the following requirements:

1. ¢p has the principal purpose of satisfying the specified essential (or geometric)
boundary conditions associated with the variational formulation; pg plays the
role of particular solution. It should be the lowest order possible for completeness.

2. ¢; (j =1,2,---,N) should satisfy the following three conditions:

(a) be continuous as required in the variational statement (i.e., ¢; should be such
that it has a nonzero contribution to the virtual work statement);

(b) satisfy the homogeneous form of the specified essential boundary conditions;
(c) the set {p;} is linearly independent and complete. (1.5.2)

The completeness property is defined mathematically as follows. Given a function
u and a real number € > 0, the sequence {y;} is said to be complete if there exists

an integer N (which depends on ¢ ) and scalars ¢, ¢, - -, ¢y such that
N
=3 iyl < = (1.5.3)
i=1
where || - || denotes a norm in the vector space of functions u. The set {p;} is called

the spanning set. A sequence of algebraic polynomials, for example, is complete if
it contains terms of all degrees up to the highest degree (N).
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Linear independence of a set of functions {¢;} refers to the property that there
exists no trivial relation among them; i.e., the relation

a1py +agpr + - +anen =0

holds only for all o; = 0. Thus no function is expressible as a linear combination of
others in the set.

For polynomial approximations functions, the linear independence and
completeness properties require ¢; to be increasingly higher-order polynomials. For
example, if 1 is a linear polynomial, @2 should be a quadratic polynomial, @3 should
be a cubic polynomial, and so on (but each ¢; need not be complete by itself):

2 2
p1=a1 + bz, <,02=a2+b2:c+02m2, ag + cox®, or box + cox”, - --

The completeness property is essential for the convergence of the Ritz approximation
(see Reddy [29], p. 262).

Since the natural boundary conditions of the problem are included in the
variational statements, we require the Ritz approximation Uy to satisfy only the
specified essential boundary conditions of the problem. This is done by selecting ¢;
to satisfy the homogeneous form and g to satisfy the actual form of the essential
boundary conditions. For instance, if u is specified to be % on the boundary x = L,
we require

wo=1 at z=L and ;=0 at =1L for i=1,2,--- N

The requirement on ¢; to satisfy the homogeneous form of the specified essential
boundary conditions follows from the approximation adopted in Eq. (1.5.1). Since
Uy =4 and pg = 4 at £ = L, we have

N

Un(L) = ¢jpi(L) + @o(L)
j=1

N
a=> cjp;(L)+1
j=1

and, therefore, it follows that Z;-V:l ¢;pi(L) = 0. Since this condition must hold for
any set of parameters c;, it follows that

wj(L)=0 for j=1,2,---,N

Note that when the specified values are zero, i.e., & = 0, there is no need to include
@o (or equivalently, ¢g = 0); however, ¢; are still required to satisfy the specified
(homogeneous) essential boundary conditions.

The conditions in Eq. (1.5.2) provide guidelines for selecting the coordinate
functions; they do not give any formula for generating the functions. As a general
rule, coordinate functions should be selected from the admissible set, from the lowest
order to a desirable order without missing any intermediate admissible terms in the
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representation of Uy (i.e., satisfy the completeness property). The function ¢g has
no other role to play than to satisfy specified (nonhomogeneous) essential boundary
conditions; there are no continuity conditions on ¢g. Therefore, one should select
the lowest order ¢, that satisfies the essential boundary conditions.

Algebraic Equations for the Ritz Parameters

Once the functions o and ¢; are selected, the parameters ¢; in Eq. (1.5.1) are
determined by requiring Uy to minimize the total potential energy functional II (or
satisfy the principle of virtual work) of the problem: §TI(Uy) = 0. Note that II(Uy)
is now a real-valued function of variables, ¢1, ¢, -+, cy. Hence minimization of the
functional II(Uy) is reduced to the minimization of a function of several variables:

N
o1l o1l
0=46II(Uy) =06Il(¢c;) = ) ——bc; or — =0 (1.5.4)
=1 8ch- aci

This gives N algebraic equations in the N coefficients (¢, ¢z, ..., ¢n)

N
0= g—g = X;Aijcj - bi or [A]{C} = {b} (155)
j:

where A;; and b; are known coefficients that depend on the problem parameters
(e.g., geometry, material coefficients, and loads) and the approximation functions.
These coefficients will be defined for each problem discussed in the sequel. Equations
(1.5.5) are then solved for {c} and substituted back into Eq. (1.5.1) to obtain the
N-parameter Ritz solution.

Some general features of the Ritz method based on the principle of virtual
displacements are listed below:

1. If the approximate functions ; are selected to satisfy the conditions in Eq.
(1.5.2), the assumed approximation for the displacements converges to the true
solution with an increase in the number of parameters (i.e., as N — oo). A
mathematical proof of such an assertion can be found in [20-22, 29].

2. For increasing values of IV, the previously computed coefficients A;; and b; of the
algebraic equations (1.5.5) remain unchanged, provided the previously selected
coordinate functions are not changed. One must add only the newly computed
coeflicients to the system of equations. Of course, ¢; will be different for different
values of N.

3. If the resulting algebraic equations are symmetric, one needs to compute only
upper or lower diagonal elements in the coefficient matrix, [A]. The symmetry
of the coefficient matrix depends on the variational statement of the problem.

4. If the variational (or virtual work) statement is nonlinear in u, then the resulting
algebraic equations will also be nonlinear in the parameters ¢;. To solve such
nonlinear equations, a variety of numerical methods are available (e.g., Newton’s
method, the Newton-Raphson method, the Picard method), which will be
discussed later in this book (see Chapter 13).
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5. Since the strains are computed from an approximate displacement field, the
strains and stresses are generally less accurate than the displacement.

6. The equilibrium equations of the problem are satisfied only in the energy sense,
not in the differential equation sense. Therefore the displacements obtained from
the Ritz approximation, in general do not satisfy the equations of equilibrium
pointwise, unless the solution converged to the exact solution.

7. Since a continuous system is approximated by a finite number of coordinates
(or degrees of freedom), the approximate system is less flexible than the
actual system. Consequently, the displacements obtained using the principle
of minimum total potential energy by the Ritz method converge to the exact
displacements from below:

U < Uz <...<Uyxy < Upy... <ulexact), for M > N

where Uy denotes the N-parameter Ritz approximation of v obtained from the
principle of virtual displacements or the principle of minimum total potential
energy. It should be noted that the displacements obtained from the Ritz method
based on the total complementary energy (maximum) principle provide the upper
bound.

8. The Ritz method can be applied, in principle, to any physical problem that can
be cast in a weak form — a form that is equivalent to the governing equations
and natural boundary conditions of the problem. In particular, the Ritz method
can be applied to all structural problems since a virtual work principle exists.

Example 1.5.1:

Consider the cantilever beam shown in Figure 1.4.2. We consider the pure bending case (i.e.,
ug = 0). We set up the coordinate system such that the origin is at the fixed end. For this case the
geometric (or essential) boundary conditions are

dwo
wp(0) =0, %(0) =0
The force (or natural) boundary conditions can be arbitrary. For example, the beam can be
subjected to uniformly distributed transverse load ¢(z) = ¢, concentrated point load Fy, and
moment My, as in Figure 1.4.2. The applied loads will have no bearing on the selection of ¢y and
;. The applied loads will enter the analysis through the expression for the external work done [see
Eq. (1.4.52)], which will alter the expression for the coefficients F; of Eq. (1.5.5).

An N-parameter Ritz approximation of the transverse deflection wy(x) is chosen in the form

N

wo(2) # Wy =Y ¢+ 90 (1.5.6)
j=1

Since the specified essential boundary conditions are homogeneous, ¢y = 0. Next, we must select
@; to satisfy the homogeneous form of the specified essential boundary conditions

0:(0) =0 and ‘ZZZ' 0) =0 (1.5.7)

and ¢; must be differentiable as required by the total potential energy functional in Eq. (1.4.67)
of Example 1.4.2. Since there are two conditions to satisfy, we begin with ¢, = a + bz + cz? and
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determine two of the three constants using Eq. (1.5.7). The third constant will remain arbitrary.
Conditions (1.5.7) give a = b = 0, and ¢ (z) = cx2. We can arbitrarily take ¢ = 1. Using the same
procedure, we can determine g, 3, etc. One may set the coefficients of lower order terms to zero,
since they are already accounted in the preceding ¢;:

¥1 :"1'27 ¥2 :‘Tsv £3 :.2174, Ty PN =zt
The Ritz approximation becomes
Wy =122 +cord + - eyaV 1! (1.5.8)

Substituting Eq. (1.5.8) into Eq. (1.4.67) we obtain II as a function of the coefficients ¢1, ¢a, -,
CN:

L
ET
ey, e, en) :/ {~2—- [281+602$+~~~+N(N+1)CN17N71]2
0

— q((ﬁlq;2 +(52{133 + ,_.+CN1.N+1)}dI

~Frleiz? v eoz® +- -+ exaN o p

— Mp2c12 +3coz? 4+ -+ (N + DevazN]o=1 (1.5.9)
Using the total potential energy principle, 611 = 0, which requires that II be a minimum with
respect to each of ¢y, ¢g, - -+, ¢y, we arrive at the conditions
o1l ol oIl
— =0, =— =0, -, — = 1.5.1
8c1 T Oco T Oy ( > 0)
The 7th equation in (1.5.10) has the form
all r
0= 5o = / {EI [201 +6cow +---+ N(N + l)cN:erl} i(t+ 1)zt —¢q xi+1}d:1c
3 0
—F Lt M i+ 1)L
L L
=c¢ [/ 2T -i(i + l)xildx} + o [/ 6EIx-i(i+ l)mildx} 4
Jo 0
L L
+cn U EIN(N + DaN-Yi(i + 1)zl1d4 7/ q(z)zde — FL LT - My (i + 1)L
J0 0
N
= CIAil + CQAZQ + .-+ CNAU\] - Fz = ZA”C] - bz s (7, = 1,2, ,N) (1511&)
j=1
where

L L
Ay =EI / JU+ DI i+ ) e, b = / q(2)r T de 4+ F L 4+ M (i4+ 1) L8 (1.5.11b)
Jo 0
For one- and two-parameter approximations we have the following equations:
L3 .
N=1: A, =4EIL, b :qOT+FLL2+2AILL

qOL2 FLL A[L
12E1 ~ 4EI  2EI’

4 3 y 2 2
Wy (x) = <q°L L EL? ML > L (1.5.12a)

c1 =

12E1 ' 4EI 2ET ) 12
N=2: Ay =AFIL, Ajg=6EIL? =Aq,, Agy=12EIL3
3 . 4
by = % + F L2 4 2ML L, by = q_04i + FLL3 +3M,L?
1 /5 o, 1 1 1
=g (2—4q0L +SFL+ §ML>, ¢ = —13pr (0L +2Fy)

[ Bgolt | FLL3  MpL?\ x2 ql?  Fp L3\ 23
WZ(I)_<24EIWL ser topr )2\ 12Er T esr )3 (1512)
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The exact solution is

qol? x? z3 ozt Fy L3 z2 3 MpL? 22
— Qb fex” oz B LT faxt ozt MpLT ozt 1.5.1
wol®) = 5157 <6 it T eEr P ) Y e I (1.5.13)

The two-parameter solution is exact for the case in which gg = 0. For gg # 0, the solution is not
exact for every x but the maximum deflection W5(L) coincides with the exact value wg(L). The
three-parameter solution, with ¢3 = z%, would be exact for this problem.

If we were to choose trigonometric functions for ;, we may select the functions ¢;(z) =
1 — cos[(2¢ — 1)mx/2L]. This particular choice would not give the exact solution for a finite value
of N, because the applied load gg, when expanded in terms of ;, would involve infinite number
of terms. Thus, a proper choice of the coordinate functions is important in realizing the exact
solution. Of course, both algebraic and trigonometric functions would yield acceptable results with
finite number of terms.

1.5.3 Weighted-Residual Methods

Consider an operator equation in the form
Au) = fin Q

Bi(u) =t on Ty, Ba(u)=gonTy (1.5.14)

where A is a linear or nonlinear differential operator, u is the dependent variable, f
is a given force term in the domain (), By and By are boundary operators associated
with essential and natural boundary conditions of the operator A, and @ and § are
specified values on the portions I'; and ['s of the boundary I' of the domain. An
example of Eq. (1.5.14) is given by

Alu) = _% (aj—z> , Bi(u) = u, Ba(u) = ad—u

I'; is the point x = 0, 'y is the point x = L
We seek a solution in the form

N

Un = Z cjp; + o (1.5.15)
=1

where the parameters c¢; are determined by requiring the residual of the

approximation
N

Ry=A ZCj(,Oj—{-gOo —f#0 (1.5.16a)
j=1

be orthogonal to N linearly independent set of weight functions 1;:
/ WiRn(ciy i f) dx =0, i = 1,2, N (1.5.16b)
Q

The method based on this procedure is called, for obvious reason, a weighted-residual
method.
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The coordinate function ¢, and ; in a weighted-residual method should satisfy
the properiies in Eq. (1.5.2), except that they should satisfy all specified boundary
conditions;:

e g should satisfy all specified boundary conditions.

e ¢; should satisfy homogeneous form of all specified boundary conditions. (1.5.17)

The variational statement referred to in Property 2a of (1.5.2) is now given in Eq.
(1.5.16b). Properties in (1.5.17) are required because the boundary conditions,
both essential and natural, are not included in Eq. (1.5.16b). Both properties now
require ; to be of higher order than those used in the Ritz method. On the other
hand, v; can be any linearly independent set, such as {1, z,---}, and no continuity
requirements are placed on ;.

Various special cases of the weighted—residual method differ from each other due
to the choice of the weight function ;. The most commonly used weight functions
are

Galerkin’s method: W = ©;
Least-squares method: v; = A(y;)
Collocation method: Vi = 6(x — %x;)

Here 6(-) denotes the Dirac delta function. The weighted-residual method in the
general form (1.5.16b) (with ¢; # ¢;) is known as the Petrov-Galerkin method.
Equation (1.5.16b) provides N linearly independent equations for the determination
of the parameters ¢;. If A is a nonlinear operator, the resulting algebraic equations
will be nonlinear. Whenever A is linear, we have

N N
A (Z cjps + @o) =Y ¢ Alp;) + Aleo) (1.5.18)

=1 =1

and Eq. (1.5.16b) becomes

g: [/Q wiA(SOj)dx} cj — /Qlﬁi [f — A(po)]dx =0

7=1
N
Y Gijcj—¢i=0,i=1,2,--- N (1.5.19a)
j=1
where
Gij = /sz'A(soj)dx G =/Qw¢ [f — Algo)] dx (1.5.19b)

Note that Gj; is not symmetric in general, even when ¢; = ¢; (Galerkin’s method).
It is symmetric when A is a linear operator and v; = A(p;) (the least-squares
method).

It should be noted that in most problems of interest in solid mechanics, the
operator A is of the form that permits the use of integration by parts to transfer
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half of the differentiation to the weight functions ; and include natural boundary
conditions in the integral statement (see Reddy [6]). For problems for which there
exists a quadratic functional or a virtual work statement, the Ritz method is most
suitable. The least-squares method is applicable to all types operators A but requires
higher-order differentiability of ¢;.

The Galerkin Method

The Galerkin method is a special case of the Petrov—Galerkin method in which
the coordinate functions and the weighted functions are the same (p; = ;). It
constitutes a generalization of the Ritz method. When the governing equation has
even order of highest derivative, it is possible to construct a weak form of the
equation, and use the Ritz method. If the Galerkin method is used in such cases,
it would involve the use of higher-order coordinate functions and the solution of
unsymmetric equations.
The Ritz and Galerkin methods yield the same set of algebraic equations for the
following two cases:
1. The specified boundary conditions of the problem are all essential type, and
therefore the requirements on ; in both methods are the same.
2. The problem has both essential and natural boundary conditions, but the
coordinate functions used in the Galerkin method are also used in the Ritz
method.

Least-Squares Method

The least-squares method is a variational method in which the integral of the square
of the residual in the approximation of a given differential equation is minimized
with respect to the parameters in the approximation:

min I (¢;) E/ |Rn(cj, 05, [)I? dx (1.5.20a)

Q

or oR
/ 2R (cjr 05 ) dx =0, i=1,2,+,N (1.5.20D)

Q )

where Ry is the residual defined in Eq. (1.5.16a). Equation (1.5.20) provides N
algebraic equations for the constants c;.

First we note that the least-squares method is a special case of the weighted-
residual method for the weight function, ¢; = 2(0Rn/d¢;) [compare Egs. (1.5.16b)
and (1.5.20b)]. Therefore, the coordinate functions ; should satisfy the same
conditions as in the case of the weighted-residual method. Next, if the operator
A in the governing equation is linear, the weight function ¢; becomes

_ Ry

Then from Eq. (1.5.20) we have

>

N
j=1

[/Q A(Soz’)A(‘Pj)dX] ¢ —/Q[A(%)f_A(%)A(%)] dx = 0
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or N
ZL@jCj—hi:O’ 1= 1727"'7N (1522‘&)
j=1
where
Ly = [ AledAley) dx, b= [ Ao [F — Al dx (1.5.22D)

Note that the coefficient matrix is symmetric. The least-squares method requires
higher-order coordinate functions than the Ritz method because the coefficient
matrix L;; involves the same operator as in the original differential equation and no
trading of differentiation can be achieved. For first-order differential equations the
least-squares method yields a symmetric coefficient matrix, whereas the Ritz and
Galerkin methods yield unsymmetric coeflicient matrices. Note that in the least-
squares method the boundary conditions can also be included in the functional. For
example, consider Eq. (1.5.14). The least-squares functional is given by

1(u>:%{/ﬂ[,4<u)—f]2d9+/r] [Bl(u)—a]zdl“—i—/m [Bg(u)—g]QdF} (1.5.23)

Collocation Method

In the collocation method, we require the residual to vanish at a selected number of
points X' in the domain:

Ry(x', {c}, {8}, f) =0, (i=1,2,--- N) (1.5.24a)

which can be written, with the help of the Dirac delta function, as

; S(x — xRy (x,{c}, {o}, /) dx =0, (i=1,2,---,N) (1.5.24b)
Thus, the collocation method is a special case of the weighted-residual method
(1.5.16b) with 9;(x) = 6(x — x*). In the collocation method, one must choose as
many collocation points as there are undetermined parameters. In general, these
points should be distributed uniformly in the domain. Otherwise, ill-conditioned
equations among c; may result.

Eigenvalue and Time-Dependent Problems

It should be noted that if the problem at hand is an eigenvalue problem or a
time-dependent problem, the operator equation in Eq. (1.5.14) takes the following
alternative forms:

Eigenvalue problem

A(u) — AC(u) = 0 (1.5.25)

Time-dependent problem
Ai(u) + A(uw) = f(z,t) (1.5.26)
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In Eq. (1.5.25), parameter X is called the eigenvalue, which is to be determined
along with the eigenvector u(x), and A and C are spatial differential operators. An
example of the equation is provided by the buckling of a beam-column

d? d’u d*u
ol = 1.5.2
dz? <E1dw2> + deQ 0 (1.5.27)

where v denotes the lateral deflection and P is the axial compressive load. The
problem involves determining the value of P and mode shape u(z) such that the
governing equation and certain end conditions of the beam are satisfied. The
minimum value of P is called the critical buckling load. Comparing Eq. (1.5.27)
with Eq. (1.5.25), we note that

d? d*u d?*u

In Eq. (1.5.26) A is a spatial differential operator and A; is a temporal differential
operator. Examples of Eq. (1.5.26) are provided by the equations governing the axial
motion of a bar: 2 5 5

u u
—p=— — — | FApg=— | = t 1.5.28
o2~ or ( O@x) fla.t) ( )
where u denotes the axial displacement, p the density, £ Young’s modulus, Ag area
of cross section, and f body force per unit length. In this case, we have

&%u 0 ou
Ay(u) = —Poa A(u) = - (EA0%>

Application of the weighted-residual method to Eqgs. (1.5.25) and (1.5.26) follows

the same idea, i.e., Eq. (1.5.16b) holds. For additional details and examples, the
reader may consult [6].

Example 1.5.2:

Consider the eigenvalue problem described by the equations
SY _Au=0 u(0) =0 d—u—i—u—O atz =1 (1.5.29)
2 - - d.’E - - L.

In a weighted-residual method, ; must satisfy not only the condition ¢1(0) = 0 but also the
condition cp;(l) + ;(1) = 0. The lowest-order function that satisfies the two conditions is

1 (x) = 3z — 222 (1.5.30)

The one-parameter Galerkin’s solution for the natural frequency can be computed using

1
d2p, 10 4
= A -4 = =0 1.5.31
0 c1/0 wl(dﬁ + Apq Jdz or ( 3 +5/\>cl ( )

which gives (for nonzero c¢;) A = 50/12 = 4.167. If the same function is used for ¢ in the one-
parameter Ritz solution, we obtain the same result as in the one-parameter Galerkin solution.
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For one-parameter collocation method with the collocation point at z = 0.5, we obtain
[£1(0.5) = 1.0 and (d?¢y/dx2) = —4.0]

0= cr01(0.5) l(djﬁl)

which gives A = 4.

+ )\tpl(O.S)} or (=44+X)c; =0 (1.5.32)
r=0.5

The one-parameter least-squares approximation with ¥ = A(p) gives

1
d2p; (d? 5
o:cl/O d;’f; (d;;l +,\¢1) dz or (—4-1—6)\) =0 (1.5.33)

and A = 4.8. If we use ¥ = A(p1) — A1, we obtain

1 ¢
d? d?
0201/0 ( d;gl +)\501> < d';gl +/\<pl> dx

- (SL @AHG) e (1.5.34)
5 3
whose roots are 95 1
A2 = 3 + 6\/445 —  A; =T7.6825, Ay =0.6508 (1.5.35)

Neither root is closer to the exact value of 4.116. This indicates that the least-squares method with
¥; = A(w;) 1s perhaps more suitable than ¥; = A(p;) — AC(¢;).
Let us consider a two-parameter weighted-residual solution to the problem

Uz (z) = c1p1(x) + capa () (1.5.36)

where ¢ (x) is given by Eq. (1.5.30). To determine ¢2(x), we begin with a polynomial that is one
degree higher than that used for ¢1:

wa(x) = a + bz + cx? + da

and obtain

©2(0) =0 — a=0; p5(1) +p2(l)=0 — 2b+3c+4d:00rd:—§b7 zc
We can arbitrarily pick the values of b and ¢, except that not both are equal to zero (for obvious
reasons). Thus we have infinite number of possibilities. If we pick b =0 and ¢ = 4, we have d = -3,
and @9 becomes

o) = a + bz + cx? + do® = 42 — 323 (1.5.37a)
On the other hand, if we choose b = 1 and ¢ = 2, we have d = —2, and g9 becomes
walx) = a+br+cx® +dad =z + 222 — 22° = Ga(x) (1.5.37b)

The set {1, 92} is equivalent to the set {¢q,p2}. Note that

Ua(a) = crp1(z) + capa(x)
= ¢1(3z — 222) + o (422 — 32%)
=3c12 + (=2¢; + 4¢3)x? ~ 3eqg2°
Ua(x) = c1p1(z) + capa(x)
=& (37 — 222) + &g (x + 222 — 223)
= (3¢, + &) x + (=26, + 269) 2% — 28923



70 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

Comparing the two relations we can show that
¢1 =c1 —0.5¢cy, & = 1.5cy

Hence, either set will yield the same final solution for Us(x) or A.
Using ¢ from (1.5.30) and @9 from Eq. (1.5.37a), we compute the residual of the approximation

as
42U, d*py d?¢y
R=-—5 ~ My =—ci—5 ~ 5 ~Aeipr +c292)
d*py d?p1
=c (— Fra )\cp1> + co <— prCa Ao (1.5.38)

For the Galerkin method, we set the integral of the weighted-residual to zero and obtain

' ! d*py d?p,
0= /0 v1(2)R dz :/0 p1(z) [701 oz g —Mawrt 02902)} dx
= Kjic1 + Ki2¢p — A(Myycp + Miaca)
1 1
d? d?
0= [ pax)Rdx= [ pa(x)|-c1 <p21 —c2 <021 —Aeipy +cag2) | dx
o 0 dx dx

= Kg1c1 + Kaaco — A(Mareq + Mageo)

In matrix form, we have
[(K{c} = A[M]{c} = {0}

where

1 d2(p 1
Ky = ‘/0 pigs do, My = g dr

First, for the choice of functions in Egs. (1.5.30) and (1.5.37a), we have

d®p1 d?py

prea i R

Evaluating the integrals, we obtain

-1 2 1
K1 :7/ ¢1d 91 da::/ (3gc—2.q:2)(4)dm:L0
0 0

dx? 3

1 2 1
K12:_/ ¢1dd¢22 da::/ (3m72x2)(—8+18w)dm:§
0 x 0

1 2 1
Ko = —/ ¢2d d?l dr = / (422 - 323)(4)dx = g
0 0

dx?

1 1
d?py 2 3 38
K22 = — / ¢2 - d.’IJ = (41 — 3(1}' )(78 —+ 18.’,5)(133 = —
Jo dz? 0 15

S

1 1
My = o101 de = / (8 — 222)(3z — 222)dz =
0 0

o

1 1
Mo :/ D100 dr = / (3z - 222%) (422 — 323)dz = % = Moy
0 JO

7

T35

1[50 35] A [28 21 erl o
15|35 381 35|21 17 e[ 710

»1 1
Moy = / botpy dz = / (4z? - 32%)(42? — 323)dx
0 0

and
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For nontrivial solution, ¢; # 0 and ¢y # 0, we set the determinant of the coefficient matrix to zero
to obtain the characteristic polynomial
675 — ngL%A? =0 or 525-148MA+5X2 =0 (1.5.39)
which gives
A =4.121, Ay = 25.479 (1.5.40)
Clearly, the value of A\; has improved over that computed using the one-parameter approximation.
The exact value of the second eigenvalue is 24.139.

If we were to use the collocation method, we may select © = 1/3 and = = 2/3 as the collocation
points, among other choices. We leave this as an exercise to the reader.

1.6 Summary

In this chapter a review of the linear and nonlinear strain-displacement relations,
equations of motion in terms of stresses and displacements, compatibility conditions
on strains, and linear constitutive equations of elasticity, thermoelasticity and
electroelasticity is presented. Also, an introduction to the principle of virtual
displacements and its special case, the principle of minimum total potential energy,
is also presented. The virtual work principles provide a means for the derivation of
the governing equations of structural systems, provided one can write the internal
and external virtual work expressions for the system. They also yield the natural
boundary conditions and give the form of the essential and natural boundary
conditions. The last feature proves to be very helpful in the derivation of higher-
order plate theories, as will be shown in the sequel. A brief but complete introduction
to the Ritz method and weighted-residual methods (Galerkin, least-squares, and
collocation methods) is also included in this chapter.

The principle of virtual displacements will be used in this book to derive
governing equations of plates according to various theories, and the Ritz and
Galerkin methods will be used to determine solutions of simple beam and plate
problems. The ideas introduced in connection with classical variational methods
are also useful in the study of the finite element method (see Chapter 9).

The single most difficult step in all classical variational methods is the selection
of the coordinate functions. The selection of coordinate functions becomes more
difficult for problems with irregular domains or discontinuous data (i.e., loading
or geometry). Further, the generation of coefficient matrices for the resulting
algebraic equations cannot be automated for a class of problems that differ from
each other only in the geometry of the domain, boundary conditions, or loading.
These limitations of the classical variational methods are overcome by the finite
element method. In the finite element method, the domain is represented as an
assemblage (called mesh) of subdomains, called finite elements, that permit the
construction of the approximation functions required in Ritz and Galerkin methods.
Traditionally, the choice of the approximation functions in the finite element method
is limited to algebraic polynomials. Recent trend in computational mechanics is
to return to traditional variational methods that are meshless and find ways to
construct approximation functions for arbitrary domains [31-36]. The traditional
finite element method is discussed in Chapter 9.
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Problems

1.1 The nine cross-product (or vector product) relations among the basis (&, és,€3) can be
expressed using the index notation as

€ X &; = €€
where €, is the permutation symbol. Prove the following properties of 6;; and €;;:
(a) Fij‘sjk = Fy
(b) bi36i5 = bii
(¢) eijueije = 6, (for 4,7,k over a range of 1 to 3)
(d) €64:4; =0
(€) €ijk = €hij = €jri = —€jik = —€ikj = —€hji

1.2 Prove the following vector identities nsing the summation convention and the e — 6 identity
(1.2.8). In the first three identities A, B, C and D denote vectors:

() (AxB)x(CxD)=[A - (CxD)B-[B-(CxD)A
(b) (AxB) - (CxD)=(A-C)(B-D)-(A.-D)(B-C)
() (AxB)- [(BxC)x(CxA)=[A - (BxC)?
(d) (AB)T = (B)T(A)T, where A and B are dyads

1.3 Use the integral theorems to establish the following results:
(a) The total vector area of a closed surface is zero.
(b) Show that AV = 8L AS (see Figure 1.2.3b).

1.4 Derive the following integral identities:
|1 Ou;  Ouj _ Ow; { du;  Ouj _ o Ous %
(a)_/ﬂw’ [a_xj (axj * axiﬂ a0 = /Q 9z <axj * az,-> a2 jé“””] <axj t o )"
0 o
4, o2 o2 _ Y w20 — 920 ZP 1 ar
(b)/ﬂ(w %~ V2pv2y) o j{[‘”anw v v 2] 4

where w; and wu; are functions of position in €2, and I' is the boundary of 2. The summation
convention on repeated subscripts is used.

1.5 If A is an arbitrary vector and ® is an arbitrary second-order tensor, show that
(a) IxA) ®=Ax®, I= unit tensor
(b) (@ x A)T = —A x &T

1.6 Write the position of an arbitrary point (zj,z9,z3) in the deformed body (solid lines) in
terms of its coordinates in the undeformed body (broken lines) and compute the nonlinear
Lagrangian strains for the body shown in Figure P1.6.

%9, X5
X2 »XZ A €y
A e e
" Ieo
b b
. L feo
a x1,X; a x1,X,
(a) (b)

Figure P1.6
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1.7 Write the position of an arbitrary point (z7,z9,23) in the deformed body (solid lines) in
terms of its coordinates in the undeformed body (broken lines) and compute the nonlinear
Lagrangian strains for the body shown in Figure P1.7.

x2, X3
x3,X,
A
Parallel
b b quadratic
curves
o e
2 x1, X1 a x1,X3

(a) (b}

Figure P1.7

1.8 Compute the axial strain in the line element AB and the shear strain at point O of the
rectangular block shown in Figure P1.8 using the engineering definitions.

%9, X5 X9, Xy e
A A b
D C &
a a [s) 5 :
o E -
fe—r x:X1 A B x1,X;
a e
a
(a) (b)
Figure P1.8

1.9 Compute the nonlinear strain components E;; associated with the displacement field

€o

e
Xg,ugz—OXl , uz =0
b a

Uy =

where e,, a, and b are constants.
1.10 Consider the uniform deformation of a square of side 2 units initially centered at X = (0, 0).
The deformation is given by the mapping

1 1
Ir = 1(18+4X1 +6X2), Tog = Z<14+6X2)

(a) Sketch the deformed configuration of the body.

(b) Compute the components of the deformation gradient tensor F and its inverse (display
them in matrix form).

{c) Compute the Green’s strain tensor components (display them in matrix form).

1.11 Find the linear strains associated with the 2-D displacement field

Pzizy = PL2 (2+v)P 4

Ul = ——F—5— 72 ——

2FET 2F]T 6E] 2
Ph2(1 +v) vP 9 P 4 PIL? PL3
SRS Y PE g2 a3 T £47
2 T Y] Sa L Ry i Sy oy S ey o
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where P, h, v, and EI are constants.

1.12 Find the linear strains associated with the 2-D displacement field (uz = 0)

Uy = —Cox122 + c1%2 + o3 +¢q

Ug = %co [1/ (xg - x%) + m%] + 423 + 571 + Cg

where cg,cq, -, cg are constants.

1.13 Use the definition (1.3.11) and the vector form of the displacement field and the del operator
(V) in the cylindrical coordinate system

u = u,&, +ugéy +u,e, and Vzér2 +é91£ —i—éz2

or T 00 0z

to compute the linear strain-displacement relations in the cylindrical coordinate system:

_ Our _10u, | Oup ug _ 10ug | ur
e T Ree e T T ree v
. l@uz Oug Ou _ Ou, | Ou,

=T Y e 2T 5 T 5 T e

1.14 Show that in order to have a valid displacement field corresponding to a given infinitesimal
strain tensor ¢, it must satisfy the compatibility relation

T
V x (V X E) =0 or €imp€ing€ijmn — 0

where €5, is the permutation symbol [see Egs. (1.2.5b) and (1.2.7)] and ¢;; are the
Cartesian components of the strain tensor. Hints: Begin with V x € and use the requirement
Ui ik = Ui kj-
1.15 Consider the Cartesian components of an infinitesimal strain field for an elastic body [8]:
€31 = €32 =€e33 =0
€11 :A.’l’g, €99 :ACC%, 2612 :Bicl.’lfg
where A and B are constants.

(a) Determine the relation between A and B required for there to exist a continuous,
single-valued displacement field that corresponds to this strain field.

(b) Determine the most general form of the corresponding displacement field with the A
and B from Part (a).

(¢) Determine the specific corresponding displacement field that is fixed at the origin so
that u=0 and V x u =0 when x =0.

1.16 Use the del operator (V) and the dyadic form of ¢ in the cylindrical coordinate system
(r,8, 2) to express the equations of motion (1.3.26a) in the cylindrical coordinate system:

00y 1 80'7«(.) 00, Trr — Og9 . azur

or +r o6 + 0z + T +fe=ro ot
80’,«9 1 (30’99 80’9z Trg _ 82U9
ar tros T e, T2 tle=rogs
0oy, 100g, O0., Ors _ 0%u,
o T ae T e T Ty

1.17 The components of a stress dyadic o at a point, referred to the rectangular Cartesian system
(z1,20,23), are:
12 9 0
[ol=1] 9 —12 0|MPa
0 0 6
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Find the following:
(a) The stress vector acting on a plane perpendicular to the vector 2&; — 2é5 + &3 passing
through the point. Here &; denote the basis vectors in (21, xs,z3) system.

(b) The magnitude of the stress vector and the angle between the stress vector and the
normal to the plane.

(¢) The magnitudes of the normal and tangential components of the stress vector.
(d) Principal stresses.

1.18 The problem of pulling a fiber imbedded in a matrix material can be idcalized (in the interest
of gaining qualitative understanding of the stress distributions at the fiber-matrix interfacc)
as one of studying the following problem [8]: consider a hollow circular cylinder with outer
radius a, inner radius b, and length L. The outer surface of the hollow cylinder is assumed
to be fixed and its inner surface ideally bonded to a rigid circular cylindrical core of radius
b and length L, as shown in Fig. P1.18. Suppose that an axial force F = Pé, is applied to
the rigid core along its centroidal axis.

(a) Find the axial displacement 6 of the rigid core by assuming the following displacement
field in the hollow cylinder:

uy = ug =0, u;=u.(r)
(b) Find the relationship between the applied load P and displacement é of the rigid core.
(¢) Determine the work done by the load P.

Here the hollow cylinder represents the matrix around the fiber while the fiber is idealized
as the rigid core.

- >

»
P

NN R T NN

- ————— - —

Figure P1.18

1.19-1.20 Write expressions for the total virtual work done, 8W = &U + 6V, for each of the
beam structures shown in Figs. P1.19 and P1.20.

Beam (EILEA)

Figure P1.19
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qy

q(x) =q0 (2_%)

El [—» ]
e
il
E1141//_‘L

Figure P1.20

Find the Euler—Lagrange equations and the natural boundary conditions associated with each of the
functionals in Problems 1.21 through 1.25. The dependent variables are listed as the arguments
of the functional. All other variables are not functions of the dependent variables.

1.21
L 2
EA /d k
M) = [ [T (‘%) fuo] dz + 3 ug(L))? — Puo(L), uo(0) =0
0
1.22
L 2
EI { 2w ko,
H(’wo) /0 {2 (dac2) +2w0 quwo Ly wO(O) Oa wO( )
1.23
L 272 2 2
_ EA duo 1 d’wo EI (d Wp
H(“O’wo)—/o {7 [a%(%) ] Y ( ) ([
= Fowo(L) — Puo(L)
wo(0) = 0, wo(0) =0, 200y = 0
0 s 0 * dx
1.24
2 2 2
_ Dll 8211)0 D22 82’[110 82’11)0
“““0)—/9 [T ( oz ) T2 o ) TP\ aeay) 10| B
OJwyg )
wg = 0, o 0 on the boundary T
1.25

1 ou Av\? ou v\ 2
I(U,U)—/Q{§ [<011%+6125§> +(612$+C226_y)

2
+ca3 (Z_Z + %) ] — fiu-— fzv}dfﬂdy— (tru+tav)ds
T,

u=gtandv=0 on I'y, '+, =T



1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

1.34
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Suppose that the total displacements (u,v,w) along the three coordinate axes (z,y,z) in a
laminated beam can be expressed as

u(x, 2) = ug(z) + 202 () + 229, (x) + 230, (x)
v(z,z) =0
w(z, 2) = wo(x) + z¢.(x) + 229 (x) + 230, (x)

where (ug,wg) denote the displacements of a point (z,y,0) along the z and z directions,
respectively, ¢, denotes the rotation of a transverse normal about the y-axis, and
Yz,0z,02,%., and 6, are functions of z. Construct the total potential energy functional
for the theory. Assume that the beam is subjected to a distributed load g(x) at the top
surface of the beam.

Give the approximation functions 7 and ¢g required in the (i) Ritz and (ii) weighted-
residual methods to solve the following problems:

(a) A bar fixed at the left end and connected to an axial elastic spring (spring constant,
k) at the right end.

(b) A beam clamped at the left end and simply supported at the right end.

Consider a uniform beam fixed at one end and supported by an elastic spring (spring constant
k) in the vertical direction. Assume that the beam is loaded by uniformly distributed load
go- Determine a one-parameter Ritz solution using algebraic functions.

Use the total potential energy functional in Eq. (1.4.67) to determine a two-parameter Ritz
solution of a simply supported beam subjected a transverse point load Fy at the center. You
may use the symmetry about the center (z = L/2) of the beam to set up the solution.

Determine a two-parameter Galerkin solution of the cantilever beam problem in Example
1.5.1.

Determine a two-parameter collocation solution of the cantilever beam problem in Example
1.5.1. Use collocation points ¢ = L/2 and = = L.

Determine the one-parameter Galerkin solution of the equation

dz? L’ dr?

d? x . d2w

x
:| +kw0 —qOE

that governs a cantilever beam on elastic foundation and subjected to linearly varying load
(from zero at the free end to gq at the fixed end). Take k = L = 1 and gg = 3, and use
algebraic polynomials.

Find the first two eigenvalues associated with the differential equation

—dz—u:)\u O<z<l; w0)=0, u(l)4+d(1)=0
sz 3 1 1’
Use the least-squares method. Use the operator definition to be A = —(d?/dr?) to avoid

increasing the degree of the characteristic polynomial for A.

Solve the Poisson equation

—V2u=fy in a unit square, uw =0 on the boundary

using the following N-parameter Galerkin approximation

N
Uy = g ¢i;siniwz sin jmy
i,j=1
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2

Introduction to
Composite Materials

2.1 Basic Concepts and Terminology
2.1.1 Fibers and Matrix

Composite materials are those formed by combining two or more materials on
a macroscopic scale such that they have better engineering properties than the
conventional materials, for example, metals. Some of the properties that can be
improved by forming a composite material are stiffness, strength, weight reduction,
corrosion resistance, thermal properties, fatigue life, and wear resistance. Most man-
made composite materials are made from two materials: a reinforcement material
called fiber and a base material, called matriz material.

Composite materials are commonly formed in three different types: (1) fibrous
composites, which consist of fibers of one material in a matrix material of another; (2)
particulate composites, which are composed of macro size particles of one material
in a matrix of another; and (3) laminated composites, which are made of layers of
different materials, including composites of the first two types. The particles and
matrix in particulate composites can be either metallic or nonmetallic. Thus, there
exist four possible combinations: metallic in nonmetallic, nonmetallic in metallic,
nonmetallic in nonmetallic, and metallic in metallic.

The stiffness and strength of fibrous composites come from fibers which are
stiffer and stronger than the same material in bulk form. Shorter fibers, called
whiskers, exhibit better strength and stiffness properties than long fibers. Whiskers
are about 1 to 10 microns (i.e., micro inches or y1 in.) in diameter and 10 to 100 times
as long. Fibers may be 5 microns to 0.005 inches. Some forms of graphite fibers are
5 to 10 microns in diameter, and they are handled as a bundle of several thousand
fibers. The matrix material keeps the fibers together, acts as a load-transfer medium
between fibers, and protects fibers from being exposed to the environment. Matrix
materials have their usual bulk-form properties whereas fibers have directionally
dependent, properties.

The basic mechanism of load transfer between the matrix and a fiber can be
explained by considering a cylindrical bar of single fiber in a matrix material (see
Figure 2.1.1a). The load transfer between the matrix material and fiber takes place
through shear stress. When the applied load P on the matrix is tensile, shear stress
7 develops on the outer surface of the fiber, and its magnitude decreases from a high
value at the end of the fiber to zero at a distance from the end. The tensile stress o
in the fiber cross section has the opposite trend, starting from zero value at the end
of the fiber to its maximum at a distance from the end. The two stresses together
balance the applied load, P, on the matrix. The distance from the free end to the
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point at which the normal stress attains its maximum and shear stress becomes zero
is known as the characteristic distance. The pure tensile state continues along the
rest of the fiber.

When a compressive load is applied on the matrix, the stresses in the region of
characteristic length are reversed in sign; in the compressive region, i.e., rest of the
fiber length, the fiber tends to buckle, much like a wire subjected to compressive
load. At this stage, the matrix provides a lateral support to reduce the tendency of
the fiber to buckle (Figure 2.1.1b). When a fiber is broken, the load carried by the
fiber is transferred through shear stress to the neighboring two fibers (see Figure
2.1.1c), elevating the fiber axial stress level to a value of 1.5¢0.

Matrix
material

s -
-
Characteristic
distance

(a)

Springs representing the lateral
restraint provided by the matrix

N

o

(e}

$23233322

(b)

Figure 2.1.1: Load transfer and stress distributions in a single fiber embedded in
a matrix material and subjected to an axial load.
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2.1.2 Laminae and Laminates

A lamina or ply is a typical sheet of composite material. It represents a fundamental
building block. A fiber-reinforced lamina consists of many fibers embedded in a
matrix material, which can be a metal like aluminum, or a nonmetal like thermoset
or thermoplastic polymer. Often, coupling (chemical) agents and fillers are added
to improve the bonding between fibers and matrix material and increase toughness.
The fibers can be continuous or discontinuous, woven, unidirectional, bidirectional,
or randomly distributed (see Figure 2.1.2). Unidirectional fiber-reinforced laminae
exhibit the highest strength and modulus in the direction of the fibers, but they
have very low strength and modulus in the direction transverse to the fibers. A poor
bonding between a fiber and matrix results in poor transverse properties and failures
in the form of fiber pull out, fiber breakage, and fiber buckling. Discontinuous
fiber-reinforced composites have lower strength and modulus than continuous fiber-
reinforced composites.

A laminate is a collection of laminae stacked to achieve the desired stiffness and
thickness. For example, unidirectional fiber-reinforced laminae can be stacked so
that the fibers in each lamina are oriented in the same or different directions (see
Figure 2.1.3). The sequence of various orientations of a fiber-reinforced composite
layer in a laminate is termed the lamination scheme or stacking sequence. The layers
are usually bonded together with the same matrix material as that in a lamina. If a
laminate has layers with fibers oriented at 30° or 45°, it can take shear loads. The
lamination scheme and material properties of individual lamina provide an added
flexibility to designers to tailor the stiffness and strength of the laminate to match
the structural stiffness and strength requirements.

VAGAV AT AV
(X /»:-/»:_J»:_' “

(¢) Discontinuous fiber (d) Woven

Figure 2.1.2: Various types of fiber-reinforced composite laminae.
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Figure 2.1.3: A laminate made up of laminae with different fiber orientations.

Laminates made of fiber-reinforced composite materials also have disadvantages.
Because of the mismatch of material properties between layers, the shear stresses
produced between the layers, especially at the edges of a laminate, may cause
delamination. Similarly, because of the mismatch of material properties between
matrix and fiber, fiber debonding may take place. Also, during manufacturing
of laminates, material defects such as interlaminar voids, delamination, incorrect
orientation, damaged fibers, and variation in thickness may be introduced. It is
impossible to eliminate manufacturing defects altogether; therefore, analysis and
design methodologies must account for various mechanisms of failure.

This book is devoted to the theoretical study of laminated structures.
Determination of static, transient, vibration, and buckling characteristics of fiber-
reinforced composite laminates with different lamination schemes, thicknesses,
loads, and boundary conditions constitutes the major objective of the study. The
theoretical concepts and analysis methods presented herein can help structural
engineers in aerospace, civil, and mechanical engineering industries to select suitable
materials and the number and orientations of fiber-reinforced laminae for the best
performance in a particular application.
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In the remaining portion of this chapter, we study the mechanical behavior of a
single lamina, treating it as an orthotropic, linear elastic continuum. The generalized
Hooke’s law is revisited (see Section 1.3.6) for an orthotropic material, the elastic
coefficients of an orthotropic material are expressed in terms of engineering constants
of a lamina, and the fiber-matrix interactions in a unidirectional lamina are
discussed. Transformation of stresses, strains, and elasticity coefficients from the
lamina material coordinates to the problem coordinates are also presented.

2.2 Constitutive Equations of a Lamina
2.2.1 Generalized Hooke’s Law

In this section we study the mechanical behavior of a typical fiber-reinforced
composite lamina, which is the basic building block of a composite laminate. In
formulating the constitutive equations of a lamina we assume that:

(1) a lamina is a continuum; i.e., no gaps or empty spaces exist.
(2) alamina behaves as a linear elastic material.

The first assumption amounts to considering the macromechanical behavior of a
lamina. If fiber-matrix debonding and fiber breakage, for example, are to be included
in the formulation of the constitutive equations of a lamina, then we must consider
the micromechanics approach, which treats the constituent materials as continua
and accounts for the mechanical behavior of the constituents and possibly their
interactions. The second assumption implies that the generalized Hooke’s law is
valid. It should be noted that both assumptions can be removed if we were to
develop micromechanical constitutive models for inelastic (e.g., plastic, viscoelastic,
etc.) behavior of a lamina.

Composite materials are inherently heterogeneous from the microscopic point
of view. From the macroscopic point of view, wherein the material properties
of a composite are derived from a weighted average of the constituent materials,
fiber and matrix, composite materials are assumed to be homogeneous. The
following discussion of constitutive equations is independent of whether the material
is homogeneous or not, because the stress-strain relations hold for a typical point in
the body.

The generalized Hooke’s law for an anisotropic material under isothermal
conditions is given in contracted notation [see Eq. (1.3.37a,b)] by

g; — Cijé‘j (2.2.1)

where oy; (0;) are the stress components, €;; (¢;) are the strain components, and
Cj; are the material coeflicients, all referred to an orthogonal Cartesian coordinate
system (x1,22,73). In general, there are 21 independent elastic constants for
the most general hyperelastic material as discussed in detail in Section 1.3.6.
When materials possess one or more planes of material symmetry, the number
of independent elastic coefficients can be reduced. For materials with one plane
of material symmetry, called monoclinic materials, there are only 13 independent
parameters, and for materials with three mutually orthogonal planes of symmetry,
called orthotropic materials, the number of material parameters is reduced to 9 in
three-dimensional cases.
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2.2.2 Characterization of a Unidirectional Lamina

A unidirectional fiber-reinforced lamina is treated as an orthotropic material whose
material symmetry planes are parallel and transverse to the fiber direction. The
material coordinate axis x; is taken to be parallel to the fiber, the xs-axis transverse
to the fiber direction in the plane of the lamina, and the x3-axis is perpendicular
to the plane of the lamina (see Figure 2.2.1). The orthotropic material properties
of a lamina are obtained either by the theoretical approach or through suitable
laboratory tests.

The theoretical approach, called a micromechanics approach, used to determine
the engineering constants of a continuous fiber-reinforced composite material is
based on the following assumptions:

1. Perfect bonding exists between fibers and matrix.
Fibers are parallel, and uniformly distributed throughout.
The matrix is free of voids or microcracks and initially in a stress-free state.

Both fibers and matrix are isotropic and obey Hooke’s law.

B o

The applied loads are either parallel or perpendicular to the fiber direction.

The moduli and Poisson’s ratio of a fiber-reinforced material can be expressed in
terms of the moduli, Poisson’s ratios, and volume fractions of the constituents. To
this end, let

E¢ = modulus of the fiber; E,, = modulus of the matrix
vy = Poisson’s ratio of the fiber; v, = Poisson’s ratio of the matrix
vy = fiber volume fraction; v, = matrix volume fraction

Then it can be shown (see Problems 2.1 and 2.2) that the lamina engineering
constants are given by

E\ = Efvs + Evm, V12 = VfUf + Ul
B EEy, GG
Efvm + Emvf ’

Es Gz (2.2.2)

N GfUm + vaf

Figure 2.2.1: A unidirectional fiber-reinforced composite layer with the material
coordinate system (z1,z2,z3) (with the xi-axis oriented along the
fiber direction).
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where FE is the longitudinal modulus, F» is transverse modulus, 19 is the major
Poisson’s ratio, and (2 is the shear modulus, and

E; Ep
_ L= 2.2.3
Gy 21 +vy) G 2(1 + i) (2.23)

Other micromechanics approaches use elasticity, as opposed to mechanics of
materials approaches. Interested readers may consult Chapter 3 of Jones [3] and
the references given there (also see [18-20]).

The engineering parameters Fy, Fo, F3, G2, G13, Gas, 112, V13, and 93 of an
orthotropic material can be determined experimentally using an appropriate test
specimen made up of the material. At least four tests are required to determine
the four constants 1, F2, E3 and G132 and the longitudinal strength X, transverse
strength Y and shear strength S (and additional tests to determine G13 and Gag).
These are shown schematically in Figure 2.2.2a-d.

For example, Eq, v12 and X of a fiber-reinforced material are measured using a
uniaxial test shown in Figure 2.2.2a. The specimen consists of several layers of the
material with fibers in each layer being aligned with the longitudinal direction.
The specimen is then loaded along the longitudinal direction and strains along
and perpendicular to the fiber directions are measured using strain gauges (see
Figure 2.2.2¢). By measuring the applied load P, the cross-sectional area A, the
longitudinal strain £, = £1 and transverse strain ; = 9, we can calculate

P €2 P
E :E _ — 1 %4 = I/ = ——, X_—_
14 1 A517 ot 12 £ 3 A
sz sz
P —_— P P P
g =<
(a) (b)

X2

(c) (d)

P HEER P
‘Q\//r 2 strain gages

(e)

Figure 2.2.2: Tests required for the mechanical characterization of a laminate.
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where Py is the ultimate load (say, load at which the material reaches its elastic
limit). Similarly, Es, 197 and Y can be determined from the test shown in Figure

2.2.2b: P p
€2 ult
Fi=F = — s Vi — - T, Y =
¢ 1= A t = V12 e A
The shear modulus is determined from the test shown in Figure 2.2.2¢ by measuring
E, = P/Ae1, Ey, Fy and vy, and using the transformation equation (4a) of Problem

2.3:

11 ( 11 1 2uw>
_ = =4 =+
Ey, 4\E, E Gy E
wherein Gy, is the only unknown. The shear strength S is determined from the test

shown in Figure 2.2.2d:
Tult

27r2h
where T is the applied torque, and r and h are the mean radius and thickness of

the tube, respectively. The values of the engineering constants for several materials
are presented in Tables 2.2.1 and 2.2.2.

S=Tu =

Table 2.2.1: Values of the engineering constants for several materials*.

Materialf Eq Es Gio Gi3 Gag Vig
Aluminum 10.6 10.6 3.38 3.38 3.38 0.33
Copper 18.0 18.0 6.39 6.39 6.39 0.33
Steel 30.0 30.0 11.24 11.24 11.24 0.29
Gr.-Ep (AS) 20.0 1.3 1.03 1.03 0.90 0.30
Gr.-Ep (T) 19.0 1.5 1.00 0.90 0.90 0.22
GL-Ep (1) 7.8 2.6 1.30 1.30 0.50 0.25
GL-Ep (2) 5.6 1.2 0.60 0.60 0.50 0.26
Br-Ep 30.0 3.0 1.00 1.00 0.60 0.30

*Moduli are in msi = million psi; 1 psi = 6,894.76 N/m?; Pa = N/m?; kPa = 10° Pa; MPa =
106 Pa; GPa = 109 Pa.

t The following abbreviations are used for various material systems: Gr.-Ep (AS) = graphite-epoxy
(AS/3501); Gr.-Ep (T) = graphite-epoxy (T300/934); Gl.-Ep = glass-epoxy; Br.-Ep = boron-epoxy.

Table 2.2.2: Values of additional engineering constants for the materials listed
in Table 2.2.1*.

Material E3 s Va3 g Qa9

Aluminum 10.6 0.33 0.33 13.1 13.1
Copper 18.0 0.33 0.33 18.0 18.0
Steel 30.0 0.29 0.29 10.0 10.0
Gr.-Ep (AS) 1.3 0.30 0.49 1.0 30.0
Gr.-Ep (T) 1.5 0.22 0.49 -0.167 15.6
Gl-Ep (1) 2.6 0.25 0.34 3.5 114
Gl-Ep (2) 1.3 0.26 0.34 4.8 12.3
Br.-Ep 3.0 0.25 0.25 2.5 8.0

* Units of F3 are msi, and the units of @; and a; are 10~% in./in./°F.
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2.3 Transformation of Stresses and Strains

2.3.1 Coordinate Transformations

The constitutive relations (1.3.44) and (1.3.45) for an orthotropic material were
written in terms of the stress and strain components that are referred to a coordinate
system that coincides with the principal material coordinate system. The coordinate
system used in the problem formulation, in general, does not coincide with the
principal material coordinate system. Further, composite laminates have several
layers, each with different orientation of their material coordinates with respect to
the laminate coordinates. Thus, there is a need to establish transformation relations
among stresses and strains in one coordinate system to the corresponding quantities
in another coordinate system. These relations can be used to transform constitutive
equations from the material coordinates of each layer to the coordinates used in the
problem description.

In forming flat laminates, fiber-reinforced laminae are stacked with their zixg-
planes parallel but each having its own fiber direction. If the z-coordinate of the
problem is taken along the laminate thickness, the x3-coordinate of each lamina
we will always coincide with the z-coordinate of the problem. Thus we have a
special type of coordinate transformation between the material coordinates and the
coordinates used in the problem description.

Let (z,y, z) denote the coordinate system used to write the governing equations
of a laminate, and let (z1,z2,z3) be the principal material coordinates of a typical
layer in the laminate such that zs-axis is parallel to the z-axis (i.e., the xjzo-
plane and the zy-plane are parallel) and the z;-axis is oriented at an angle of +6
counterclockwise (when looking down on the lamina) from the z-axis (see Figure
2.3.1). The coordinates of a material point in the two coordinate systems are related
as follows (z = z3):

1 cosf sinf O T T
Ty p=|—sinf cosd 0|y r=[L]Sy (2.3.1)
I3 0 0 1 z z
The inverse of Eq. (2.3.1) is
T cos@ —sinf 0 1 T
y 3= |sind cosf 0| xyp=[L"{ 2o (2.3.2)
z 0 0 1 I3 I3

Note that the inverse of [L] is equal to its transpose: [L]~! = [L]T.
The transformation relations (2.3.1) and (2.3.2) are also valid for the unit vectors
associated with the two coordinate systems:

& p=[LI<¢é& ¢, <& p=[L"{e& (2.3.3)
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Figure 2.3.1: A lamina with material and problem coordinate systems.

2.3.2 Transformation of Stress Components

Next we consider the relationship between the components of stress in (z,y, z)
and (z1,22,23) coordinate systems. Let o denote the stress tensor, which
has components 011,012, +,033 in the material (m) coordinates (x1,z2,x3) and
components Ogz, 0gy, -+, 02, in the problem (p) coordinates (x,y,z). Since stress
tensor is a second-order tensor, it transforms according to the formula

(Okg)m = Lkilqj(0ij)p,  (Okg)p = Cikliq(Tij)m (2.3.4)

where (0;;)m are the components of the stress tensor ¢ in the material coordinates
(1,22, x3), whereas (o;), are the components of the same stress tensor ¢ in the
problem coordinates (z,y, 2), and #;; are the direction cosines defined by

bij = (&)m - (&)p

and (&;)m, and (&;), are the orthonormal basis vectors in the material and problem
coordinate systems, respectively. Note that the tensor transformation equations
(2.3.4) hold among tensor components only. Equations (2.3.4) can be expressed in
matrix forms. First, we introduce the 3 x 3 arrays of the stress components in the
two coordinate systems:

Ozx Ozy Ozz 011 012 013
[U]p = Ury Uyy O'yz y [O’]m = | 012 0922 0923 (2.3.5)
Oxz Oyz Ozz 013 023 033

Then Eqgs. (2.3.4) can be expressed in matrix form as
[o]m = [L)[o]p[L]",  [o]p = [L]" [0]mlL] (2.3.6a,b)

where [L] is the 3 x 3 matrix of direction cosines 4;;.
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Equation (2.3.6a) provides a means to convert stress components referred to the
problem (laminate) coordinate system to those referred to the material (lamina)
coordinate system, while Eq. (2.3.6b) allows computation of stress components
referred to the problem coordinates in terms of stress components referred to
the material coordinates. Equations (2.3.6a,b) hold for any general coordinate
transformation, and hence it holds for the special transformation in Egs. (2.3.1).

Carrying out the matrix multiplications in Eq. (2.3.6b), with [L] defined by
Eq. (2.3.1), and rearranging the equations in terms of the single-subscript stress
components in (z,y, z) and (1, 22, 23) coordinate systems, we obtain

Oz cos” 0 sin? @ 0 0 0 —sin20 7 (o1

Oyy sin? 6 cos? 0 0 0 0 sin 20 09

02 | 0 0 1 0 0 0 03

oy [ 0 0 0 cosf sin6 0 04

Oy 0 0 0 —sinf cosd 0 o5

Ozy sinfcosf —sinflcosf 0O 0 0 cos?f —sin?8] \ og
(2.3.7)

or

{0}y = [THo}m (2.3.8)

The inverse relationship between {c},, and {c},, Eq. (2.3.6a), is given by

o1 cos? 6 sin® 6 0 O 0 sin 26 Cuz

09 sin? @ cos? 6 0O 0 0 —sin 260 Tyy

o3 | 0 0 10 0 0 O

os [ 0 0 0 cosf —sinf 0 Tyz

o5 0 0 0 sind cos f 0 Opz

o6 —sinfcosf sinBcosh 0 O 0 cos? § — sin? 8 Oy
(2.3.9)

or

{o}m = [Rl{c}p (2.3.10)

The result in Eq. (2.3.9) can also be obtained from Eq. (2.3.7) by replacing 6
with —80.

Example 2.3.1:

The stress transformation equations (2.3.9) can be derived directly by considering the equilibrium of
an element of the lamina (see Figure 2.3.2). Consider a wedge element whose slant face is parallel
to the fibers. Suppose that the thickness of the lamina is h, and the length of the slant face is
AS. Then the horizontal and vertical sides of the wedges are of lengths AScosf and ASsin8,
respectively. The forces acting on any face of the wedge are obtained by multiplying the stresses
acting on the face with the area of the surface.

Suppose that we wish to determine o35 in terms of (024, 0yy, 0xy). Then by summing all forces
acting on the wedge along coordinate zg (i.e., equilibrium of forces along x5) we obtain

099AS h ~ (0, ASsin€ h)sin@ + (6,,ASsin6 h)cosb — (0,,AS cos @ h)cos@
+ (0oyAScosd h)sind =0

or
099 = Ouu sin? 6 + Tyy cos? — 20,y cossinf
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Figure 2.3.2: A free-body diagram of a wedge element with stress components.

Similarly, summing the forces along z; coordinate, we obtain

012AS h+ (0, ASsin8 h) cos8 + (03yASsinb h)sinf — (oyy AScosf h)sind
— (0zyAScosf h)cosf =0

or
019 = —04z SN0 COSO 4 Tyy cOsOsinb + 0,y (cos? 6 — sin? 9)

Clearly, the expressions for o9y and oo derived here are the same as those for o1 and og,
respectively, in Eq. (2.3.9). The stress component 11 can be determined in terms of (0ze, Oyy, Oy )
by considering a wedge element whose slant face is perpendicular to the fibers (see Figure 2.3.2).
By summing forces along the z- and y-coordinates we can obtain stresses oz, and oy in terms of

(011,022,012).

Example 2.3.2:

Consider a thin (i.e., the thickness is about one-tenth of the radius), filament-wound, closed
cylindrical pressure vessel (see Figure 2.3.3). The vessel is of 63.5 ¢cm (25 in.) internal diameter and
pressurized to 1.379 MPa (200 psi). We wish to determine the shear and normal forces per unit
length of filament winding. Assume a filament winding angle of 8 = 53.125° from the longitudinal
axis of the pressure vessel, and use the following material properties, typical of graphite-epoxy
material: £, = 140 MPa (20.3 Msi), FE; = 10 MPa (1.45 Msi), G2 = 7 MPa (1.02 Msi), and
v19 = 0.3. Note that MPa means mega (106) Pascal (Pa) and Pa = N/m2 (1 psi = 6,894.76 Pa).
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YA /

N6 -53.125°

» X

Figure 2.3.3: A filament-wound cylindrical pressure vessel.

The equations of equilibrium of forces in a structure do not depend on the material properties.
Hence, equations derived for the longitudinal {o.,) and circumferential (o) stresses in a thin-
walled cylindrical pressure vessel are valid here:

_pD; pD;

Oxy =

T T oh
where p is internal pressure, D; is internal diameter, and h is thickness of the pressure vessel. We

obtain
_ 1.379x0.635 _ 0.2189

. =
o 4h h
The shear stress o, is zero.

MPa, oy — 1.3792>;L0.635 _ 0.4;:)78 MPa

Next we determine the shear stress along the fiber and the normal stress in the fiber using the
transformation equations (2.3.9) or from the equations derived in Example 2.3.1. We obtain

o1y = 0.2;89 (0.6)2 + 0.4;:)78 (0.8)2 = 0.3;:)90 MPa.
, = 0.2}189 (0.8)2 + 0.4;78 (0.6)2 = 0.2;)77 MPa
0.4378  0.2189 0.1051
2-( P )><0.6><0.8- 5 MPa

Thus the normal and shear forces per unit length along the fiber-matrix interface are Fyo = 0.2977
MN and Fy9 = 0.1051 MN, whereas the force per unit length in the fiber direction is Fy; = 0.359
MN.

2.3.3 Transformation of Strain Components

Since strains are also second-order tensor quantities, transformation equations
derived for stresses, Egs. (2.3.6a,b), are also valid for tensor components of strains:

le]m = [L)e]p[L]T (2.3.11a)
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lelp = (L] [elm[L] (2.3.11b)

Therefore, Eqs. (2.3.7) and (2.3.9) are valid for strains when the stress components
are replaced with tensor components of strains from the two coordinate systems.
However, the single-column formats in Eqgs. (2.3.7) and (2.3.9) for stresses are not
valid for single-column formats of strains because of the definition:

2812 = &g, 2813 = &5, 2623 = &4 (2.3.12)

Slight modification of the results in Egs. (2.3.7) and (2.3.9) will yield the proper
relations for the engineering components of strains. We have

Ern cos?f sin?h 0 0 0 —sinfcosf €1

Eyy sin?0  cos?0 0 0 0 sin 0 cos 6 €9

€22 | _ 0 0 1 0 0 0 €3

2y, [ 0 0 0 cosf siné 0 €4 (2.3.13)
2622 0 0 0 —sinf cosf 0 €5

24y sin20 —sin2 0 0 0 cos?0—sin?0] Leg

The inverse relation is given by

€1 cos?f  sin?# 0 0 0 sinf cos @ [
) sin?f  cos’6 0O 0 0 —sinfcos @ Eyy
es | _ 0 0 1 0 0 0 €1z
ea [ 0 0 0 cosf —sinf 0 2ey; (2.3.14)
£x 0 0 0 siné cos 0 0 2e,
€6 —sin20 sin20 0 0 0 cos? 0 — sin® @ 265y

We note that the transformation matrix [T] in Eq. (2.3.8) is the transpose of the
square matrix in Eq. (2.3.14). Similarly, the transformation matrix in Eq. (2.3.13)
is the transpose of the matrix [R] in Eq. (2.3.10):

{ep = [BIYe}m, {e}m =TT {e}p (2.3.15)

Example 2.3.3:

A square lamina of thickness h and planar dimension a is made of glass-epoxy material (E; =
40 x 103 MPa, E5 = 10 x 103 MPa, G5 = 3.5 x 103 MPa, and v5 = 0.25). When the lamina is
deformed as shown in Figure 2.3.4, we wish to determine the longitudinal strain in the fiber and
shear strain at the center of the lamina. The fibers are oriented at 45° to the horizontal.

From Eq. (2.3.14), the only nonzero strain is €.y = 0.01. Hence, longitudinal strain in the fiber
is

€1 =¢€11 :0+0+26Ty =0.01 Cm/cm

1 1
V22
and the shear strain is given by

gg = 2612 = 0+ 0+ 2e4y (%7%) =0.0
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X2

Figure 2.3.4: Deformation of a fiber-reinforced lamina.

Example 2.3.4:

Suppose that the thickness of the cylindrical pressure vessel of Example 2.3.2 is h = 2 ¢m. Then
the stress field in the material coordinates becomes

o11 = 17.95 MPa, 09y = 14.885 MPa, o015 = 5.255 MPa

The strains in the material coordinates can be calculated using the strain-stress relations (1.3.47).
We have (191/Ey = v12/E7)

Ell T99V12 17.95 _ 14.885 x 0.3

€11 = BB = 10 140 =0.0963 m/m
g11V192 g992 17.95 x 0.3 14.885
— L =14
£22 B B ET AT, 5 m/m
255
~ T2 _ 520 agsg

£19 = =
127 9G,  2x7
The strains in the (x,y) coordinates can be computed using Eq. (2.3.13):

€ = 0.0963 x (0.6)% + 1.45 x (0.8)2 — 0.3757 x 0.6 x 0.8 = 0.782 m/m
£yy = 0.0963 x (0.8)% + 1.45 x (0.6)% 4 0.3757 x 0.6 x 0.8 = 0.764 m/m
ey = 2(0.0963 — 1.45) x (0.6) x 0.8 + 0.3757[(0.6)? — (0.8)%] = ~1.405
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2.3.4 Transformation of Material Coefficients

In formulating the problem of a laminated structure, we must write the governing
equations, with all their variables and coefficients, in the problem coordinates. In
the previous section we discussed transformation of coordinates (which are also valid
for displacements and forces), stresses, and strains. The only remaining quantities
that need to be transformed from the material coordinate system to the problem
coordinates are the material stiffnesses C;; and thermal coefficients of expansion a;.

The material stiffnesses Cj; in their original form [see Eq. (1.3.35)] are the
components of a fourth-order tensor. Hence, the tensor transformation law holds.
The fourth-order elasticity tensor components C_'ijkg in the problem coordinates
can be related to the components Cp,npg in the material coordinates by the tensor
transformation law

Cide = aimajnakpaﬁqcmnpq

However, the above equation involves five matrix multiplications with four-subscript
material coefficients. Alternatively, the same result can be obtained by using
the stress-strain and strain-stress relations (1.3.38a,b), and the stress and strain
transformation equations in (2.3.8) and (2.3.15):

{o}p = [THo}m = [T[Clm{elm = [T[ClnlT] {e}p = [Clpfe}p (2.3.16)

where [C]y, is the 6 x 6 material stiffness matrix [see Eq. (1.3.38a)] in the material
coordinates and [T is the transformation matrix defined in Eq. (2.3.8). Thus the

transformed material stiffness matrix is given by ([C] = [C], and [C] = [C]n)
[C] = [T)[C)T)* (2.3.17)

Equation (2.3.17) is valid for general constitutive matrix [C] (i.e., for orthotropic
as well as anisotropic). Of course, [T] is the matrix based on the particular
transformation (2.3.1) (rotation about a transverse normal to the lamina).

Carrying out the matrix multiplications in (2.3.17) for the general anisotropic
case, we obtain

Cr1 = Ch1 cos? 6 — 4C1 cos® Osin 0 + 2(Cha + 2Cee) cos? O sin? 6
— 4056 cos fsin® 0 + Cag sin® @

Cio = Ciacos* 0 + 2(Cr16 — Ca) cos® Osinf + (C11 + Ca2 — 4C56) cos® 0sin® §
+ 2(C26 — C16) cos §sin® 6 + Crasin? @

C13 = O3 cos? 6 — 2056 cos 0 sin @ + Cag sin® 6

Cig = Cigcos? 6 + (C11 — Cr2 — 2C%s) cos® sin @ + 3(Cog — Chg) cos? §sin? §
+ (2Cs6 + C12 — Cag) cos b sin®6 — Coas sin 6

Cas = Cao cos* 0 + 4C5 cos® #sin 6 + 2(Ch2 4 2Cep) cos? fsin? 6
+ 4C16 cos O sin® 0 + Cy sin 0

Cas = Cag cos? 0 + 2Cs6 cos B sin 0 + Czsin? 0
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Cos = Cog cos* 0 + (Cr2 — Caa + 2Ckg) cos® Bsin 0 + 3(Ci6 — Ca) cos® O sin? 0
+ (C11 — C12 — 2Csp) cos @sin® § — Crgsin 6
Cs3 = Ca3
Cs6 = (C13 — Ca3) cosfsin 0 + Cg,s(cos2 6 — sin® 0)
Cos = 2(Chig — C26) cos® fsin 0 + (C11 + C22 — 2C19 — 2Ceg) cos? @ sin 0
+ 2(Cq — Ci6) cos b sin® 0 + Cgg (cos4 6 + sin* 9)
Cys = Cya cos® 0 + Css sin 0 + 205 cos 6 sin 0
Cys = Cys(cos?® § — sin? 0) + (Css — Cl44) cosBsin b
Css = Css cos? 0 + Cyysin’ 6 — 2Cy5 cos B sin f
Cia = Cracos® 0 + (Cy5 — 2C46) cos? Bsin 8 + (Caq — 2Cs6) cos B sin? 6 4 Cys sin 6
C15 = Ci5c08° 0 — (C1q + 2Cs6) cos®@sinb + (Cas + 2Cy6) cos fsin® 6 — Coysin® @
Cos = Cyy o8 0 + (Cas + 2C4) cos® fsinb + (Ch4 + 2Csg) cos fsin? 6 + Cy5sin @
Cas = Cascos3 6 + (2Cs6 — Cag) cos? fsinf + (C1s — 2C46) cosOsin? @ — Cyqsin® 0
Caq = Cy4cos6 + Cas sin 6
Css = C35c080 — Cyysin 6
Cus = Cygcos® § + (Csg + Crg — Coy) cos? 0sin @ + (C5 — Cos — Cyg) cos fsin’ 6

— Csgsin® @
Csg = Crg cos® 6 + (C15 — Co5 — Cys) cos? @sin @ + (Cay — C1g4 — Cse) cos b sin® @
+ Cygsin® 0 (2.3.18)

When [C] is the matrix corresponding to an orthotropic material, it has the form
shown in Eq. (1.3.44); then Eq. (2.3.16) has the explicit form [cf. Eq. (1.3.42) for
monoclinic materials]

Ozz Ciu Ciz Ciz 0 0 Cig €z
Oyy Ca Cr Cy 0 0 O Eyy
o2z | _ |Ca1 Cs Cs3 0 0 Csg €2z
Oyz o 0 0 0 Q44 Q45 0 2€yz (2'3.19)
Trz _0 _0 _0 C45 055 70 26zz
Oy Cis Co C36 O 0 Ces 2e4y

where the C;; are the transformed elastic coefficients referred to the (z,y,z)
coordinate system, which are related to the elastic coefficients in the material
coordinates Cij by Eq. (2.3.18). Note that Cia, Ci5, Cig, Cos, Cos, Cag, Caa,
Css5, Csg, Cys, Cug, and Csg are zero for an orthotropic material.

In order to relate compliance coefficients in the two coordinate systems, we use
the strain transformation equation in Eq. (2.3.15):

{e}p = [RI™{ebn = [R]" ([Slm{o}m) = [R]*[S]m ((BN{o}p)
= [S]p{o}p (2.3.20a)

Thus the compliance coefficients S;; referred to the (z,y, z) system are related to the

compliance coefficients S;; in the material coordinates by ([S], = [S] and [S],, = [S])

[S] = [R]"[S][R] (2.3.20b)
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Expanded form of the relations in Eq. (2.3.20b) is

511 = S11cos? 6 — 2516 cos® Osin 6 + (2512 + Ses) cos® 0sin® 6
— 2556 cos@sin® 6 + Soosint @
Sia = S1gcos? 0 + (S16 — Sa6) cos® Osinf + (S11 + S22 — Se6) cos? Osin® §
4 (S26 — Sig) cosfsin® 6 + Siosint 6
Si3 = Si3cos? 0 — Sz cosfsin @ + Sazsin® 0
S16 = Sipcos? 0 + (281 — 2519 — Seg) cos® Osin 6 + 3(Sa6 — Si6) cos® Hsin? 6
+ (566 + 28519 — 2522) cos @ sin’ 6 — Sog sin? @
S99 = Sa9 cos? 6 + 2596 cos® Osin 6 + (2512 + Seg) cos® B sin? 9
+ 256 cosOsin® 0 + S;1 sin? 0
So3 = So3 0082 0 + Sag cosfsind + S5sin® 6
Sog = Sag cos* 6 + (2512 — 2522 + Sge) cos> 0sin 6 + 3(S16 — Sa26) cos?fsin? @
+ (2811 — 2812 — Seg) cosBsin® O — Sygsin? 0
S33 = Ss3
Sag = 2(S13 — Sa3) cosfsin @ + Szg(cos® # — sin? §)
See = 5'66(0052 6 — sin® 0)2 +4(S16 — 526)((:052 6 — sin? 0) cosfsin @
+ 4(S11 + S22 — 2512) cos? 9sin? 6
Saq = Sa4.cos® 0 + 2545 cos sin O + S sin 0
Sus = 545(0082 6 — sin? 0) + (S55 — S44) cos O sin
S5 = Sss cos® 0 + Sug8in? 0 — 2545 cosfsin @
S14 = S14c08® 0 + (S15 — Sae) cos? 0sin 0 + (Saq — Ss6) cos O sin? 6 4 Sas sin® 6
Si5 = S15cos’ 6 — (S14 + Ss6) cos? §sin 6 + (Sa5 + Sa6) cos @ sin? § — Soy sin’ 6
Soq = Sy cos® 0 + (S25 + S46) cos? fsinf + (S14 + Sse) cos @ sin% 0 + S5 sin® @
Sos = Sos cos® @ + (—S24 + S56) cos® Osin @ + (S15 — Si6) cosfsin? @ — Sy4sin’ 6
534 = S34cos0 + S35sin 6
S35 = S35c0s 0 — S348in 6
Si6 = (2514 — 2824 + Ssg) cos® @sin 6 + (2515 — 2595 — Sug) cosfsin® @
+ Sypcos® 6 — Sxg sind 6
Ss6 = (2515 — 2525 — Syg) cos® Asin O + (2594 — 2514 — Ssg) cos O sin’ 6
+ S5 cos® 0 + Sygsin® 0 (2.3.21)

For an orthotropic material, the compliance matrix [S] has the form shown in
Eq. (1.3.45), and the strain-stress relations in the problem coordinates are given by

€z Su Si2 Siz 0 0 Si67 (0w
Eyy So1 S22 S13 0 0 S| | oy
€22 | _ [S31 Ss2 Ss3 0 0 Sse| ) 0a
2€yz - 0 0 0 544 545 0 Oyz (2'3.22)
28952 0 0 0 545 555 0 Ogz

2e4y Si6 Sx S O 0 Ses Oay
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Note that Eq. (2.3.22) relates stresses to strains in the problem coordinates while
Eq. (1.3.45) relates the stresses to strains in the material coordinates.

The thermal coefficients «;; are the components of a second-order tensor, and
therefore they transform like the strain components (because ag = 22, and so on).
In the context of the present study, only nonzero components of thermal expansion
tensor are ;] = a, oz = a2, and agz = ag. All other components are zero. Hence,
following Eq. (2.3.7), we can write the transformation relations (g = a2 = 0,
a5 = a3 =0, g = a3 = 0)

Gy = Q11 cos? 0 + a2 sin? 6
Qyy = Q11 sin? @ + agg cos? 0
2amy =2 (Oéu — ()422) sin 6 cos 6
2aa:z = 0, 2ayz = O, Oy, = (X33 (2323)

The same transformations hold for the coefficients of hygroscopic expansion. The
transformation relations (2.3.18), (2.3.21), and (2.3.23) are valid for a rectangular
coordinate system (z1,x2,x3) which is oriented at an angle 6 (in the xy—plane)
from the (z,y,2) coordinate system (see Figure 2.3.1). The orientation angle 6 is
measured counterclockwise from the x—axis to the z;—axis.

In summary, Eq. (1.3.44) represents the stress-strain relations in the principal
material coordinates (z1,x2,73), and Eq. (2.3.19) represents the stress-strain
relations in the (z,y, z) coordinate system. The material coefficients of the lamina
in the (z,y, 2) coordinate system are related to material coeflicients in the material
coordinates by Eq. (2.3.18). In general, for the kih layer of a laminate, the
hygro-thermo-elastic stress-strain relations in the laminate coordinate system can
be written as

{3 =101 ({1 — {ar}fUT = Ty) — {an} P (e — o)
{1 = [S]%o} P + {ar} T~ To) + {aar} P (e — o) (2.3.24)

where all quantities are referred to the (x,y,z) coordinate system, and {ar} and
{aar} are vectors of thermal and hygroscopic coefficients of expansion, respectively.

2.4 Plane Stress Constitutive Relations

Most laminates are typically thin and experience a plane state of stress (sec Section
1.3.6). For a lamina in the zjzs—plane, the transverse stress components are
033,013, and o3 (see Figure 2.4.1). Although these stress components are small in
comparison to 11,0922, and o2, they can induce failures because fiber-reinforced
composite laminates are weak in the transverse direction (because the strength
providing fibers are in the zj29—plane). For this reason, the transverse shear stress
components are not neglected in shear deformation theories. However, in most
equivalent-single layer theories the transverse normal stress o3 is neglected. Then
the constitutive equations must be modified to account for this fact.
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X3
Og3 = 0
O32
G23
O31
O13 Ga2 X9

G2 \0'21

O11

Figure 2.4.1: A lamina in a plane state of stress.

The condition o33 = 0 results in the following thermoelastic constitutive
equations for the kth layer that is characterized as an orthotropic lamina with
piezoelectric effect:

a1} * Qi Qi 0 1% (e —a; AT\® 0 0 eyl (&YW
02 =1 Q12 Qo 0 g9 — ag AT — 10 0 e3 &y
lof33 0 0 Q66 &6 0 0 0 53

(2.4.1)

(k)
(k) (k) (k)
o5 0 Qs €5 es 0 0 &

(2.4.3)
where Qg»c) are the plane stress-reduced stiffnesses, 61(;;) are the piezoelectric moduli,
and €;; are the dielectric constants of the kth lamina in its material coordinate
system, (o4, ¢€;,&;, D;) are the stress, strain, electric field, and electric displacement
components, respectively, referred to the material coordinate system (zy, xo, x3),
a1 and ag are the coefficients of thermal expansion along the z1 and xo directions,
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respectively, and AT is the temperature increment from a reference state, AT =

T — Tp. Recall from Eq. (1.3.72) that Qg;-c) are related to the engineering constants
as follows:

w_ B w _ vy B () £y
R O (s R Ay oy R o B
1 — vy5 v L—vyvy L —vypwy
k k k k
QW =l b =c®, QW = (2.4.4b)

Note that the reduced stiffnesses involve six independent engineering constants: E7,
E3, v12, Gz, G13, and Gag.

The transformed stress-strain relations of an orthotropic lamina in a plane state
of stress are (the superscript k is omitted in the interest of brevity)

_ _ _ o
Ora Qu Q12 Qs Exa Qrx 0 0 el | o
oyy ¢ = |Gz Q2 Q2 Eyy p = Qyy (AT |+ |0 0 é3 a—f
Oy Qs Q2 Qes Vey 2002y 0 0 e3 Qalii

(2.4.5)
B - (e
oyz | _ [ Qa4 Q45J {’sz } {514 €24 0] I
=\ 5 A + | - _ == 2.4.6
{ Ouz } | Qas Qs5] | Yz e15 € 0 gfj) ( )
Bz
Exx o
D, [0 0 €14 €15 0 Eyy €Exy  €Exy 0 3_3;
Dyo=10 0 é4 &5 0w |y & 0[5 (247
D, L €31 €32 0 0 €36 Yz 0 0 €22 %_lﬁ

Yy

where 1 denotes the scalar electric potential [see Eq. (1.3.89)] and

Q11 = Quicos? 6+ 2(Q12 + 2Qss) sin @ cos® @ + Qo2 sin* 6

Q12 = (Q11 + Q22 — 4Qgs) sin? 6 cos? 0 + Q12(sin 0 + cos? 6)

Q22 = Qu1sin* 6 + 2(Qh2 + 2Q¢6) sin? 6 cos? 0 + Qg2 cos? 6

Q16 = (Q11 — Q12 — 2Qg6) sin @ cos® O + (Q12 — Q22 + 2Q¢6) sin® 0 cos

Qa6 = (Qu1 — Q12 — 2Qes) sin® 0 cos 6 + (Q12 — Qa2 + 2Q6) sin§ cos”

Qo6 = (Q11 + Q22 — 2Q12 — 2Qes) sin® 8 cos? 6 + Qgg(sin® 0 + cos* )

Q4 = Quq08% 0 + Qs55in% 6

Qa5 = (Qs5 — Q44) cos # sin 6

Qs5 = Qx5 c08? 0 + Qaqsin? 0 (2.4.8)

Oz, Oy, and ogy are the transformed thermal coefficients of expansion [see Eq.

(2.3.23)]

Qgr = 1 €082 0 + g sin? @, Qyy = O sin? 6 + ag cos® 6, Oy = (0 — a)sinf cos d
(2.4.9)
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and €;; are the transformed piezoelectric moduli, and €z, €y, and ey are

transformed dielectric coeflicients

€31 = €31 cos® + e39 sin? 8, e39 = e3 sin? 0 + e32 cos? 0, e33 = es3

€36 = (€31 — e32)sinfcosb, ey = (e15 — ea4) sinf cosf

o4 = 94 COS2 0 + €158 0, €15 = €15 cos? O + egq sin® 6

€25
.9 2 .
€yy = €11 510”0 + €23 c08° 8, €y = (€11 — €22)sinf cos

(e15 — €24) Sin B cos 8, €zo = €11 c0s° 0 + egpsin? 0

(2.4.10)

This completes the development of constitutive relations for an orthotropic lamina

in a plane state of stress.

Example 2.4.1:

The material properties of graphite fabric-carbon matrix layers are (see Example 1.3.4):

E; =25.1 x 108 psi, Ep = 4.8 x 108 psi, E3 = 0.75 x 106 psi
p 3

Gio = 1.36 x 100 psi, Gy3 = 1.2 x 109 psi, Ga3 = 0.47 x 10 psi
Vig = 0036, Vi3 = 0257 Vgg = 0.171

The matrix of plane stress-reduced elastic coefficients for the material can be calculated using Eqgs.

(2.4.4) and (2.4.8) for various values of 8 as

2511  0.1728 0 0 0

0.1728 4.8010 0 0 0
[Qlo=0 = 0 0 047 0 0 | msi

0 0 0 120 0

0 0 0 0 1.36

The transformed coefficients for various angles of orientation are given below:

(4.8010 0.1728 0 0 0
0.1728  25.11 0 0 0
[@lo—go = 0 0 120 0 0 | msi
0 0 0 047 O
L o 0 0 0 1.36
r8.923 6.203 0 0 5076
6.203 8923 0 0 5.076
Qlo=as =1 0 0 0835 0365 0 msi
0 0 0365 0835 0
L5.076 5.076 0 0 7.390
r 8.923  6.203 0 0 -5.076
6.203  8.923 0 0 -5.076
[Qlo=—a5 = 0 0 0.835 —0.365 0 msi
0 0 -0.365 0.835 0
L-5.076 —5.076 0 0 7.390
1551  4.696 0 0 7.007
4.696 5.355 0 0 1.785
[@lo=30 = 0 0 06525 03161 0O msi
0 0 0.3161 1.0175 0
L 7.007 1.785 0 0 5.883

(2.4.11)

(2.4.12)

(2.4.13)

(2.4.14)

(2.4.15)
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Problems

2.1 Consider the composite lamina subjected to axial stress oy, as shown in Fig. P2.1 below.

2.2

2.3

Let Ef, vy and Ay denote Young’s modulus, volume fraction and area of cross section of the
fiber, and (Em, Um, Am) be the same quantities for the matrix. Assuming that plane sections
remain plane during the deformation process and both matrix and fiber undergo the same
longitudinal deformation Azy, derive the law of mirtures,

_ 0 €2
Ey = o= viEp tumBm, vz = T, VU + vmm

Figure P2.1

Figure P2.2

Consider the composite lamina of Problem 2.1 but subjected to axial stress oo alone, as
shown in Fig. P2.2. Derive the result

5 ErEn
2= Efvm+E7nUf

(Apparent moduli of an orthotropic material) Note that the transformed material compliance

matrix [S] is relatively full and is in the same form as that for a monoclinic material. For
an orthotropic material, we have

Exa 511 512 Slﬁ Oz
Eyy ¢ = |S21 S22z S26 | § Ouy (1
2eay S16 S26  See o

where S;; are the transformed compliances defined in Eq. (2.3.21). Guided by the form
of the strain-stress relations (1.3.47) in the material coordinates, we can write strain-stress
relations in the problem coordinates as

1 _ Vy=z Nry.x
Exx Ey By E; Tex
— | _Yzy 1 Naey.y
Eyy ¢ = Es E, Ey Tyy (2)
2e Txy.x Nay.y 1 o
i Ey Gay v
Comparing Eq. (2) with Eq. (1), we note that
1 & v 5 Ny« & n G
=851y, —=& =819, 2% = S5, XY = Sog 3
o 115 E, 12: “p- 16 E, 26 (3)

and so on. Thus, the equivalent modulus of elasticity E, in the problem coordinates, for
example, can be evaluated using the engineering constants in the material coordinate system:

! =511 = 511 cos* 0+ (2512 + Sgg) sin? 6 cos? @ + Syysint @

£ (4a)
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where 1 ” 1 1
S11=E—1, 5122—%, 822:E_2’ 566=G—12 (4b)
Thus, the apparent compliance 57, in the (x,y, z) coordinate system is contributed by the
compliances S11, S12, S99, and Sgg and the lamination angle 6:
1 voy 1

_ 1 v L Yo 29, 1 4
EI—Elcos B—I—( E2+G12)sm9cos 0+E251n9 (5)

We note that the compliance S;g, which was zero in the material coordinates, is contributed
by S11, 812, S22, and Sge:

5 2 2v 1 . 2 2v 1 .
Si6 = (E—1+E—221—G—12) sin 0 00839—(E—2+E—221—G—12)sm39c039 (6)

Physically, S1¢ represents the normal strain in the z-direction caused by the shear stress in
the xy-plane, when all other stresses are zero. Since S} = Sg1, it also represents the shear
strain in the zy-plane caused by the normal stress along the z-direction, when all other
stresses are zero. Guided by these observations, Lekhnitskii [4] introduced the following
engineering constants, called coefficients of mutual influence:

7:;,s =characterizes shearing in the z;z;-plane caused by a normal stress

in the z;—direction (i # j)

2.
z%, for oy; # 0 and all other stresses being zero (7)
i

The compliance S1g and Syg are related, by definition, to the coefficients 7y, and Nwy,y DY

516 = Nay,z/ B, Sy = Nwy,y/ By (8)

Show that

Ney,z _ ( 2 2vgq 1 ) . 3 < 2 2v91 1 ) .3
=2 ==+ == - =—)sinf cos® O - | = + == — —— ) sin®fcos ¥
By By Gz

Nay,y _( 2 2uy 1 ) .3 (2 2v9y 1 ) . 3
=Y =+ 22 - — )sin” @ cosf — [ — + —== — —— }sinf cos’ 0
By Ey G

(10)

(Continuation of Problem 2.3) Derive an expression for Gy in terms of Ey, Es, v19, G12,
and 6.

(Continuation of Problem 2.3) Show that Gy is a maximum for 6 = 45°. Make use of the
following trigonometric identities:

cos* 0 = é(B + 4 cos 20 4 cos 40)

sint 9 = %(3 — 4 cos 20 4 cos 46)

cos? 0 sin? 9 = é(l — cos46)

(Continuation of Problem 2.3) Show that the coefficient of mutual influence is zero at # = 0°
and 6 = 90°.



2.7

2.8

2.9

2.10

2.11

2,12

2.13
2.14

2.15
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(Continuation of Problem 2.3) Show that the moduli £, (and Ey) varies between E; and
E, but it can either exceed or get smaller than both F; and E5.

(Continuation of Problem 2.3) Derive the expression for F, in terms of E{, Ey, vio, G2,
ay, ag, and 8 for the nonisothermal case.

(Continuation of Problem 2.3) Derive the expression for G, in terms of Eq, Fs, 112, Gqa,
o1, ag, and 8 for the nonisothermal case.

Show that the following combinations of stiffness coefficients are invariant:

51 = (3Q11 + 3Q22 + 2Q12 + 4Q¢s)
So = (Q12 — Wep)

S3 = (Q11 + Q22 + 2Q¢6)

Sy = (Q11 + Q22 +2Q12)

Rewrite the transformation equations (2.4.8) as

Q11 = Uy + Uy cos 26 + Us cos 46
ng =Uy ~ Uscos 48

Qoo = Uy — Uy cos 20 4 Us cos 40
Qs = %Ug sin 26 + U3 sin 40

Qa6 = %UQ $in20 — Us sin 40

= 1

Qes = 3 (Uy = Uy) — Uscos40
where

1 .
Ui=g (3Q11 +3Q22 +2Q12 + 4Q¢6)

Uy = %(Qu - Q22)
Uz = % (@11 + Qo2 — 2Q12 — 4Qss)
Uy = % (Q11+ Q22 +6Q12 — 4Qep)

Determine the transformation matrix (i.e., direction cosines) relating the orthonormal basis
vectors (&1,8&z,&3) of the system (z1,z3,23) to the orthonormal basis (&,8&},&,) of the
system (z],x5,x%), when & are given as follows: &| is along the vector & — &; +&; and &)
is perpendicular to the plane 2z + 329 + 23 — 5 =0.

Verify the transformation relations for the piezoelectric moduli given in Eq. (2.4.10).

Consider a square, graphite-epoxy lamina of length 8 in., width 2 in., and thickness 0.005
in., and subjected to an axial load of 1000 lbs. Determine the transverse normal strain e3.
Assume that the load is applied parallel to the fibers, and use E; = 20 msi, Ey = 1.3 msi,
G113 = G13 = 1.03 msi, Goz = 0.9 msi, 119 = v15 = 0.3, and o3 = 0.49.

Compute the numerical values of the reduced stiffnesses @Q;; for the graphite-epoxy material
of Problem 2.14. Ans:

20.118 0.392 0O 0
0.392 1308 O 0
Q= 0 0 09 0 0 msi
0 0 0 10
0 0 0 0
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2.16 The material properties of AS/3501 graphite-epoxy material layers are

Ey =140 x 103 MPa, FEy = 10 x 103 MPa, G2 = 7 x 10° MPa

G13 =T7x 103 N[PEL7 G23 =7x 103 MPa, Vig = 0.3
o1 =1.0x 1078 m/m/°K, oy =30 x 10~% m/m/°K

Show that (1 GPa = 103 MPa = 109 Pa)

140.90 3.02 0 0 0
3.02 1006 0 0 O
Q= o 0 7 0 0| GPa
0 0 070
0 0 00 7

The transformed coefficients for various angles of orientation are given below:

10.06 302 0 0 0
3.02 1409 0 0 0

Qlo—go=| © 0 7 0 0| GPa
0 0 0 7 0
0 0 00 7
46.25 3225 0 0 32.71
32.25 46.25 0 0 32.71

[Qlo—ss = 0 0 70 0 GPa
0 0 07 0
3271 3271 0 0 36.23

Also, compute the transformed thermal coefficients of expansion for 6 = 45°.
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3

Classical and First-Order Theories
of Laminated Composite Plates

3.1 Introduction

3.1.1 Preliminary Comments

Composite laminates are formed by stacking layers of different composite materials
and/or fiber orientation. By construction, composite laminates have their planar
dimensions one to two orders of magnitude larger than their thickness. Often
laminates are used in applications that require membrane and bending strengths.
Therefore, composite laminates are treated as plate elements.

The objective of this chapter is to develop two commonly used laminate plate
theories, namely the classical plate theory and the first-order shear deformation
plate theory. To provide a background for the theories discussed in this chapter, an
overview of pertinent literature on laminate plate theories is included here.

3.1.2 Classification of Structural Theories

Analyses of composite plates in the past have been based on one of the following
approaches:

(1) Equivalent single-layer theories (2-D)
(a) Classical laminated plate theory
(b) Shear deformation laminated plate theories

(2) Three-dimensional elasticity theory (3-D)
(a) Traditional 3-D elasticity formulations
(b) Layerwise theories

(3) Multiple model methods (2-D and 3-D)

The equivalent single layer (ESL) plate theories are derived from the 3-D elasticity
theory by making suitable assumptions concerning the kinematics of deformation or
the stress state through the thickness of the laminate. These assumptions allow the
reduction of a 3-D problem to a 2-D problem. In the three-dimensional elasticity
theory or in a layerwise theory, each layer is modeled as a 3-D solid. In this
chapter, we present the classical plate theory and the first-order shear deformation
plate theory as applied to laminated plates. Literature reviews and development of
the governing equations of the third-order shear deformation plate theory and the
layerwise theory will be presented in later chapters (see Chapters 11 and 12).
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3.2 An Overview of Laminated Plate Theories

The equivalent single layer laminated plate theories are those in which a
heterogeneous laminated plate is treated as a statically equivalent single layer having
a complex constitutive behavior, reducing the 3-D continuum problem to a 2-D
problem. The ESL theories are developed by assuming the form of the displacement
field or stress field as a linear combination of unknown functions and the thickness

coordinate {1-13]:
N

vi(z,y, 2, 1) Z gol x,y,t) (3.2.1)

where ¢; is the ith component of displacement or stress, (x,y) the in-plane
coordinates, z the thickness coordinate, ¢ the time, and ¢/ are functions to be
determined. '

When ¢; are displacements, then the equations governing ¢] are determined by
the principle of virtual displacements (or its dynamic version when time dependency
is to be included; see Section 1.4):

T
0= / (6T + 8V — 6K) dt (3.2.2)
0

where 6U, 6V, and 6K denote the virtual strain energy, virtual work done by
external applied forces, and the virtual kinetic energy, respectively. These quantities
are determined in terms of actual stresses and virtual strains, which depend on
the assumed displacement functions, ; and their variations. For plate structures,
laminated or not, the integration over the domain of the plate is represented as the
(tensor) product of integration over the plane of the plate and integration over the
thickness of the plate, because of the explicit nature of the assumed displacement
field in the thickness coordinate:

/voz. ()dv = /_i /QO (-)d2 dz (3.2.3)

where h denotes the total thickness of the plate, and €y denotes the undeformed
midplane of the plate, which is chosen as the reference plane. Since all functions are
explicit in the thickness coordinate, the integration over plate thickness is carried
out explicitly, reducing the problem to a two dimensional one. Consequently, the
Euler-Lagrange equations of Eq. (3.2.2) consist of differential equations involving

the dependent variables (ac y,t) and thickness-averaged stress resultants, R( ).

h
R(jm) L (2)"o; dz (3.2.4)

M=

The resultants can be written in terms of ; with the help of the assumed constitutive
equations (stress-strain relations) and strain-displacement relations. More complete
development of this procedure is forthcoming in this chapter.

The same approach is used when ; denote stress components, except that the
basis of the derivation of the governing equations is the principle of virtual forces. In
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the present book, the stress-based theories will not be developed. Readers interested
in stress-based theories may consult the book by Panc [14].

The simplest ESL laminated plate theory is the classical laminated plate theory
(or CLPT) [15-20], which is an extension of the Kirchhoff (classical) plate theory
to laminated composite plates. It is based on the displacement field

U(:L‘7y, Z7t> = '11,0(:137y,t> - Zaau;[)
a’wo
o) = e ) 2000
Ay
w(%%%ﬂ = wO(Iayat) (325)

where (ug, vo, wq) are the displacement components along the (z,y, z) coordinate
directions, respectively, of a point on the midplane (i.e., z = 0). The displacement
field (3.2.5) implies that straight lines normal to the xy—plane before deformation
remain straight and normal to the midsurface after deformation. The Kirchhoff
assumption amounts to neglecting both transverse shear and transverse normal
effects; i.e., deformation is due entirely to bending and in-plane stretching.

The next theory in the hierarchy of ESL laminated plate theories is the first-order
shear deformation theory (or FSDT) [21--27], which is based on the displacement field

w(z,y, z,t) = ug(z,y,t) + 2¢.(x, y,t)
U(.’L’, Y, z, f) - UO(Ia Y, t) + Z‘by(l’, Y, t)
w(z,y, 2,t) = wo(x,y,t) (3.2.6)

where ¢, and —¢, denote rotations about the y and z axes, respectively. The
FSDT extends the kinematics of the CLPT by including a gross transverse shear
deformation in its kinematic assumptions; i.e., the transverse shear strain is
assumed to be constant with respect to the thickness coordinate. Inclusion of
this rudimentary form of shear deformation allows the normality restriction of the
classical laminate theory to be relaxed. The first-order shear deformation theory
requires shear correction factors (see [28-32]), which are difficult to determine
for arbitrarily laminated composite plate structures. The shear correction factors
depend not only on the lamination and geometric parameters, but also on the loading
and boundary conditions.

In both CLPT and FSDT, the plane-stress state assumption is used and plane-
stress reduced form of the constitutive law of Section 2.4 is used. In both theories
the inextensibility and/or straightness of transverse normals can be removed. Such
extensions lead to second- and higher-order theories of plates.

Second- and higher-order ESL laminated plate theories use higher-order
polynomials [i.e., N > 1 in Eq. (3.2.1)] in the expansion of the displacement
components through the thickness of the laminate (see [33-38], among many others).
The higher-order theories introduce additional unknowns that are often difficult to
interpret in physical terms. The second-order theory with transverse inextensibility
is based on the displacement field

U(L,lj, k2 t) = UO(%’!/J) + Zgbm(.f, Y, t) + ZQ/lp:E(l'a Y, t)

U($a Y, Zat) = (UO(xayvt) + Z¢y(m7 Y, t) + 221/)y($,y,t)
w(x,y,z,t) = wo(x,y,t) (3.2.7)
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The third-order laminated plate theory of Reddy [38,39] with transverse
inextensibility is based on the displacement field

4 ow
- 3(_ 0
u(xvywzat) —Uo(ﬁfay»t)+2¢x($7y»t)+z < 3h2) <¢x+ oz )

4 Owg
o 2,t) = i) + 2y (@ t) + 2 (—53 ) (00 + G2
w(z,y, 2,t) = wo(z,y, 1) (3.2.8)

The displacement field accommodates quadratic variation of transverse shear strains
(and hence stresses) and vanishing of transverse shear stresses on the top and bottom
of a general laminate composed of monoclinic layers. Thus there is no need to use
shear correction factors in a third-order theory. The third-order theories provide
a slight increase in accuracy relative to the FSDT solution, at the expense of
an increase in computational effort. Further, finite element models of third-order
theories that satisfy the vanishing of transverse shear stresses on the bounding planes
require continuity of the transverse deflection and its derivatives between elements.
Complete derivations of the governing equations of the third-order laminated plate
theory and their solutions are presented in Chapter 11.

In addition to their inherent simplicity and low computational cost, the ESL
models often provide a sufficiently accurate description of global response for thin
to moderately thick laminates, e.g., gross deflections, critical buckling loads, and
fundamental vibration frequencies and associated mode shapes. Of the ESL theories,
the FSDT with transverse extensibility appears to provide the best compromise
of solution accuracy, economy, and simplicity. However, the ESL models have
limitations that prevent them from being used to solve the whole spectrum of
composite laminate problems. First, the accuracy of the global response predicted
by the ESL models deteriorates as the laminate becomes thicker. Second, the ESL
models are often incapable of accurately describing the state of stress and strain at
the ply level near geometric and material discontinuities or near regions of intense
loading — the areas where accurate stresses are needed most. In such cases, 3-D
theories or multiple model approaches are required (see Chapter 12 for the layerwise
theory and multiple model approaches).

This completes an overview of various ESL theories. For additional discussion
and references, one may consult the review articles [40—43]. In the remaining sections
of this chapter, we study the classical and first-order shear deformation plate theories
for laminated plates [44-52].

3.3 The Classical Laminated Plate Theory
3.3.1 Assumptions

The classical laminated plate theory is an extension of the classical plate theory to

composite laminates. In the classical laminated plate theory (CLPT) it is assumed |
that the Kirchhoff hypothesis holds:

T An assumption is that which is necessary for the development of the mathematical
model, whereas a restriction is not a necessary condition for the development of the
theory.
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(1) Straight lines perpendicular to the midsurface (i.e., transverse normals) before
deformation remain straight after deformation.

(2) The transverse normals do not experience elongation (i.e., they are inextensible).

(3) The transverse normals rotate such that they remain perpendicular to the
midsurface after deformation.

The first two assumptions imply that the transverse displacement is independent
of the transverse (or thickness) coordinate and the transverse normal strain e, is
zero. The third assumption results in zero transverse shear strains, ,, = 0, £y, = 0.

3.3.2 Displacements and Strains

Consider a plate of total thickness h composed of N orthotropic layers with the
principal material coordinates (x%, x5, 2%) of the kth lamina oriented at an angle 6y,
to the laminate coordinate, z. Although not necessary, it is convenient to take the
zy-plane of the problem in the undeformed midplane €y of the laminate (see Figure
3.3.1). The z-axis is taken positive downward from the midplane. The kth layer is

located between the points z = 2z, and z = z;y; in the thickness direction.

hi =2k — 2k

Figure 3.3.1: Coordinate system and layer numbering used for a laminated plate.
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The total domain )y of the laminate is the tensor product of Qo x (—=h/2,h/2).
The boundary of g consists of top surface Si(z = —h/2) and bottom surfaces
Sy(z = h/2), and the edge I' = I’ x (—=h/2,h/2) of the laminate. In general, I is
a curved surface, with outward normal A = ng é; + nyé,. Different parts of the
boundary T are subjected to, in general, a combination of generalized forces and
generalized displacements. A discussion of the boundary conditions is presented in
the sequel.

In formulating the theory, we make certain assumptions or place restrictions, as
stated here:

e The layers are perfectly bonded together (assumption).

e The material of each layer is linearly elastic and has three planes of material
symmetry (i.e., orthotropic) (restriction).

e Each layer is of uniform thickness (restriction).
e The strains and displacements are small (restriction).

e The transverse shear stresses on the top and bottom surfaces of the laminate are
zero (restriction).

By the Kirchhoff assumptions, a material point occupying the position (z,y, 2) in
the undeformed laminate moves to the position (z + u,y + v, z+w) in the deformed
laminate, where (u,v,w) are the components of the total displacement vector u
along the (z,y, z) coordinates. We have

u = ue, + vey + we, (3.3.1)

where (&, €y, €,) are unit vectors along the (z,y, z) coordinates. Due to small strain
and small displacement assumption, no distinction is made between the material
coordinates and spatial coordinates, between the finite Green strain tensor and
infinitesimal strain tensor, and between the second Piola—Kirchhoff stress tensor
and the Cauchy stress tensor (see Chapter 1). The Kirchhoff hypothesis requires
the displacements (u, v, w) to be such that (see Figure 3.3.2)

Owg

y I 7t — 3 7t AT

(a1, 2.8) = ol 1) —

Owg

Y, 2, t) = sYst) — z2——

v(z,y,2,t) = vo(z,y,t) z&y
w($7y7 th) — wO(mayat) (332)

where (ug,vg, wp) are the displacements along the coordinate lines of a material
point on the zy—plane. Note that the form of the displacement field (3.3.1) allows
reduction of the 3-D problem to one of studying the deformation of the reference
plane z = 0 (or midplane). Once the midplane displacements (ug, vg, wo) are known,
the displacements of any arbitrary point (z,y,z) in the 3-D continuum can be
determined using Eq. (3.3.2).
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Figure 3.3.2: Undeformed and deformed geometries of an edge of a plate under

the Kirchhoff assumptions.

The strains associated with the displacement field (3.3.2) can be computed
using either the nonlinear strain-displacement relations (1.3.10) or the linear strain-
displacement relations (1.3.12). The nonlinear strains are given by

2

2

8_,w 2
Zl?
8
%

9 2 ox 8:6
E Ql.)_*_l <%>2+ <8U
Woy 2 [\ 0y ay
- (0 () (2
=02 2|\ 0z 0z Oz
1 81) Ou Ou
By = 2 ( 09: Ay
1 8w Ju Ou
=5 (5t 5+ o
1 Ow ou Ou
Ey. =
Y 2< 8y ER

@@ ow 3w)

dxdy  Ox Oy

@@ L ow ow (911})

Oxr 0z Oz 0z

ovov Owdw

o5 @E) (3.3.3)
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If the components of the displacement gradients are of the order e, i.e.,

Ou Ou Ov Ov OJw

s F s T A A = 3.34

9z 3y oz oy 9z = O (3.3.4)
then the small strain assumption implies that terms of the order €2 are negligible in
the strains. Terms of order €2 are

() (G (@) (G () ) (GG
3@ B G G
B ) ) e

If the rotations dwg/0x and Owp/0y of transverse normals are moderate (say 10°—
15°), then the following terms are small but not negligible compared to e:

ow\? [ow\?
<_w> , (_w> | Qwow (3.3.6)
ox Oy Ox Jy
and they should be included in the strain-displacement relations. Thus for small

strains and moderate rotations cases the strain-displacement relations (3.3.3) take

the form
du 1 /0w 1 /0u v 8w§1£

2
5”229}'+§(%> : gxy_§<a_y+%+—a§ay>
. _1<@+8_w> . _@Jrl(@)g
2\ 0z  ox) Y oy 2\ 0y

1/0v Ow ow
Eyz = '2' <$ + 8_y) y €2z = 5; (337)

where, for this special case of geometric nonlinearity (i.e., small strains but moderate
rotations), the notation &;; is used in place of E;;. The corresponding second Piola-
Kirchhoff stresses will be denoted o;;.

For the assumed displacement field in Eq. (3.3.2), Ow/0z = 0. In view of the
assumptions in Egs. (3.3.4)—(3.3.6), the strains in Eq. (3.3.7) reduce to

- % _1_ <8w0>2 B 8wy
9 2\ Ox “ 002
. 1 < 8u0 (‘31;0 871)0 8w0> 82w0

=5\ 8y "oz T oz oy ) “owoy
. _ 9w 1(6w0>2_z82w0
Woay 2\ oy Oy?
_1 Owg 311)())_
o= 5 (< * ) =0
_1 8w0 (9100 .
=g (- ) =

EZZ == 0 (3.3.8)
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The strains in Eqs. (3.3.8) are called the von Kdrmdn strains, and the associated
plate theory is termed the von Kdrmdn plate theory. Note that the transverse strains
(€2, €yz, €22) are identically zero in the classical plate theory.

The first three strains in Eq. (3.3.8) have the form

Erx Exx Exx
gy p =4 e bz (3.3.9)
Yy %(60) %(rly)
2
ou 1 { dw &
e% D2 12 (WQL 5%% _5';;0
0 = = O 1 {0 1 B = - s
=1 GBI e %
W)y o wiow w2
(3.3.10)

() _(0) _(0

where (32, €4y ,%y)) are the membrane strains, and
(bending) strains, known as the curvatures.

Once the displacements (ug,vg, wp) of the midplane are known, strains at any
point (z,y,z) in the plate can be computed using Egs. (3.3.9) and (3.3.10). Note
from Eq. (3.3.9) that all strain components vary linearly through the laminate
thickness, and they are independent of the material variations through the laminate
thickness (see Figure 3.3.3a). For a fixed value of z, the strains are, in general,
nounlinear functions of z and y, and they depend on time t for dynamic problems.

(egz), 61%,) , 'y,%,)) are the flexural

3.3.3 Lamina Constitutive Relations

In the classical laminated plate theory, all three transverse strain components
(€22, €22, €yz) are zero by definition. For a laminate composed of orthotropic layers,
with their zjzo—plane oriented arbitrarily with respect to the zy—plane (z3 = z),

(a) (b)

Figure 3.3.3: Variations of strains and stresses through layer and laminate
thicknesses. (a) Variation of a typical in-plane strain. (b) Variation
of corresponding stress.
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the transverse shear stresses (0;;,0y;) are also zero. Since €, = 0, the transverse
normal stress o,,, although not zero identically, does not appear in the virtual
work statement and hence in the equations of motion. Consequently, it amounts
to neglecting the transverse normal stress. Thus we have, in theory, a case of both
plane strain and plane stress. However, from practical considerations, a thin or
moderately thick plate is in a state of plane stress because of thickness being small
compared to the in-plane dimensions. Hence, the plane-stress reduced constitutive
relations of Section 2.4 may be used.

The linear constitutive relations for the kth orthotropic (piezoelectric) lamina in
the principal material coordinates of a lamina are

o | ¥ Qu Qi 0 1% (e —ay AT

02 =|Qi2 @2 O g9 —ay AT
o 0 0 Qes €6
0 0 es (k) £ (k)
— 10 O €32 52 (3311&)
0 0 0 &3

where QZ(-?) are the plane stress-reduced stiffnesses and el@ are the piezoelectric

moduli of the kth lamina [cf., Eq. (2.4.4a,b)], (04,&;,&;) are the stress, strain, and
electric field components, respectively, referred to the material coordinate system
(z1, o2, x3), oy and ag are the coefficients of thermal expansion along the z; and
2o directions, respectively, and AT is the temperature increment from a reference
state, AT = T —T};t. When piezoelectric effects are not present, the part containing
the piezoelectric moduli eg-c) should be omitted. The coefficients QE;-C) are known in
terms of the engineering constants of the kth layer:

E, _vieky vmEn
Qll = T QIQ = =
1 — viovm 1— o011 — 12001
E
Qa2 = 172 » Qes = Gz (3.3.11b)
— Vig2l21

Since the laminate is made of several orthotropic layers, with their material
axes oriented arbitrarily with respect to the laminate coordinates, the constitutive
equations of each layer must be transformed to the laminate coordinates (x,y, z),
as explained in Section 2.3. The stress-strain relations (3.3.11a) when transformed
to the laminate coordinates (z,y, z) relate the stresses (0y,0yy, Ozy) to the strains
(€22+ €y, Yay) and components of the electric field vector (&, &y, £;) in the laminate
coordinates [sece Eq. (2.4.5)]

Oz (k) C:211 QIZ Qlﬁ (k) Exx gy
Tyy = | Q2 Q2 Q% Eyy ¢ — 3 Oy ¢ AT
Ozy Qe Q26 Qe Yy 2axy
0 0 eé3 (k) Es (k)
— [0 0 e39 Ey (3.3.12&)

0 0 ez &,



CLASSICAL AND FIRST-ORDER THEORIES 119

where

Q11 = Q1 cos? 6+ 2(Q12 + 2Q¢s) sin? 0 cos? § + Qga sin @

Q12 = (Q11 + Qa2 — 4Qgg) sin® A cos? § + Q1o(sin® 6 + cos? 6)

Qa2 = Qq15in® 0 + 2(Q12 + 2Qes) sin? 0 cos® 0 + Qao cos? 6

Q16 = (Qu1 — Q12 — 2Qe6) sin B cos® 6 + (Qra — Qa2 + 2Qge) sin® f cos

Q26 = (Q11 — Q12 — 2Qgg) sin® 0 cos B + (Q12 — Qa2 + 2Qg6) sin b cos® 0

Qes = (Q11 + Q22 — 2Q12 — 2Qg6) sin’ 0 cos? @ + Qe (sin® 6 + cos? §)  (3.3.12b)

and Que, qyy, and o,y are the transformed thermal coeflicients of expansion [see Eq.
(2.3.23)]

gy = a1 €08 0 + apsin’ 0
Oy = Q1 sin? 0 + g cos> 0
20y = 2(0q — az)sinfcos b (3.3.12¢)

and €;; are the transformed piezoelectric moduli

€31 = €31 cos? 0 + eso sin® 6

€32 = €318in” 0 + egp cos® 0

€36 = (e31 — e32) sinf cos (3.3.12d)
Here 0 is the angle measured counterclockwise from the z-coordinate to the z;-

coordinate. Note that stresses are also linear through the thickness of each layer;
however, they will have different linear variation in different material layers when

Qg) change from layer to layer (see Fig. 3.3.3b). If we assume that the temperature
increment varies linearly, consistent with the mechanical strains, we can write

AT = Ty(x,y,t) + 2T (z,y,t) (3.3.13)

and the total strains are of the form in Eq. (3.3.9) with

5:(1%) - ammTO 551{) - amwTI
(= E%y) —ayTy ¢, {'}= a(yly) — oy T (3.3.14)
1) — 200, Ty WY — 204,11

3.3.4 Equations of Motion

As noted earlier, the transverse strains (vzz, Yyz, €.) are identically zero in the
classical plate theory. Consequently, the transverse shear stresses (0., 0y.) are zero
for a laminate made of orthotropic layers if they are computed from the constitutive
relations. The transverse normal stress ., is not zero by the constitutive relation
because of the Poisson effect. However, all three stress components do not enter the
formulation because the virtual strain energy of these stresses is zero due to the fact
that kinematically consistent virtual strains must be zero [see Eq. (3.3.8)]:

bz, =0, bgy, =0, be..,=0
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Whether the transverse stresses are accounted for or not in a theory, they
are present in reality to keep the plate in equilibrium. In addition, these stress
components may be specified on the boundary. Thus, the transverse stresses do not
enter the virtual strain energy expression, but they must be accounted for in the
boundary conditions and equilibrium of forces.

Here, the governing equations are derived using the principle of virtual
displacements. In the derivations, we account for thermal (and hence, moisture)
and piezoelectric effects only with the understanding that the material properties
are independent of temperature and electric fields, and that the temperature 7" and
electric field vector £ are known functions of position (hence, 6T = 0 and 6& = 0).
Thus temperature and electric fields enter the formulation only through constitutive
equations [see Eq. (3.3.12a)].

The dynamic version of the principle of virtual work [see Eq. (1.4.78)] is

T
0= / (5T + 8V — 6K) dt (3.3.15)
0

where the virtual strain energy 6U (volume integral of 6Uy), virtual work done by
applied forces 6V, and the virtual kinetic energy 6 K are given by

h
U :/ /2h (OrwbEre + Oyybeyy + 204y0esy) dzdrdy
0o /-2

h
— 2 0 . ) 1
= Jou {1% [Uxa: (66(12 + zésgw)) + oyy (55?(”) + 255;;)
+ Oy (6%(5?) + zéva(,;))} dz}da:dy (3.3.16)

h

h
v =~ [ ot n)ouiev. 3) + aloute,y, )] dedy
0

h
_ 2 [6rnbUn + Gnsdlis + Gnpdw] dzds
T, /-4

= /QO {lap(z,y) + @z, y)] bwo(z,y)} dxdy

h
2 |. 8571)0 “ 8(5100
—AU[% [ann (6u0n—z ™ )+ans <5uos—z s )

+ 6nz6w0] dzds (3.3.17)

h
2 . O . Odwy
/Qo /—% po { vz Oz bio — 2 ox

+ (1'10 - Z%> (51')0 - Z86w0> + wobwo | dz dxdy (3.3.18)
Oy Oy

where ¢, is the distributed force at the bottom (z = h/2) of the laminate, ¢ is
the distributed force at the top (z = —h/2) of the laminate, (G, Gns, Onz) are the
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specified stress components on the portion I', of the boundary T', (dugy, dugs) are
the virtual displacements along the normal and tangential directions, respectively,
on the boundary I' (see Figure 3.3.4), po is the density of the plate material, and a
superposed dot on a variable indicates its time derivative, @y = Oug/0t. Details of
how (uon, ups) and (opn, 0ys) are related to (ug,vo) and (0zz, Oyy, Ozy), respectively,
will be presented shortly.

The virtual displacements are zero on the portion of the boundary where the
corresponding actual displacements are specified. For time-dependent problems,
the admissible virtual displacements must also vanish at time ¢t = 0 and ¢ = T [see
Eq. (1.4.73b)]. Since we are interested in the governing differential equations and
the form of the boundary conditions of the theory, we can assume that the stresses
are specified on either a part or whole of the boundary. If a stress component is
specified only on a part of the boundary, on the remaining part of the boundary
the corresponding displacement must be known and hence the virtual displacement
must be zero there, contributing nothing to the virtual work done.

Substituting for 6U, 6V, and 6 K from Eqs. (3.3.16)—(3.3.18) into the virtual work
statement in Eq. (3.3.15) and integrating through the thickness of the laminate, we
obtain

ATA

Nyp26el® + M6 + Nyyésgy + Myydelt) + NoydyLY)

+ Moy 5L — qéwo — Io (tbito + 0080 + obig)
g . Oy .  Obuny. O )
I 6 6
+1<8x to Ox ot oy vo+ Oy vo

Oy Db Oy 851&0)
_12((9917 py + 5y Oy dxdy

dbwy _ Mm% + Qnéw()) ds}dt

- / <Nnn6u0n + an6UOs - Mnn
I's

on 0s
(3.3.19)

Figure 3.3.4: Geometry of a laminated plate with curved boundary.
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where ¢ = qp 4+ ¢; is the total transverse load and

Nig % Oxx My % Ozz
Nyy :/n Oyy ¢ dz, My, :/h Oyy ¢ % d2
Ney 2 \ogy May 2 \ogy

- Ao - o

{Nnn}:/g{%n}dz {Mnn}:/2{0nn}zdz

an —% a"ns ’ Mns —% &ns

Iy & 1 A

no= /8% pmds Qu= [ onds

b 2 | 22 -3

(3.3.20a)

(3.3.20b)

(3.3.20¢)

The quantities (Ngz, Nyy, Ngy) are called the in-plane force resultants, and
(Myy, My, M) are called the moment resultants (see Figure 3.3.5); @, denotes
the transverse force resultant, and (Ip, I1, [2) are the mass moments of inertia. All
stress resultants are measured per unit length (e.g., N; and @Q; in 1b/in. and M; in

Ib-in/in.).

Figure 3.3.5: Force and moment resultants on a plate element.
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The virtual strains are known in terms of the virtual displacements in the same
way as the true strains in terms of the true displacements [see Eq. (3.3.10)]:

520 _ Odug . Owy 06wy 5o _ -326100

R oz dr Or ’ T Py
50 Obvg awo ddwyg L) _82(511)0
vy oy By oy vy Dy?

) _ 66u0 4 861;0 86w0 awo 0100 8(571)0

Tay Oy ox ox Oy + ox Oy

62571]0
1
s = 2 527y (3.3.21)

Substituting for the virtual strains from Eq. (3.3.21) into Eq. (3.3.19) and
integrating by parts to relieve the virtual displacements (dug, dvg, Swp) in g of any

differentiation, so that we can use the fundamental lemma of variational calculus,
we obtain
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T 1 \&0ity 07ty 2 O 2% 8’!] y 0 A J Lo,

where a comma followed by subscripts denotes differentiation with respect to the
subscripts: Ngz, = ONgy/0x, and so on. Note that both spatial and time
integration-by-parts were used in arriving at the last expression. The terms obtained
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in Qg but evaluated at £ = 0 and { = T were set to zero because the virtual

displacements are zero there.
Collecting the coefficients of each of the virtual displacements (8ug, dvg, dwp)

together and noting that the virtual displacements are zero on I'y, we obtain
ow
O_ 0 mzz+nyy IOUO+Ila— dug
o
zy z T Nyy y — Iptg+ 1— 8y ovg

My zx T 2Mmy zy T Myy vy +N(w0) +4q

~ \/_\

Bii dvo . 0% 824
— Ioig — Ih axo ne) 0 4 I 8“;0 Ty a;‘;“) (5w0] dady

+/ [(Nmnm + Ngyny) dug + (Ngyng + Nyyny) bvg
+ <menm + Moy yne + Myyyny + May 2ny + P(wo)

e . ‘
—Iytugng, — Livgny + Io—— <o — Ny + Igaayo > dwg

oz
obw osw
— (Mx;):nz + Mxyny) WO — (Mmynm =+ Myyny) E}E] dS
B / (Nn"6u0n + NTLS(SUOS - Mnn% - Mns Gowo Qn5w0> di
. on Os
(3.3.23)
where
0 8w0 Bwo o 811)0 8w0>
= — | Npg—— + Ngyy—— — . N, .3.24
N (wp) 83}( ax+ yay>+ay(Nyax+ way (3.3.24a)

ow ow ow 0
P(wo) = (Nma—; + Nzya—yo) ng + (Nmya—:z0 + Nyyalyo> ny  (3.3.24b)

The FEuler-Lagrange equations of the theory are obtained by setting the
coeflicients of dug, dvy, and dwgy over p of Eq. (3.3.23) to zero separately:

. 8N1-z 8Nzy . 62UO 82 8w0
s e =t ~hge ()
ON. ON, 82’00 82 8w0
Sva - zy vy _ Y )
v 5z T oy o " hap ( By
0% M, O*My,  0?M,, 8%wo
bwo : Ox? 2 Oyox + Oy? N (wo) +q = IOW

0% [ 0%wy  O0%wy 8% [(Oug Oug
_ Iga < 922 + == oy +Ilat2 (% + 8—y> (3.3.25)
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The terms involving Ir are called rotary inertia terms, and are often neglected in
most books. The term can contribute to higher-order vibration or frequency modes.

Next we obtain the boundary conditions of the theory from Eq. (3.3.23). In order
to collect the coefficients of the virtual displacements and their derivatives on the
boundary, we should express (dug,bvg) in terms of (dugy,, dugs). I the unit outward
normal vector 1 is oriented at an angle @ from the z—axis, then its direction cosines
are ng = cosf and n, = sinf. Hence, the transformation between the coordinate
system (n,s,r) and (z,y, z) is given by

&, — cosf &, —sinb &,
é, =sinf e, + cost e,
€, =6, (3.3.26)

Therefore, the displacements (uon, uos) are related to (ug, vo) by
U = NzUon — Nylos, Vo = Nylon + Nelos (3.3.27a)

Similarly, the normal and tangential derivatives (wqn,wos) are related to the
derivatives (wo gz, woy) by

awo 8w0 8w0 8w0 ow

ow
0+na; 0

Owo _, OWo , - 3.3.27b
or " an Y os oy " an Js ( )

Now we can rewrite the boundary expressions in terms of (ugn,ugs) and
(wo,n, wo,s). We have

(Nzeng + Ngyny) dup + (Nayne + Nyyny) 6vg
= (Ngang + Nayny) (nedun, — nybus) + (Nayng + Nyyny) (nydun + ngpdus)
= (Nmni + 2Ngyngny + Nyynz) duy, + [(Nyy — Nyg) gy + Ny (ni — ni)} Oug
(3.3.28a)
We recognize that the coefficients of dug, and dugs in the right-hand side of the

above equation are equal to Ny, and N,s, respectively. This follows from the fact

that the stresses (opn,ons) are related to (o, 0yy, 0zy) by the transformation in
Eq. (2.3.9):

9 2 Ozx
2n,
{ann} _ [ n My o e Lo (3.3.28b)
Ons TRgNy NgMy TNy — Ny, Ty
Hence we have
- 2 2 I NI.B
: 2
{Nnn} _| na Ty S VLN (3.3.29a)
Nps NNy NNy Mg~ Ty | N
zy
- 9 2 2 O My,
{Mm } _ | ny 2"rny2 M,, (3.3.29b)
My L = NNy NgNy Ty — Ty | Mxy
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In view of the above relations, the boundary integrals in Eq. (3.3.23) can be
written as

=)k,

(Nnn — Nnn) dupn + (an - an) bugs

+ (me”w + My yng + Myyyny + My o1y + P(wo)

. .. 811)0 81130 A
.y P I—n, +Ih—n, —Q,
1Uon 100Ny + 1o o7 ng + 1o 8y ny — @ >6w0
~ 8611)0 ~ 861[)0
= (M = Min) 52 = (Mas = Moo —6—8—} dsdt  (3.3.30)

The natural boundary conditions are then given by

Nnn— Annzoa an_an:()a Qn_QnZO

Mpp — Mpp =0, My, — My, =0 (3.3.31a)

on I',, where

. ow
Qn = (Mxm,r + Mxy,y — Iiig + I28—1_0) Mg+

o
<Myy7y + Maye — Lt + 128&240> ny + P(wo) (3.3.31b)

Thus the primary variables (i.e., generalized displacements) and secondary variables
(i.e., generalized forces) of the theory are

. . 8w0 8w0
primary variables: Uy, Us, WO, . Ds
n
secondary variables: Npns Nps, Qn, My, My (3.3.32)

The generalized displacements are specified on ['y, which constitutes the essential
(or geometric) boundary conditions.

We note that the equations in Eq. (3.3.25) have the total spatial differential order
of eight. In other words, if the equations are expressed in terms of the displacements
(ug, vo, wo), they would contain second-order spatial derivatives of uy and vy and
fourth-order spatial derivatives of wg. Hence, the classical laminated plate theory
is said to be an eighth-order theory. This implies that there should be only eight
boundary conditions, whereas Eq. (3.3.32) shows five essential and five natural
boundary conditions, giving a total of ten boundary conditions. To eliminate this
discrepancy, one integrates the tangential derivative term by parts to obtain the
boundary term

Bdwg O My
_ ]{F My = ds = § =5 5ug ds — [Mubuly (3.3.33a)
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The term in the square bracket is zero since the end points of a closed curve coincide.
This term now must be added to @, (because it is a coefficient of dwy):

6M715
s

Vi =Qn+ (3.3.33b)

which should be balanced by the applied force Q. This boundary condition,
Vo = @, is known as the Kirchhoff free-edge condition. The boundary conditions
of the classical laminated plate theory are

8’LU() .
Up, Us, Wo, —— (essential)
on

Nuny, Nnsy Vo, My, (natural) (3.3.34)

The initial conditions of the theory involve specifying the values of the
displacements and their first derivatives with respect to time at ¢ = 0O:

_ .0 _ .0 .0
Up = Uy, Us = Uy, Wy = Wy

Uy = 00, 2y = 10, g = W) (3.3.35)

where variables with superscript ‘0’ denotes values at time £ = 0. We note that both
the displacement and velocities must be specified.

This completes the basic development of the classical laminated plate theory for
nonlinear and dynamic analyses. As a special case, one can obtain the equations
of equilibrium from (3.3.25) by setting all terms involving time derivatives to zero.
For linear analysis, we set N (wp) and P(wg) to zero, in addition to setting the
nonlinear terms in the strain-displacement equations to zero. Equations (3.3.25) are
applicable to linear and nonlinear elastic bodies, since the constitutive equations
were not utilized in deriving the governing equations of motion.

3.3.5 Laminate Constitutive Equations

Here we derive the constitutive equations that relate the force and moment resultants
in Eq. (3.3.20a) to the strains of a laminate. To this end, we assume that each layer
is orthotropic with respect to its material symmetry lines and obeys Hooke’s law;
i.e., Eq. (3.3.12a) holds for the kth lamina in the problem coordinates. For the
moment we consider the case in which the temperature and piezoelectric effects are
not included. Although the strains are continuous through the thickness, stresses
are not, due to the change in material coefficients through the thickness (i.e., each
lamina). Hence, the integration of stresses through the laminate thickness requires
lamina-wise integration. The force resultants are given by

Oxx

2k41
Nyy Z/ Oyy ¢ dz
Oay
A A A 1
N o rzeg QH Ql? QlG “ ( ) + ZE%IT)
= Z/ Q12 @2 Q% Ez(,(y + 2eyy ¢ dz
k=1 %k Qi Q26 Qes O+ z%(py
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(0)

Ngg A A Ais Exz By1 Bia Bis £
Nyy = A12 Azz A26 Eyy 312 ng B26 53(/3/) (3336)
Ny A Az Ass] | A0 Bis Bas Bes| | %)

Mgy N rzeyy | Oz=
My, ¢ = Z/ Oyy ¢ 2z dz
My k=177 Ozy

I:Qll Q12 QlGj'(k) e + 2}
€

- e Dor O © , ()
= Qiz @2 Q% w + zey z dz
k=172 Qe Q26 Qeo Ry
0
Mzz Bll Bl2 B16 egcz) D11 D12 D16 8%9;)
My, 0= | Bia Bz Bas| | eyy Dis Dy Dy | i) ¢ (3.3.37)
sz Big B DBss ’Ya(c(;z)/) Dig Dog Degg ’Ya(c%;)

where A;; are called extensional stiffnesses, D;; the bending stiffnesses, and B;; the
bending-extensional coupling stiffnesses, which are defined in terms of the lamina

stiffnesses Qgg) as

h z
(Aij, Bij, Dij) = 2 Qii(1,2,2%)dz = Z/ o _(k) (1,2,2%)dz (3.3.38a)

h
2

or

N
=(k ]. =(k
) (zer1 — 2) B;j = 3 > Ql(-j)(zliu )

I
1=
L

k
Dij=3 Z QW (2h ) — =) (3.3.38b)
k=1
Note that Q’s, and therefore A’s, B’s, and D’s, are, in general, functions of position
(z,y). Equations (3.3.36) and (3.3.37) can be written in a compact form as

()= 1tal o] {0]) (230

where {} and {e!} are vectors of the membrane and bending strains defined in
Eq. (3.3.10), and [A], [B], and [D] are the 3 x 3 symmetric matrices of laminate
coeflicients defined in Eqs. (3.3.38a,b). Values of the laminate stiffnesses for various
stacking sequences will be presented in Section 3.5.

For the nonisothermal case, the strains are given by Eq. (3.3.14) and the laminate
constitutive equations (39) become

(0= 1 ol {E)-{Bn) {0} e

where {NT} and {M7T} are thermal force resultants

(NT} = Z / 10]% {a} AT d2 (3.3.41a)

(M7} = Z /e

Zlc+1

YRIAT 2 dz (3.3.41b)
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and {N?} and {MPF} are the piezoelectric resultants

N k41

NPy =3 / [e] P EYR gz © (3.3.42a)
k‘;l %k+1

(M} =% / O (EY® - dz (3.3.42b)
k=177

Relations similar to Egs. (3.3.41a,b) can be written for hygroscopic effects.

3.3.6 Equations of Motion in Terms of Displacements

The stress resultants (N’s and M’s) are related to the displacement gradients,
temperature increment, and electric field. In the absence of the temperature and
electric effects, the force and moment resultants can be expressed in terms of the
displacements (ug, vg, wo) by the relations

Ny A A A %_uf + %(%)2
{ Nyy } = | A1z Az A %;,Q + %(%ﬂy?
Ny Ag Az Ass %l + 9w 4 %Q%—“’f
2
By Bi2 Big] %T;UQQ
— | Bi2 B2 By 6(9—;”5(1 (3.3.43)
Big B Bes] | 90w
Oxdy
Mgy B1n Bi2 Big %_uﬁ + %(%)2
{ My, } = | Bi2 B By %% + %(%—w‘;y
My, Big B2 Bes %—“ly@ + w4 %%%—‘;Q
2
D1y Di2 Dag %T;UQQ
— | D12 D22 Dgs %‘;%Q (3.3.44)
Dig D2 Des| | 90%wo
ozdy

The equations of motion (3.3.25) can be expressed in terms of displacements
(up, vo, wo) by substituting for the force and moment resultants from Eqs. (3.3.43)
and (3.3.44). In general, the laminate stiffnesses can be functions of position (z,y)
(i.e., nonhomogeneous plates). For homogeneous laminates (i.e., for laminates with
constant A’s, B’s, and D’s), the equations of motion (3.3.25) take the form

O%uy  Bwg O%wo O%vg  Owy 0wy
A A
u ( 022 "oz 022 | T2\ Bray T Ty ozoy
+ A ( Pug  0%vy  BPwodwy  Owy 82w0>

Oxdy + Ox? + ox? Oy * Ox Ozdy



130 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

(G )+ (B 5
(G o+ e
B ;;%Z _ By Lo 2366%;;02

82u0 8w0 82’(00 821}0 8w0 82w0
Aw(&r? * o a2 | T4\ gray T oy owoy

(92u0 . (92@0 + 62w0 (9’(1]0 871)0 8271)0
Oxdy  Ox? ox? Oy Ox Oxdy

83w0 _B 8311)0 _ 8311)0
0 Dz oy? % 920y

2 2 2 2
+A12<8 (N +8w08 'LU()) +A22 <6 v0+8w08 w0>

Ox0y  Ox Oxdy Oy? Oy 0Oy?
+ A26 82u0 i 821)() + 82100 8w0 8w0 82w0
Oy?:  Oxdy Oxdy Oy Ox 0y?
By Pwy Pwyg
_ 9B~ 0
6 9x0y?

B (aNgy N aNyTy> _ P P

- .y
o2 T oyore

83UQ 82w0 8211)() 8’LUO 83’11)0 (93’1)0 8211)0 8211)()
By =t 55 5 3 12 5o+
Ox Oz Ox or Oz 0x?0y  Oxdy 0x0y

8’11)0 83w0 83U0 8300 (93711() 8w0 8211)() 0211)()
R B 16 +

Oy 0x20y 0x20y  0x®  Ox3 Oy 0x? dxdy

Owy Pwo \ o wy Gy Owg.

dxr Ox20y 17924 2 9220y2 1% 9230y

83UO n (9211}0 82w0 + Bwo 83w0 (’)3110 4 0211)() 82w0
Ox20y  0x? Ozxdy  Ox Ox20y 26 Oxdy?  Oxdy Oy?

c’)wo (9311}0 ) ( 83160 831)0 6311)0 8w0 GQ’LUO 82’LU0
+ 26566 +

Ay Oz0y? Oxdy?  0x20y + 0x20y Oy  Oxdy Oxdy
62w0 82w0 811)0 ang _9D 8411)() 84100

ox2 Oy? Ox OxOy? 99235y 26 92y’

8411)() + o ( 83U() + 6211)0 82w0 8w0 83w0 >

Oxdy?  O0xdydxdy Oz Oxdy?

(3.3.45)

(3.3.46)
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9% 52 52 P 93 93, 33
+ By U30 n U;O u;O + wo U;O ] UQ 4 U(J2
oy dy? Oy oy Oy oy Oxdy
n Pwy Owg . O?wy O%wy  Owg Pwyg
0xdy? dy Oxdy Oy? ox Oy3
*wg 0ty O*wo
_D128$2a 5 —D22 a 7 2D268 (9 3 ./\/(wo)—%—q
_(oPML  OPMY,  OPMy,
Ox? Oyox Oy?
0%wy 9% [(Pwy 9wy 0% [Ouy Oy
= ] —1I I —_—t — 3.3.47
o o (82+82 +18t2<8x+8y> (3:3.47)

where N (wp) was defined in Eq. (3.3.24a).

The nonlinear partial differential equations (3.3.45)—(3.3.47) can be simplified
for linear analyses, static analyses, and lamination schemes for which some of the
stiffnesses (A;;, Bij, D;j) are zero. These cases will be considered in the sequel. Once
the displacements are determined by solving Eqs. (3.3.45)-(3.3.47), analytically or
numerically for a given problem, the strains and stresses in each lamina can be
computed using Eqgs. (3.3.10) and (3.3.12), respectively.

Example 3.3.1: (Cylindrical Bending)

If a plate is infinitely long in one direction, the plate becomes a plate strip. Consider a plate strip
that has a finite dimension along the z—axis and subjected to a transverse load ¢(x) that is uniform
at any section parallel to the z—axis. In such a case, the deflection wy and displacements (ug, vg)
of the plate are functions of only x. Therefore, all derivatives with respect to y are zero. In such
cases, the deflected surface of the plate strip is cylindrical, and it is referred to as the cylindrical
bending. For this case, the governing equations (3.3.45)-(3.3.47) reduce to

8?ug | Bwy 92wy d%vg Bwy  ONT, 82uy By
A . — + A -B o ——2E =], — I - 3.3.48:
! <0m2 O Ox2 167922 1753 dx 0 52 1 Bxot2 ( Y
PPug | Bwg I wy 8%y Pwy  ONT 02y
A A -B - o= ] 3.3.48t
10 ( a2 " Oz oa2 ) T2 TP T ey T 0w (3.3.485)
BBuy 02wy 02wy Owy PPy 3% ug 9wy ZMT
By - ~— A A B - D507 — ==
ox3 Ox2 0Ox2 dx Ox3 Ox3 Azt Ox2
0 dwg 2w Mg Py .
<9 (n,, 2% — 1,20 . e 3.3.48¢
*or ( oz ) LIy v R (8.3.48c)

Example 3.3.2:

Suppose that a six-layer (£60/0); symmetric laminate is subjected to loads such that the only

nonzero strains at a point (z,y) are 5(,0,) = gp in./in. and 5( ) = Kg/in. Assume that layers are
of thickness 0.005 in. with material properties E|, = 7.8 psi, E2 = 2.6 psi, G1o = G13 = 1.3 psi,
Gag = 0.5 psi, and vi5 = 0.25. We wish to determine the state of stress (6.4, 04y, 02y) and force
resultants in the laminate.

The only nonzero strain is e,. = g + 2zKg. Hence, the stresses in kth lamina are given by

UJ(L';) = Qgﬁ) (e0 + zKg), crl(,g) = Q (50 + 2KQ), O’EIL) = Qg%) (g0 + zK0)
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where
~ 3.215 1.431 +0.707 ~ 7.966 0.664 0
[Q]+600 = 1.431 5.871 £1.593 | msi, [Qlge = | 0.664 2.655 0O msi
4+0.707 £1.593 2.068 0 0 1.3

The stress resultants are given by

Nax 0.1440 Mz 7.6306
Nyy » =14 0.0353 »eo x 108 Ib/in., ¢ M, » = { 3.1566 ) ko lb-in/in.
Ny 0 May 0.7066

If £g = 1000 x 10~ in./in. and kg = 0, we have

Nze 144 Mz 0
Nyy 2 =< 353 5 Ib/in,, < My, » =< 0 » lb-in/in.
Nzy 0 My 0

If eg =0 in./in. and kg = 1.0 /in., we have
Nzz 0 My 7.6306
Ny, =203 Ib/in., { My, p =21 3.1566 5 Ib-in/in.
Ny, 0 M., 0.7066

3.4 The First-Order Laminated Plate Theory

3.4.1 Displacements and Strains

In the first-order shear deformation laminated plate theory (FSDT), the Kirchhoff
hypothesis is relaxed by removing the third part; i.e., the transverse normals do not
remain perpendicular to the midsurface after deformation (see Figure 3.4.1). This
amounts to including transverse shear strains in the theory. The inextensibility of
transverse normals requires that w not be a function of the thickness coordinate, z.

Under the same assumptions and restrictions as in the classical laminate theory,
the displacement field of the first-order theory is of the form

u(‘Tayv Zat) = ’LL(](QZ',y,t) + ZCZSz(i’?,y,t)
’U(xvy7 th) = Uo(x’yvt) + Z(by(l‘,y,t)
w(z,y,z,t) = wo(z,y,t) (3.4.1)

where (ug, vo, wo, ¢z, ¢y) are unknown functions to be determined. As before,
(ug, v, wp) denote the displacements of a point on the plane z = 0. Note that

ou ov

5 = bz, 5 = by (3.4.2a)

which indicate that ¢, and ¢, are the rotations of a transverse normal about the
y— and z—axes, respectively (see Figure 3.4.1). The notation that ¢, denotes the
rotation of a transverse normal about the y—axis and ¢, denotes the rotation about
the x—axis may be confusing to some, and they do not follow the right-hand rule.
However, the notation has been used extensively in the literature, and we will not
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Figure 3.4.1: Undeformed and deformed geometries of an edge of a plate under
the assumptions of the first-order plate theory.

depart from it. If (3;, 8,) denote the rotations about the x and y axes, respectively,
that follow the right-hand rule, then

ﬂx = _d)y P ﬁy = ¢x (3'4'2b>

The quantities (ug, vo, wo, ¢z, ¢y) Will be called the generalized displacements. For
thin plates, i.e., when the plate in-plane characteristic dimension to thickness ratio
is on the order 50 or greater, the rotation functions ¢, and ¢, should approach the
respective slopes of the transverse deflection:

8’11)0

owg - 6w0
Oz '’

Gr = ¢y: a—y

The nonlinear strains associated with the displacement field (3.4.1) are obtained
by using Eq. (3.4.1) in Eq. (3.3.7):

_%,%%y+%z
frr = 5 T3 o rr

< Juy  Ovg  Owyp 3100) <8<15cc gy )
’ny _ A

By "oz oz oy oy ox
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(91)0 _|_1 (%)2 +z 8¢y

W oy dy By
. 811)0 _ 8 0 -
Yoz = E + ¢z, Yyz = 8:1/ + ¢ya €z, =10 (3-4-3)

Note that the strains (€,4, €yy, Vay) are linear through the laminate thickness, while
the transverse shear strains (vs,7y.) are constant through the thickness of the
laminate in the first-order laminated plate theory. Of course, the constant state of
transverse shear strains through the laminate thickness is a gross approximation of
the true stress field, which is at least quadratic through the thickness.

The strains in Eq. (3.4.3) have the form

1]
oy () () Bicer e
o 0) (1) a_vq + 1(omoy2 op
Eyy Eyg Ey%/ v dy o
Vyz ¢ = ”y;(,z) +2 ’Y@Sz) — wo + ¢y g B
Yz %gg) %(clz) 8wo + by % 0 0
, 0
Ty 1y vy G 1 & 8”0 + G o + 5
(3.4.4)

3.4.2 Equations of Motion

The governing equations of the first-order theory will be derived using the dynamic
version of the principle of virtual displacements:

T
0= / (6T + 8V — 6K) dt (3.4.5)
0

where the virtual strain energy 6U, virtual work done by applied forces 6V, and the
virtual kinetic energy 6K are given by

oU = o {/_%% [Uzz (652(2 + zéaé?) + oyy (55?(/%) + zé‘s&))

+ Ouy (6’)/(0) + zé'y(l)) + 02267 + Uyzéfy?(/g)} dz}da:dy (3.4.6)

[Ny

oV = — /Q [ qp + @ 61110] dl”dy / / Unn (6un -+ Z(Sgbn)

+ s (bus + 2605) + G 0w | dzds (3.4.7)

h

6K//§
Q /-4

!\3|:'

uo + zqﬁz) (6110 + z6d>m) + (1')0 + zd)y) (51')0 + zéq.by)

+ u')oéu‘)ol dz dxdy (3.4.8)

where all variables were previously introduced [see Egs. (3.3.16)—(3.3.18) and the
paragraph following the equations].
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Substituting for dU, 6V, and §K from Eqgs. (3.4.6)-(3.4.8) into the virtual work
statement in Eq. {3.4.5) and integrating through the thickness of the laminate, we
obtain

(1

Ty Ty

T
0= / { / [Nméeﬁf.? + Mipo8el) + NyybelO) + My, 6elt) + Nyy670) + My, 6y
0 Qo 1

+ Q7Y + Qy67 Y — qbwo — I (gt + D080 + wodtin)
—h (%5160 + Q.Syé@() + é¢xu0 + (5(&%}0) — Iy <¢z6¢z + %6%” dl‘dy

_ / ( Nunbtiy, + Npsdtg + Mpnbn + Mys6ds + Qnéwo) ds}d,t (3.4.9)
Ly

where ¢ = q, + g, the stress resultants (Nyz, Nyy, Ny, Myz, Myy, Myy) and the
inertias (Iy, I, I2) are as defined in Eq. (3.3.20), (Nun, Nns, Mun, Mys) are as defined

in Eq. (3.3.29a,b), and
Q H
T 2 Oxz
= d 3.4.10
{Qy} /;%{O'yz} < ( a)

The quantities (Qz, Qy) are called the transverse force resultants.

Shear Correction Factors

Since the transverse shear strains are represented as constant through the laminate
thickness, it follows that the transverse shear stresses will also be constant. It
is well known from elementary theory of homogeneous beams that the transverse
shear stress varies parabolically through the beam thickness. In composite laminated
beams and plates, the transverse shear stresses vary at least quadratically through
layer thickness. This discrepancy between the actual stress state and the constant
stress state predicted by the first-order theory is often corrected in computing
the transverse shear force resultants (Q,Q,) by multiplying the integrals in Eq.
(3.4.10a) with a parameter K, called shear correction coefficient:

{gz} K _%% {Zaycz } ds (3.4.10b)

This amounts to modifying the plate transverse shear stiffnesses. The factor K
is computed such that the strain energy due to transverse shear stresses in Eq.
(3.4.10b) equals the strain energy due to the true transverse stresses predicted by
the three-dimensional elasticity theory.

For example, consider a homogeneous beam with rectangular cross section, with
width b and height h. The actual shear stress distribution through the thickness of
the beam, from a course on mechanics of materials, is given by

2
-Safi (=Y bt
= 2bh h 2= T2

Q
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where () is the transverse shear force. The transverse shear stress in the first-order
theory is a constant, aifz = @Q/bh. The strain energies due to transverse shear
stresses in the two theories are

1 2 3Q?
¢ € V2 4A =
Us =30n /A (022) " 5G13bh

1 2 Q?
f— F Y dA =
Us =365 /A ("“) 2G13bh

The shear correction factor is the ratio of UJ to U¢, which gives K = 5/6. The
shear correction factor for a general laminate depends on lamina properties and
lamination scheme.

Returning to the virtual work statement in Eq. (3.4.9), we substitute for
the virtual strains into Eq. (3.4.9) and integrate by parts to relieve the virtual
generalized displacements (§ug, dvo, 6w, ¢z,0¢,) in Qp of any differentiation, so
that we can use the fundamental lemma of variational calculus; we obtain

T .
0= /0 /QO [ B (vaw + Nay,y — lotio — I1¢x) Sup
_ (ny,z + Nyyy — Totio — 11(;5y> v0
— (me + My — Qo — Iy — [1110) 5
-

Mzye + Myyy — Qy — I2¢3y - IlﬁO) 5¢y

- (Qz,z + Qy,y + N(wo) + q— Iol'[)()) 5w0:I dmdy
—l—/OT /F [ (N,m — Nnn> by, + (an — an) bus + (Qn — Qn) bwg
+ (M,m - Mm) Sbn + (Mns - Mns) 5¢$] dsdt (3.4.11)

where N (wp) and P(wg) were defined in Eq. (3.3.24), and the boundary expressions
were arrived by expressing ¢, and ¢, in terms of the normal and tangential rotations,
(()b'll’ ¢S):

Gr = Ngpbn — Nyds , Gy = Ny + Nz b5 (3.4.12)

The FEuler-Lagrange equations are obtained by setting the coefficients of duyg,
dvg, dwo, 0¢,, and 6¢, in Q to zero separately:

ON,, ON, o%uy %
Sug : LA § I v
uo oz oy Yo T on
ON,, ON. oy . 0%
Sup - y wo_ g 1, %%
vo oz oy o T
90, 0 82w
6w0: Q +&+N(U)0)+q:[0—u9

Or Oy ot?
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 OMg, | OMy, e, d%ug
Sy : 5+ oy — Q= L—os + 53
OM. OM, 0%¢ 9%y
8, W W Q=T 4+ T 4.1
Oy or oy TRy Thgs (3.4.13)

The natural boundary conditions are obtained by setting the coefficients of du,,,
bug, bwy, dd,, and 6o, on T' to zero separately:

Nnn“Nnn:07 an—an:Oa QH-QTL:O

Mupn — Mpn =0, Mps — Myps =0 (3.4.14a)

where

Qn = Qunz + Qyny + P(wo) (3.4.14]:))

Thus the primary and secondary variables of the theory are

primary variables: Up, Us, Wo, On, Ps
secondary variables: Ny, Nus, Qn, Muyn, Mps (3.4.15)

Note that Q,, defined in Eq. (3.4.14b) is the same as that defined in Eq. (3.3.31b).
This follows from the last two equations of (3.4.13).

The initial conditions of the theory involve specifying the values of the
displacements and their first derivatives with respect to time at ¢t = O:

0 0 0 0 0
Un :una Us — us7 Wy = w07 ¢n = ¢na ¢S = ¢s
. .0 - .0 . .0 00 4 0
Uy =Wy, Us = Uy, Wo = Wy, On = Py, Ps = @, (3.4.16)

for all points in £g.

3.4.3 Laminate Constitutive Equations

The laminate constitutive equations for the first-order theory are obtained using the
lamina constitutive equations (3.3.12a) and the following relations:

® A o 1E (O s s o (&YW
Oy _ [ Qu Qs Yz | [B1a €24 O
’ =g & s fua o g, (3.4.172)
Tz 45 55 Yoz 15 25 52
where [see Eq. (2.4.10)]

Q44 = Qu cos 0 + Q55 sin? @
Qus = (Qs5 — Qa4) cosfsin
Q55 = Quqsin® 0 + Q55 cos® 0 (3.4.17b)

€14 = (€15 — egq) sinfcos b, éxy = egy cos® 0 + eq5sin’ 0

€15 = e15C08% 0 + eg48in% 0, €95 = (e15 — e24) sinf cos (3.4.17¢)
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The laminate constitutive equations in Eqgs. (3.3.36) and (3.3.37) are valid also
for the first-order laminate theory. In addition, we have the following laminate

constitutive equations:

(&) =rg [ {0

(&) -xlie e} -{%)

where the extensional stiffnesses Ay4, Ags, and Ass are defined by

or

(Agq, Ags, Ass) = / (Qua, Qus, Qs5) dz

NIE‘ o

e

Zk+1 — _
[ @ a0l a:

2k

=
Il
—

Q% ilg),Qé?)(ZkJrl—Zk)

pllﬁz

ES
Il

1

and the piezoelectric forces QF and Qf are defined by

(k)
{Qf} _ i /Z’““ [514 €24 Orc) ? "
QY = €15 €25 0 SZ

(3.4.18)

(3.4.19a)

(3.4.19b)

When thermal and piezoelectric effects are not present, the stress resultants
(N’s and M’s) are related to the generalized displacements (ug,vo, wo, ¢z, dy) by

the relations

_ o 1,0 2
Na A A Asg 871? + 12‘((;(%1)2
U 1
Nyy ¢ = | A1z A Ag 5y T 32(5)
Ngy Ag Az Ass %—“Qy@ + %ZQ + %Q%Q
_ Oz
By B2 Bis é?f
+ | Bi2 B2 B By
B B B Oy 9
16 Bas Beo] | Of= 4 S0
. o 1wy \2
Mgy, By B2 B g?%:Q + ?(aa_wzQ)Q
My, ¢ = | B2 B B 5 1+ 3(%)
Mgy Big Bs Bes | %ZQ + %‘1 + ‘98“3’30 aa—w!;
. Oy
D11 D12 Dig éaf
+ | D12 D22 Dy v
D D D 0y , 09
16 Do Desl | G 4 Su

(3.4.20)

(3.4.21)
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an
Qy } [A44 A45} + by ,
=K 3.4.22
{ Qx Ay Ass 0—“19 + ¢y ( )
When thermal and piezoelectric effects are present, Egs. (3.4.20) and (3.4.21)

take the same form as Eq. (3.3.40), and Eq. (3.4.22) will contain the column
of piezoelectric forces given in Eq. (3.4.18).

3.4.4 Equations of Motion in Terms of Displacements

The equations of motion (3.4.13) can be expressed in terms of displacements
(ug, vo, Wo, ¢z, ¢y) by substituting for the force and moment resultants from Eqs.
(3.4.20)-(3.4.22). For homogeneous laminates, the equations of motion (3.4.13)
take the form (including thermal and piezoelectric effects)

2 2 2 2
An (8 u0+0w08 wo>+A12<0 (%) +8w08w0>+

Ox? Ox Oz? Oyox Oy Oyozx
Are 32160 n aQUO + (9211)0 8100 + 8w0 62w0
oyoxr  Ox? 0x? Oy Ox Oyozx

02 by 0?2 0%¢, 020,
B ¢ + B2 ¢y+316< ¢'+ ¢J>+

Ox? Oyox Oxdy  Ox?
aQU() 8100 827110 821)0 awg 82w0
Asg Agg
16 <8x8y + Ox Oxdy + A2 Oy? + Oy Oy? +
A66 <82u0 4 32?}0 82w0 8w0 8w0 02w0>

Oy?  Oxdy  Oxzdy Oy Ox Oy?

Oy 0? o, 02
Big ¢y+B6 ¢y+B%< ¢ + %)—

0x0 oy? oy?  Oyox
ONL 0N, ONE.  ON[, Pug . 0%y ‘
(ax to, )\ Tay ) T lhae thae B4

, ( 621)0 8w0 8211)())

82u0 811)0 6211)0
A1g A
16 ( 0x? * Ox 0Ox? + A2 Oyox * Ay Oydx

A <823u0 N D?vg  O*wg Owp n Owg 82w0>

oyor T 0x° T 022 oy | oz Oyow
¢ d%¢ ¢, 00
Bis—~ + B Y+ B ud Y
107922 + 526 OyOx + Des Oxdy + Ox? +

2 2 2 2
A12<0 Ug +6w06 UJQ> +A22 (6 v0+6w08 w0>+

OxOy  Ox Oxzdy oy? Oy 0Oy?

OQUO 821)0 8211}0 811)0 871)0 8211}0
Asgg + +
oy?  Oxdy  Oxdy Oy oxr Oy?
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¢, ¢y ¢, 0%,
Bugiay T2 T8\ 52 Yo, ) T

T
(any N (‘3NyTy> ) <asz; N aNyg> L Pw 0%,

5z T oy ar Ty ) " lae thge (42

Ox2 oz Oydxr Oz

%wy O Swg 0o

KAy [ L8090 90y
45 <8m8y+ By >,+KA44(8 7 T +

oQF  oQY 92
N(w) +q— <—(% + %) Iy a:UO

2 2
K Ass (M + 6%) + K Ags (a wo 4 %> +

(3.4.25)

02 Oxr Ox? dydx Oy Oydx
B 82u0 + 82110 + 82’!1)0 8’(1)0 811)0 82w0

Oydxr  0x2  0x% Oy Oz Oyox
¢ ¢y o, | 0%y
a2 P20, VP oy T a2 ) T

2 2 2
Bw<8 Up +8w08 w()) +326 <8 v0+8w08 w0>+

2 2 2 2
Bir (a u0+0w06 w0>+Bl2<8vo +8w08w0>+

D1

Oxdy Oz Oxzdy Oy? Oy Oy?

B 82u0 + 821)0 82’11)0 8w0 8w0 8211)0
oy?  O0xdy Oxdy Oy Ox Oy?

2 2 2
&u acbywﬁﬁ(a ¢ a%y)_

D;s

Oxdy Do Ay? oy? + Oyozx

15 d
K Ass ( 8“)0 +¢x> — KAy ( 5;0 +¢y)
T

oMT  OMT MP, OMP,
Tz A 0 2 QP
oz dy Oz 8y

82¢x 82UO
o2 T oe

== (3.4.26)

GQUO 8w0 82w0 821)0 811)() 82w0
B
Bis ( Ox? + Ox Ox? + 52 Oydx + Oy Oyor +

B (a2u0 8% 82w08w0+8w082w0>

oyor | 0z® | 922 oy | 0z Oyow

2 2 2 2
0°¢s a¢y+D66<a¢m M)+

5z T P%g5, ozoy T a2

D1s
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82u0 (911)() 3211)0 82’00 8w0 32w0
+ Ba > +
Oxdy  Ox Oxdy Oy oy 0Oy?

B 82u0 4 82’00 i 02w0 8w0 awo (92100
oy?2  0x0y  Oxdy Oy ox Oy?

¢z *¢ ¢, %9
Dz g+ Doy o+ Das | 5o+ 550 | =

dwyg Owg

K Ay <8— +¢z> — KAy < By +¢y>

aMzT OM], oMb oML .
_ + —Q
Ox 8y ox Ay Y

82¢y 8 Vo
I
o o

=1 (3.4.27)

Equations (3.4.23)—(3.4.27) describe five second-order, nonlinear, partial
differential equations in terms of the five generalized displacements. Hence,
the first-order laminated plate theory is a tenth-order theory and there are ten
boundary conditions, as stated earlier in Egs. (3.4.14) and (3.4.15). Note that the
displacement field of the classical plate theory can be obtained from that of the
first-order theory by setting

¢z =——F— and ¢y =——F— (3.4.28)
X

Conversely, the relations in Eq. (3.4.28) can be used to derive the first-order theory
from the classical plate theory via the penalty function method (see Chapter 10).

Example 3.4.1:

The linearized equations of motion for cylindrical bending according to the first-order shear
deformation theory are given by setting all derivatives with respect to y in Egs. (3.4.23)-(3.4.27):

8%uq & P¢x 9%¢y ONZ ONL
A thege TBuga ¥ By 5 e
— 82uO 82¢7z .
=lo—7a + 50 (3.4.29)
02u 02y 0 92, 926, ONL,  ON[
B B y _ DVay iy
A5 +A6<> +Bi6—55 + Boo 3 . e
_ v 8 Dy .
= Iy + 1155, (3.4.30)
B2uyg 92y, 020, a2 ow
Bi15 > + Bis 89:20 + D1 83?2 + D1 aqﬁ; - KAss (d_o +¢z>
oML, OMP, 1 %0 ‘
- KAgsy - 2= - = +Qf = afg +11 8t2 (3.4.31)
82y 82%v 820, 02
Bi6 52 2 + Byg 522 0 + Dys 8¢2 + Dgs 8¢2 — KAy
d] oM7L, GM,P 9?2
_ KAgs ( wo ¢1) - Sl =1 agy o (3.4.32)
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42,
K Ass (d 2o 4 6¢T> +KA456L:J + 5% (N 811]0)

Ox? ox 0 o
aQr 82wy
_ T 4.
+q P Iy 52 (3.4.33)

3.5 Laminate Stiffnesses for Selected Laminates

3.5.1 General Discussion

A close examination of the laminate stiffnesses defined in Eqs. (3.3.38) and (3.4.19a)
show that their values depend on the material stiffnesses, layer thicknesses, and
the lamination scheme. Symmetry or antisymmetry of the lamination scheme and
material properties about the midplane of the laminate reduce some of the laminate
stiffnesses to zero. The book by Jones [44] has an excellent discussion of the laminate
stiffnesses for various types of laminated plates. In this section, we review selective
lamination schemes for their laminate stiffness characteristics.

Before we embark on the discussion of laminate stiffnesses, it is useful to introduce
the terminology and notation associated with special lamination schemes. The
lamination scheme of a laminate will be denoted by («a/8/v/6/¢/---), where « is
the orientation of the first ply, 3 is the orientation of the second ply, and so on (see
Figure 3.5.1). The plies are counted in the positive z direction (see Figure 3.3.1).
Unless stated otherwise, this notation also implies that all layers are of the same
thickness and made of the same material.

A general laminate has layers of different orientations 8 where -90° < 6 <
90°. For example, (0/15/-35/45/90/-45) is a six-ply laminate. General angle-ply
laminates (see Figure 3.5.2) have ply orientations of § and -6 where 0° < § < 90°,
and with at least one layer having an orientation other than 0° or 90°. An example

N

o

\j

DO |~

|

Figure 3.5.1: A laminate with general stacking sequence.
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of angle-ply laminates is provided by (15/-30/0/90/45/-45). Cross-ply laminates
are those which have ply orientations of 0° or 90° (see Figure 3.5.3). An example of
a cross-ply laminate is (0/90/90/0/0/90). For layers with 0° or 90° orientations, the
layer stiffnesses Q16, Q26, Q45 are zero. Hence, A1g = Agg = Ags = D1g = Dog = 0.

When ply stacking sequence, material, and geometry (i.e., ply thicknesses) are
symmetric about the midplane of the laminate, the laminate is called a symmetric
laminate (see Figure 3.5.4). For a symmetric laminate, the upper half through
the laminate thickness is a mirror image of the lower half. The laminates (-
45/45/45/-45)=(-45/45)s and (45/-45/-45/45) = (45/-45),, with all layers having
the same thickness and material, are examples of a symmetric angle-ply laminate,
(0/90/90/0) = (0/90), is a symmetric cross-ply laminate, and (30/-45/0/90/90/0/~
45/30)=(30/-45/0/90), is a general symmetric laminate.

( [€5) ) £y t
) @ /1t |a
< <, ( ts 2
\ \ Z - x
/ )
( { "
\ () N\ 2
tr1
| S Ly
\

Figure 3.5.2: A general angle-ply laminate.

Do o~

1 \_//\\_/'\

[

8rE0Ee |01

"1

‘vz

Figure 3.5.3: A cross-ply laminated plate with the 0° and 90° layers.
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N B
2
2
173
=5
tk+1=tk
h
tr1=ty 2
sy
Y.

Figure 3.5.4: A symmetric laminate.

Note that symmetric laminates are also denoted by displaying only the lamination
scheme of the upper half. The symmetric laminate (—25/35/0/90/90/0/35/-25) is
denoted as (-25/35/0/90)s.

An unsymmetric or asymmetric laminate is a laminate that is not symmetric.
An antisymmetric laminate is one whose lamination scheme is antisymmetric
and material and thicknesses are symmetric about the midplane. Examples of
antisymmetric angle-ply and cross-ply laminates are provided, respectively, by (-
30/30/-30/30/-30/30)= (-30/30)3 and (0/90/0/90/0/90)= (0/90)s.

Laminate stiffnesses A;; depend on only on the thicknesses and stiffnesses of
the layers but not on their placement in the laminate. On the other hand, laminate
stiffnesses D;; depend not only on the layer thickness and stiffnesses but also on their
location relative to the midplane. For example, both (0/90), and (90/0)s laminates
will have the same in-plane stiffnesses A;;. However, (0/90)s laminate will have
larger bending stiffnesses D;; about an axis perpendicular to the fiber direction than
the (90/0)s laminate, because the 0° layers are located farther from the midplane in
the (0/90), laminate. Both A;; and D;; are always positive. Laminate stiffnesses B;;
also depend on the layer thickness, stiffnesses and location relative to the midplane,
and they can be negative, depending on the lamination scheme and the number of
layers.

3.5.2 Single-Layer Plates

Here we discuss some special cases of single-layered configurations and their
stiffnesses. The special single layer plates discussed here include: isotropic, specially
orthotropic (i.e., the principal material coordinates coincide with those of the plate),
generally orthotropic (i.e., the principal material coordinates do not coincide with
those of the plate), and anisotropic. The bending-stretching coupling coefficients
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B;; and the shear stiffnesses Ajg, Ags, Die, and Dag can be shown to be zero for
all single-layer plates except for generally orthotropic and anisotropic single-layer
plates. The units of N; and M;, in the U.S. Customary System (USCS), are lb-in.
and lb-in/in., respectively.

Single Isotropic Layer

E
M2(1+1/)] and

For a single isotropic layer with material constants E and v [G =
(3.4.19a) become

thickness h, the nonzero laminate stiffnesses of Egs. (3.3.38) and

Eh 1—

v 1~—v
An = ——, Az =vAn, Axp = An, A = Anr, Agg = Ass = An
1—-v 2 2
Eh? 1—v
Dy = ——% | Diy=vDyy, Do = D1, Des = D 3.5.1
U ) 12 =vD11, Dy 11, Des 5D (3.5.1)
The plate constitutive equations for the classical and first-order theories become

Ny [ Ay I/Au 0 5(793
Nyy = I/Au A11 . 0 62(/%) (lb/ln) (352)

0 I R R T BN

My} [ Dn vDy 0 e
My, ¢ =|vDu Du 0 e b (Ib-in/in.) (3.5.3)

My, 0 0  35%Dul 0

0)
Qy} 1w{Au 0 } e .
=K 1b- 3.5.4
{@ 510 a1 | (3.5.4)
The nonzero thermal stress resultants { N7} and {MT} are given by
Ea (3 Ea (3
T _ T _ T _ afT _

Nio=Njy = L AT dz, M, = My, = 75 L ATz dz  (3.5.5)

Single Specially Orthotropic Layer

For a single specially orthotropic layer, the stiffnesses can be expressed in terms
of the @Q;; and thickness h. The nonzero stiffnesses of Eqgs. (3.3.38) and (3.4.19a)
become

Al = Quh, Az = Qi2h, Az = Qxnh
Ags = Qoch, Asa = Qaah, Ass = Qss5h

Quh? Qi2h? Qah? Qesh®
Dy » D2 190 P2 1o Des 19
where @;; are the plane-stress-reduced stiffnesses, and they are given in terms of

the engineering constants [see Eq. (3.3.11b)] as

(3.5.6)

E vy E
Qn:—l—‘ QlQ_L 2

, = y Qo= —"7"
1 — 19001 1 — vqov9 1 — 11909
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Qo6 = G12, Qa4 = G23, Q35 = G13 (3.5.7)
The plate constitutive equations for the classical and first-order theories become
Neo Qu G2 0O 5%
Nyy =h ng Q22 0 Eyy (358)
Nmy 0 0 Q66 fyé(;)
My h3 Qun Q12 0 5%};
Myy 0 =15 G2 Q22 O Sy (3.5.9)
Ma:y 0 0 QGG '71(%/)
{Qy} = Kh [Q““ 0 } e (3.5.10)
Q:c 0 Q55 'yég)

The nonzero thermal stress resultants are given by

{]]% } = [gi; g;z] {3; } i AT dz (3.5.11a)
(b =[8n Gel{ay [loama s

Single Generally Orthotropic Layer

For a single generally orthotropic layer (i.e., the principal material coordinates do
not coincide with those of the plate), the stiffnesses can be expressed in terms of the
transformed coeflicients @);; and thickness k. The nonzero stiffnesses are (B;; = 0)

Qi3
12

The plate constitutive equations are

Aij = Qizh, Dij =

, Ags = hQu, Ass = hQss (3.5.12)

Nea [A11 Ap Agg 5101

Nyy = A12 A22 A26 Eéy) (3513)

Nay LA Azs Aes] | A

1

Mgy [Din D12 Dig E%

Myy = D12 D22 DQG Eyy (3514)

My, D16 Do Des | [ L)

Qu\ _ o [Au Ags] [
{ Qs ) K Ags Ass ] | 49 (8:5.15)
The thermal stress resultants for this case are given by

N%_I[;E Qu Q12 Qe Qzz &
Ny 0= | Q12 Q22 (2% Qyy . ATdz (3.5.16)
NL, Qe Q2 Qs \ 204y ) "2
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A similar expression holds for {MT}.

If the temperature increment is linear through the layer thickness, AT = Ty+2T7,
the thermal stress resultants have the form

N;;g [Qu Q2 Qm] Qg

Nyy = Q12 QQQ QQG ayy o Toh

NL, LQw Q26 Qo] | 20y

M%;x (Qi1 Q12 Qi) [ Cax Ty b3

My, »=|Q12 @2 (% Qyy D (3.5.17)
M7 [ Q16 Q26 Qos | \ 20y

Single Anisotropic Layer

For a single anisotropic layer, the stiffnesses are expressed in terms of the coefficients
C;; and thickness h. The nonzero stiffnesses are (B;; = 0)

Ci;h?

Az'j = Cijh, Dl] = 12

(3.5.18)

for i, = 1,2,3,4,5 and 6 [see Eq. (2.4.3a)]. The plate constitutive equations are
the same as in Eqgs. (3.5.13)-(3.5.16) with the plate stiffnesses given by Eq. (3.5.18).

Example 3.5.1:

The material properties of boron-epoxy material layers are
F; =30 % 100 psi, By = E3 =3 x 100 psi, Gy = G153 = 1.5 x 105 psi

Gasq = 0.6 x 108 psi, 19 =0.25, v15 = 0.25, vog = 0.25 (3.5.19)

The matrix of elastic coeflicients for the material is [see Eq. (1.3.44)]

30.508 1.017 1.017 O 0 0
1.017 3.234 0834 O 0 0
] = 1.017 0.834 3.234 O 0 0 msi
0 0 0 06 O 0
0 0 0 0 15 0O
0 0 0 0 0 15

The plane stress-reduced elastic coefficient matrix in the material coordinates is

30.189 0.755 O 0 0
0.755 3.019 0 0 0
Q] = 0 0 06 0 0 | msi
0 0 0 15 0
0 0 0 0 15

The transformed stiffness matrix [Q] for 8 = 60° is given by

4.993 5573 0 0  3.101
5.573 18.578 0 0  8.664

[Qleo = 0 0 1.275 0.390 0 msi
0 0 0.390 0.825 0

3.101 8.664 0 0 6.318
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The laminate stiffnesses A;; and D;; for 4,5 = 1,2,6 may be computed using Eq. (3.5.12). The
transverse shear stiffnesses Aqq, Ay, and Asgs are given by A;; = Qyh for ¢,j =4,5.
Suppose that the thermal coefficients of expansion of the material are

a1 =2.5%x 1078 in./in./°F , ap = 8.0 x 10~% in./in./°F (3.5.20)

The transformed coefficients are
Qg 6.625
Qyy ={ 3875 3 x107% in./in./°F
20y ) goo —4.763

3.5.3 Symmetric Laminates

When the material properties, locations, and lamination scheme are symmetric
about the midplane, the laminate is called a symmetric laminate. If a laminate is not
symmetric, it is said to be an unsymmetric laminate. Due to the symmetry of the
layer material coefficients Ql(f) , distances zi, and thicknesses h; about the midplane
of the laminate for every layer, the coupling stiffnesses B;; are zero for symmetric
laminates (see Figure 3.5.5). The elimination of the coupling between bending
and extension simplifies the governing equations. When the strain-displacement
equations are linear, the equations governing the in-plane deformation can be
uncoupled from those governing bending of symmetric laminates. Further, if there
are no applied in-plane forces or displacements, the in-plane deformation (i.e.,
strains) will be zero, and only the bending equations must be analyzed. From
production point of view, symmetric laminates do not have the tendency to twist
from the thermally induced contractions that occur during cooling following the
curing process.

|

N | S

\E

Figure 3.5.5: A symmetric cross-ply laminate.
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The force and moment resultants for a symmetric laminate, in general, have
the same form as the generally orthotropic single-layer plates [see Eqgs. (3.5.13)-
(3.5.15)]. For certain special cases of symmetric laminates, the relations between
strains and resultants can be further simplified, as explained next.

Symmetric Laminates with Multiple Isotropic Layers

When isotropic layers of possibly different material properties and thicknesses are
arranged symmetrically from both a geometric and a material property standpoint,
the resulting laminate will have the following laminate constitutive equations for
the classical or first-order theories:

Nzx -AH A12 0 8(1(3:)
Ny t = | A An 0 |9 (3.5.21a)
Ny L0 0 Ass] |40
- (1)
Meq Dy Dz 0 22
My, 3 =| Dy Diy 0 |{ el (3.5.21b)
My L0 0 Dol [0
0)
Qy _ Ay 0 Yyz
{Qz =K |0 ) (3.5.21c)

where the laminate stiffnesses A;; and D;; are defined by Eqgs. (3.3.38) and (3.4.19a)
with

E
Qu —sz =7 QIG —Q26 =0

k k
Ak _ VB k) _ sk _ AR B
— , — . 3.5.22
Q2 1— 1/,3 a1 = Qs5 = Qgg 2(1 + vg) ( )

The thermal stress resultants for this case are given by
T L Zk+1 [ () 9 (k)
{%’“f } = Z/ : [Q” Q”} {a” } AT dz (3.5.23)
vy = Ju Q12 @2 Oty

and similar expression holds for {MT}.
If AT =Ty + 271, then Eq. (3.5.23) can be written as

NL, A A [ oax ML Dun Dia| [ g
{NT } fo [An AQJ {ayy } {MT } h {Dlz D22} {ayy } (3:5.24)
Symmetric Laminates with Multiple Specially Orthotropic Layers

A laminate composed of multiple specially orthotropic layers that are symmetrically
disposed, both from a material and geometric properties standpoint, about the
midplane of the laminate does not exhibit coupling between bending and extension
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i.e., Bj; = 0. The laminate constitutive equations are again given by Eqgs. (3.5.21a-
c), where the laminate stiffnesses A;; and D;; are defined by Eqs. (3.3.38) and
(3.4.19a) with

k k 1k k
Sk _ By Ak _ Vo B Sk _ B
R 7 M 7 7 ML 7 1
~(k ~(k ~(k ~(k ~(k
Qge‘) =0, Qgﬁ) =0, Qée‘) = Glf% Qz(14) = G12€37 Qés)) = Glfs (3-525)

Such laminates are also called specially orthotropic laminates. The thermal stress
resultants have the same form as those given in Eq. (3.5.23).

A common example of specially orthotropic laminates is provided by the regular
symmetric cross-ply laminates, which consist of laminae of the same thickness and
material properties but have their major principal material coordinates (i.e., z1
and x2) alternating at 0° and 90° to the laminate axes x and y: (0/90/0/90/---).
The regular symmetric cross-ply laminates necessarily contain an odd number of
layers; otherwise, they are not symmetric. Of course, a general symmetric cross-ply
laminate can have either an even or odd number of layers: (0/90/0/90/90/0/90/0)
or (0/90/90/0/0/90/90/0) (see Figure 3.5.5).

Symmetric Laminates with Multiple Generally Orthotropic Layers

Laminates can be composed of generally orthotropic layers whose principal material
directions are aligned with the laminate axes at an angle 8 degrees. If the thicknesses,
locations, and material properties of the layers are symmetric about the midplane
of the laminate, the coupling between bending and extension is zero, B;; = 0, and
the laminate constitutive equations are given by Eqgs. (3.5.13)-(3.5.15). Note that
the coupling between normal forces and shearing strain, shearing force and normal
strains, normal moments and twist, and twisting moment and normal curvatures is
not zero for these laminates (i.e., Aig, A2e, Dig, and Dog are not zero). An example
of a general symmetric laminate with generally orthotropic laminae is provided by
(30/-603/155/-603/30), where the subscript denotes the number of layers of the
same orientation and thickness.

Regular symmetric angle-ply laminates are those that have an odd number of
orthotropic laminae of equal thicknesses and alternating orientations: (a/—a/a/—
a/a/---), 0° < a < 90° (see Figure 3.5.6). A general symmetric angle-ply laminate
has the form (6/8/~/ - --)s, where 8, 3, and v can take any values between —90° and
90°, and each layer can have any thickness, but they should be symmetrically placed
about the midplane. It can be shown that the stiffnesses Aig. Agg, Dig, and Dgg of
a regular symmetric angle-ply laminate are the largest when the number of layers
N is equal to 3, and they decrease in proportion to 1/N as N increases. Thus, for
symmetric angle-ply laminates with many layers, the values of Aig, Asg, D1, and
Dy can be quite small compared to other A;; and D;;.

A laminate composed of multiple anisotropic layers that are symmetrically
disposed about the midplane of the laminate does not have any stiffness
simplification other than B;; = 0, which holds for all symmetric laminates.
Stiffnesses Ajg, A2g, Dig, and Dagg are not zero, and they do not necessarily go
to zero as the number of layers is increased.
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Figure 3.5.6: A symmetric angle-ply laminate.

In general, symmetric laminates are preferred wherever they meet the application
requirements. Symmetric laminates are much easier to analyze than general or
unsymmetric laminates. Further, symmetric laminates do not have a tendency to
twist due to thermally induced contractions that occur during cooling following the
curing process.

Example 3.5.2:

A general symmetric laminate (30/0/90/-45), of total thickness 1 in. and made of boron-epoxy
layers [see Eqs. (3.5.19) and (3.5.20) for material properties] has the following laminate stiffnesses:

15491  3.565  0.468 1.683 0.303 0.409
[A]=| 3.565 12.095 —0.923|10° Ib/in., [D]= |0.303 0.604 0.141| 10% Ib-in.
0.468 —0.923  4.311 0.409 0.141 0.366

The transverse shear stiffnesses are (in 106 1b/in.)
Agq =0.9938, Ays =-0.0151, Ags =1.1063

The thermal stress resultants are (T # 0,77 = 0)

NZ, 57.241 MZ, 0
NI > =1 50.307 p10°Ty Ib/in., { MZ 5 =<0 ¢ Ib-in./in.
NI, -0.929 M, 0

A symmetric cross-ply laminate (0/90/0/90), of boron-epoxy layers has the stiffnesses

16.604 0.755 O 1.808 0.063 0

[A] =] 0.755 16.604 0}106 Ib/in., [D]_[0.0G:; 0.959 0 }106 1b-in.

0 0 1.5 0 0 0.125
The transverse shear stiffnesses are (in 10 1b/in.)

A44 = 105, A45 = 00, A55 =1.05
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Note that the cross-ply laminate considered here is equivalent to (0/90/0/90/0/90/0) where all
layers except the middle layer having a thickness of /8 and the middle layer (90) has a thickness
of h/4; here h is the total thickness of the laminate.

A symmetric angle-ply laminate (30/-30/45/-45), of boron-epoxy layers has the stiffnesses

14.379 6376 0 1.461 0.481 0.256
[A]=| 6.376 7.58 0 |10°1b/in., [D]= |0.481 0.470 0.126 | 10° Ib-in.
0 0 7122 0.256 0.126 0.543

The transverse shear stiffnesses are

Agq = 0.9375 x 10% Ib/in., Ays = 0.0 Ib/in., Ass = 1.1625 x 109 1b/in.

Example 3.5.3:

Consider a symmetric laminate (0/90)s made of boron-epoxy layers of thickness 0.005 in. Suppose
that the laminate is subjected to loads such that it experiences only nonzero strain of €9 = 103y
in./in. We wish to determine the forces and moment resultants.

The only nonzero strain is ez = EQ(D?E). Hence the force resultants in the laminate are given by

Neg All A12 0 Ea(rg)
{Nyy } = [Aw Ap O ] {9
Ny 0 0 Ag 40
0.3321 0.0151 0 1,000 332.1
= l0.0151 0.3321 0 }{ 0 }:{ 15.1} Ib/in.
0 0 0.03 0 0

All moments will be zero on account of the fact that there are no bending strains and the coupling
stiffnesses B;; are zero.

Now suppose that the laminate is subjected to loads such that it experiences only nonzero strain
of es(ci) = 0.1. Hence, the only nonzero strain is €,, = sii)z. Then the force resultants are zero, and
the moment resultants are given by

Mo Dyy Dy O Eog
Myy p=|D1a Dy O 851,)

Mo, 0 0 Desl | 4D
17.862 0.503 07 (0.1 1.7862
= | 0503 4.277 0|< 0.0 » =< 0.0503 § Ib-in./in.
0 o 1] (oo 0

3.5.4 Antisymmetric Laminates

Although symmetric laminates are more desirable from an analysis standpoint, they
may not meet the design requirements in some applications. For example, a heat
shield receives heat from one side and thus requires nonsymmetric laminates to
effectively shield the heat. Another example that requires coupling is provided by
turbine blades with pretwist. Moreover, the shear stiffness of laminates can be
increased by orienting the layers at angle to the laminate coordinates.

The general class of antisymmetric laminates must have an even number of
orthotropic laminae if adjacent laminae have equal thicknesses and alternating
orientations: (6/-0), 0° < # < 90°. Due to the antisymmetry of the lamination
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scheme (see Figure 3.5.7) but symmetry of the thicknesses of each pair of layers, this
class of antisymmetric laminates has the feature that A1 = Agg = Di1g = Dog = 0.
The coupling stiffnesses B;; are not all zero; they go to zero as the number of layers
is increased. Foa general antisymmetric laminate, the relations between the stress

resultants and the strains are given by

Nyg A Az O Ezg) By Bz Big
Nyy 0= |A12 A O 51E/y + | Bi2 By Bgg
ny 0 0 A66 %g%) BIG BQG BGG
0
My B11 B2 Bis 5%80) Dy Dz O
Myy = BlZ BQQ BQG Syy) + D12 D22 0
My, Big B¢ DBes %(C%) 0 0 Des
(g)-sle 215
Qu 0  Ass 7;2)
The thermal force resultants are given by
Ng; Lz Qu Q2 Qlﬁ (k) Qg (%)
22 < v
Ny, :Z/ Q12 Q22 Q2 Qyy ATdz
NE, k=1"%k Q6 Q26 Qes 20y
Similar expression holds for {MT}.
T
ty
ty h
2
7%
Lpa1=ty
h
ta=ty |2
tr=t,

Figure 3.5.7: An antisymmetric laminate.

(3.5.27)
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In the following pages, we discuss some special cases of the class of antisymmetric
laminates described above (i.e., laminates that have an even number of orthotropic
laminae, each pair having equal thicknesses and alternating orientations).

Antisymmetric Cross-ply Laminates

A special case of antisymmetric laminates are those which have an even number
of orthotropic layers with principal material directions alternating at 0° to 90° to
the laminate axes. Such laminates are called antisymmetric cross-ply laminates.
Examples of antisymmetric cross-ply laminates are (0/90/0/90/ - - -) with all layers
of the same thickness, and (0/90/90/0/0/90) with layers of the thicknesses
(h1i/h2/hs/hs/h2/h1). Note that for every 0° layer of a given thickness and location,
there is a 90° layer of the same thickness and location on the other side of the
midplane (see Figure 3.5.8). For these laminates, the coupling stiffnesses B;; have
the properties

Bsy = —Bi11, and all other Bij =0 (3528)

The relations between the stress resultants and the strains are

(0)

Nwz _All A12 0 Exx Bn 0 0 Exx
{ Ny, } = A1z Az O eD V4l 0o —By of{W
Ny L 0 0 Ass %g?) 0 0 0 %(62)
(3.5.29a)
My) [Bu 0 0] (&Y Dy Dis 07 (el
{ My, } =10 -Bn O 6?(,%) + | D12 Dy O (yly)
My) Lo o o) [0 00 0 Dasl |4
(3.5.20b)
Qyl _ g4 0 Ty 4.5.30
{Qz}—— [0 A55] va(fi)} (3:5.30)
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Figure 3.5.8: An antisymmetric cross-ply laminate.
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A regular antisymmetric cross-ply laminate is one that has an even number of
layers of equal thickness and the same material properties and which have alternating
0° and 90° orientations. For these laminates, the coupling coefficient By, approaches
zero as the number of layers is increased.

Antisymmetric Angle-ply Laminates

An antisymmetric angle-ply laminate has an even number of orthotropic layers with
principal material directions alternating at 6 degrees to the laminate axes on one side
of the midplane and corresponding equal thickness laminae oriented at -8 degrees on
the other side. When 6 = 0, -8 should be interpreted as 90° or vice versa. A reqular
antisymmetric angle-ply laminate is one that has an even number of layers of equal
thickness and material properties. An example is given by (—45/40/-15/15/-40/45).

For antisymmetric angle-ply laminates without 90° layers, the stiffnesses can be
simplified as

Atg = Age = D1 = D2g = 0; Bi1 = Boy = Big = Bgg =0 (3.5.31)
The relations between the stress resultants and the strains are
Niz (A A 07 e [0 0 Bl [
Ny p=1A1s Ay 0 [{ V4] 0 0 Byl|{el)t (3532
Ny L 0 0 Ass | 73(;%) | Big Do 0 'Y:(Ei/)
MeY T0 0 Bl (@) [Dy D 07 (el
My, 8= 0 0 Bay|eW b+ |Diy Doy 0 |l (35.33)
My) B B 0],0) Lo 0 Dl |0
Qy} [A44 0 } %52)
=K 3.5.34
{ Qu 0 Ass] | A0 ( )

For a fixed laminate thickness, the stiffnesses B1g and Bag go to zero as the number
of layers in the laminate increases.

Example 3.5.4:

A regular antisymmetric cross-ply laminate (0/90/0/90/0/90/0/90) of boron-epoxy layers has the
laminate stiffnesses

16.604  0.755 0 ‘ —0.849 0 0
[A]=| 0755 16.604 0 |10%1b/in, [B]=| © 0849 0]10°1b

0 0 1.5 0 0 0
1.384 0.063 0 Ay 1.050)
[D]= {0063 1384 0 |10%1b-in., { Ay p = 0 5 10% Ib/in.
0 0 0125 Ass 1.050
Note that if the same 0° and 90° layers are positioned differently, say (0/90/90/0/90/0/0/90), then
the coefficients B;; would vanish (why?).
An antisymmetric angle-ply laminate (-45/45/30/0/0/ -30/-45/45) of boron-epoxy layers has

the laminate stiffnesses
0 0 —0.194 ,
(4] = 0 0 0.067 | 10% b

17.281 5172 0
5172 7.093 0 |1081b/in., [B] =
—0.194 0.067 0

0 0 5.917
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0.951 0575 0 Aug 0.881

D= (0575 0792 0 |108Ib-in., < Ay » = 0 »10° Ib/in.
0 0  0.637 Asg 1.219

A general antisymmetric laminate (30/0/90/45)as = (30/0/90/-45/45/ 0/90/-30) of total

thickness 1 in. and composed of boron-epoxy layers has the following laminate stiffnesses and
thermal resultants:

15491 3565 0 ~0.425 0 —0.842
[A] = [ 3.565 12.095 0 ] 108 Ib/in., [B] = [ 0 0.425 _0.233] 10% 1b
0 0 4311 ~0.842 —0.233 0
1.470 0303 0 Ayq 0.9938
[D]:lo.so:z 0.816 0 ]106 Ib-in., {A45}:{ 0 }mﬁlb/in.
0 0  0.366 Ass 1.1063

NT, 5573.6 MT, 48.113

_ 6 . _ 6 . .
NI, & =4 59585 5 10° Ib/in,, ME, > =< —48.113 5 10° lb-in./in.
NZ, 0 MZ, 121.78

3.5.5 Balanced and Quasi-Isotropic Laminates

A laminate is said to be balanced if for every layer in the laminate there exists,
somewhere in the laminate, another layer with identical material and thickness but
opposite fiber orientation. The two layers are not necessarily symmetrically located
with respect to the midplane. Thus, the unsymmetric laminate (£35/0)r =(35/—
35/0) as well as the symmetric laminate (£35/0), are balanced laminates. The
characteristic feature of any balanced laminate is that the in-plane shear stiffnesses
Aqg and Agg are zero. The reason is that Q1 and Qo from opposite orientations of
the pair of layers are of opposite sign and therefore the net contribution from the
pair to A1 and Aog is zero:

(Qi6)p = — (Qu6)(—gy» (Q26)g = — (Q26)(_g)

For a general balanced laminate, the laminate constitutive relations are not that
much simpler than for a general laminate. However, for a symmetric balanced
laminate they are given by Egs. (3.5.13)—(3.5.15) with A4 = Ags = 0.

Laminates consisting of three or more orthotropic laminae of identical material
and thickness which are oriented at the same angle relative to adjacent laminae
exhibit in-plane isotropy in the sense that Ay; = A, Ags = (A11 — A12)/2, and
Aig = Agg = 0. Such laminates are called quasi-isotropic laminates. Examples
of quasi-isotropic laminates are provided by (90/45/0/-45) and (60/0/-60) (see
Example 3.3.2). When the bending-stretching coupling coefficients are zero, the
relations between force resultants and membrane strains are the same as those for
isotropic plates. The stress resultants are given by

Ny Apr A 0 53(1%8)
Nyy = A12 AH 0 Eéy)
Nzy 0 0 (A11 — Alg)/2 ’Va(c(g);)
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Problems

3.1 Suppose that the displacements (u,v,w) along the three coordinate axes (z,y,2) in a
laminated beam can be expressed as

u(z, 2) = up(x) + 2 co% +c gi)(m)}
v(z,z) =0
w(z,z) = wo(z) (1)

where (ug,wpy) denote the displacements of a point (z,y,0) along the = and z directions,
respectively, and ¢ denotes the rotation of a transverse normal about the y—axis. Show that
the nonzero linear strains are given by

fex = €59 + zelY), 260, = 20 (2a)
where p )
(0 _dug () _ d®wyg de¢ © _ dwy
Exx — dz y €27 =0 d.’E2 +C1 dr ’ 2€zz ( +CO) dr +C1¢ (Qb)

3.2 (Continuation of Problem 3.1) Use the principle of virtual displacements to derive the
equations of equilibrium and the natural and essential boundary conditions associated with
the displacement field of Problem 3.1, when the beam is subjected to axial distributed load
p(x) and transverse distributed load g(z). In particular, show that

dNge
dx

d
5p: 2(e1Mea) —1Qn =0

(S’LLO :

+p=0

d% -q=0 ()

d?
bwy : W(COAITT) *(1+Co) P

and the boundary conditions are of the form

Nzz oOr ug

ciMzz or ¢
d
— g (0Mze) + (1 +¢0)Qa or  wo
dU)U
coMzz or T (4)
where
Nzr:/Uzz dA7 A-{zz:/gzzz dA7 QT:/Uiz dA (5)
A A A
Note that the displacement field (1), hence the equations of equilibrium (3), contain those
of the classical (Euler-Bernoulli) beam theory (cg = -1, ¢; = 0) and the first-order

(Timoshenko) beam theory (cp =0, ¢; = 1).

3.3 (Continuation of Problem 3.1) Assume linear elastic constitutive behavior and show that the
laminated beam’s constitutive equations are given by

N\ _[An Bal[20) o oy o
{sz } - [Bll D11:| {€§11) ’ QI - 2A55€Iz (6&)

where

(AH,BH,Dm:/El(l,z,%) a, A55=/G13 dA (6b)
A

A
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3.4

3.5

3.6

3.7

MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

The 3-D equilibrium equations of a kth layer, in the absence of body forces, can be expressed
in index notation as
Ook ok
of 93 =0 (1)
Ga:ﬁ 0(1;‘3
ok ok
Ta3 933 _ (2)
8.’Ea 8953

where summation on repeated subscripts (o, 8 = 1,2) is implied. Integrate the equations
over the thickness (zx,2p+1) with respect to z = z3 to obtain:

aN(k)

6;: + US;H) - ‘7((53) =0 @)
(k)

T ol —olf) <o 4
for k=1,2,-..,N and o, = 1,2 (1 = 2,70 = y,z3 = z), where N is the total number of
layers, and

Zg41 Zk+1
(VM) = [l 0l = [T ol a 6
2k Zk
Uff) = 0ij(zg, 2k) (6)
(Continuation of Problem 3.4) Multiply the equilibrium equations
57k
dols Dok, —o (1)
893/3 (9.?33

with z and integrate over the lamina thickness to obtain the third equation

k
8M¢£ﬁ) + (k+1)
8(135 Ua3

(2)

k k
41 — Oz(;xB)Zk - Qa =0

Starting with a linear distribution of the displacements through the laminate thickness in
terms of unknown functions (ug,vg, wq, F1, Fa, F3)

u(z,y, 2,t) = ug(z,y,t) + 2Fy (z,y,t)
v(z,y,2,t) = vo(x,y,t) + 2Fa(z,y,t)
w(z,y, z,t) = wolx,y, t) + 2F3(z, y, 1)

determine the functions (Fy, Fy, F3) such that the Kirchhoff hypothesis holds:

ow _ Qu_ Ow Ov_ Ow
8z ' 8z  dx’ 9z By
Consider a single, orthotropic layer plate (Qq5 = 0), and assume that the material

coordinates coincide with the plate coordinates. Compute the stresses (0ys,0yy, 0uy) using
the constitutive equations of the first-order plate theory, and then use the equilibrium
equations of the three-dimensional elasticity theory to determine the transverse stresses
(0zz,0y2,022) as a function of the thickness coordinate.
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3.8 Consider a single, orthotropic layer plate (245 = 0), and assume that the material coordinates
coincide with the plate coordinates. According to the first-order theory, the strain energy
due to transverse shear stresses is given by

/ / Uzz’}/af‘z + O'yz")’( )) dZd.Idy
_E
0) 2
/ / l’Q55 fYLz ) +Q44 ( Yyz ) } dZdiL’dy
2 b
- Q2
= 5K / ( A44 dxdy

Compute U, using the transverse shear stresses obtained in Problem 3.7 from the three-
dimensional elasticity, and equate it with U, to determine the shear correction coefficient,

K.
3.9 Consider the equations of motion of 3-D elasticity [see Eq. (1.3.26)] in the absence of body
forces: 5 )
Oxx 80'zy 80'zz _ 0 u
or "oy T 0z or
Oouy | Doy | Doy O
oz oy 9. Mom
80y, | Boy. | Do..  Dw

or oy oz Mo
Integrate the above equations with respect to z over the interval (—h/2, h/2) and express the
results in terms of the force resultants defined in Eq. (3.3.20a). Use the following boundary
conditions:

:07 O-yz(x)y7VE) :Oz O'yz(l‘,y, :O

:07 Ulz(:pvy?E 2

O—ch(xvyvﬁ 2)

3 5)

h h
szz(%!!,*g) = —Qp, Uzz(xvyv 5) =q:

Next, multiply the equations of motion with z and integrate with respect to z over the
interval (—h/2,h/2) and express the results in terms of the moment resultants defined in Eq.
(3.3.20a).

3.10 Show that the membrane strains {¢°} and the moment resultants {M} in the classical or first-
order laminated plate theory can be expressed in terms of force resultants {/V} and bending
strains {el} as

{9 = (4] ({N} - [B{e'})
{M} = ([BI[AI"") {N} — ([BI[A]"'[B] - [D]) {e'}

These equations bring out the bending-extensional coupling for laminates with nonzero [B].
For example, when the bending strains are zero, the applied in-plane forces induce bending
moments for laminates with nonzero coupling coeflicients [B].

3.11 Show that if B;; = 0 (e.g., for symmetric laminates), the equation of motion governing the
transverse deflection wq in the classical laminate theory is

Mg Ot *w d

O
2 16M+2(D12+2D66)d262+4D26883 25,4

ox4

_ 8 82 82w0 8211)0 82 8UO 0
N =4~ To g + Do < a2 T ) Now (— a—)

D11 +4D
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3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24
3.25

3.26

3.27
3.28
3.29

MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

Show that for a general laminate composed of multiple isotropic layers, the laminate stiffness
Aig, Agg, Big, Bag, D1g, and Dqyg are zero, and that Asy = Aq1, Bog = By, and Doy = Dyy.
Show that for a general laminate composed of multiple specially orthotropic layers, the
laminate stiffness A1g, Aog, B1g, B2g, D16, and Dog are zero.

Show that for antisymmetric laminates the stiffnesses, Aig, A2g, D16, and Dog are zero, and
the coupling stiffnesses B;; are not zero.

Show that for antisymmetric cross-ply laminates, the coupling stiffnesses B;; have the
properties: Bgg = —Bj; and all other B;; = 0.

Show that for antisymmetric angle-ply laminated plates, the following stiffnesses are zero:
Ay, A2g, D16, Dag, B11, B2z, B2, and Bgg.

Show that for laminates (a/3/8/a/B/a/a/B) where —90° < o < 90° and -90° < 3 < 90°,
coeflicients B;; are zero.

The material properties of AS/3501 graphite-epoxy material layers are:
E; =140 x 10°> MPa, F5 =10 x 10% MPa, G5 = 7 x 103 MPa

Gi3 =7 x 103 MPa, Ggs =7 x 103 MPa, 115 = 0.3
a; =-03x10"% m/m/° K, a3 =28 x 1076 m/m/° K

Determine the stiffnesses [A], [B], and [D] for the antisymmetric laminate (0/90) composed
of equal thickness (0.5 mm) layers.

Determine the stiffnesses [A], [B], and [D] for an antisymmetric laminate (-45/45) composed
of equal thickness (0.5 mm) layers of AS/3501 graphite-epoxy layers (see Problem 3.18 for
the material properties).

If the laminate of Problem 3.18 is heated from 20° to 90°, determine the thermal forces and
moments generated in the laminate, if it were restrained from free expansion.

If the laminate in Problem 3.19 is made of four layers (-45/45/-45/45) of thickness 0.25 mm
each, show that the stiffnesses [A] and [D] remain unchanged. Compare the stiffnesses B;;
for the two laminates (do they increase or decrease in values?).

Suppose that a four-layer (0/90); symmetric laminate is subjected to loads such that the only
nonzero strain at a point (z,y) is 55(595) = 1034 in./in. The material properties of a lamina are
(typical of a graphite-epoxy material) Fy = 20 msi, Fy = 1.30 msi, G2 = 1.03 msi, v12 = 0.3.
Assume that each layer is of thickness 0.005 in. Determine the state of stress (0zz, Oyy, Ocy)
with respect to the laminate coordinates in each layer. Interpret the results you obtain in

light of the assumed strains.

Compute the stains and stresses in the principal material coordinate system of each layer for
the problem in Problem 3.22.

Compute the stress resultants N’s and M'’s for the problem in Problem 3.22.
Repeat Problem 3.22 for the case in which the laminate is subjected to loads such that the
only nonzero strain at a point (x,y) is eV = (1/12) /in.

Compute the stains and stresses in the principal material coordinate system of each layer for
the problem in Problem 3.25.

Compute the stress resultants N's and M’s for the problem in Problem 3.25.
Determine the displacement associated with the assumed strain field in Problem 3.25.

Suppose that a six-layer (£45/0)s symmetric laminate is subjected to loads such that the only
nonzero strain at a point (x,y) is ESBC) = 103y in./in. The thickness and material properties
of a lamina are the same as those listed in Problem 3.22. Determine the state of stress

(0zz, 04y, 0zy) and force resultants.
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3.30 Repeat Problem 3.29 for the case in which the laminate is subjected to loads such that the

only nonzero strain at a point (x,y) is 52? = (1/12) /in.

3.31 Suppose that a three-layer (+£45/0) unsymmetric laminate is subjected to loads such that

the only nonzero strain at a point (z,y) is 9 = 10-3 in./in. The thickness and material
properties of a lamina are the same as those listed in Problem 3.22. Determine the state of
stress (0ze, Oyy, Oxy) and stress resultants.
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4

One-Dimensional Analysis
of Laminated Composite Plates

4.1 Introduction

There are two cases of laminated plates that can be treated as one-dimensional
problems; i.e., the displacements are functiouns of just one coordinate: (1) laminated
beams, and (2) cylindrical bending of laminated plate strips. When the width
b (length along the y-axis) of a laminated plate is very small compared to the
length along the z-axis and the lamination scheme, and loading is such that the
displacements are functions of z only, the laminate is treated as a beam (see Figure
4.1.1). In cylindrical bending, the laminated plate is assumed to be a plate strip
that is very long along the y-axis and has a finite dimension a along the z-axis (see
Figure 4.1.2). The transverse load ¢ is assumed to be a function of z only. In such a
case, the deflection wg and displacements (ug,vg) of the plate are functions of only
x, and all derivatives with respect to y are zero. The cylindrical bending problem
is a plane strain problem, whereas the beam problem is a plane stress problem.

In this chapter we develop exact analytical solutions for the two classes of
problems. An ezact solution of a problem is one that satisfies the governing
equations at every point of the domain and the boundary and initial conditions
of the problem. A numerical solution is one that is obtained by satisfying the
governing equations and boundary conditions of the problem in an approximate
sense. The solutions obtained with any of the variational methods (see Chapter 1)
and numerical methods, such as the finite difference, finite element, and boundary
element methods, are termed numerical solutions. An exact solution can be either

glx)

qlx)

Figure 4.1.1: Geometry of a laminated beam.
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Figure 4.1.2: Geometry of a plate strip in cylindrical bending.

closed-form or an infinite series. Closed-form solutions are those that can be
expressed in terms of a finite number of terms. For example, u(z) = 2 — x + 322 +
4sinnnx is a closed-form solution, whereas a solution in the form of a convergent

series
oo

u(z) = ) apsinnrz (4.1.1)
n=1
where a,, are real numbers, is not a closed-form solution because the number of
terms in the series is not finite. Since the series solution, in reality, is evaluated
for a finite number of terms, it is, in a sense, approximate. The finite-sum series
solution

N
un(z) = Z ap sinnmz (4.1.2)
n=1

will be termed an analytical solution, although it is approximate because not all
terms of the series (4.1.1) are included in (4.1.2). For all practical purposes, it is
“exact.”

Due to their one-dimensional nature, analytical — exact as well as numerical
— solutions can be developed for a number of laminated beams and plate strips.
The analytical solutions presented here for simple problems serve as a basis for
understanding the response. In addition, the results can serve as a reference
for verification of computational methods designed to analyze more complicated
problems.
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4.2 Analysis of Laminated Beams Using CLPT

4.2.1 Governing Equations

Here we consider the bending of symmetrically laminated beams according to CLPT.
For symmetric laminates, the equations for bending deflection are uncoupled from
those of the stretching displacements. If the in-plane forces are zero, the in-plane
displacements (ug,vg) are zero, and the problem is reduced to one of solving for
bending deflection and stresses.

In deriving the laminated beam theory we assume that

Myy = Mgy =0 (4.2.1)

everywhere in the beam. The classical laminated plate theory constitutive equations
for symmetric laminates, in the absence of in-plane forces, are given by [see Egs.

(3.3.44)]
2’11}
My D11 D2 Dis égxz
Myy = — D12 D22 D25 W;UQ (422&)
Mgy Dig Dag  Deg 907wy
Oz0y
or, in inverse form, we have
82’[1]0 * * *
8‘9295 o Dia Dig]| [ Maax
Ty?l = - 12 D3y Dig My, (4.2.2b)
ok o Db, D} M
28;52 16 26 66 Ty

where D} denote the elements of the inverse matrix of D;;. In view of the
assumption (1.2.1), we have
9wy
Ox?

(9211]0 _ (92’11}0

= — D}, My, e — Dy My, 2oy~ — DMy, (4.2.3a)

where

DIy = (D22 Dgs — D2gDag) / D*

Diy = (D16D26 — D12Dgs) / D*

Dig = (D12D2g — Do D1g) /D*

D* =Dy D1 + D12Dy + D1gD3 , Dy = DaaDgg — DagD2g

Dy =Di6Dag — D12Dgs , Ds = Di9Dog — D22 D (4.2.3b)

Equations (4.2.3a) indicate that the transverse deflection wg cannot be independent
of the coordinate y due to the Poisson effect (D7y) and anisotropic shear coupling
(D3g). These effects can be neglected only for long beams (i.e., when the length-to-
width ratio is large). The length-to-width ratio for which the transverse deflection
can be assumed to be independent of y is a function of the lamination scheme. For
angle-ply laminates this ratio must be rather large to make the twisting curvature
negligible.
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In the following derivations we assume that the laminated beam under
consideration is long enough to make the effects of the Poisson ratio and shear
coupling on the deflection negligible. Then the transverse deflection can be treated
only as a function of coordinate = (along the length of the beam) and time ¢:

wo = wo(z, 1) (4.2.4)
Then we can write 52
w *
a$20 — DY Mye (4.2.5)

In order to cast Eq. (4.2.5) in the familiar form used in the classical Euler-Bernoulli
beam theory, we introduce the quantities

12 b bh?
M =bMy,, Q=0Q,, E, = WDL = T,0n 0 T 1y (4.2.6)
and write Eq. (4.2.5) as
8%wo M b Awo
52 —nglyy or M(z)= -—EmeyW (4.2.7a)
and the shear force and bending moments are related by
0, = agjw or Q= %_]‘j (4.2.7b)

where b is the width and h is the total thickness of the laminate.
The equation of motion of laminated beams can be obtained directly from Eq.
(3.3.25) by setting all terms involving differentiation with respect to y to zero:

62Mm ~ 821110 8211)0 8411)0
N, = I -1 4.2.8
gz e TIT 0 T g (4.2.82)
or, for symmetrically laminated long beams, we have
82 b 62?1)0 ~ 82100 N = 8211}0 ~ 6411)0
—é—mi <walyy8—x2‘“ + szzW +4=1Iy o2 — I ISP (428b)
where N, is the applied axial load, and
(j = bq, I() = bIo, .[2 = bIQ, Ii = b/ N p(Z)l dz (2 —= O, 1,2) (4.2.8C)
-3
The boundary conditions are of the form
. . 8’(00
Geometric : specify  wyg , . (4.2.9a)
z
oM

Force : specify Q = B M (4.2.9b)
x
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Equations (4.2.7)-(4.2.9) are identical, in form, to those of the Euler—Bernoulli
beam theory of homogeneous, isotropic beams. Hence, the solutions available for
deflections of isotropic beams under various boundary conditions can be readily
used for laminated beams by replacing the modulus E with E%, and multiplying
loads and mass inertias with b. Note that the rotary (or rotatory) inertia I is not
neglected in Egs. (4.2.8a-c).

4.2.2 Bending

For static bending without the axial force, Nz = 0, Eqs. (4.2.7a) and (4.2.8b) take
the form [cf., Egs. (1.4.47b) and (1.4.45b); see Figure 1.4.1 for the sign convention]

d2wyg M y o dfwg
da? ~  EU I, Evalyy g =4 (4:2.10a,1)

where ¢ = bg. Equation (4.2.10a) is the most convenient when it is possible to
express the bending moment M in terms of the applied loads. For indeterminate
beams, use of Eq. (4.2.10b) is more convenient.

General Solutions

The general solutions of Eqs. (4.2.10a,b) are obtained by direct integration. We
obtain from Eq. (4.2.10a)

T o
EY I wo(x) = — / [ / M(g)dg} dn + by + b (4.2.11a)
0 0
and from Eq. (4.2.10b)

B Lyun(s) = [ { / ‘ [ I (/0 Cd(u)du> dcl dn} de

x> 22
+Cl€ +027 + 3z + ¢4 (4.2.11b)
The constants of integration, by, b2, and ¢; through ¢4, can be determined using the
boundary conditions of the problem. The boundary conditions for various types of
supports are defined below:

dM
Free : =—=0, M=0
dx
Simply Supported : wyg=0, M=
d
Clamped :  wp =0, % =0 (4.2.11¢)
T

Calculation of Stresses

The in-plane stresses in the kth layer can be computed from the equations [see
Eqgs. (3.3.12a) and (4.2.2b)]

= = = 3w
0z } Qu Qu Q™| - 6<92x?0
Tyy =z |Q1z Q22 (% — S
Ozy Qe Q26 Qoo _90%wn

dzdy
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* * *
11 D12 16

. Qu Qu Qw M
=95 Q2 Qa2 Qoo D%y, D3y Dig 0 (4.2.12a)
Qs Q2 Qs Dis¢ D3 Dge 0
or
M(:L‘)Z Ak * ~(k * ~(k *
ol (x, 2) = b <Q§1)D11 + Q§2)D12 + Qge)Dw)
M(.’IZ Z [ =(k % —
o (@,z) = b ) (ng)Dn +Q% Dy + Q26)D16)
M N .
oy (x,2) = ( ) (Q(k)D f+ Q% Diy + Q((36)D16) (4.2.12b)

In general, the maximum stress does not occur at the top or bottom of a laminated
beam. The maximum stress location through the beam thickness depends on the
lamination scheme. As will be seen later in this section, the 0° layers take the most
axial stress.

The stresses given by Eq. (4.2.12b) are approximate for the purpose of analyzing
laminated beams. They are not valid especially in the free-edge zone, where the
stress state is three dimensional. The width of the edge zone is about the order of
the thickness of the beam.

In the classical beam theory, the interlaminar stresses (04;,0,,) are identically
zero when computed using the constitutive equations. However, these stresses do
exist in reality, and they can be responsible for failures in composite laminates
because of the relatively low shear and transverse normal strengths of materials
used. Interlaminar stresses may be computed using the equilibrium equations of
3-D elasticity [see Eq. (1.3.27)]:

004z N 004y N 0o,

0= Ox * Oy * 0z
0 = 8sz + 80yz + 8022 (4213)

Ox Oy 0z

For each layer, these equations may be integrated with respect to z to obtain the
interlaminar stresses within each layer (2 < z < 2441):

ooR) 8a(k)
(k) — _ (k)
Oy /Zk ( o + By dz+G (4.2.14a)
z 80(k) 80'(k)
(k) _ _ il (k)
Oys /Zk ( 5 + — oy dz+ F (4.2.14b)
8o ootk
(k) — _ vz H*)
oy, / < e + By dz + (4.2.14c¢)

where (aéx),oéy),aéy)) are known from Eq. (4.2.12), and G, F(®) and H® are
constants.
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For beams, all variables are independent of y and v = 0. Hence, derivatives with
respect to y are zero. For example, from Eqgs. (4.2.14a,c) and (4.2.12b), we obtain

2 _ 2
oW (@, 2) = —Qu(x) (@1 D1y + Q5 D1z + QI D1 <2—2@> +G™ (4.2.150)

3 3

dQg (= e AR e [ 22
O'g;)(l’,z> = d:LfD (Q 1 + Q12 12 + Q(l()) 16) < 6 ) + H (4 2. 10}))

where Eqs. (4.2.6) and (4.2.7b) are used to replace dM/dzx with Q = bQ,, and G¥)
and H*) are the integration constants, which are evaluated using the boundary and
interface continuity conditions. For layer 1, the constants should be such that o,
and o, equal the shear and normal stresses at the bottom face of the laminate. For
example, if the laminate bottom is stress free, we have G = 0 and H(Y) = 0. The

constants G*) and H®) for k = 2,3,--- are determined by requiring that aﬁ;’? and
(k)

o:z be continuous at the layer interfaces (see Figure 4.2.1):

(k+1)(

ai’;)(x,zk,ﬂ) a T, 2ki1), UEIZ)(%ZkH) U(k+ )($’Zk+1)

q
aM
“E _9=0
y ¥ Y ¥ 1 - dx @
. > X
|< a - @ +q = 0
(a) l q dx ;
Z M l M =12 it
J=UDE :
Q Q
Sign convention
(b)
(k+1) _ (B
X — Mazx
0w’ = ol

Figure 4.2.1: (a) Sign convention. (b) Equilibrium of interlaminar stresses in a
laminated beam.
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This gives, for k = 1,2,-- -, the result

2

2
=~ (k) 7k = (k) s ~ (k) ok z —Z
GHD = Q. (x) (Qg1)D11 + Q§2) 12t Qgﬁ)Dlﬁ) <——_—k+12 k) +GW

= o) (z, z11) (4.2.16a)

L dQ. B3
H(k-H) — Q (Qll Dll +Q52)D12+Q§6)D ) <k+—16_k> +H(k)

oé’? (2, 2k+1) (4.2.16b)

Note from Eqs. (4.2.15a,b) that the transverse shear stress o, is quadratic and
normal stress ¢,, is cubic through the thickness of each lamina. The distributions
are described by different functions in different layers but they are continuous across
layers.

Example 4.2.1 (Simply supported beam):

Consider a simply supported beam with a center point load (see Figure 4.2.2). This case is known

as the three-point bending. The deflection is symmetric about the point = a/2. The expression

for the bending moment is

(Fob)z
2 3

Substituting this expression into Eq. (4.2.11a) and evaluating the integrals, we obtain

M({z) = for 0<z< (4.2.17)

e

Fybe3

The constants ¢; and ¢g are evaluated using the boundary conditions of the problem
d’wo
0)=0, ¥0/2)=0
wo(0) =0, —=(a/2)

We obtain (c; = Fgha?/16,cy = 0)

wo(z) = &% {3 (S) —4 (%)1 (4.2.18)

The deflection is the maximum at = a/2, which is given by

Fob(13
mar = Soor 7 = We 4.2.
w 8ED. I, w (4.2.19)

This expression can be used to determine the modulus of the material in terms of the measured
center deflection we, applied load Fjy, and the geometric parameters of the laminated beam in a
three-point bend test:

Foba3

Eb — 4.2.20
2o = R (4.2.20)

The maximum in-plane stress 0., occurs at z = a/2 (M (a/2) = Fyba/4)

Ug(c’;)(a/Q 2) = Foaz

(Q(k Dy —|—Q(k)D* + Q(k)D* ) (4.2.21)
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at x=0 at x=a
wo=M=0 w,=M=0
Fy
— —
F i ?EQ
2 oo 2
Qx)

Figure 4.2.2: Three-point bending of a laminated beam (see Figure 4.2.1a for the
sign convention).

Example 4.2.2 (Clamped beam):

Consider a laminated beam, clamped at both ends, and subjected to uniformly distributed load
acting downward, ¢ = gg (see Figure 4.2.3). The deflection is symmetric about the point x = a/2.
We have from Eq. (4.2.11b) the result

qoba: x3 x2
24 +616+02—+03I+C4

The constants c¢; through ¢4 are evaluated using the boundary conditions of the half (because of
the symmetry) or full beam. For the full beam case we have

E Jyywo(x) =

_ . dwy B dwg _
wo(0) =0, wola) =0, “X2(0) =0, “0(a)=0
and for the half beam model we have
duwy dwg ,a a dM a3 wo
0)=0 %0 =p W0l _ ay_eM _ g o
Either set of boundary conditions will yield the same solution. We obtain (01 = ~q0ba/2, Ccy =

qoba2/12, C3 = Cq4 — 0)

te) = [ (9)] 12
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o x
‘ _
[ 2
at x=0 at x=a
or or
wy=0,=0 wo=0,=0
9y
Dot l by g b i bty
Mmax — Mmax
%9 %9
2 2

Figure 4.2.3: Clamped beam under uniformly distributed load.

The deflection is the maximum at x = a/2, which is given by

qobat

maer = Soa 1 7 4.2.2
v 384E%, 1, (4.2.23)

The maximum bending moment, and hence the maximum in-plane stress o,,, occurs at z = 0, a:

ba? z x\2 qoba?
M(@) = -2 [1_6(5>+6<5) } mes =~

_qoa’z
12

of(0,2) = -1 (@) D, + @l D1, + QU Dy ) (42.24)

Expressions for the transverse deflection of laminated beams with simple supports, clamped
edges, and clamped-free (cantilever) supports and subjected to a transverse point load or uniformly
distributed load are presented in Table 4.2.1. The maximum deflections and bending moments
are also listed (note that the loads are assumed to be applied in the downward direction). Recall
that wo(z) is taken positive upward and M (z) is positive clockwise on the right end. When
both point load and uniformly distributed load are applied simultaneously, the solution can be
obtained by superposing (i.e., adding) the expressions corresponding to each load. Expressions for
other boundary conditions can be found in textbooks on a first course in reformable solids. The
effects of material properties and stacking sequence are accounted for through the bending stiffness
Eb, I, =b/Ds,, as can be seen from Egs. (4.2.6) and (4.2.3b).
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Table 4.2.1: Transverse deflections of laminated composite beams with various boundary
conditions and subjected to point load or uniformly distributed load (acting
downward) according to the classical beam theory.

Laminated Beam Deflection, wq(x) Wmaz and
]\"{'m,az

e Hinged-Hinged

Central point load o [5 (%) 4 (5)3} we,. - zilgC1
¢F0 N maz = _%63
| |
% »

Uniform load #(0) 205"+ ()] Wnar = 72
y * * * * * * ‘ qu A[r(;umr = _%(’.4
ree a L
L) >

e Fixed-Fixed

Central point load T [3 (%)2 -4 (%)1 WE e = 11@(:1
¢F0 A{gm,:r, = %03
4 ey
ﬂ’:: < :ﬁ
Uniform load 2 {(f)Q_ (f)r W, = ﬁlﬂ(j?
9o AJSMLL - 1_1204
FETTTTRTT)
[P a >l g
Ll Ll
e Fixed-Free
Point load at free end @ [3 (%)2 - (5)2] W, o0 = %(:1
JFO Ajvg’mr =C3
g;i y
> = »
Uniform load = [6(%)2—4(5)3—4—(%)4} W = %(:2

IFFE T T MO, = dey

fe———— &

W

Superscript “c” refers to the center (at z = a/2), “a” to the end z = a, and “0” refers to z = 0.
The constants in the expressions for the deflection are defined as

Fyba? _ qoba?

c1 = Cco = ¢y = —Fgba, ¢4 = —qoba?
1 1, ) Et I, 3 pba, ¢4 90
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Figures 4.2.4 and 4.2.5 show the maximum normal stress distribution, as predicted by Eq.
(4.2.12b), through the thickness of (0/45/-45/90), (0° corresponds to outer layers) and (90/45/—
45/0)s (90° corresponds to outer layers) laminated beams, respectively, subjected to three-point
bending (Fy = 1.0,b = 0.2,a = 1.0,h = 0.1). The following layer material properties are used
(Fy =1 msi):

% = 25, G12 = G13 = 0.5E2, G23 = O.QEQ, v=0.25 : (4.2.25)
The maximum normal stress distribution in an orthotropic beam (with eight 0° layers) is shown in
the figures by dashed lines. It is clear the 0° layer carries the most axial stress while the 90° layer
carries the least axial stress, in proportion to their axial stiffness.

Figures 4.2.6 and 4.2.7 show the effect of stacking sequence on maximum transverse shear
stress, as predicted by Eq. (4.2.15a), for laminates (0/45/-45/90), and (90/45/-45/0),, respectively
(Fp =1.0,b=0.2,a = 1.0, A = 0.1). The parabolic distribution of transverse shear stress through an
orthotropic beam is shown in dashed lines for comparison. The maximum stress value is dependent
on the stacking sequence and considerably different from that in a homogeneous beam.

4.2.3 Buckling

A beam subjected to axial compressive load Nyw = — N0, remains straight but
shortens as the load increases from zero to a certain magnitude. If a small additional
axial or lateral disturbance applied to the beam keeps it in equilibrium, then the
beam is said to be stable. If the small additional disturbance results in a large
response and the beam does not return to its original equilibrium configuration, the
beam is said to be unstable. The onset of instability is called buckling (see Figure
4.2.8). The magnitude of the compressive axial load at which the beam becomes
unstable is termed the critical buckling load. If the load is increased beyond this
critical buckling load, it results in a large deflection and the beam seeks another
equilibrium configuration. Thus, the load at which a beam becomes unstable is of
practical importance in the design of structural elements. Here we determine critical
buckling loads for laminated straight beams. The equation governing buckling of
laminated beams is also given by Eq. (4.2.8b), wherein the applied transverse load
and inertia terms are set to zero, and axial force is assumed to be unknown. In
addition, the deflection is measured from onset of buckling, and it is termed buckling
deflection.

Setting Ny = —N?

e G =0, and all inertia terms to zero in Eqgs. (4.2.8b), we
obtain the equation

d*w  bND, &*W

dz*  Eb I, dz?
where W denotes the buckling deflection. Equation (4.2.26) is obtained from the
nonlinear equilibrium equation

=0 (4.2.26)

d4w0 dzwg
dzt da?
by substituting wo = w§ + W, where w§ is the original equilibrium (prebuckling)
deflection and W is the buckling deflection. Note that w§ satisfies the equation

Eb, I, + Ny (wp) =0

d*w d>w§
er 5 —“_O
+ b (’LUO) de

[The reader is asked to verify the result in Eq. (4.2.26).]

b
Emfyyw =0
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Figure 4.2.4: Maximum normal stress, —ozz(a/2,z), distribution through the
thickness of a symmetrically laminated (0/4+45/90)s beam.
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Figure 4.2.7: Variation of transverse shear stress (—o,,) through the thickness of
a symmetrically laminated 90/+45/0)s beam subjected to three-
point bending (see Figure 4.2.6 for data).
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Figure 4.2.8: Buckling of laminated beams under various edge conditions.

Integrating Eq. (4.2.26) twice with respect to z, we obtain

?w  bN?
T W=K K 4.2.27
dx? * nglyy 1A ( )

The general solution of Eq. (4.2.27) is

W(x) = c1sin Apz + co cos A\px + c32 + ¢4 (4.2.28)
where i K
) Ky
M= =5, 4=y (4.2.20)
E:lfcz[yy /\l% )‘l%

and the constants c1, ¢2, ¢3, and ¢4 can be determined using the boundary conditions
of the beam.

We are interested in determining the values of A, for which there exists a nonzero
solution W(z), i.e., when beam experiences deflection. Once such a Ay is known
(often there will be many), the buckling load is determined from Eq. (4.2.29):

Eb.I
N = <%‘W> A2 (4.2.30)
The smallest value of NO_, which is given by the smallest value of Xy, is the critical
buckling load. The buckling shape (or mode) is given by W (z). In the following,

we consider beams with different boundary conditions to determine A, and then the
critical buckling load for each beam.
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Example 4.2.3 (Simply supported beam):

For a simply supported beam, the boundary conditions are

wg(0) =0, wo(a) =0, Mz.(0) =0, My(a)=0 (4.2.31a)
These boundary conditions imply
d*w ?w
_ _ - - 4.2.31
wo) =0, ww=0, TH =0, T () (1:2:31b)
We have
W(0)=0: cy+c4=0
W”(O) =0: —cpA? =0 which implies ¢y =0, ¢4 =0
W(a)=0: eysinha+cza=0
W (a)=0: c¢;sinAya=0 which implies c3 =0 (4.2.32)
For a nontrivial solution, the condition
¢y sin A\pa = 0 implies that A\pa =nm, n=1,2,.-. (4.2.33)
and the buckling load is given by
2
BNO, = EP_1,, (%’T) (4.2.34a)
The buckling mode is
W(z) = c; sin ? , e #0 (4.2.34b)
The critical buckling load becomes (n = 1)
™ 2 Ezzfyy 71'2 E:I:):zh‘s
Ny = (E) e (D) == (4.2.35)
and the buckling mode (eigenfunction) associated with it is
W(x) = ¢; sin b
a
Example 4.2.4 (Clamped beam):
When the beam is fixed at both ends, the boundary conditions are
wo(0) =0, T 0y =0, wola)=0, T a) =0 (4.2.36a)
T dx ’ T dx
which can be expressed as
dw dw
= —_— = = - = 4.2.
W =0, Wo)=0, w@=0, (g (1:2.36)
We have
W(O)ZO CQ+C4:0
W (0)=0: c1hp+c3=0
W(a)=0: c¢ysindpa+ecgcoshpa+cza+cy =0
W/(a) =0: c1ApcosApa ~cadpsinNpa+c3 =0 (4.2.37)
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Expressing these equations in terms of constants ¢y and c2, we obtain

c1 (sin Adpa — Apa) + cp (cos Apa — 1) =0
¢y (cos Apa — 1) — ca sin Apa =0 (4.2.38a)

For a nontrivial solution, the determinant of the coefficient matrix of the above two equations
must be zero (eigenvalue problem):

_IsinApa — Apa  cosApa — 1
cos Apa — 1 —sin Apa

=\pa sin \pa + 2cos Apa — 2 (4.2.38b)

The solution of equation (4.2.38b), known as the characteristic equation, gives the eigenvalues
en = Apa, and the buckling load is calculated from Eq. (4.2.30). Equations (4.2.38b) is a
transcendental equation, i.e., nonlinear equation involving trigonometric functions. A plot of
the function f(en) = en sine, + 2cose, — 2 against e, shows that f(e.) is zero at e, =
0,6.2832(= 27),8.9868,12.5664(= 4w),15.4505,6m7, - (Aa,_1a = 2nw). Hence, the critical (i.e.,
smallest) buckling load is [see Eq. (4.2.30)]

N.,. = <e_")2 % — (%@)2 Egzjyy
cr a b p —b L4
w2 Eb B3
- <?) (a—2> (4.2.39)

Table 4.2.2 contains governing equations for A,, with some typical values, and
values of the constants c1, ¢, c3, and ¢4 for several combinations of simply supported
(hinged), clamped (fixed), and free-edge conditions. For example, for the critical
buckling load of a cantilever beam (i.e., fixed at one end and free at the other end),
the boundary conditions are

d
wo(0) = 0, %(0) =0, Qu(a)=0, My(a)=0 (4.2.40a)
which are equivalent to
w
W =0, d—zO at x =0
dzx

—— + A —— =0 atz=a (4.2.40b)
dz

BW  pdW\ W
dx3 bdr | T

The critical buckling load is given by

m\2E° I T2 h3EY
N, =[— 2L YY — zL 4.2.41
« <2a> b 48q2 ( )
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Table 4.2.2: Values of the constants and eigenvalues for buckling of laminated
composite beams with various boundary conditions (\? =
bNO /Eb 1, = (en/a)?). The classical laminate theory is used.

T

End conditions at Constantst Characteristic equation
rz=0and z=a and values* of e, = A\na
¢ Hinged-Hinged c1#0, c0=c3=c4=0 sine, =0
en = NT
¢ Fixed-Fixed c1 =1/(sinen, — en) ensine, = 2(1 — cosen)
C3 = —vl/)\n
ifg"—'—_ﬁ co = —cq4 = 1/(cose, — 1) en = 27,8.987,4x, - .-
e Fixed-Free cp=c3=0 cosep, =0
<4 cg=-c4 #0 en=(2n-1)7/2
o
e
e Free-Free cg=c3=0 sine, =0
C—————— c2#0, ca#0 n = nm
¢ Hinged-Fixed ¢1 =1/encosen, cg=—1 tane, = e
I ca=cy=0 en = 4.493,7.725, .-
m ¥4

1 See Eq. (4.2.28): W (z) = c1sin Xy + o cOS Ay + c3T + 4.
*For critical buckling load, only the first (minimum) value of e = Aa is needed.
4.2.4 Vibration
For natural vibration, the solution is assumed to be periodic
wo(z,t) = W(z)e™t, i=+—1 (4.2.42)

In the absence of applied transverse load g, the governing equation (4.2.8b) reduces
to

aw o W - . d*W
b _ 2 2
Equation (4.2.43) has the general form
AW d*W
—_— — —7TW =0 4.2.44
P Ay T ( )

where R X X
p=El I, q=w’l—bNgy, r=u?ly (4.2.45)
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The general solution of Eq. (4.2.44) is

W (x) = ey sin Ax + ¢2 cos Az + ¢3 sinh pa + ¢4 cosh pz (4.2.46a)

1 / 1 /

and c1, ¢, c3, and ¢4 are constants, which are to be determined using the boundary
conditions.

From Egs. (4.2.46b), we have

2
(2p/\2 . q) =q>+4pr or pM A2 —r=0 (4.2.47a)

2
(2pu2 + q) =g +4pr or ppt+qu® —r=0 (4.2.47b)

Substituting for p, ¢, and r from Eq. (4.2.45) into Eq. (4.2.47a,b) and solving for

w?, we obtain

Eb T 1+ P V I
W2 = 24| Daalyy ( + 1) . P = % , R = 2252 (4.2.48a)
IO 1+ R1 E:mcIyy)‘ IO
Eb I 1-P bN. I
2 4 [ Lppdyy 2 iVzx 22
w® = 2 , Py= , Ro= - 4.2.48b
g ( Iy ) <1 — RQ) : B Lyyp® ’ IOM ( !

The two expressions for w in Egs. (4.2.48a,b) are the same and hence either one can
be used to calculate the frequency once X is known.

When the applied axial load is zero, the frequency of vibration can be calculated
from

Eb I I))2 Eb I Iop?
W= N1Tmetwy (g 20 ) oAy (g 2l (4.2.49)
Iy + Ix\? Iy Iy — Ig,uz

It is clear from the first expression that rotary inertia decreases the frequency of
natural vibration. If the rotary inertia is neglected, we have A = p and

b
w = May, ag= ,/% (4.2.50)
0

In the following discussion beams with both ends simply supported or clamped
are considered to illustrate the procedure to evaluate the constants ¢; through cy,
and more importantly, to determine A so that Egs. (4.2.46)-(4.2.48) can be used to
find w. The smallest frequency w is known as the fundamental frequency. For other
boundary conditions, the reader is referred to Table 4.2.3. For boundary conditions
other than simply supported, one must solve a transcendental equation for e,, = A, a.
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Table 4.2.3: Values of the constants and eigenvalues for natural vibration of
laminated composite beams with various boundary conditions (A% =
wily/Eb, I, = (en/a)?). The classical laminate theory without
rotary inertia is used.

End conditions at Constantst Characteristic equation
z=0and z=a and values of e, = A\na
¢ Hinged-Hinged c1#0, co=c3=c4=0 sine, =0
H En =NT
e Fixed-Fixed ¢y = ~c3 = 1/(sine, —sinhe,) cosen coshe, —1 =0
%4 g ~cg = ¢4 =1/(cosen — coshey,) en = 4.730,7.853, -
“5
o Fixed-Free ¢y = —c3 = 1/(sinen + sinhey) cosencoshe, +1=0
b —cg =cq4 = 1/(cosen + coshey,) en = 1.875,4.694, - .-
o I'ree-Free ¢1 =c3 =1/(sine, —sinhey) cosepcoshen, —1 =0
———— ¢cg = ¢4 = —1/(cosen — coshe,) en = 4.730,7.853, - - -
¢ Hinged-Fixed ¢y =1/sinen, cg3 = 1/sinhe, tane, = tanhe,
I P2 co=c4=0 en = 3.927,7.069, - - -
# re
e Hinged-Free ¢1 = 1/sinen, cg = —1/sinhe, tane, = tanhe,

77F=:ZI co=c4 =0 en = 3.927,7.069, - --

T See BEq. (4.2.46a): W (x) = ¢; sin Az 4 ¢ cos Az + ¢ sinh puz + ¢4 cosh p.

Example 4.2.5 (Simply supported beam):
For a simply supported beam, the boundary conditions in Eq. (4.2.31b) give
Cy =C3 =Cq4 = 0 (4251)
nmw

c1 sin Aa = 0, which implies A = o (4.2.52)

Substituting for A from Eqs. (4.2.45) and (4.2.46a) into Eq. (4.2.48a), we obtain

2

nm

wn=7) w01t = (4.2.53a)
( a ) ZEb Iyy n

If the rotary inertia is neglected, we obtain

nmw\2 bN.
n = — 4T 4.2.53b
v ( a ) o (n"r)2EzzIyy ( 253 )

Thus the effect, of the axial tensile force N, is to increase the natural frequencies. If we have a very
flexible beam, say a cable under large tension, the second term under the radical in Eq. (4.2.53b)
becomes very large in comparison with unity; if n is not large, we have

_nr Nys
Io

(4.2.53c)
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which are natural frequencies of a stretched laminated cable. We also note from Eq. (4.2.53b)
that frequencies of natural vibration decrease when a compressive force instead of a tensile force is
acting on the beam.

When N, = 0, we obtain from Eq. (4.2.53a)

nr\2 1
wn = —r[) Ry
1+ (1) ﬁ

Ip(2z)2

(2m)27y + I

(4.2.54)

Thus, rotatory inertia decreases frequencies of natural vibration. If the rotatory inertia is neglected,

we obtain
2 b
W = (E> Eilyy (4.2.55)
a Iy

Example 4.2.6 (Clamped beam):

For a beam clamped at both ends, the boundary conditions in Eq. (4.2.36) lead to
cot+cyg =0, Acy +pcg =0 (4.2.56)

and the eigenvalue problem

sin/\a—(ﬁ)sinhua cos Aa — cosh pa :| {cl}_{O} (4.2.57)

cos Aa — cosh pa —sin\a — (%) sinh pa c2 0

where relations (4.2.56) are used to eliminate c3 and c4. For nonzero c; and co, we require the
determinant of the coefficient matrix of the above equations to vanish, which yields the characteristic
polynomial
—2 4 2cos Aa cosh pa + (é - %) sin Aa sinh ya = 0 (4.2.58)
"

The solution of this nonlinear equation gives A and g. Then the natural frequency of vibration can
be calculated from Eq. (4.2.48a) or (4.2.48b); if the applied axial force is zero, Eq. (4.2.49) can be
used to calculate the frequency of vibration.

For natural vibration without rotatory inertia and applied in-plane force (i.e., ¢ = 0 in Eq.
(4.2.46b) and A = u), Eq. (4.2.58) takes the simpler form

cosAacoshAdg —1 =10 (4.2.59)

Equation (4.2.59) is satisfied for the following values of A:

Aa=4.730, Apa=17.853, -+, Apa=(n+ %)71' (4.2.60)

Maximum transverse deflections, critical buckling loads, and fundamental natural frequencies
of various laminated beams, according to the classical beam theory, are presented in Table 4.2.4 for
simply supported (hinged-hinged), clamped (fixed-fixed), and cantilever (clamped-free) boundary
conditions. In the case of bending, the point load is Fyb, where Iy is the line load across the width
of the beam (force/unit length), and the distributed line load along the length is ggb, where ¢q is the
intensity of the distributed load (force/unit square area). In Table 4.2.4, the first row corresponds
to deflections due to point load Fp, and the second row corresponds to deflections due to uniformly
distributed load gg. Also, on the second and third rows, frequencies corresponding to a/h = 100
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and a/h = 10 are listed when rotary inertia is included. All other frequencies were computed by
neglecting the rotary inertia. The following nondimensionalizations are used:

B = Wmaz Eoh® x 10%/qpa? (Fy = qoa)

N = N2.a?/Eyh3, © = wi1a?\/Iy/Exh3 (4.2.61)

The stiffness in a laminate is largest in the fiber direction because F; > E5. Also, the bending
stiffness increases with (cube of) the distance of the 0° layers from the midplane. Thus, the
0°—laminated beam is stiffer in bending than the 90°—laminated beam, and therefore, 0° beam
has smaller deflection and larger buckling load and natural frequencies when compared to the 90°
beam. Since the 0° laminae are placed farther from the midplane in (0/90), laminate, it has smaller
deflection and larger buckling load and natural frequencies when compared to the (90/0)s beams.
Similarly, due to the placement of the 0° layers, laminate A is stiffer than laminate B, and laminate
B is stiffer than laminate C'. Symmetric angle-ply laminated beams (8/--6)s have the same stiffness
characteristics as (-8/0);, and they are less stiff compared to the symmetric cross-ply laminated

beams.

Table 4.2.4: Maximum transverse deflections, critical buckling loads, and
fundamental frequencies of laminated beams according to the
classical beam theory (E1/E; = 25, Gi2 = Gi13 = 0.5E3, Gog =
0.2E2, Vg = 025)

Hinged-Hinged Clamped-Clamped Clamped-Free
Laminate ® N @ D N w W N @
0 1.000 20.562 14.246 0.250 82.247 32.292  16.000 5.140 5.074
0.625 14.245  0.125 32.291 6.000 5.074
14.187 32.129 5.071
90 25.000 0.822 2.849 6.250 3.290 6.458 400.00 0.205 1.015
15.625 3.125 150.00
(0/90), 1.134 18.127 13.375 0.283 72.507 30.320 18.149 4.532 4.764
0.709 0.142 6.806
(90/0), 6.239 3.296 5.703 1.560 13.183 12.929 99.821 0.824 2.032
3.899 0.780 37.433
(45/ — 45)s 14.308 1437 3.766  3.577 5748 8537 22893 0.359 1.341
8.942 1.788 85.847
Laminate A 1.607 12790 11.236 0.402 51.162 25.469 25.721 3.197 4.002
1.005 0.201 9.645
Laminate B 2.801 7.341 8512 0.700 29.366 19.296 44.813 1.835  3.032
1.751 0.350 16.805
Laminate C 7.945 2.588 5.064 1.986 10.351 11.456 127.13 0.647 1.800
4.966 0.993 47.673

Laminate A = (0/+45/90)s, Laminate B = (45/0/-45/90);, Laminate C = (90/+45/0),.
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We note that for clamped-clamped and clamped-free beams, the calculation of natural
frequencies require the solutions of transcendental equations for A\. For the case where rotary
inertia is negligible, the roots of these equations are given in Table 4.2.3. To see the effect
of rotary inertia, Eq. (4.2.58) were solved for A and the frequencies were calculated. From
the frequencies listed in rows 2 and 3 of Table 4.2.4, it is clear that the effect of rotary
inertia on fundamental frequencies is negligible for small length-to-height ratios. Except for
second and third rows, all other frequencies listed in the table were calculated by neglecting
the rotary inertia, in which case the values of A; given in Table 4.2.3 are applicable.

4.3 Analysis of Laminated Beams Using FSDT
4.3.1 Governing Equations

Here we consider the bending of symmetrically laminated beams using the first-
order shear deformation theory. When applied to beams, FSDT is known as the
Timoshenko beam theory. The governing equations can be readily obtained from
the results of Section 3.4.

The laminate constitutive equations for symmetric laminates, in the absence of
in-plane forces, are given by [see Egs. (3.4.21) and (3.4.22)]

o2
My Dy D2 Das ¢
Myy = D12 D22 D26 y (431&)
]\/fmy Dig Do Degg 3¢z _+_ ()¢y
Q Ay Ags awo + ¢y
Yo=K ) 4.3.1b
{ Qa } {A45 AsJ { 65‘;’ + bz } ( )
or, in inverse form, we have
5)(;3 11 12 Dis Mea
8_yy = 12 D3 Dig My, (4.3.2a)
dd’z + % 16 D3 Deel \ Muy
d * *
M -+ ¢5y 1 [A44 A45] { Qy } (4‘3.2}3)
awo + ¢ TR (A AL\ Qe

where K is the shear correction coefficient, D;‘j, (i,7 = 1,2,6) denote the elements
of the inverse of [D], and A, (4,7 = 4,5) denote elements of the inverse of [A]:

Ass Ayq Aus

Al = R Azs = 0 Al = 1 A= AygAss — AgsAgs (4.3.3)

As in Section 4.2, we assume that My, = M,y = @y = ¢, = 0 and both wg and
¢ are functions of only x and ¢:

wo = ’U)()(CIT, t)s Pr = ¢L(xat> (434)
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From Eq. (3.4.1) the displacement field takes the form (when the in-plane
displacements ug and vg are zero)

u(z, 2) = 2¢z(x), w(z,z)=wo(x) (4.3.5a)

and the linear strain-displacement relations give

0 ow
Exxy = Za;i ) 284, = 8—0 + ¢ | (4'3'5b)
From Egs. (4.3.2a,b) we have
8¢z Owy A
e 1Mz, oz + ¢z Qu (4.3.6)
o 06 12
b T b
=M = = — .3.
Epplyy—— 5 (x), M(xz)=>bM,,, E,, TN (4.3.7a)
Ow 1
KGY_bh ( N @) Q). QW) =@, Gh= o (4.3.7b)
The equations of motion from Eq. (3.4.13) are
0Q, - 82w0 8wy
— + N, = -0,
B + Ngg 8x2 = ly— 52 (4.3.8a)
OMyy 32,
— = 4.3.
S - Q= Bt (4:3.80)

Using Eq. (4.3.7) in Eq. (4.3.8), the equations of motion can be recast in terms of
the displacement functions:

0“w 12]0) - 0w . Q%w
b 0 o 0 o 0
bNgy——— = Jo—nr
KG, bh<62+8x>+ ox? td 0 52
%z Owyp 82q§
b b i
E, Iy—— 922 - KG,,bh <—8 + gbz) = 2 5 (4.3.9a,b)
where ) )
Q bq7 IO - bIOa IQ — bIQ (439C)

4.3.2 Bending

Note that when the laminated beam problem is such that the bending moment M (x)
and Q(z) can be written readily in terms of known applied loads (like in statically
determinate beam problems), Eq. (4.3.7a) can be utilized to determine ¢, and
then wg can be determined using Eq. (4.3.7b). When M (z) and Q(x) cannot be
expressed in terms of known loads, Egs. (4.3.9a,b) are used to determine wp(x) and
¢z{x). In the latter case, the following relations prove to be useful.
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For bending analysis, Eqs. (4.3.9a,b) reduce to

2
KG_bh <dd;‘;° + ‘ﬁ”) +G=0
Eb, I, dd O - KGb,bh (% + m) = (4.3.10a,b)
Integrating Eq. (4.3.10a) with respect to z, we obtain
KGY_bh (% + ¢$) _ /OI §(6)de + 1 (4.3.11)

Substituting the result into Eq. (4.3.10b) and integrating with respect to z, we
obtain

Egzlyy dw / / G(&)dedn + c1z + ¢ (4.3.12a)

alyyPe(z / / / ¢(§)dédnd¢ + 01— + cox + c3 (4.3.12b)

Substituting for ¢(x) from Eq. (4.3.12b) into Eq. (4.3.11), we arrive at

d’wo 1 z G :L'Q
2o _ - J(E)dednd¢ + e >
T T { /0 /0 /0 G(&)dedndC + c1 +02:c+03}

+ #ﬁ;bh {— / " 4(6)de + cl] (4.3.13a)

wo(z) = — E I {////q(CdCdudnd§+cl—+022+63:v+c4

+—Kngbh {— / /0 4(Q)dCde + erz

where the constants of integration c; through ¢4 can be determined using the
boundary conditions of the beam.

It is informative to note from Eq. (4.3.13) that the transverse deflection of the
Timoshenko beam theory consists of two parts, one due to pure bending and the
other due to transverse shear:

(4.3.13Db)

wo(z) = whlx) + wi(x) (4.3.14a)

where

¢ ! LT O dcdudnde — e — e
wo(m)—m/0/0/0/0Q(C)C#ﬁ5—016—023—03$—64

z g
wp(x) = m [—/O /0 4(¢)d¢dg + c1z (4.3.14b)
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The pure bending deflection w(z) is the same as that derived in the classical beam
theory [cf., Eq. (4.2.11b)]. When the transverse shear stiffness is infinite, the
shear deflection w{(z) goes to zero, and the Timoshenko beam theory solutions
reduce to those of the classical beam theory. In fact, one can establish exact
relationships between the solutions of the Euler-Bernoulli beam solutions and
Timoshenko beam solutions (see [27-29]). These relationships enable one to obtain
the Timoshenko beam solutions from known classical beam solutions for any set of
boundary conditions (see Problems 4.33 and 4.36).

The expressions for in-plane stresses of the Timoshenko beam theory remain the
same as those in the classical beam theory [see Eq. (4.2.12b)]. The expressions
given in Eqs. (4.2.15a,b) for transverse shear stresses derived from 3-D equilibrium
are also valid for the present case.

The transverse shear stress can also be computed via constitutive equation in
the Timoshenko beam theory. We have

Q(z)
b

o (x,2) = Q%) Az (4.3.15)

Example 4.3.1 (Simply supported beam):

Here we consider the three-point bending problem of Section 4.2 (see Figure 4.2.2). For this case,
the bending moment [see Eq. (4.2.17)] and shear forces are

Fobl‘ dM Fob a
- = b <z< o 3.
M(zx) 5 Q(x) T 5 0%90_2 (4.3.16)
Using Eq. (4.3.16) for M in Eq. (4.3.7a) and integrating with respect to z, we obtain
__fb o
¢w($) - 4Egzlyyx + (&3]
By symmetry, u; = ug + z¢» is zero at z = a/2. This implies that ¢-(a/2) = 0. Hence
nga2
Cl = —_——
T6E%, T,y
and the solution becomes
Fyba? z\2 a
()=————— |1-4(Z , 0<z << 4.3.17
¢(*) = ~T5p 1 [ (a) Oszs3 (4.3.17)

It is interesting to note from Eq. (4.3.17) that the rotation function ¢,(z) is the same as the
slope —dwg/dz from the Euler-Bernoulli beam theory (i.e., ¢, is independent of transverse shear
stiffness). Consequently, the bending moment [see Eq. (4.3.7a)], and therefore the axial stress, is
independent of shear deformation. In fact, ¢, is independent of shear deformation for all statically
determinate beams and indeterminate beams with symmetric boundary conditions and loading (see
Wang [27]). However, for general statically indeterminate beams, the rotation ¢, will depend on
the shear stiffness KG®% bh (see Problem 4.11).
Substituting for ¢, into Eq. (4.3.7b), we obtain

dwo FQbLLQ T 2 F()b
dwo _ _Foba” 1, (= __fod 3.
dz 6B I, | 4 ( ) + (4.3.182)
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Let us denote the first expression in (4.3.18a) by

dwt Fyba? T\ 2
dwo _ _Foba® 1), 2\
= T |1 (a) bo(2) (4.3.18b)

In light of Eq. (4.3.14a), the first part of Eq. (4.3.18a) can be viewed as the slope (or rotation) due
to bending and the second one due to transverse shear strain:

dwg dwg dw}
) =~ 0, 0 4.3.1
dx dx + dzx (4.3.18¢)

Indeed, dwj/da can be interpreted as the transverse shear strain [cf., Eq. (4.3.5b)]

dwé  dw dw?  dw
0 _ dwy dwg _ dwg - 43.1
dx dx dx dx + dol2) = 7 (4.3.19)

Note from Eq. (4.3.18a) that, in contrast to the classical beam theory, the slope dwg/dz at the
center of the beam in the Timoshenko beam theory is nonzero. We have (1, = bh3/12)

dwo a Fob
Uy VT 4.3.20
& '2) T 3KGLbh (4.3.20)
However, dwg/d.r = —¢ is zero at © = a/2. Integrating Eq. (4.3.18a) with respect to x, we arrive
at the expression
wole) = 203 (3)-4 (5)3 + o (%) (4.3.21)
O 1BEL, I, |” \a a 2KGE_bh \a -

where the constant of integration is found to be zero on account of the boundary condition
wp(0) = 0. Note that the first part (w§) is the same as that obtained in the classical beam
theory [cf., Eq. (4.2.18)].

The maximum deflection occurs at = = a/2 and it is given by

FobCL3 + F()ba
48EY I, = 4KGb bh

_ Fyba® Eb, B 2
T 48ER, I,y [1 + (R’ng) (5) (4.3.22)

Equation (4.3.22) shows that the effect of shear deformation is to increase the deflection. The
contribution due to shear deformation to the deflection depends on the modulus ratio E?, /G%, as
well as the ratio of thickness to length h/a. The effect of shear deformation is negligible for thin
and long beams.

Wmaz =

Example 4.3.2 (Clamped beam):

Consider a laminated beam fixed at both ends and subjected to uniformly distributed transverse
load ggb as well as a point load Fyb at the center, both acting downward. For this case, the boundary
conditions are (using half beam)

. a _ _ a _ (Fob | qoba goba _ Fyb o o
w(0,2) =0, u(§,2) =0, w(,2)=0, Qw(Q,z)f( 0y ) = (4.3.23)

which in turn imply that

Oy _ 0, w(0) =0, KGb.bh (dﬂ + qsw) (5 =" (4.3.24)
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The solution is

o - [ 2 0 ()~ (2)]

B0
o= ()~ ()] i () ()

+ et [3 (5) - (§>3] * sci () (4520

The maximum deflection is at = = a/2 and is given by {cf., Eq. (4.2.23)]

o — gobat qoa’ Fybad Fya
mes =384K% 1., | 8KGh.h | 192ER,I,, | 4KGUh
gobat Fyba?
= 4.3.27
[384E’;z1yy tozre 1., | 4 T9) (4.3.272)

where S is the positive parameter that characterizes the contribution due to the transverse shear

strain to the displacement field
Eb, h\?2
S=4 KGt, (E) (4.3.27b)

Table 4.3.1 contains expressions for transverse deflections and maximum transverse deflections
of laminated beams according to the first-order shear deformation theory. By comparison to the
classical theory (see Table 4.2.1), it is clear that the shear deformation increases the deflection.

Table 4.3.2 contains maximum transverse deflections @ of various laminated beams according
to the Timoshenko shear deformation beam theory. The effect of length-to-height (or thickness)
ratios of the beam on the deflections can be seen from the results. Thin or long beams
do not experience transverse shear strains. Clamped beams show the most difference in
deflections due to transverse shear deformation (i.e., accounting for the transverse shear strain).
The effect of shear deformation on maximum deflection can be seen from Figures 4.3.1 and
4.3.2, where the nondimensionalized maximum deflection, @ = wWmaezE2h3/qa* (Fy = qoa),
of a simply supported beam is plotted as a function of length-to-height ratio a/h for various
laminated beams under a point load and uniformly distributed load, respectively. The
material properties of a lamina are taken to be those in Eq. (4.2.25). The effect of shear
deformation is more significant for beams with length-to-thickness ratios smaller than 10.

4.3.3 Buckling

For buckling analysis, the inertia terms and the applied transverse load ¢ in Egs.
(4.3.9a,b) are set to zero to obtain the governing equations of buckling under
compressive edge load Ny, = —N?,:

2w dx - dPW
KG? b + 2= Nyp——n = .3.
vl ( dz? da:) bz dz? 0 (4.3.282)
d?x dw
b b
Emlyy—de — KG®%,bh <—dx + X) =0 (4.3.28b)
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Table 4.3.1: Transverse deflections of laminated composite beams with various
boundary conditions and subjected to point load or uniformly
distributed load (acting downward) according to the shear
deformation theory.

Fyba? gobat Foba goba?
Cl= 5, 2= y S1 = Ay 30 S22 =
Ef Iy Bl Iy KGY bh G}, bh

Laminated Beam

Deflection, wq(x)

Max. Deflection

e Hinged-Hinged

Central point load
FO

Y a T

&'ﬁ
s
—
w
—~~
&
S’
|
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o~
28
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w
R

+
m|f_’3
——~

Uniform load 5 [(%)_2(%)3+(£)4} 2o+ Lso
TITTITITR % [(2)- (5)] oo
%

o Fixed-Fixed

Central point load & [3 (%)Z 4 (%)d} 19%01 + %91

V¥ () o= g
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e—————»

i
a

Uniform load

= z x)? . —a
FEReRRRTTg 2 ((x)- ()7 ate=3
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Point load at free end 9 {3 (5)2 _ (5)3} %Cl +s
7o +s1 (%) atr=a
L
; e—
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Uniform load o [6(%)2 _4(%)3+ (§)4] Loyt Ly
ITITITITN v [C2) - (2)°] ar=a

5
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Table 4.3.2: Maximum transverse deflections of laminated beams according to

the Timoshenko beam theoryJr (FEv/E2 = 25, G1a = Gi3 = 0.5E>,
Gosz = 0.2Fs, v1p = 0.25).

Hinged-Hinged Clamped-Clamped Clamped-Free

Laminate £ — 100 20 10 100 20 10 100 20 10
0 1.001 1.150 1.600 0.256 0.400 0.850 16.02 16.60 18.40
0.628 0.700 0.925 0.128 0.200 0.425 6.01 6.30 7.20
90 25.015 25.375 26.500 6.265 6.625 7.750 400.00 401.50 406.00
15.633 15.813 16.375 3.132 3.312 3.875 150.00 150.75 153.00
(90/0), 1.143  1.348 1.991 0.292 0.498 1.141 18.18 19.01  21.58
0.713 0.816 1.137 0.146 0.249 0.570 6.82 7.23 8.52
(45/ — 45) 14.316 14.522 15.165 3.585 3.791 4.434 228.96 229.78 232.35

8.947 9.049 9371 1.793 1.895 2.217 8586 86.28 87.56

TThe first row of each laminate refers to nondimensionalized maximum deflections under point load
(Fub) and the second one refers to maximum deflections under uniformly distributed load (ggb).
The deflection is nondimensionalized as W = wmqz (E3h3/qgat) x 102 (Fy = gpa).

Solving Eq. (4.3.28a) for dX'/dx one obtains

dx 42w
b _ b . 0
KGh.bhr = (KGY bh — bNY, ) o (4.3.29)
Integration with respect to x yields
dw
KGYbhX () = — (KGY,bh — bNG, ) K (4.3.30)

Next differentiate Eq. (4.3.28b) with respect to = and substitute for dX /dz from
Eq. (4.3.29) to obtain the result

ey 2 [(1 bNO )d2W}

W qr2 |\© KGO bh ) dx?
W bN? W
- K b h _ 1= TT —
Gzt [al:c2 ( KGg,th> dz? 0
o 0 4 2
bN, a*w d*w
ES, I, [1- =52 Ny —— = 4.3.31
e yy( Kngbh) dzt T ONe gz =0 (4.331)
The general solution of Eq. (4.3.31) is
W(z) = cisin Az + cacos A\x + c32 + ¢4 (4.3.32)
where
0 2 b
A= bzﬁv L or BN, = - Laelw (4.3.33)
1 — o= ) Eb I 1+ APER Ty
( Kngbh> zztyy ( KGY_bh

and c¢; through ¢4 are constants of integration, which must be evaluated using the
boundary conditions.
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Figure 4.3.1: Transverse deflection (w) versus length-to-thickness ratio (a/h) of
simply supported beams under center point load.
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Figure 4.3.2: Transverse deflection (w) versus length-to-thickness ratio (a/h) of
simply supported beams under uniformly distributed load.
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Example 4.3.3 (Simply supported beam):

For a simply supported beam, the boundary conditions are [see Eq. (4.2.31a)]

dx

dx
TE(O) =0, E(a) =0 (4.3.34a)

W(0) =0, W(a)=0,
In view of Eq. (4.3.29), the above conditions are equivalent to

2w 2w
W(0) =0, W(a)=0, W(O) =0, W(a) =0 (4.3.34b)

The boundary conditions in Eq. (4.3.34b) lead to the result cg = c3 = c4 =0, and for ¢; # 0 the
requirement

sinAa =0 implies Aa =nr (4.3.35)
Substituting for A from Eq. (4.3.35) into Eq. (4.3.33) for N9_, we obtain

2 b
bNY, = Eb, I, (") RGubh
@ KGY.bh+ EL Iy, (%)

b nr)?
= Eb, Iy, (E)2 1- Bialy (5) 5 (4.3.36)
@ KGb bh + Eb, Iy, (2X)

a

The critical buckling load is given by the minimum (n = 1)

b jud 2
bNer = B2, 1, (3)2 1o Palw(3) , (4.3.37)
a KGb_bh + Eb, I, (Z)

It is clear from the result in Eq. (4.3.37) that shear deformation has the effect of decreasing the
buckling load [cf., Eq. (4.2.35)].

Example 4.3.4 (Clamped beam):

For a beam fixed at both ends, the boundary conditions are
W({0)=0, W(a)=0, x(0)=0, x(a)=0 (4.3.38)

In order to impose the boundary conditions on X, we use Eq. (4.3.30). The constant K, appearing
in Eq. (4.3.30) can be shown (see Problem 4.10) to be equal to K; = —c3(bN2,). The boundary
conditions yield

cg+c4 =0, cysinda+cacosha+cza+cy =0

bNSl, .
- (“m)”l‘%—o
bNO, .
- <1 - m) (AcpcosAa — AcgsinAa) —cg =0

Expressing ¢; and ¢g in terms of c3 and ¢4, noting that

| NS, 1
T KGh bh  ;, A2ELI
1+ Kngbiy

and then setting the determinant of the resulting algebraic equations among c; and cg to zero, we
obtain
N2 ER, Iy

2 (cos Aa — 1) (1 + KGbbh

) + Aa sinAa =0 (4.3.39)



ONE-DIMENSIONAL ANALYSIS OF LAMINATED COMPOSITE PLATES 197

Once the value of Aa is determined by solving the nonlinear equation (4.3.39), the buckling load
can be readily determined from Eq. (4.3.33).

4.3.4 Vibration

For natural vibration, we assume that the applied axial force and transverse load
are zero and that the motion is periodic. Equations (4.3.9a,b) take the form

2w dx .
KG® bh - 2[,)W =0 4.3.4
G, ( Ja? + d:v) + w1y ( 0a)
d2x dW R
EY I,,—— — KGb_bh (— X) 2[,X =0 4.3.40b
Tz YY 102 zz dz + +wiiy ( )

We use the same procedure as before to eliminate X from Eqgs. (4.3.40a,b). From
Eq. (4.3.40a), we have

2w
dz?

daXx
dr

KGb bh—— = —Iyw*W — KG® bh (4.3.41)
Substitute the above result into the derivative of Eq. (4.3.40b) for dX’/dx and obtain

the result

d*W (B Il -\ od*W Wiy N
b zztyyL0 2 2 2
I — — ————— | [pjwW =0 (4.3.42
Eraly g (I{ngbh 1 ) da? KGE_bh | (4.3.42a)
or . )
d*W a“w
— — —rW =0 4.3.42b
L= +4a dzz ( )
where
=Eb I = —Egzlyy + é Ipw?, r=1[1- *—W2f2 Tow? (4.3.42¢)
P=Peclowr 4= \KGgooh " 1,) " "7 KGbh ) ° a
The general solution of Eq. (4.3.42b) is
W(x) = c1sin Az + cg cos Az + c3 sinh pux + ¢4 cosh px (4.3.43a)

where

1 1
A= \/% (q +VéE+ 4pr>, o= \/27; (—q +ya+ 4pr> (4.3.43b)

and ¢, c2, c3, and ¢4 are constants, which are to be determined using the boundary
conditions. Note that we have

2
(2/\2]) — q) =¢>+4pr or pN—g\l—r=0 (4.3.44)
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Alternatively, Eq. (4.3.42a) can be written, with W given by Eq. (4.3.43), in terms
of w as

P _QuP+R=0 (4.3.45a)

Eb I, Eb T
1 22 = | === Y | \* (4.3.45b
" (KGb bh ) ] f ( Iy ) ( )

Hence, there are two (sets of) roots of this equation (when o # 0)

@ = 55 (Q _Jor - 4PR) (@)= % (Q oz - 4PR) (4.3.46)

It can be shown that Q* — 4PR > 0 (and PQ > 0), and therefore the frequency
given by the first equation is the smaller of the two values. When the rotary inertia
is neglected, we have P = 0 and the frequency is given by

R . Eb I Eb I
S 0= ll + (M) )\2] ., R= (LW> A (4.3.47)
19) KGP_bh Iy

Example 4.3.5 (Simply supported beam):

where

Iy
P= KGb_ bh’ ©=

For a simply supported beam, the boundary conditions in Eq. (4.3.34b) yield ¢ = ¢3 = ¢4 = 0 and
. S nmw .
¢y sin Aa = 0, which implies A, = — (4.3.48)
a

Substitution of A from Eq. (4.3.48) into Eq. (4.3.47) and the result into Eq. (4.3.46a,b) gives two
frequencies for each value of A. The fundamental frequency will come from Eq. (4.3.46a).

When the rotary inertia is neglected, we obtain from Eq. (4.3.47) the result

—set vy CE)2EL 1y, (4.3.49)
KG’;th+("”)2E" Ly -

Thus, shear deformation decreases the frequencies of natural vibration [see Eq. (4.2.55)].

Example 4.3.6 (Clamped beam):

Using Eq. (4.3.40a) and expression (4.3.43a) for W (x), dX/dz can be determined in terms of the
constants c¢; through c4, which then can be integrated with respect to x to obtain an expression
for X. Using the boundary conditions in Eq. (4.3.38), we obtain

co+¢c4 =0, c1sinda+ cycosAa+ cgsinh pa + ¢qcoshpa =0

S1101 — Sa2e3 =0, S1101 — S1162 — Sancg — S22y =0 (4.3.50a)

where

S11 = (fow? = N2KGE,bh) , Sap = A (Iow? + n? K Gb,bh) (4.3.50b)

Eliminating ¢y and ¢4 from the above equations, and setting the determinant of the resulting
equations among ¢; and ¢y to zero (for a nontrivial solution), we obtain

—2 4 2cos Aa cosh pa + sin Aa sinh pa (@ - i) =0 (4.3.51)
St Sa2
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Table 4.3.3 contains critical buckling loads and fundamental frequencies of various
laminated beams according to the Timoshenko beam theory. The first row of each
laminate refers to the nondimensionalized critical buckling load, the second row
refers to nondimensionalized fundamental frequencies with rotary inertia, and the
fourth row refers to fundamental frequencies without rotary inertia. The numbers
in rows 3 and 5 refer to the fundamental frequencies calculated using the frequency
equations of the classical laminate theory (for the simply supported boundary
conditions, the frequency equations are the same in both theories). The following
nondimensionalizations are used:

N = N2 (a?/E3h3), @ = wia®\/Iy/E2h3 (4.3.52)

The frequency equations (4.3.51) of the Timoshenko theory depend, for clamped-
clamped and clamped-free boundary conditions, on the lamination scheme and
geometric parameters (through S;;), whereas those of the classical laminate theory
[see Egs. (4.2.58) and (4.2.59)] are independent of the beam geometry or material
properties. Thus, there are two different things that influence the frequencies in the
Timoshenko theory: (i) the effect of transverse shear deformation [see Eqs. (4.3.47)
and (4.3.49)], and (ii) the values of A, which are governed by different equations
than those of the classical theory (for clamped-clamped and clamped-free beams).
The second effect is not significant, as can be seen from rows 3 and 5 of Table
4.3.3. Also, for clamped-clamped and clamped-free boundary conditions, the effect
of rotary inertia on the frequencies is not as obvious as it was in the case of simply
supported beams, where the rotary inertia would decrease the frequencies. From the
results presented in Table 4.3.3, it appears that rotary inertia may actually increase
the frequencies slightly.

The effect of length-to-height (or thickness) ratios of the beam on critical
buckling loads N and fundamental frequencies @ is shown in Figures 4.3.3 and 4.3.4,
respectively, for various lamination schemes. The material properties used are those
listed in Eq. (4.2.25). Transverse shear deformation has the effect of decreasing
both buckling loads and natural frequencies. Thus, the classical laminate theory
overpredicts buckling loads and natural frequencies. This is primarily due to the
assumed infinite rigidity of the transverse normals in the classical laminate theory.
Note that the assumption does not yield a conservative result; i.e., if one designs a
beam for buckling load based on the classical laminate theory and if no safety factor
is used, it will fail for a working load smaller than the critical buckling load.

Once again we note that the relationships between the classical beam theory
and the Timoshenko beam theory may be used determine the deflections, buckling
loads and fundamental frequencies according to the Timoshenko beam theory from
those of the Euler-Bernoulli beam theory [29]. Such relationships exist only for
isotropic beams, and the reader may find it challenging to develop the relationships
for bending, buckling and vibration of laminated beams (see Section 5.5 of [29]).
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Table 4.3.3: Critical buckling loads (N) and fundamental frequencies (®)
of laminated beams according to the Timoshenko beam theory
(El/E2 = 25, G12 = G13 = 0.5E2, G23 - 0.2E2, V19 = 025)

Hinged-Hinged Clamped-Clamped Clamped-Free

Laminate £ — 100 20 10 100 20 10 100 20 10
0 N 20.461 18.304 13.768 80.655 55.070 27.656 5.134 4.987 4.576
cD(fg #0) 14.210 13430 11.635 31.899 25.327 17.212 5.070 4.930 4.528
14.210 13.430 11.635 32.110 28.506 22.140 5.070 4.965 4.675
G)(fg =0) 14.211 13.441 11.657 31.824 24.636 16.680 5.063 4.813 4.229
14.211 13.441 11.657 32.113 28.547 22.186 5.070 4.966 4.680
90 0.822 0.812 0.784 3.283 3.135 2747 0.205 0.205 0.203
2.848 2.829 2771 6450 6.260 5.761 1.015 1.012  1.004
2.848 2.829 2771 6.454 6.356 6.079 1.015 1.012 1.005
2.848 2.832 2781 6449 6.232 5681 1.015 1.009 0.993
2.848 2.832 2.781 6.455 6.370 6.125 1.015 1.013 1.006
(90/0), 18.015 15.689 11.179 70.748 44.716 20.800 4.525 4.362  3.922
13.334 12.434 10.488 29.857 22.672 14.837 4.758 4.594 4.132
13.334 12434 10.488 30.106 26.041 19.504 4.759 4.636 4.307
(45/-45), 1436 1.419 1.369 5.737 5478 4.802 0.359 0.358 0.355

3.765 3.739  3.663 8526 8275 7.616 1341 1.338 1.326
3.765 3.739 3.663 8531 8402 8036 1.341 1.338 1.328

4.4 Cylindrical Bending Using CLPT
4.4.1 Governing Equations

Consider a laminated rectangular plate strip, and let the z and y coordinates be
parallel to the edges of the strip. Suppose that the plate is long in the y—direction
and has a finite dimension along the x—direction, and subjected to a transverse
load g(z) that is uniform at any section parallel to the z—axis. In such a case,
the deflection wgy and displacements (ug,vg) of the plate are functions of only x.
Therefore, all derivatives with respect to y are zero, and the plate bends into a
cylindrical surface. For this cylindrical bending problem (see Figure 4.1.2), the
governing equations of motion according to the linear classical laminate plate theory
(CLPT) are given by [see Example 3.3.1; Eqgs. (3.3.48)]

82UO (92’00 8311)0 8NT 8211,0 83w0
A A - B — T — ], | 4.4.1
gz TG TP T T T 0 T Nggan (44.1a)
&%ug 0%y PBwg  ONL 0%vg
Ag—= + A - B - W= 44.1b
1652 T A6 107923 oz 0 52 ( )
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Figure 4.3.3: Nondimensionalized critical buckling load (N) versus length-to-
thickness ratio (a/h) of simply supported beams.
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Figure 4.3.4: Nondimensionalized fundamental frequency (@) versus length-to-
thickness ratio (a/h) of simply supported beams.
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PPug vy 0wy O [~ Owp PMT
31183-1- 16753 154 Ty ( m@x) 922 +4q
8211)0 84100 83UO
=ly—— -1 I 4.4.1
o2 o T acor (44.1c)
where N, is an applied axial load, and
2k
(o, 11, T) = Z/ 1,2, 220 dz (4.4.1d)

For a general lamination scheme, the three equations are fully coupled. In the
case of cross-ply laminates, the second equation becomes uncoupled from the rest.
In the general case, Egs. (4.4.1a-c) can be expressed in an alternative form by
solving the first two equations for u” and v” and substituting the results into the
third equation

0%ug PPy ONT ONZI %uy %
g2~ Bggs TAw, — e ay+AGIOa — Al
FBw
- Aﬁﬁflwatog (4.4.2a)
%v Ow ON], ONL 2y D%ug
8720 Co S+ Anl P - “+ Aunlo— 5 o~ Al
PBw
+ Aig 18x8t02 (4.4.2b)
oMwy _O?°NL . 32NT _ Bug B 8%wy
- 7Ty I ]
Dt =Bz TCgm ~ (= Bh) 5m5+Clg o5~ lo s
= 8411)0 GQMQZ; 0 ~ 8w0
where

A= AnAss — Ar1s6Adi16, B = Bi1Aes — BisAis, C = A11B16 — A16B11

_ _ _ B _
D =Dy — B1 B — BygC, B:Z , C=
Note that C = 0 for a cross-ply laminate (A1 = Big = D1 =0
zero unless Ngfy is at least a linear function of z.

= Q

(4.4.2d)

S

, and v is identically

If the in-plane inertias are neglected, Eq. (4.4.2¢) for wq is uncoupled from those
of ug and vg. In the absence of thermal forces and axial loads, Eq. (4.4.2¢) will have
the same form as Eq. (4.2.8b). Therefore, the solutions developed in Sections 4.2.2
through 4.2.4 are also valid for cylindrical bending with appropriate change of the
coeflicients.
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4.4.2 Bending

For static bending analysis, Eqs. (4.4.2a-¢) reduce to

d2u0 d3w0 dNT dNT
72 =B dr3 + Age d;I — Aig d;y (443&)
dQU() d3 wo ng; dNT
A Jr2 =C s + Aqg dx — Ay d;I (443b)
d*wg -d®NT ~ _d&®NI  @2mT
D T B dy;;m +C deJ - dxzm +4q (4.4.3¢)

Equation (4.4.3c) governing wg is uncoupled from those governing (ug,vo)-
Equation (4.4.3c) closely resembles that for symmetrically laminated beams [see Eq.
(4.2.10b)]. While Eq. (4.4.3¢) is valid for more general laminates (symmetric as well
as nonsymmetric), it differs from Eq. (4.2.10b) mainly in the bending stiffness term.
Hence, much of the discussion presented in Section 4.2 on exact solutions applies to
Eq. (4.4.3c). The limitation on the lamination scheme in cylindrical bending comes
from the boundary conditions on all three displacements of the problem. When both
edges are simply supported or clamped, exact solutions can be developed without
any restrictions on the lamination scheme. For clamped-free laminated plate strips,
satisfaction of the boundary conditions places a restriction on the lamination scheme,
as will be seen shortly.

Since Eq. (4.4.3c¢) is uncoupled from Eqs. (4.4.3a,b), it can be integrated, for
given thermal and mechanical loads, to obtain wg(x), and the result can be used in
Egs. (4.4.3a) and (4.4.3b) to determine ug(x) and vo(x):

Bwy  -dNT ~ _dNI ~ amT @
pr¥o _ gtV | 58y CMag / d 1.4.4
dx3 dx + dx dz + 0 9(§) dE + 1 ( a)
d*ug - [T dNT dNL . dMT
At - B/O a(€) de+ i 4 REE - B g (444p)
oy [ dNL  dNj, . dM]
L :c/o a(€) dE + Go L 4 By— T - O by (4.40)
where _ B
BB BB )
=27 1A =22 B=2
Gy + Ags, F1 5 Ass, D
BC BC . C
=2 Ay, = o2 - =
G i) 16, I + A, C D
ay — B’Cl, b] = C’cl (445)
Further integrations lead to
d NN )
aZ0 - B/O (/0 a(n) dn> de + GiNT, + FUNT — BMT, + ayz+ay  (4.4.6a)

. T £ A
A% c/ (/ a(n) dn> dE + GoNT, + FoNT — OMT 4 b+ by (4.4.6b)
0 0
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d2w0

pZ o
dxz?

_ _ z 4
= BNL +CNL — M], + /O ( /0 q(n) dn> dé + c1z 4 co (4.4.6¢)

Aug@) =B [ —/05 (/0" 2(¢) dc) an] de + Gy | Mo+ R [ NE e

. 2
~B | M (&)d¢ + a1 + agz + ag (4.4.7a)
0

[\

Avg(m) =€ [ _/05 (["a© ) dn] de + [ NL@de+ e [ N (€)ae

z 2
_¢é /0 MT(€)d€ + by o+ by + by (4.4.7b)
dwo . z 3 n = (7 T ~ [° T
ph_ [ [ L ([ a0 ac) an| de+ B ["NE@a + [ N5 (e
- 2
— /0 MZL (&)de + 01% +cor +c3 (4.4.7¢)

Dwom):/j{/j [/O" (/(fq(u)du) dc dn}ds+B/ox (/()Efo(n)dTI)dé
vof ( /OE ny(n)dn> &~ [0 ( / ‘ Mfz(n)dn> de
ZI)3 ZEQ

+ec1— + 62? + c3x + ¢4 (4.4.7d)

6

If the temperature distribution in the laminate is of the form
AT(z,z) =Ty + 2Th (4.4.8)

where Ty and T3 are constants, then we have

L Zr+1  _ _ _
Ny, = Z/ (Quiazz + Qroayy + 2Q16azy)(k) AT dz
k=1"%k

= ATy + BTy (4.4.9a)

L Zk+1 _ _
NL =D / (Qi60me + Q260yy + 2Qe60sy) ™ AT dz
k=1"7%k

= AlTy + BI'Ty (4.4.9b)

L Zk+1  _ _ _
Mg, =3 / Q11020 + 1200y + 2Q160,) " ATz dz
k=1""k

= BTTy + DITy (4.4.9¢)
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where

Pl A A (k)
/ (Qj10ows + Qiaoyy +2Q60sy) dz

el A A (k)
/ lea:cz + Q 20y, + QQjﬁaxy) z dz

l |

H
i Mh th Ith

o ) ) k) 2
(Qj10zz + Qjoayy + 2Qj6y) " 2° dz (4.4.10)
In addition, if ¢ = qg, expressions in Eqs. (4.4.7) become

3
N
A’LL()(.Z‘) = BqOF + G4 (A’{TO + B?Tl) r+ I (AgTo + BgT1> x
~ T :L'2
- B(BI1y+ DTTy) T+ a1 +ast + a
1“3 $2

= quf + a1? + dox + as (4.4.11a)

3
Avg(z) = qu% +Gy (AT + BITy ) o + Fy (ATTy + BITh ) o
~ T iL'2
- C (Bl + D :rl):c+1317 + box + by

3 2

= Cgo— + b1 — + byx + b (4.4.11b)
6 2
4 2 2
T _ T - x
Duo(z) = qo5; + B (AT + BTT) 5 +C (AF Ty + BIT) =
2 3 2
i xr T
(BTTO + DTTl) + 01—6~ + eo— 5 + 3+ ¢y
4 3 2
—QQ%+61%+CQ%+63£E+C4 (4.4.11¢)

The constants of integration a;, b;, and ¢; can be determined using the boundary
conditions.

The in-plane stresses in each layer can be computed using the constitutive
equations, and the transverse stresses can be determined using equilibrium equations

of 3-D elasticity [see Egs. (4.2.13) and (4.2.14)]. For a cross-ply laminate the only
nonzero strain is €;,.

Example 4.4.1 (Simply supported plate strip):

For a plate strip with simply supported edges at z = 0 and & = a, the boundary conditions are (see
Table 4.4.1)

Negw =0, wg =0, My, =0 (4.4.12)
where 2
d d’UO Wo T p
zz = Alld— + A 16 5 . Bll d.r2 - sz (4413&)
d2w0 T

dug
Nyy = Aj9—— ar + Ag 6 d — Bis (4.4.13b)

d2 vy
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Noy = A1 22 d“O + Agg L0 d - Big @ o _NT, (4.4.13¢)
Mes = By 520 dug Bw‘% - Dy d;w“;‘) MT, (4.4.14a)
M,, = Budd— + Bag Ciz Dy dj“;‘) T (4.4.14b)
M, = BlGZ“O + Beg ‘2 ~ Dyg d;wo M7 (4.4.14c)

From Eqgs. (4.4.12), (4.4.13a), and (4.4.14a) it follows that, for an arbitrary lamination scheme and
dvg/dx = 0, we must have at x = 0,a

d 2
wp = 0, ddm NT. dia? =0, dd;’; = MZ, (4.4.15a)
NT — Dy NE - ByML, NIT By NL - AuM (4.4.15b)

¢ Ay Dy — B11 B " A1Dqy — BB

Since only the derivatives of ug and vy are specified at the boundary points, the solution for ug and
vg can be determined only with an arbitrary constant (i.e., rigid body motion is not eliminated).
Using boundary conditions (4.4.15) in Eq. (4.4.11a-c), we obtain

B and® 3 2]
ug(x) = E% [2 (%) -3 (g) } + NI x4 as (4.4.16a)
<

(4.4.16b)

+M%L2 [(%)2_ (%)] (4.4.16¢)

where the constants a3 and bg can be interpreted as rigid body displacements. The constants can
be determined by setting ug(0) = 0 and vy (0) = 0, which give ag = b3 = 0.

The stress resultants for any « are then given by substituting Eqs. (4.4.16) into Egs. (4.4.13)
and (4.4.14):

New =0, Ny = A1gNL — BigML, — NI, (4.4.17a)
Nyy = 0% (B 4 AgC — BiaA) ( )2 (‘”)
yy =~ 2AD 12 26 12 - ;
+ AigNT, — BigM], (4.4.17b)
2 2
A
2 xX
Myy = 2AD (3163 + BeC — D1 A) (a> - (E)
+ BigNL, — DigMT, — M2, (4.4.17d)
2 2
qoa T z
My, = 395 (B12B + BysC — D1 A) [(5) - (5)]

+ B1oNT, — D1oMZT, - MJ, (4.4.17¢)
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The maximum transverse deflection occurs at z = a/2, and it is given by

5goat MT a2
384D 8

Winaxr =

(4.4.18)

In order to see the effect of the bending-stretching coupling on the transverse deflection, the
reciprocal of the bending stiffness D [see Eq. (4.4.2d)] is expressed as

D D\ D) D, D

1 1 (Dll) - 1 (D—}-BllB-Fb’ch')
Hence, the maximum deflection can be expressed in the form

5qoat Bi1 B+ BygC MZT a2
Wnax = 1 — zT 4.4.19
v 384D, ( + D ) ( )

For symmetric laminates the coupling terms are zero, and the maximum deflection is given by

5qpa?t MZ a2
mar — Soa — 4.4.20
bt 384D, 8 ( )

It can be shown that the expression By B + BgC is always positive. Therefore, it follows that
the effect of the coupling is to increase the maximum transverse deflection of the plate strip. For
example, for antisymmetric cross-ply laminates, we have A1g = Agg = B1g = Bgg = D1g = Dog = 0,

B =DB11/A;1,C=0,and D= Dy — B;zl /A11. Thus the maximum deflection becomes

: 4 B2 TT 42
Winae = — 2208 4 L1 _ Myya (4.4.21)
384Dy, Ay, Dy, - B 8

In the case of antisymmetric angle-ply laminates, we have A1 = Agg = B11 = Bag = By = Bgg =
D1 =Dy =0,B=0,C = Bg/Ags, and D = Dy — B%G/A%. The maximum deflection becomes

4 B2 T g2
Wmaz = ‘Sia_ 1+ 16 P - AIIIa (4422)
384Dy, Age D1y — B, 8

Note that when the bending-stretching coupling terms are zero (e.g., for symmetric laminates),
the cylindrical bending and laminated beam solutions have the same form. The difference is only
in the bending stiffness term. The bending stiffness D1; used in cylindrical bending is given by

Eb p3 Eb h3
Dyy = ——t= = 4.4.23
W TR vk 120 = (k2 (B B (4.4.23)

whereas the bending stiffness used in the beam theory is E%,I,, = E%,bh3/12. Thus, the difference
is in the expression containing Poisson’s ratios, which is due to the plane strain assumption used
in cylindrical bending compared to the plane stress assumption used in the beam theory. The
difference between the two solutions will be the most for laminates containing angle-ply layers,
where l/:éy can be very large.

Analytical solutions for beams under uniform transverse load with other
boundary conditions may be obtained from Eqgs. (4.4.11a-c). For loads other than
uniformly distributed transverse load, one must use Egs. (4.4.7a-d).
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Table 4.4.1: Boundary conditions in the classical (CLPT) and first-order shear

deformation (FSDT)

theories of beams and plate strips. The

boundary conditions on ug and vy are only for laminated strips

in cylindrical bending.

Edge Condition CLPT FSDT
Z? free Nxx =0 ny =0 Nxx: ny =0
——— Mxx :0 dex =0 Mxx :0 Qx :0
dx
dUO dUO
Ny=0 M, =0 Ny =0 My=0
u0=0 szo uO:() IU()=0
dl)O dUO
= = ——— M =
dx 0 Mu=0 dx =0
ug=0 vy=0 ug=0 vp=0
dw
w0=0 Ecg-z Wy =0 q)x =0

4.4.3 Buckling

The equilibrium of the plate strip under the applied in-plane compressive load

Nyz = —NQ2, can be obtained from Egs. (4.4.2a-c) by omitting the inertia terms
and thermal resultants
d*U d*w
-~ =B 4.4.24
dz? dz3 ( )
d*v W
— =C'— 4.4.25
dx? ¢ dx® ( )
d*W d*w
D—— = —NJ,—— 4.4.26
d$4 Trr dxg ( )

where (U,V,W) denote the displacements measured from the prebuckling

equilibrium state.

Equation (4.4.26), which is uncoupled from (4.4.24) and (4.4.25), can be
integrated twice with respect to = to obtain

AW
dz?

D

+ NQIW = Kz + K>y

(4.4.27)
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where K7 and K, are constants. The general solution of Eq. (4.4.27) is
W (z) = e1sin Az + ca cos Az + ¢z + ¢4 (4.4.28)
where ¢3 = K1/)\%, ¢y = Ko/A?, and
0

N,
M= —ror N, = D)? (4.4.29)

The three of the four constants cj,co,c3,c4, and A are determined using (four)
boundary conditions of the problem. Once X is known, the buckling load can be
determined using Eq. (4.4.29). The results of Section 4.2.3 are applicable here

with 6 = 1 and nglyy = D. Here we consider only the case of simply supported
boundary conditions for illustrative purposes.

Example 4.4.2:

When the plate strip is simply supported at x = 0, a, from Eq. (4.4.15a) we have

dU av 2w ;
W =0, e =0, =0, 7ﬁ_o (4.4.30)

Use of the boundary conditions on W gives ¢g = ¢3 = ¢4 = 0 and the result

0 2
sin Aa = sin(4/ %) =0, or N, =D (Z—W) (4.4.31)

The critical buckling load N, is given by (n = 1)

(4.4.32)

7r2 311B+Blﬁé
Ncr — Dlla_Q <1 - 7D11A

Thus the effect of the bending-extensional coupling is to decrease the critical buckling load.

Recall from Section 4.2.3 that when both edges are clamped, A is determined by solving the
equation
Aa sinAda+2cosha—-2=0 (4.4.33)

The smallest root of this equation is A = 2m, and the critical buckling load becomes

472

Nep = Dyj— (1 - (4.4.34)

al

B11B + B1sC
DllA

4.4.4 Vibration

For vibration in the absence of in-plane inertias, thermal forces, and transverse load,
Eq. (4.4.2¢) is reduced to

twg ~ 9%y 8wy

D
ozt

(4.4.35)

where I, = I — BI,. For a periodic motion, we assume

wo(z,t) = W(z)e™t, i=+—1 (4.4.36)



210 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

where w is the natural frequency of vibration. Then Eq. (4.4.35) becomes

d*W - d*W
pe % Nt
drt dz?

o d2W

— 2 7.
= Iou) W — Igw A2

(4.4.37)

Equation (4.4.35) has the same form as Eq. (4.2.43). Hence, all of the results of
Section 4.2.4 are applicable here with b =1 (Iy = Iy, I = I) and E% I, = D. We
summarize the results here for completeness.

The general solution of Eq. (4.4.37) is
W (z) = ¢1 sin Ax + ¢ cos Az + c3 sinh px + ¢4 cosh pz (4.4.38)

where

A= \/2% (q+ @2 +4pr>, U= \/% (—q+ V& +4pr> (4.4.39)

p=D, qg=DLw®— Ny, r=Iw’ (4.4.40)

and c1,co,c3, and ¢4 are integration constants, which are determined using the
boundary conditions. For natural vibration without rotary inertia and applied axial
load, the equation for A = p reduces to

X =\/r/p (4.4.41)

If the applied axial force is zero, the natural frequency of vibration, with rotary
inertia included, is given by

D L)?
2 4 2
=N =1 —— 4.4.42
“ To ( Io+ m?) (4.442)
When rotary inertia is neglected, we have

D

w= A\ |= (4.4.43)
Iy

Example 4.4.3:

nim

For a simply supported plate strip, A is given by A,, = 2% and from Eq. (4.4.42) it follows that

na\%2 [D i
w”:(Y) \/g TF (=2 (hh) (4.4.44)

Note that the rotary inertia has the effect of decreasing the natural frequency. When the rotary

inertia is zero, we have
2
%8 D
wn = (7> ’/E (4.4.45)
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For a plate strip clamped at both ends, A must be determined from [see Eqs. (4.2.56)—(4.2.60)]
) TAN . .
—24 2cos Aacosh pa + e X) sin Aa sinh pa = 0 (4.4.46)

For natural vibration without rotary inertia, Eq. (4.4.46) takes the simpler form
cosdacoshda —1=0 (4.4.47)

The roots of Eq. (4.4.47) are
Aa =4.730, Aoa =T7.853, Aza=10.996, ---, Apa=~(n+ %)W (4.4.48)

In general, the roots of the transcendental equation in (4.4.46) are not the same as those of
Eq. (4.4.47). 1If one approximates Eq. (4.4.46) as (4.4.47) (i.e., A =~ pu), the roots in Eq.
(4.4.48) can be used to determine the natural frequencies of vibration with rotary inertia from
Eq. (4.4.42). When rotary inertia is neglected, the frequencies arc given by Eq. (4.4.43)
with A as given in Eq. (4.4.48). The frequencies obtained from Eq. (4.4.42) with the values
of A from Eq. (4.4.48) are only an approximation of the frequencies with rotary inertia.

Figure 4.4.1 contains a plot of the nondimensionalized fundamental frequency
o = wa?\/Ty/Eyh3 of a simply supported plate strip with rotary inertia versus
length-to-thickness ratio, a/h. For small values of a/h, rotary inertia is more
significant in reducing the frequency than for thin and long plate strips.

4.90 IIHII\IIHI!HI!III\\II“III‘III[‘IIHIFH

i (-45/45) i

4.85— _

I3 . —

- | Fundamental mode, o, |

g ] ]

8 4.80 ]
o

g i -
~

e - 4

4.75— _

: Plate strip :

4.70 lIIWl|IHllII!lIIH|ITII|THI|TIII}!IIK‘IIII[IIIT

0 10 20 30 40 50 60 70 80 90 100
Side-to-thickness ratio, a/h

Figure 4.4.1: Effect of rotary inertia on nondimensionalized fundamental
frequency of a simply supported (—45/45) laminated plate strip.
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Table 4.4.2 contains nondimensionalized maximum deflections, critical buckling
loads, and fundamental natural frequencies of simply supported and clamped (at
both ends) laminated plate strips with various lamination schemes. Compared to
laminated beams (see Table 4.2.4), laminated plates in cylindrical bending undergo
smaller displacements and have larger buckling loads and frequencies. This is due
to the Poisson effect discussed earlier. All of the frequencies listed in Table 4.4.2 are
for the case where rotary inertia is included and a/h = 10. The (0/90/0) laminates
have larger bending stiffness as well as axial stiffness compared to the (90/0/90)
laminates. This is because there are two 0° layers and they are placed farther from
the midplane in the first laminate than in the second laminate. Hence, (0/90/0)
laminates undergo smaller deflections and have larger buckling loads and natural
frequencies. The (0/90)s laminates have larger bending stiffness than the (90/0)s
laminates; both have the same axial stiffness. The antisymmetric laminates have
some of the B;; # 0 and thus are relatively flexible when compared to symmetric
laminates.

Figures 4.4.2 and 4.4.3 show the effect of lamination angle on maximum
deflections W = —wpaz(FEah®/qoa*), critical buckling load N, and fundamental
frequency @ of two-layer antisymmetric angle-ply (—6/6) plates. It should be noted
that antisymmetric angle-ply laminates with more than two plies are stiffer, i.e.,
deflect less and carry more buckling load.

Table 4.4.2: Maximum deflections (w) under uniform load, critical buckling
loads (N), and fundamental frequencies (w) of laminated plate
strips according to the classical laminate theory (Fi/Es = 25,
G2 = G13 = 0.5F;, Gosz = 0.2F5, 112 = 0.25).

Laminate Hinged-Hinged Clamped-Clamped
w N @ W N @

0 0.623 20.613 14.205 0.125 82.453 32.169
90 15.586 0.824 2.841 3.117 3.298 6.434
(0/90/0) 0.646 19.880 13.950 0.129 79.5621 31.592
(90/0/90) 8.251 1.557 3.905 1.650 6.230 8.842
{0/90) 3.321 3.869 6.154 0.664 15.476 13.937
(0/90)4s 1.427 9.006 9.389 0.285 36.026 21.264
(0/90), 0.708 18.140 13.326 0.142 72.558 30.177
(90/0)5 3.896 3.298 5.682 0.779 13.192 12.868
(—45/45) 5.396 2.382 4.828 1.079 9.526 10.935
(—45/45)qs 2.570 5.000 6.996 0.514 20.003 15.845
(45/ — 45)s 2.188 5.873 7.583 0.437 23.495 17.172
Laminate A 4.035 3.185 5.584 0.807 12.740 12.645
Laminate B 0.897 14.316 11.838 0.179 57.264 26.809

(-/)s = symmetric, (-/-)as = antisymmetric (four layers).
Laminate A: (90/445/0),; Laminate B: (0/445/90),.

w = —wmaz(E2h3/qu4) X 102, N = Ngw(CLQ/EQhB), W= wa2\/ I()/Egh'?"
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Nondimensionalized maximum transverse deflection (w) versus
lamination angle (#) of a simply supported (—6/6) laminated plate
strip in cylindrical bending (CLPT).
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Figure 4.4.3: Nondimensionalized critical buckling load (/N) and fundamental
frequency (@) versus lamination angle (6) of a simply supported

(—6/6) laminated plate strip in cylindrical bending (CLPT).
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4.5 Cylindrical Bending Using FSDT

4.5.1 Governing Equations

In order to see the effect of shear deformation on bending deflections and buckling
loads, we consider the equations of motion for cylindrical bending according to the
first-order shear deformation theory (FSDT) [see Eqgs. (3.4.23)—(3.4.27)]:

A?ug 0% Balon 82¢y 8N§;c &%ug 0%,
Angey tAwgy TBuGa By — 5, = hge thigy (4518
A 82u0 821)0 82% 82¢y 8Ngy 8 (%] 8 ¢y
16552 T A0 Y By T Bu g — 5 = g H iy (451b)
82UO 82110 82¢m 82¢ 8w0
BHW‘*‘BMW‘FDU 2 +D168 > — K Ass (w"'(bx)
8MT 82(2535 2u0
— KA45¢y 8.;T = _[2 8t2 + Il atQ (451(3)
&%u &% &%, H? ow
]516W20 +B668—20+D16 8¢2 + Deg 8¢ — KAy — KAgs (a_o +¢z)
aMg 82¢y 2UO
- S =B+ h o (4.5.1d)
Pwy ¢ 8¢ Swo 8wy
K - z K 44+ = = 5.
Ass ( 52 T on ) TRAB T (N” oz )” gz (A51e)

For cylindrical bending we further assume that ¢, = 0 everywhere, and omit
Eq. (4.5.1d) from further consideration. For the purpose of developing analytical
solutions, we neglect the in-plane inertia terms and assume that there are no thermal
effects. Then Egs. (4.5.1a-e) are simplified to

1411882 5 t+ Ats %;20 + Bn (?;ix =1 G;f;x (4.5.2a)

Am%é%o + AGG%Q;)—QO + Blﬁ%zi; =0 (4.5.2b)

B11%2;20 + Big 6;2:20 + D11% — K Asxg (88100 + qﬁx) =1 8;:;36 (4.5.2¢)
K As (% + %) + a% (Nm%> = Ioa;;"o (4.5.2d)

Next, we eliminate ug and vy from Eqs. (4.5.2a-¢) by solving (4.5.2a) and (4.5.2b)
for up and vg in terms of ¢, and substituting the result into Eq. (4.5.2¢):

Pwy Oy - 82w0 A?wyg

A ( 52 " ou ) TNz T 4=l (4.5.3)
a2¢x 8'wO 82¢w

D 572 — K Ags ( p + ¢ ) =1 o2 (4.5.4)
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Equations (4.5.3) and (4.5.4) are similar to Egs. (4.3.9a,b) for laminated beams,
and therefore all developments of Section 4.3 would apply here.

4.5.2 Bending

For static analysis, Eqs. (4.5.3) and (4.5.4) reduce to

d*wy  doy
KA — =0 4.5.
55((1952 t T (4.5.5a)
d2¢m dwyg ,

Following the procedure of Section 4.3.2, we obtain [see Eqgs. (4.3.12)—(4.3.14)] the
general solution for the rotation

xz € 2
¢x<m>=%[— /0 /0 /O"q<<> dcdnducl%mxm] (4.5.6)

and transverse deflection

2

1 x & pmorp 73 T
wo@) = 5 —/0/0/0/0Q(C)dCdudnd§+Cl—+02—+Csx+C4

6 2
1 * e dcd
e —/O/Oq(C)c5+c1x

where the constants of integration ¢; through ¢4 can be determined using the
boundary conditions. The solutions developed are general in the sense that they are
applicable to any symmetrically laminated beams. Next we illustrate the procedure
to determine the constants for beams with both edges simply supported or clamped.

(4.5.7)

Example 4.5.1 (Simply supported beam):

For a plate strip simply supported at both ends and subjected to uniformly distributed load g = gg
as well as a downward point load Fj at the center, we obtain

ot =355 o () -0 (2) 1]+ iy [1-4(2) @59
wnta) = 95 | (£) -2 () + (5] + o2 | () - (2]
+ Zg’g [3 (%) 4 (3)1 n 2]1:?;55 (%) (4.5.9)

The maximum deflection occurs at ¢ = a/2 and it is given by

5qpal qoa? Fya3 Foa
o 45.1
w (384D t 8KA;; 48D T AKAsg (4.5.10)
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Example 4.5.2 (Clamped beam):

Consider a laminated plate strip fixed at both ends and subjected to uniformly distributed
transverse load gg and a point load F;; at the center, both acting downward. For this case, the

solution is given by
ad z\3
Fya? [ rx\2 T
e 2(5) _ (5)] (4.5.11)
qoat [/z\2 T ?
wol®) = 915 (Z) B (E }

)
4 Fod® '3(£>2_4(§>3]+ Mo () (4.5.12)

48D a

The maximum deflection is given by

4 2 3
_ qpa qoa Foa Foa
Wmaz = <384D t KAy 192D T 4KA55> (4.5.13)

The determination of the shear correction coefficient K for laminated structures is still an
unresolved issue. Values of K for various special cases are available in the literature (see [4-8]).
The most commonly used value of K = 5/6 is based on homogeneous, isotropic plates (see Section
3.4), although K depends, in general, on the lamination scheme, geometry, and material properties.

Figure 4.5.1 shows the effect of shear deformation, shear correction coefficient, and lamination
scheme on nondimensionalized deflections W = Wmaz(Eah3/ggat) of simply supported, cross-ply
(0/90) and angle-ply (45/-45) laminates under uniformly distributed load. The shear correction
factor has little influence on the global response for the antisymmetric laminates analyzed. The
effect of shear deformation is to increase the deflections, especially for a/h < 10. Antisymmetric
angle-ply laminates are relatively more flexible than antisymmetric cross-ply laminates.

Figure 4.5.2 contains plots of nondimensionalized maximum deflection versus length-to-height
ratio for two-layer antisymmetric cross-ply (0/90) and angle-ply (45/-45) laminates (K = 5/6)
under uniformly distributed load and with simply supported edges as well as for clamped edges.
For clamped boundary conditions, shear deformation is relatively more significant for a/h < 10.
The effect of orthotropy on deflections is shown in Figure 4.5.3 (Gi2 = Gi13 = 0.5E;, Gag =
0.2E2, Vig = 0.25, and K = 5/6)

4.5.3 Buckling

For stability analysis, we set ¢ = 0 , Nyp = —NJ., and Iy = I, = 0 in Egs. (4.5.3)
and (4.5.4):

W dx ~ d*W
K Ass (W + E) wr g =0 (4.5.14a)
d2x dw
D— KA —+ A = 4.5.14
dg?z < dx + ) 0 ( b)

Following the procedure of Section 4.3.3, we obtain

dx NO d>W
et [ [ - 4.5.15
dx < KA55> dw2 ( )
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Figure 4.5.1: Transverse deflection (w) versus length-to-thickness ratio (a/h) of
simply supported plate strips (K = 1.0,5/6,2/3).

0.09__I]]]lllllll‘ll‘||1\IITII[IIW||1\]Y‘|VTI|\II1|TT$I_‘

0 08—: SS = Simply supported at both ends =
- CC = Clamped at both ends ]
0.07-] —

I3 0.06 ] —
% ] _-(-45/45), S8 ]
o . ]
.S 0.05— =
= 1 i
é = ]
0.04— —

o T 0/90 5
A 1. 090,88
0.034 =

J ]

0.024 ", =

E W o /(-45/45), CC E

0014 -~ TTTT T CT oo

. ~~(090),cC 7

0.00 ||||l||VI|I\I\‘][TllTl![l!\|I‘|II||I||||IIII|\II1

0 10 20 30 40 50 60 70 80 90 100
Length-to-thickness ratio, a/h

Figure 4.5.2: Transverse deflection (w) versus length-to-thickness ratio (a/h) of
simply supported (SS) and clamped (CC) plate strips.
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Figure 4.5.3: The eflect of material orthotropy and shear deformation on
transverse deflections w of simply supported cross-ply (0/90)
laminated plate strips under uniformly distributed load.

X(z) = — (1 - gj;) L (4.5.16)
D <1 — %) d;g + Ng$% =0 (4.5.17)
The general solution of Eq. (4.5.17) is
W(z) = ¢y sin Az + ca cos Az + ¢c3x + ¢4 (4.5.18)
where
A= New or N = XD (4.5.19)

N2, 22D
(1-z45)D (1+#2)
and ¢; through c4 are constants of integration, which are evaluated using the
boundary conditions.

Example 4.5.3:

For a simply supported plate strip, the critical buckling load is given by

D(z)*

N, ™\’ p |1 (4.5.20)
CT_(E) *m Je
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Thus, the effect of the transverse shear deformation is to decrease the buckling load. Omission of
the transverse shear deformation in the classical theory amounts to assuming infinite rigidity in the
transverse direction (i.e., Ass5 = G13 = oo); hence, in the classical laminate theory the structure is
represented stiffer than it is.

For a plate strip fixed at both ends, A is governed by the equation

\2D

2{cosAa—1) (1 + ) + Aa sinAa =0 (4.5.21)

The roots of the equation are approximately the same as for the case in which shear deformation is
neglected [see Eq. (4.2.38b)}. The first root of the equation is A} = 2. Hence, the critical buckling
load is given by

D (%)

2
No, = (2_") D|1-——el (4.5.22)
a KAss + D (%)

Figures 4.5.4 and 4.5.5 show the effect of shear deformation and modulus ratio on
nondimensionalized critical buckling loads N = N9 (a2?/FE5h3) of two-layer antisymmetric angle-
ply (—45/45) and cross-ply (0/90) plate strips (E1/Ey = 25, G19 = G135 = 0.5E3, Ga3 = 0.2Fy,
v =0.25, K = 5/6). In Figure 4.5.4 results are presented for simply supported as well as clamped
boundary conditions. The effect of shear deformation is significant for a/h < 10 in the case of
simply supported boundary conditions, and a/h < 20 in the case of clamped boundary conditions.
The effect of shear deformation is more for materials with larger modulus ratios (see Figure 4.5.5).

4.5.4 Vibration
For a periodic motion, we assume solution in the form
wo(z,t) = W(x)e™t, ¢o(z,t) = X(x)e™!, i=+v—-1

where w is the natural frequency of vibration, and W (z) and X (z) are the mode
shapes. Substitution of the above solution forms into Eqgs. (4.5.3) and (4.5.4) yields
[cf. Eq. (4.3.40a,b)]

2x dw
D—— — KAz <— + X> + Lw?X =0 (4.5.23a)
dx? dx
PwWdx (
KAss | == + — | + oW =0 (4.5.23b)
dx? dx

Following the results of Section 4.3.4, we obtain

AW dPW
where D
p=D, q= K(j455“’2’ r = Iow? (4.5.24D)

The general solution of Eq. (4.5.24a) is

W{(z) = c1 sin Az + ¢2 cos Ax + ¢z sinh px + ¢4 cosh px (4.5.25a)
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Figure 4.5.4: The effect of shear deformation on the critical buckling loads of
simply supported (SS) and clamped (CC) cross-ply and angle-ply
plate strips.
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Figure 4.5.5: The effect of material orthotropy and shear deformation on critical
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where

1 1
= —_— 2 = - - 2
A \/2p <q+\/q +4pr>, 7 \/2p< q+\/q +4pr> (4.5.25b)

and c1, co, 3, and ¢4 are integration constants. Use of the boundary conditions leads
to the determination of three of the four constants, the fourth one being arbitrary,
and an equation governing A and p (see Section 4.3.4 for details). The frequencies
w can be determined from

(W) = % (Q —/Q? — 4PR> , (W)= 5113 <Q +4/Q? — 4PR) (4.5.26a)

where
I, D I\ o <D) 4
P= =1 ——— =} A R=[—1]X 4.5.26b
KAss ' @ [ +(KA55+I0> ]’ Iy ( )
When the rotary inertia is neglected, we have P = 0 and the frequency is given by
,_ @ ~ D 2 D) 4
=% o[ (i) V) w5 (45.27)

Example 4.5.4:

For a simply supported plate strip, the boundary conditions give cg = ¢ = ¢4 = 0, and

sinda =0, or Ap = 1 (4.5.28)
a

Substitution of A from Eq. (4.5.28) into Eq. (4.5.26a,b) gives two frequencies for each value of A.
The fundamental frequency will come from Eq. (4.5.26a). When the rotary inertia is neglected, we
obtain from Eq. (4.5.27) the result

nm 2 D KA55
_(nm D 55 4.5.29
o= () V1 \ KA + (%5)2D (4.5.29)

By neglecting the shear deformation (i.e., Ags = G313 = o) we obtain the result

wn = (%)2 \/1‘20 (4.5.30)

which is the same as in Eq. (4.4.45). Thus, the effect of shear deformation is to reduce the frequency
of natural vibration.

For a laminated strip with clamped edges, the following equation governs A:

—2 4 2cos Aa cosh pa + sin Aasinh pa (@ - &) =0 (4.5.31a)
S11 So2
Si1=p (Iow? — N KAs5), Sao = A(Iow? + p? K Ass) (4.5.31b)

Once the value of A is known, frequencies of vibration can be determined from Eqgs. (4.5.26a,b).
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Figures 4.5.6 and 4.5.7 show the effect of shear deformation and modulus ratio (E7/FE5) on
nondimensionalized fundamental frequencies & = wa?+/Iy/FEyh3 of two-layer antisymmetric angle-
ply (—45/45) and cross-ply (0/90) plate strips (K = 5/6, E1/FEy = 25, Gia = G13 = 0.5E;,
Gog = 0.2F5, v15 = 0.25). From Figure 4.5.6 it is clear that shear deformation effect in decreasing
frequencies is felt for a/h < 10 for simply supported boundary conditions, whereas for clamped
boundary conditions the effect is felt for a/h < 15. Also, the effect of shear deformation is more for

materials with larger modulus ratio, as can be seen from the results of Figure 4.5.7.

4.6 Vibration Suppression in Beams
4.6.1 Introduction

The grains of certain materials consist of numerous small, randomly oriented
magnetic domains that can rotate and align under the influence of an external
electric or magnetic field. The electric (magnetic) orientation brings about internal
strains in the material. This is known as the electrostriction. (magnetostriction).
For example, a commercially available magnetostrictive material Terfenol-D is an
alloy of terbium, iron, and dysprosium. The use of Terfenol-D for vibration
suppression has some advantages over other smart materials, in particular, it
has easy embedability into host materials, such as the modern carbon fiber-
reinforced polymeric (CFRP) composites, without significantly affecting the
structural integrity. Considerable effort is spent to understand the interaction
between magnetostrictive layers and composite laminates and the feasibility of using
magnetostrictive materials for active vibration suppression (see [30-32]). Although
there have been important research efforts devoted to characterizing the properties
of Terfenol-D material, fundamental information about variation in elasto-magnetic
material properties is not available. Few studies [33-35] report experimental
evidence of significant variation in material properties such as Young’s modulus
and magneto-mechanical coupling coefficient.

Here we present a generalized beam theory that contains the classical Euler-
Bernnoulli beam theory as well as the first-order and the third-order beam theories,
and bring out the effects of material properties of a lamina, lamination scheme, and
placement of the actuating layers on vibration suppression time.

4.6.2 Theoretical Formulation
Displacement and strain fields

Consider a symmetrically laminated beam of n layers. Suppose that two of the
layers, namely, the mth and (n — m + 1)th layers, are made of magnetostrictive
material, such as Terfenol-D particles embedded in a resin (see Figure 4.6). The
remaining n — 2 layers can be made of any fiber-reinforced materials with varying
fiber orientation 6 but symmetrically disposed about the mid-plane of the beam.
We wish to study the problem of vibration suppression in these beams using the
Euler—Bernoulli, Timoshenko, and Reddy third-order beam theories. To facilitate
the development of all three theories in a unified manner, we introduce tracers whose
values will yield the results for a particular theory [29].
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Figure 4.5.6: The effect of shear deformation on the fundamental frequencies of
simply supported and clamped cross-ply and angle-ply plate strips.
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Figure 4.5.7: The effect of material orthotropy and shear deformation on
fundamental frequencies of simply supported cross-ply (0/90)
laminated plate strips.
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Figure 4.6.1: Layered composite beam with embedded actuating layers.

Consider the displacement field

0 0
U(a?,y,z,t) = —ZCO—@ +zc10 — 2303 (¢+ ﬂ)

Oz Oz
= 122 4 p()ala 1)
v(z,y,2,t) =0
w(ac,y,z,t) = 'U)()(x,t) (4618,)

where (u,v,w) are the displacement components along the (z,y,2) coordinate
directions, respectively, wg is the transverse deflection of a point on the midplane
(i.e., z = 0), and ¢(z,t) is the rotation of a transverse normal line. The functions
fi(z) and fa(z) are given by

fi(2) = —coz — c32°,  fo(2) = 12 — c32° (4.6.1b)
The displacement field (4.6.1a) can be specialized to various beam theories as follows:

Euler-Bernoulli beam theory (EBT): co=1, cg=c3=0
Timoshenko beam theory (TBT): c1 =1, cg=c3=0

Reddy beam theory (RBT): 3==>, c1=1, ¢g=0 (4.6.2)
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The non-zero linear strains are given by

2
Exg = —ZC 08 0tz 18¢ 23y <a¢ + 0 w0> = zell) + %)

Oz? ox 0 Ox?

Oow ow
Yee = (1= c0) 5 + €16 — 3c322 <q> + —°> =10 4 2242 (4.6.3a)

ox or
where
d0 o o 0b (f% . 82w0>
™ Ox? ox’ o Ox  Ox?
O = (1 - co)ﬁwf +e1g, WY = —3c3 (? + qb) (4.6.3b)

Constitutive relations

The constitutive relations of the kth fiber-reinforced (structural) layer are

olt) = Qu Eomy  OW) = é’ﬁ)m (4.6.4)
where
(k) = Qg ) cos? 0P 4 2 ( ) 4 2Q ) cos? 0% sin? oF) 4 Q(Qg) sin? ()
g’;’ = Q55 cos? ) 4 Q(k) sin? (¥
k k
QW — B (k) _ Y B ® _ By
k) (k) ° k) (k) k) (k
- V§2)V§1) 1— V§2)V§1) - V£2)V§1)
(k)
k k k k k k k) £
Q44 = G( ) g5) G§3), és) = ng)a V§1) = Viz)—E%i) (4.6.5)
11

The constitutive relation for an actuating (say, a magnetostrictive) layer is

olm) = ﬁ (00 — d™H) = Qe — ™ H (4.6.6)

where H is the magnetic field intensity, S(™ is the compliance of the mth
magnetostrictive layer

1 1
(m) _
g(m = =5 Q(m) (4.6.7)
and d™ is the magneto-mechanical coupling coefficient, E(™ being the modulus of
the magnetostrictive layer (e(™ = QU d(m)).
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Velocity feedback control

Considering velocity proportional closed-loop feedback control, the magnetic field
intensity H is expressed in terms of coil current I(z,t) as

H(x,t) = kel(x,t) (4.6.8)
and I(t) is related to the velocity wg by
Owo
I(z,t) = c(t 4.6.9
(21) = et) 20 (46.9)

where k. is the coil constant, which can be expressed in terms of the coil width b,
coil radius r., and number of turns n. in the coil by

Ne

ke = —m—

(4.6.10)

and ¢(t) is the control gain.
Equations of motion

Using Hamilton’s principle (or the dynamic version of the principle of virtual
displacements), we obtain

0= /OT /OL /A |:o'g;x Zﬁ&glx) + 23663(22) + Oz (5’)/;2) + 226,}/52))} dAdzdt

_ /T /L/ p <f1% +f2¢) <f166w0 +f26¢> +w06w0} dAdzdt

/ / g6wo dzdt

— / / (Mabell) + Prodel® + QuortQ + Rubry? — gbu ) derdt
/ / [(Kl% + K3¢) 021:0 (Kg? + K2¢> 86 + Iptodiir ]d:cdt
0% *wo
/ / K Ton Tt Kagn +K38t28x> o0
(M 09 g, 00 g o o) o L rar
022 ' O Soxor2 T Tlox?orr T Yoz )T
~ L
T[_ - dbwy OMyr  ~ Owo ¢
M T - T
+/0 [ xwé(ﬁ-ﬁ-M 6;5 +< 8.’1;‘ +Q Kla at2+K36t (S’w()odt
(4.6.11)
where all the terms involving [ - ]’ vanish on account of the assumption that all

variations and their derivatives are zero at £ = 0 and ¢ = 1. Various symbols
introduced in Eq. (4.6.11) are defined as

My = ecxMyz — 3Py Qm =c1Qs — 3c3 R,
My = —coMyy — 3Pz, Qr = (1 - CO)QI — 3c3 Ry (4612)
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where (M., Q., Pre, R;) denote the conventional and higher-order stress resultants

My z D11€g~r) -+ Fnigz) { B} OJwg
{ Prz } /A{Zd}a' ‘ {Fue( Yt Hyp el £) ot ( 2)

( ) (2)
T ALZ D55'71z + F55%EZ

and (K7, K2, K3) are the mass inertias

K, f12 ((1())2[2 + 2cpesly + (03>2IG
Ky | = / £V dr={  (@)Ph— 2eiesls + (cs)?le (4.6.14)
K3 A f1f2 —2cocr ]y + (co — er)esly + (e3)%

I
Iy § = dz, = k. c(t) / Q({f)d(m){ 23} dz  (4.6.15a)
Ig A ‘

Z

Z

Z

Dll A55 _ 1
i /Q(k) dz, § Dss :/ QW 22 Y dz (4.6.15b)
H]] F55 A 24

The equations of motion are

8Mmz ~ aqu wO
.+ K K: =0 4.6.16
oz TR T gy (4.6.16)
P My,  0Q, o0 9t wg 8?wg
— — = —qg— K: - K 1 =0 4.6.1
9r2  or 1T Mawarr Moo T o (4.6.17)
The primary and secondary variables of the formulations are
. . 811)0
Primary Variables : wo, 5 (4.6.18a)
x
Secondary Variables : Vi, Pryy, My, (4.6.18Db)
where y
~ OM,, O
Vo= Qut =5+ K36 + K1 — > 0 (4.6.19)

4.6.3 Analytical Solution

First we write the equations of motion (4.6.16) and (46 17) in terms of the

displacement variables (wg,®) by expressing M,,,Q., Prz, and R, [see Eqgs.
(4.6.13a,b) and (4.6.12)]. We have

o o2 9 92
— D (—Co% + ¢) + cieabn (Wwf + %)

Pwy ¢ 2y [Puwy | ¢
+ e3Fn (—(107 tagg ) - (c3)"Hn 53 T o2
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Oz
0
— 3egDss |:(1 — Co)% + Cﬂﬁ] + 9(03) Fis (
82 2 2
+ (1B — C38)W + [(01) Is — 2c1c31y + (c3) Iﬁ]

+ [—2000112 + (co — c1)ealy + (03)216]

0
+ ¢14s55 {(1 — C())ﬂ + C1¢] — 3c1e3D55 <—— + ¢>

+0)
9
ot?

83’11)0

Oz3 Ort Ox3

*wy Foade) wy 3¢
+ c3F <Co—8—xj —ags |t (es)*Hn 5.4 T 58

coD11 <CO—8‘;UTO — Cl—¢> + coes P (ﬂ + _(b)

5?2 0 o2 0
_ (1 — Co)A55 l(l ) 811;0 + 16¢] + 3(1 — Co)C3D55 <'5% + 8_.?)

o 9 0wy | D
+ 3¢3Dss |:(1 — CO)'aTu;O + a—i] _ 9(03)2F55 < 8;1)20 I 8_2)

3¢

Oz Ot2
&g &%wy

5252 Tl gz =0 (4.6.21)

—q + (CoB + 638) [26001[2 — (C() — 01)6314 — (03)2I6]

5753 2
- [(00)212 + 2coc3ly + (03)2-’6]

This completes the development of the governing equations in terms of the
displacements (wg, ¢). Of course, the equations can be specialized to any of the
three theories.
Here we discuss the Navier’s solution of these equations for the case of simply
supported boundary conditions. Assuming solution of the form
wolz,t) = W(t) sm%—x— o dla,t) = X () cos? (4.6.22)

and substituting into Eqgs. (4.6.20) and (4.6.21), we obtain
[5:'22 523} {W}+ [1\:422 J\:bs] {W}
323 533 X M23 M33 X
C:'22 @23 {W} _ {—Qn}
+ {032 C33] X (= 0 (4.6.23)
where the coeflicients S'l-j = S‘ji and Mij = Mji are defined by

4
~ nmw
So = [(00)2D11 + 2cocgF1 + (03)2H11] (7)

2
nmw
+ {(1 — 00)2/155 — 6(1 — C())C3D55 + 9(03)2}755} (7)
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nmw

3
Soz = [—Cochu + coezFi1 — cieg Py + (03)2H11} <7>

T
+ [(1 —cp)c1Ass — 3(1 — co + c1)e3Dss + 9(03)21’55} <§>
X 2
S33 = [(61)21711 — 2c1c3F11 + (63)2H11] (%)
+ (e1)? Ass — 6¢1c3Ds5 + 9(c3)% Fs
Moy = [(Co) Io + 2¢qc31y + (Cg) 16} <7> + I
~ nm
Moz = [—20061[2 + (C() — 01)0314 + (03)216} <7>
Mas = Ty — 2¢1e30y + (e3)%Ig
2
Coz = — (coB + 3€) <r;_7r>
. . nm A
023 == 0, 032 = (ClB - 035) (7) s 033 =0 (4.6.24)

Equation (4.6.24) can be specialized to various theories as follows (only non-zero
coefficients are listed):

Euler—Bernoulli beam theory (EBT) (¢g = 1,¢; = ¢3 =0)
4 2 2
Saz2 = D1 (%) , Moo =1 (%) + 1o, C2=-B <n_7r> (4.6.25)
Timoshenko beam theory (TBT) (¢y = 0,¢1 = 1,¢3 = 0)

. nr\?% . nw . nm\?

Sop = Ass (—> , Sz = Ass <—) , S33=Dn (—) + Ass
a a a

Moy =1y, Moz =0, Mz =1y

Caa=0, Cy3=0, C32=5 <"§> , Ca3=0 (4.6.26)
Reddy beam theory (RBT) (cp =0,c1 = 1,¢3 = %;)

X nm\* n\ 2

Soa = (03)2H11 (;) + [A55 — 6¢3Dss + 9(03)2F55] <~&—>

. nr\> nmw

Soz = [—C3F11 + (03)2H11] <~a-—> + {A55 — 6¢3Ds5 + 9(03)2F55} <7>

A 2 nmw 2 2

S33 = {DH — 2¢c3F11 + (03) HH} (7> + Ass — 6¢3 D55 + 9(63) Fys

. nm\2 - nm
Moy = Iy + (c3)%Is (7) , Moz = [—0314 + (03)216] (7>

- 9 A n\ 2
M33 = ]2 — 263[4 + (03) 16, CQQ = —035 (7>

Co3 =0, Cs=(B—cs€) <%> , C33=0 (4.6.27)
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For vibration control, we assume ¢ = 0 and solution of the ordinary differential
equations in Eq. (4.6.23) in the form

W(t) = Woe, X(t) = XoeM (4.6.28)
and obtain, for non-trivial solution, the result
Sop =0 (4.6.29)
for the Euler-Bernoulli beam theory, and

Sy Sz

=0 4.6.30
S3a S33 ( )

for the Timoshenko and third-order beam theories, where

Soy = Sap + ACoz 4 A2 Mg, Sg3 = Sz + ACaz + A2 Mo
Sa9 = So3 + )\632 + )\2M23, Say = 5'33 + )\CA’33 + /\2M33 (4.6.31)

Equation (4.6.31) gives two sets of eigenvalues. A typical eigenvalue can be expressed
as A = —a + iwyg. The lowest imaginary part (wy) corresponds to the transverse
motion, and we can write

sinwgt sin o (4.6.32)
a

1
wo(z,t) = y e~

In arriving at the solution (4.6.32), the following initial conditions were used:

The actuation stress is o4 = —Fy,dH.

4.6.4 Numerical Results

Numerical studies were carried out to analyze damped natural frequencies, damping
coefficients, and the vibration suppression time, using the three theories [29].
Different lamination schemes were used to show the influence of the position of
magnetostrictive layer from the neutral axis on the vibration suppression time. A
time ratio relation between the thickness of the layers and the distance to the neutral
axis of the laminated composite beam is also found. All values of the material and
structural constants are indicated in the tables. The material properties used are
the same as those used in [32].

The numerical values of various coefficients (namely, the inertial and
magnetostrictive coefficients) based on different lay-ups and material properties
[CFRP, Graphite-Epoxy (AS), Glass-Epoxy and Boron-Epoxy] are listed in Tables
4.6.1 and 4.6.2. Table 4.6.2 also shows the damping coefficients and natural
frequencies for different materials and lay-ups. The damping and frequency
parameters for transverse modes n = 1 to n = 5 are shown in Table 4.6.3, and
they are compared with the results obtained by Krishna Murty et al. [32] using
the Euler~Bernoulli beam theory (EBT). There is some difference between the
numerical
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Table 4.6.1: Coefficients for Different Lamination Schemes and Materials
(from Reddy and Barbosa [30])

Material Lay-up D1 (10%) F1. (1072) Hy (1077 Ass (10%) Dss (102) Fs5 (1073)

[£45/m/0/90]s 3.739 5.246 9.333 6.620 5.185 6.902

[45/m/-45/0/901s 3.552 4.891 8.793 6.620 6.179 8.792

CFRP [m/+45/0/90]s 3.303 4.069 6.679 6.620 7.506 13.168

[m/904]s 1.432 2.567 5.063 6.620 7.506 13.168

[m/04]s 7.015 7.927 11.189 6.620 7.506 13.168

Gr.-Ep (AS) [+45/m/0/90}s 3.954 5.629 10.053 7.974 6.399 8.881

Gl.-EP [+45/m/0/90])s 2.535 3.700 6.589 7.614 6.173 8.384

Br-Ep [+45/m/0/90]s 5.730 8.259 14.865 7.066 5.634 7.569
CFRP : E;;=138.6 GPa, E2:=8.27 GPa, G13=G23=0.6 Ea3, G12=4.12 GPa , v12=0.26, p=1824 kg.m"

Graphite-Epoxy (AS) : E;1=137.9 GPa, E2=8.96 GPa, Gi1:=G13=7.10 GPa, G23=6.21 GPa, v12=0.30, p=1450 kg.m?3

Glass-Epoxy : E1ni=53.78 GPa, E=17.93 GPa,G12=G13=8.96 GPa, G2=3.45 GPa

, vi2=0.25, p=1900 kg.m"

Boron-Epoxy : E11=206.9 GPa,E2=20.69 GPa, Gi2= G13=6.9 GPa, G23=4.14 GPa, v12=0.30,p=1950 kg.m3

Table 4.6.2: Mass Inertias and Magnetostrictive Coefficients, and Parameters

o and w, for Various Laminates

Material Lay-up Iy I, (1074 | 14+(10™) Is B —€ (104 | —ou+ oxn(rad/s)
1074

[+45/m/0/90]s 33.092 2.461 2.907 4.508 22.128 1.438 3.30+104.85
145/m/-45/0/901s 33.092 3.352 4.600 7.084 30.979 3.872 4.62+102.15

CFRP [m/+45/0/901s 33.092 4.540 8.521 17.171 39.830 8.165 5.94+98 .42
[m/904]s 33.092 4.540 8.521 17.171 39.830 8.165 5.94+64.65

[m/04]s 33.092 4.540 8.521 17.171 39.830 8.165 5.94+143.57
Gr.-Ep [+45/m/0/90]s 30.100 2.196 2471 3.696 22.128 1.438 3.63+113.06
GL-EP [+45/m/0/901s 33.700 2.514 2.995 4.674 22.128 1.438 3.241485.54
Br.-Ep [345/m/0/90]s 34.100 2.550 3.054 4.782 22.128 1.438 3.20+127.90

Table 4.6.3: Comparison of the Damping and Frequency Parameters o and o, as
Predicted by Various Theories (see Reddy and Barbosa [30])

-0+ (g (rad/s) - Lay-up [+45/m/0/90]s

Mode Murty et al EBT TBT RBT
1 3.29+104.88 3.30£104.85 3.30£104.82 3.30+104.82
2 13.19+419.50 13.20+419.37 13.17+418.90 13.16+418.80
3 29.70+943.88 29.68+943.40 29.53+941.05 29.48+940.52
4 52.86+1678.83 52.73+£1676.72 52.27+1669.32 52.10+1667.68
5 82.59+2621.87 82.34+2619.02 81.22+2601.04 80.80+2597.09

Magnetostrictive layer :

CFRP : E;;=138.6 Gpa, E»=8.27 GPa, Gi2=4.12 GPa, G13=G23=0.6 E22,v12=0.26, p=1824 kg.m?3
En=26.5 GPa, pn=9250 kg.m , dk=1.67x10-m/A, c(t).R=10-vn=0, a=1m

Table 4.6.4: Damping and Frequency Parameters o and o, for Various
Lamination Schemes

-0+ 0da (rad/s) - mode 1

Magnetostrictive layer :

En=26.5 Gpa,

Lay-up Murty et al EBT TBT RBT
[45/m/-45/0/90]s 4.60+102.17 4.62+102.15 4.62+102.12 4.62+102.11
[m/+45/0/90]s 5.90+98.44 5.94+98.42 5.94+98.39 5.93+98.38
[m/904]s 5.90+64.65 5.94+64.65 5.94+64.64 5.941+64.64
[m/04]s 5.90+143.58 5.94+143 57 5.93+143.49 5.93+143.44
CFRP :E11=138.6 GPa E»=8.27 GPa G12=4.12 GPa G13=G2=0.6 E2s, v12=0.26, p=1824 kg.m*

Pe=9250 kg.m3, di=1.67x104m/A, c(t).Re=104, ve=0, a=1m

231
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results predicted by the three theories only in the higher modes. Table 4.6.4 shows
the influence of the position of the magnetostrictive layer in the z-direction and the
influence of the lamination scheme in the damping and frequency parameters. The
value of « increases when the magnetostrictive layer is located further away from
the z-axis, indicating faster vibration suppression. The lay-up [m/904]s represents
the softest beam and the lay-up [m/04]s the stiffest beam.

A comparison of the fundamental transverse and axial modes, obtained using the
three theories show that there is no significant difference between the results. The
uncontrolled and controlled motions at the midpoint of the beam, as predicted by
RBT, are shown in Figures 4.6.2-4.6.5 for the first mode when the actuating layer
(m) is placed at different distances from the midplane of the laminate. These figures
show that the vibration suppression time decreases when the distance to the neutral
axis is increased, and it remains nearly the same in the laminates with different
stiffness. Figures 4.6.6 shows that the vibration suppression time decreases very
rapidly for higher modes. Figure 4.6.7 shows the controlled motion of the beam, as
predicted by EBT and RBT, for mode n = 5. Clearly, the difference between the
predictions of the two theories is not significant.

4.7 Closing Remarks

In this chapter analytical solutions are developed for laminated beams and plate
strips in cylindrical bending using the classical and first-order shear deformation
theories. Analytical solutions are presented for static bending, natural vibration,
and buckling problems under a number of boundary conditions.

A unified formulation for laminated beams with embedded actuating layers is
presented. The formulation includes the Euler-Bernoulli, Timoshenko, and Reddy
third-order beam theories as special cases. Analytical solution for the simply
supported beam is presented to bring out the effects of the material properties
of a lamina, lamination scheme, and placement of the actuating layers on vibration
suppression.

When closed-form solutions can be derived, they are preferred over the series
solutions. However, when exact closed-form solutions cannot be developed, the series
solutions are the best alternative. When analytical solutions cannot be derived at
all, numerical solutions based on the finite element method (see Chapters 9 and 10)
can be used to determine the solutions.

Problems

4.1 Consider a simply supported laminated beam under point loads Fy at * = a/4 and z =
3a/4 (the so-called four-point bending). Use the symmetry about z = a/2 to determine
the deflection wg(z) using the classical beam theory. (Ans: The maximum deflection is
Winaz = 11F5a3/384E%,1,,.)

4.2 Determine the static deflection of a clamped laminated beam under uniformly distributed load
qo and a point load Fy at the midspan using the classical beam theory.

4.3 Show that the critical buckling load of a clamped-free laminated beam using the classical beam

theory is given by
Eb. I T\ 2
Ncr — Tz YY (_)
< b > 2a
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Figure 4.6.2: Comparison of uncontrolled and controlled maximum deflection (at

midpoint of the beam) for (+45/m/0/90), laminate.
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Figure 4.6.3: Comparison of uncontrolled and controlled maximum deflection (at
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4.4 Show that the characteristic equation governing buckling of a clamped-hinged laminated beam
using the classical beam theory is given by

sin Aa — Aacos Aa =0
4.5 Show that the characteristic equation governing natural vibration of a clamped-free laminated
beam using the classical beam theory is given by
cosdacoshda+1=0
4.6 Show that the characteristic equation governing natural vibration of a clamped-hinged
laminated beam using the classical beam theory, when rotary inertia is neglected, is
sin Aa cosh Aa — cos Aasinh Ada =0
4.7 Show that the characteristic equation governing natural vibration of a hinged-free laminated

beam using the classical beam theory, when rotary inertia is neglected, is the same as that for
a clamped-hinged beam.

4.8 Derive the characteristic equation governing natural vibration of a clamped-hinged laminated
beam using the classical beam theory, when rotary inertia is not neglected.

4.9 Show that Egs. (4.3.10a,b) can be reduced to the single equation

Eb T d4w0 — (j(m) _ ( E:l;aclyy ) d2q

ee ¥ gl KGb_bh | dz?

This equation shows that the deflection of the Timoshenko beam theory can be obtained
from that of the classical beam theory by replacing the load § [see Eq. (4.2.10b)] with a
equivalent load given by the right-hand side of the above equation. Although the effect of
shear deformation is zero when the load variation is linear or less, this effect will come through
the boundary conditions.

4.10 Show that the equations governing the stability of a laminated beam according to the
Timoshenko theory can be expressed as

KGY,bhx + (KGb,bh — bNY,) aw _ K (1)
dx
Bl Ly %% oNOW = Kz + Ky (2)
Combine the above two equations to arrive at
32w, A2 .
Show that the general solution of Eq. (3) is
W (z) = cysin Az + ¢g cos Az + c3x + c4; c;;:—ﬁ](l , Q:—ﬁ[ﬁ (4)

4.11 Show that the solution to the equations governing the bending of a hinged-fixed beam according
to the Timoshenko beam theory, under uniformly distributed transverse load, is given by

4 4 3 2

qoQ z 5+12a> (x) ( 1 )(z)
=__To% |ofTY) _ z z
wo(@) 48E§gzlyy[ (a) (1+3a o) T3isa) G

st [ (o) ()4 ()]
o082 (0) () () () (B)] @

where o = Eb_ I, /KGb bha?.
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4.12 Show that the characteristic equation governing the buckling load of a hinged-fixed beam
according to the Timoshenko beam theory is given by

2 b
Aa cosAa —sin Aa <1+1K—g§:{—)%> =0

Ans: The boundary conditions give

wp(0) = 0 gives co +¢4 =0 (1)
. bNY
¢2(0) =0 gives (1 - —K@;—Tbh> Acp +¢3 =0 (2)
wg(a) = 0 gives ¢1sinAa+cgcosda+cga+c¢4 =0 (3)
Az _ o 2 bNY, . ] _
i (a) =0 gives A <1 ~ K bh (e1sinda + cacos Aa) =0 (4)

In addition, note that

bNG 1
1- KGbth - A2EY Iy (5)
o L+ e

4.13 Determine the critical buckling load of a clamped-free laminated beam using the Timoshenko
beam theory.

4.14 Show that the characteristic equation governing natural vibrations of a clamped-free beam
according to the Timoshenko beam theory, when rotary inertia is neglected, is given by

2
A (% + %%) +u <1 - %%) sin Aa sinh pa — A (1 + %) cosAacoshpua=0 (1)

Ry = Blgw? + KGh bh — NEL, Iy, Ry = Blow? + KGY,bh+ p*El I,
81 = fow? = N2KGt bh , Sy = lgw? + n2KGY bk (2)

4.15 Show that the characteristic equation governing natural vibrations of a clamped-hinged beam
according to the Timoshenko beam theory is given by

S11 cos Aasinh pa + S25 sin Aa cosh pa =0 (1)
Si1 = A (Blow? + KGb bh — N2ES 1)
Sop = p (Blow? + KGE bh + p2ES, 1y ) (2)

4.16 Derive the equations of equilibrium for cylindrical bending using the principle of virtual
displacements, 6W = 0, where

¢ duy | 1 (dwg\? (d7)0>
W= Noz 6 | —+ s { —— Ngy 6 5=
d /0 { [ dr + 2 ( dr ) + Nay dzr

2
4+ Myz b (_dd;:;0> qéwo}da:

Use the laminate constitutive equations (4.4.13a), (4.4.13c), and (4.4.14a) to express the
resulting Euler-Lagrange equations in terms of the displacements and the thermal stress
resultants. These equations are a static version of those in Egs. (4.4.1).
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4.17

4.18

4.19

4.20

4.21

Consider the equations of equilibrium of cross-ply laminates in cylindrical bending in the
absence of thermal effects:

d UO d3w0 d'j d‘lwo

A=y —Bu—5 =0, -Bu_z +D11W:

Show that the Navier solution of these equations for the simply supported boundary conditions
is given by

:%Z_

’@
3%

A1
cos amex , wolx) = T Z

where D = A1 D11 — B%l and am = 2. The load ¢(x) is also expanded in sine series with
coefficient Q..

For the cylindrical bending problem of cross-ply plates (see Problem 4.17), show that (a) the
stresses in the kth layer are given by

A1z - B11)Q* Qm
v (An 11) @ m
“‘#Z

sin o, &

nL
m=1

oF — (A112 — B11) Q%, Z Qm

vy D a2

m

sSin

m=1

and (b) the transverse stresses from the 3-D equations of equilibrium are given by

QY Q
U;z:_# A11 — Bz + Gk Z mcosamz

k
ok, = TH <A11% - B11% + Gz +Hk> Z Qm sinamx

m=1

where G* and H* are constants to be determined such that the stress boundary conditions on
0z> and 0, at z = £h/2 and the stress continuity conditions at the interfaces are satisfied.

Use the total potential energy functional

a 2
1 b d2w0 0 d'wo 2 2 9
H(’wo) = §A {Ezzlyy ( a2 - b]\fzz <E) - Iobw wy dx

to construct a one-parameter Ritz solution to determine the natural frequency of vibration, w,
of a simply supported laminated beam with compressive load NJ,. Use algebraic polynomials

for the approximate functions. (Ans: w = (1/a)\/(10/Iy)[(12E%, I, /a2b) — NS,].)

Repeat Problem 4.19 for a laminated beam with clamped boundary condition at x = 0 and
free at = = a (i.e., cantilever beam). (Ans: w = (1/a)\/(5/310)[(12E%, Iy /a?b) — 4NQ,].)

Use the total potential energy functional

- “ A11 duo 2 duo dvo A66 d'UO 2
H(u"’vo’w‘))_/o [2 (dm) s dx?i;*“é‘(?i;)

2
2 2,
_d wo (B duO+B dU0)+D11 (d lU()) _ qug | dz

dx? dzx 5 dr 2 dc?

to construct a one-parameter (for each variable) Ritz solution of (ug,vp,wq) for a simply
supported plate strip. Use algebraic polynomials for the approximate functions. (Ans:
ay; = —Bqya?/12AD, by = —Cqpa2/12AD, ¢| = —qga?/24D.)
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4.22 Repeat Problem 4.21 for a plate strip with clamped boundary conditions at x = 0 and free
boundary conditions at z = a. (Ans: a; = Bqga2/6AD, by = Cqpa?/6AD, ¢| = qpa?/12D.)

4.23 Use the total potential energy functional

¢ All d’lto)z duo dUO AGG (dv0>2 N,O/ (dLUO 2
(. — A (Yo 466 (40 e (SW0
(19, vo, wo) /0 { 2 ( dx + A 570z dr + 2 dx 2 dx )
. 2
d2wg dug dvg Dy [ d?wy ’
T da? (B“ @ TP )+ > (@ ) | &

to construct a one-parameter (for each variable) Ritz solution to determine the critical
buckling load N, of a plate strip with clamped boundary conditions at x = 0 and free
boundary conditions at @ = a. Use algebraic polynomials for the approximate functions.
(Ans: N =3D/a2))

4.24 Use the total potential encrgy functional

“la dug\ ? dug dv A dv NO. 7 dwg\ 2
(o, vo, wo) :/ {% (d—;) AL T T 2 (d:co> 2 ( d;ro)
o :

2
d2wy dug dvgy Dy [ d?wqg Tpw?
T dz2 (Bll i Big—— - ) T | 2 -5 wi | dx

to construct a one-parameter (for each variable) Ritz solution to determine the natural
frequency of vibration, w, of a simply supported plate strip with edge compressive
load N2, Use algebraic polynomials for the approximate functions. (Ans: w =
(1/a){/(10/10)[(12D/a?) - N,].)

4.25 Repeat Exercise 4.24 for a plate strip with clamped boundary condition at z = 0 and free at
r=a. (Ans: w = (1/a)\/(20/31y)[(3D/a2) — N2,].)

4.26 Repeat Exercise 4.25 for cylindrical bending of a plate strip using the first-order shear
deformation theory but neglecting rotary inertia.

4.27 Consider the buckling of a uniform beam according to the Timoshenko beam theory. The total
potential energy functional for the problem can be written as

.00 = [ [0(%2) 5 (%2 1 o0) - v (42| o

where wq(x) is the transverse deflection, ¢, is the rotation, D is the flexural stiffness, S is the
shear stiffness, and NY, is the axial compressive load. Determine the critical buckling load
of a beam clamped at one end and simply supported at the other end. Use one-parameter
Rayleigh-Ritz approximation for each variable.

4.28 Consider a laminated beam of length L, flexural stiffness El=constant, and subjected to
uniformly distributed transverse load g(x) = gy. Suppose that the beam is subjected to the
following geometric boundary conditions

dw, dw,
wo(0) = uy, “TEO(O) =uy, wy(L) =usz, *T;)(L) = uy (a)

and force boundary conditions

d d?wyg d2wyq
— | ET =Qq, I =
dr < dx >10 @1 <E dz ) _, @

d d2w0 o d2100 o
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4.29

4.30

4.31

Here (uy,u2) and (u3,us) denote the transverse deflections and rotations (clockwise) at the
left and right ends, respectively, and (Q1,Q3) and (Q2, @4) are the associated shear forces and
bending moments at the same points. Note that u; and Q; are introduced into the formulation
to have the convenience of specifying a geometric or force boundary condition.

Assume Ritz approximation of the form (the exact solution of the homogeneous equation,
Eld*wq/dx* = 0 suggests this polynomial)

’LUO(ZI) =1+ cor + 03$2 + C4I3 (C)

and express the constants cq,co,c3, and ¢4 in terms of uq,ug,us, and uy using the geometric
boundary conditions (a) and rewrite (c¢) in the form

wo(z) = u11(x) + uap2(z) + uzps(z) + uspa () (d)
Define the functions ¢;(x) (i = 1,2,3,4) that you derived. These functions can serve as the

approximation functions for the Rayleigh-Ritz method (see the next exercise). (Ans: @; are
the same as the Hermite cubic interpolation functions given in Section 10.2.)

(Continuation of Problem 4.28) Substitute the approximation
4
wo(@) =Y w;p;(a) (a)
j=1

into the total potential energy functional associated with the Euler-Bernoulli beam theory

L 2 L 4
) = 5 [ 51 () ao- [ at@unte) a3 0 (v)

i=1

and express it in the form

4

4 4
1
(g, ug, us, ug) = sKiuiu; — ) (G + Qjuy) (c)
- 2

i=1j i=1

(a) Define and evaluate the coefficients K;; of the stiffness matrix and ¢; of the force vector
when EI = constant and g(x) = g, a constant, and (b) use the total potential energy principle
to determine the four-parameter Ritz solution for the problem. In particular, show that

[KHu} = {q} +{Q} (d)

(Ans: The stiffness matrix [K] and force vector {q} are the same as those given in Section 10.2
for the Euler-Bernoulli beam element.)

Since Eq. (d) of Problem 4.29 is valid for any boundary conditions, it can be used to determine
solutions (which turn out to be exact) even for indeterminate beams. In particular, determine
the displacement in the spring that supports the right end of a beam when the left end is fixed
and the beam is subjected to uniformly distributed transverse load gq.

Equations (4.3.12b) and (4.3.13b) for ¢, and wg of the Timoshenko beam theory suggest that
they can be approximated with quadratic and cubic polynomials

¢2(x) = a1 + agx + azz?, wy(z) = c1 + cpx + czx? + c3a®

Rewrite the constants a; in terms of the values of ¢ at £ =0, £ = 0.5L, and x = L and obtain

¢z (x) = P11h1(2) + Popa(x) + P3yp3(x) (a)



4.32

4.33

4.34
4.35

4.36
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where ®1 = ¢(0) etc. Show that ¥;(z) (i = 1,2,3) are the quadratic Lagrange interpolation
functions derived in Section 10.3.

Use Eq. (a) of Problem 4.31 and Eq. (a) of Exercise 4.29 to express the total potential energy
functional in terms of u; and &®;:

Mo, 6:) = |
0

—/ qwodIvZQJuJ ZP@ (a)
0

i=1

dz

2
B L, (%) —|—KG§zbh(dwO +¢1) }

where P; (j =1,2,3) are the moments corresponding to the rotations ®;. Then use the total
potentlal energy principle to derive the Ritz equations for the problem.

The deflection, bending moment, and shear force of the Timoshenko beam theory can be
expressed in terms of the corresponding quantities of the Euler-Bernoulli beam theory (see
[27,28]). In order to establish these relationships, we use the following equations of the two
theories:

d*wP 3T doT  d2wT
IIFALO = —q(ac), D:mc“d‘;‘% = —q(ﬂt)’ Az K, < jx + deO > = —q(x) (la— C)

-D

where K is the shear correction coefficient, and superscripts E and T on variables refer to
the Euler—Bernoulli and Timoshenko beam theories. Show that

Dza E Dyy x3
Dzzwo (m) DIIwO (I) + Tz s Mzz(x) + Cl (Azsz r= F)
72
(/27 — (/3.L‘ - C

dwf 2
Dre¢™(2) = ~Daa— 0 + Oy T+ Cha+Ch

ML (z)=ME(z)+ Ciz + Ca, QI(x)=QF(z)+C1 (2)

where Cp,Cy,C3, and Cy4 are constants of integration, which are to be determined using the
boundary conditions of the particular beam.

Show that for simply supported beams all C; of Problem 4.33 are zero.

Show that for cantilevered beams all C; except Cy = MZE (0)Dy./(Az:Ks) of Problem 4.33
are zero.

Consider bending of a beam of length L, clamped (or fixed) at the left end and simply
supported at the right, and subjected to a uniformly distributed transverse load gg. The
boundary conditions of the Euler—Bernoulli and Timoshenko beam theories for the problem
are as follows:

dw?
EBT:  w§(0)=w§(L)= d—g?(o) =M (L)=0 (1)
TBT : wy L) = wg( )= ¢T(O) =MZ(L)=0 (2)

Show that the constants of integration in Problem 4.33 are given by

C1 = i [ME(0) - ME(L)], Cy=-Ci1L, C3=0, Ca=OME(0)L*  (3)

(1+3Q)

where (2 = Dm/(A“KSLQ).
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5

Analysis of Specially Orthotropic
Laminates Using CLPT

5.1 Introduction

The governing equations of composite laminates according to various laminate
theories were developed in Chapter 3. These equations can be solved either
analytically or numerically for the generalized displacements and strains. Stresses
can be determined using either the constitutive equations or the 3-D equilibrium
equations expressed in terms of stresses. Analytical solutions were developed in
Chapter 4 for certain one-dimensional problems, namely laminated beams and
cylindrical bending of laminates. Analytical solutions can also be developed for
rectangular laminates with certain lamination schemes and boundary conditions.

In this chapter we develop analytical solutions of specially orthotropic plates,
i.e., plates for which the bending-stretching coupling coefficients B;; and bending-
twisting coefficients Dqg and Dog are zero, using the classical laminate theory.
The analysis of specially orthotropic laminates is greatly simplified because the
bending deformation is uncoupled from the extensional deformation and the fact that
D1g = Dog = 0. This class of laminates will be used to gain a basic understanding
of the response. Although most laminates of practical interest do not qualify as
specially orthotropic plates because of the presence of bending-twisting coupling
terms D6 and Dog, they may represent reasonable approximations to more complex
laminates. In the subsequent chapters, the solutions obtained for more complicated
laminates will be compared with those of the specially orthotropic plates to assess
their behavior.

The solution methods used here are the Navier method, the Lévy method with the
state-space approach, and the Ritz method. The Navier solutions can be developed
for a rectangular laminate when all four edges of the laminate are simply supported.
The Lévy solutions can be developed for plates with two opposite edges simply
supported and the remaining two edges having any possible combination of boundary
conditions: free, simple support, or fixed support. The Ritz method can be used to
determine approximate solutions for more general boundary conditions, as long as
we can find suitable approximation functions for the problem.
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The equation of motion governing bending deflection wy of a specially orthotropic
plate can be deduced from Eq. (3.3.47) by omitting the nonlinear terms, bending-
stretching terms, and bending-twisting terms. We have

Mg g My
— | Dii——+2(D 2D66) ——= —
l g+ (D12 + 2Dss) 5220, + Dao oy +q
a2ML oML M - Pwy o Pwy o 0w
— 2 Y vy Nyp———= +2Npy—— + Nypy—5-
( Ox? + Oxdy + Oy? + Naw Ox? * wy0x8y+ W oy?
0%y 0%

Equation (5.1.1) must be solved, in conjunction with appropriate boundary
conditions [see Eq. (3.3.34)] and initial conditions of the problem, for the desired
response. The boundary conditions at any point on the boundary are of the form

wo or Vp =@y + OM,0s (5.1.2)
and 9
% or M, (5.1.3)

where @, and My, are defined in Egs. (3.3.31b) and (3.3.29b), respectively.

In this chapter, we wish to determine static deflections and stresses, frequencies
of natural vibration, and buckling loads under in-plane compressive or shear loads
of specially orthotropic plates. We seek exact solutions whenever possible, and
approximate solutions using the Ritz method when exact solutions cannot be
developed.

5.2 Bending of Simply Supported Rectangular Plates
5.2.1 Governing Equations

Here we consider the static bending in the absence of thermal effects and in-plane
forces. Equation (5.1.1) for this case reduces to

8411}0 8411)0 (94100

—— +2(D12+2Dgg) =55 + Doo——1 = 5.2.1
8$4 + ( 12 66) 01’233/2 + 22 ay4 q ( )
The simply supported boundary conditions on all four edges of the rectangular plate
(see Figure 5.2.1) can be expressed as

D1

’LU()(Z',O) =0, ’on(.T,', b) =0, ’U)()(O, y) = 07 wO(avy) =0 (5228‘)
My (0,y) =0, Mye(a,y) =0, My (z,0) =0, My (z,b)=0 (5.2.2b)
where the bending moments are related to the transverse deflection by the equations
8211)0 82’[1)0
Mgy = — <D11W + D128—y2
0%wg 0%wy
Myy _<D12 92 DQ?@E‘
82
M,y = —2Dggo—22 (5.2.3)
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at y=0
wonyy—O
h—éa _—
——————— >x
r i
at x=0 | | at x=a
w,=0 | s wy=0
Mxx=0 JI Mxx=0
|
e I
vy at y=b

Figure 5.2.1: Geometry, coordinate system, and simply supported boundary
conditions for a rectangular plate.

and a and b denote the in-plane dimensions along the z- and y-coordinate directions
of the rectangular laminate. The origin of the coordinate system is taken at the
lower left corner of the midplane (see Figure 5.2.1).

5.2.2 The Navier Solution

In the Navier method the displacement wy is expanded in a double trigonometric
(Fourier) series in terms of unknown parameters. The choice of the trigonometric
functions in the series is restricted to those which satisfy the boundary conditions
of the problem. The load ¢(z,y) is also expanded in double trigonometric series.
Substitution of the displacement and load expansions into the governing equation
should result in an invertible set of algebraic equations among the parameters of
the displacement expansion. Otherwise, the Navier solution cannot be developed
for the problem. The simply supported boundary conditions in Eq. (5.2.2) admit
the Navier solution for specially orthotropic rectangular laminates.

The boundary conditions in Eq. (5.2.2) are satisfied by the following form of the
transverse deflection

e.@) o0
wolz,y) = Z Z Winn sinax sin By (5.2.4)
n=1m=1

where o = mn/a and 8 = nn /b, and Wy, are coeflicients to be determined such
that the governing equation (5.2.1) is satisfied everywhere in the domain of the
plate. We assume that the load can also be expanded in the series form as

q(z,y) = Z Z Qmn sin ax sin By (5.2.5a)

n=1m=1
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where A
Qmn = a_b/ / q(z,y) sinaz sin Py dxdy (5.2.5b)
0 Jo

Substitution of the expansions (5.2.4) and (5.2.5) into Eq. (5.2.1) yields

Z Z { mn [Dlla + 2(D1g + 2Dgg) 052 + D22ﬁ4] + an} sinax sin By =0

n=1m=1

(5.2.6)
Since the equation must hold for every point (z,y) of the domain 0 < z < @ and
0 < y < b, the expression inside the curl brackets (or braces) should be zero for
every m and n. This yields

Winn = gm" (5.2.7a)
4
Ay, = ¥ [D11m4s4 + 2(D12 + 2Deg)m?*n’s% + D22n4} (5.2.7b)

where s denotes the plate aspect ratio, s = b/a. Then the solution in Eq. (5.2.4)

becomes
@)=Y Z

n=1m=1

T sinax sin By (5.2.8)

The load coefficients Q,, for various types of loading [see Eq. (5.2.5b)] are listed

in Table 5.2.1. The effect of thermal moments can be easily incorporated into the

calculation.

For example, the Navier solution for a sinusoidally distributed transverse load
q(z,y) = gosin ™% sin Y (5.2.9)
a b

is a one-term solution (Qm, = go and m = n = 1), and therefore it is a closed-form

solution. For other types of loads, the Navier solution is a series solution, which

can be evaluated for a sufficient number of terms in the series. In particular, for

uniformly distributed load ¢(z,y) = qo, a constant, we have

16q0
m2mn

(an::

for m,n, odd (5.2.10)

For a point load Qg located at (zo, yo), the load coefficients are given by [¢(z,y) =

Qob(z — 0,y — yo)] A
Qmn = Qo sin mro sin Yo
ab a b

The bending moments can be calculated {rom

(5.2.11)

Z Z <D11a + D123 ) mn SID m;rac sinn—ﬂy (5.2.12a)

n=1m=1 b
S 9 9 . mwr . Ny
= Z Z <D12a + Dy 3 )Wmn sin in—= (5.2.12b)
n=1m=1 b
> & mnx nwy
23" Y aBDeWmy cos cos —= (5.2.12¢)

b

il
_

n=1m=1
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Table 5.2.1: Coeflicients in the double trigonometric series expansion of loads in
the Navier method.

Load ¢(z,y) Coefficients Qn

Uniform load,
q9 =40

Q _ 16q0
mn — 7Zmp

(man:173557"')

Hydrostatic load,

Q(xv y) = QO%
an = 8q(7)rcc7>rsnrln7r
(m’n = 1a375a"')
Point load,

q(z,y) = Qo at (xo,yo)

_ 4Qq0 1. MTIQ o1 MTYQ
Qmn = =% sin == sin —Lb

(mvn: 172737”'>

Line load,
q(z,y) = qo at =z = x9
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The in-plane stresses can be computed from Eqgs. (4.2.12a)

_ — 82
Ozx (k) 6_211 QIZ 0 (k) 862;%
Oyy =—2| Q2 Q22 _O 3—;1%1

0 0 Qs6 262w0

ag
vy Oxdy

o oo (Q(k) 2+Q ﬁz) sin ™2 sin 7Y
=23 > W d (@02 + QL 82) sin 272 sin ™ ¢ (5.2.13)
n=1m=1
-—2Q66 af cos T cos%ﬂ

The maximum normal stresses occur at (z,y,z) = (a/2,b/2,h/2), and the shear
stress is maximum at (z,y, 2) = (a,b, —h/2) and other three corners.

The interlaminar stresses are identically zero when computed from the
constitutive equations in the classical laminate theory. However, they can be
computed using the 3-D stress equilibrium equations [see Eqgs. (4.2.13)] for any

2k <z < Zh+1-
c (96 otk
(k) — _ zx zy (k)
Uzz /zk < 61‘ + By dZ + C ( )
80(k) 9o 'k
ok — _ Yy (k)
o= [ (5 + ) et

96® 5ok
== ( 50 oy ) @ (5:2.14)
2k

where the stresses crg(cz),ag;), and ag(/’;) are known from Eq. (5.2.13), and CZ-(k)

are functions to be determined using the boundary conditions, o,,(z,y, —h/2) =
oy:(2,y,—h/2) = 0..(x,y,—h/2) = 0 and continuity of stresses at layer interfaces.
We obtain

mrzr . nTy _
X(2) Z Z T12 mn €OS —— sin —= +0¥Z 1)(az:,y, 2k)

n=1m=1

mmx nw -
Ug(/’;) = Z Z Winn sin . cosTy +Ug§ Ui, y,z)

n=1m=1

o0 o0
& . mmx | nmwy
Ugg) = —Z(Z) Z Z T?S3)Wmn Sin a 511 T +o k 1)(:1: y,Zk)

n=1m=1
Gagi) aa(k)
+(Z—Zk)< O + ay )
2k

(5.2.15a)

where

X(z) =V(z) = <Z2 ; Zg) , Z(2)= [%’% + % (z2 - 3z,§)] (5.2.15b)
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and (T?E:lf) = oT2 + BT13)

T = o*QW + ap? (20 + Q1)
T = Q% + %3 (2Q4) + Q1)
T = ofQl) + 20202 (204 + Q1)) + QL5 (5.2.15¢)

For single-layer plates, the expressions in Eq. (5.2.15a) can be simplified to
h? 22\?] & & mwrr . nmw
fo g :§ [1 — <f> } Z Z Tl(;)Wmn cos . smTy
h? 22\ & & g . mnx nmy
Oyz :g [1 — <~ﬁ‘) ] Z Z T1(3)Wmn Sin a COST
2z
1 il
+ ( 5 )1 }x

O = mnxr nmw
35 T3 Wi sin sin = (5.2.16)
a

In integrating the stress-equilibrium equations it is assumed that the stresses
(022, 0yz,022) are zero at z = h/2. Because of the assumptions of the laminate
plate theory, 0., = —q at z = —h/2.

Table 5.2.2 contains the nondimensionalized maximum transverse deflections and
stresses of square laminates under various types of loads. For the case of mechanical
loading, the deflection and stresses are nondimensionalized as follows:

a h
Orz = 0z2(U, =, — ) Oyz = 0y2{=,0, — 2.1
72 = 72200, 5 0)( ) 7y = 74:(5:0,0) (aq()) (5.2.17)

For the thermal load case, the nondimensionalized quantities are defined as

. _ a b h a
w = w0(070)6 X 1027 Oy = U.’L’IE(§7 57 5) <§_2> ; ﬂ -

1
ai1Tiha

(%‘;) (5.2.18)

The mechanical load consists of only the transverse load ¢(z,y), and the thermal
load consists of linear temperature distribution through the laminate thickness,
AT = 2Ty(z,y). Both g and T} are assumed to be sinusoidal, uniform, or point

— a b h ﬂa _ h
O-yy = iny(§v 57 5) (E—2) 7 O-;Ey - U‘q;y(a/,b, —5)
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functions. In the case of uniform and point source distribution, the first ten terms
of the double trigonometric series are evaluated.

Plots of nondimensionalized maximum transverse deflection @ and normal stress
G, as a function of the plate aspect ratio a/b are shown in Figures 5.2.2 and
5.2.3, respectively, for symmetric cross-ply (0/90/90/0) laminates under uniformly
distributed (UDL) and sinusoidally distributed (SSL) loads. The material properties
of the lamina are taken to be: E;j/Es = 25, G12 = G135 = 0.5F5, and v12 = 0.25.
For uniformly distributed load, the maximum deflection and (negative) stress occur
for an aspect ratio around 1.5, whereas for sinusoidally distributed load the maxima
are reached around a/b = 2.5.

Figures 5.2.4 and 5.2.5 show the distributions of the maximum in-plane normal
stresses 0, and oy, respectively, through the thickness for laminates (0/90/0) and
(0/90/90/0) under sinusoidally distributed transverse load, and Figure 5.2.6 shows
the distribution of the maximum transverse shear stresses through the thickness for
the two laminates (a/b =1, E1 = 25E3, G192 = G13 = 0.5E3, v13 = 0.25).

Table 5.2.2: Transverse deflections and stresses in specially orthotropic square
laminates subjected to various types of mechanical and thermal
loads (E1/FEs = 25, Gi12 = G13 = 0.5E,, G3 = 0.2E5, v15 = 0.25,
a1 = 3ag, Ty = 0); all laminates are of the same total thickness.

Laminate Mechanical Thermal
W Gan Byy Gy &l W Gox Gy Gay
SSL*
0° 0.4312 0.5387 0.0267 0.0213 0.4398 9.1263 0.1172 0.0272 0.0450
(O°/90°/0°) 0.4312 0.5387 0.0267 0.0213 0.3951 9.1263 0.1172 0.0272 0.0450
UDL(19)
0° 0.6497 0.7866 0.0244 0.0463 0.7758 13.246 1.3135 0.0430 0.1893
(0°/90°/0°) 0.6660 0.8075 0.0306 0.0425 0.7191 13.4863 1.3463 0.0521 0.1811
CPL(49)
0° 2.3231 6.7317 1.0119 0.0409 1.8148 6.7273 0.0913 0.0178 19.394
(00/90°/0°) 2.1298 6.1582 0.7025 0.0558 1.5076 7.1570 0.0230 0006 18.810

* SSL=Sinusoidal load; UDL=Uniformly distributed load; CPL=Central point load; the number
in parentheses denotes the number of terms used in the double Fourier series to evaluate the
series. The transverse shear stress ¢, is the maximum at (z,y,z) = (0,6/2,0), oy, is the
maximum at (z,y,2) = (a/2,0,0), and the transverse normal stress .. is the maximum at

(z,9,2) = (a/2,b/2,h/2).

t From equilibrium equations (mechanical load).
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Figure 5.2.2: Nondimensionalized maximum transverse displacement w =
wo(E2h3/a*qo) versus plate aspect ratio (a/b) of symmetric cross-
ply (0/90/90/0) laminates.
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Figure 5.2.3: Nondimensionalized maximum normal stress (d;;) versus plate
aspect ratio (a/b) of symmetric cross-ply (0/90/90/0) laminates.
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Figure 5.2.4:

Figure 5.2.5:
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Figure 5.2.6: Variation of nondimensionalized maximum transverse shear

stresses, G, and G;,, through the thickness (z/h) of square cross-
ply laminates. The stresses are the same in both laminates.

5.3 Bending of Plates with Two Opposite Edges
Simply Supported

5.3.1 The Lévy Solution Procedure

Consider a rectangular plate with simply supported edges along y = 0,6 and
subjected to a transverse load gq. The other two edges at x = 0,a, can each be
free, simply supported, or clamped, independent of the other. For such problems,
the Navier solution cannot be developed. However, the idea of the Navier method
can be applied with respect to the simply supported boundary conditions at y = 0,0
to reduce the partial differential equation (5.2.1) to an ordinary differential equation
with respect to the coordinate x, which may then be solved exactly or approximately.
This procedure is known as the Lévy method.

The solution to the problem of a rectangular plate with two opposite edges simply
supported and the other two edges having arbitrary boundary conditions can be
represented in terms of single Fourier series as

wo(z,y) = Z Wy(z) sin By (5.3.1)

Similarly, the load is represented as

q(x,y) = Z Qn(z) sin By (5.3.2a)

n=1
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where Qn(z) are given by (see Table 5.3.1)

b
Qul@) = ; [ ate,y) sinpydy (53.2)

Table 5.3.1: Coefficients in the single trigonometric series expansion of loads in
the Lévy method.

Load ¢(z) Coefficients @,

Uniform load,

q=4qo 4
— 4g
Qn =120
(TL = 17375a"')
Hydrostatic load,
q(z) = (qo0y/b) , X
n — %(_1)714_
(TL: 172a3)

Point load,

g(x) = Qo at (o, o)
Qn = 2—%)& sin n7rb =

(n=1,2,3,--+)

Line load,

q(z) = qo at y = yo 5
A Qn = 2%6@ — zp) sin

nayo
b

(n:17273a”')
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The assumed solution in Eq. (5.3.1) satisfies the simply supported boundary
conditions on edges y = 0,b. In the case of uniformly distributed load of intensity
qo, the coeflicients @, are given by

Qnlz) = &y ;o n=13,... (5.3.3)

nm

Substituting Egs. (5.3.2a) and (5.3.1) into Eq. (5.2.1), we obtain

LW, A . ]
T2 + Doof"Wy, — Qplsinfy =0 (5.3.4)

= d*w,
> |Du y = —2(D12 + 2Dsgs) 3°
n=1 z

Since the result must hold for any y, it follows that the expression in the square
brackets must be zero:

d*w, d*w,
% — 2(D12 + 2Dgs) B2 ——~
e (D12 + 2Dgg) 3 a2

Dy + D2254Wn =Qn (535)

The ordinary fourth-order differential equation (5.3.5) can be solved either
analytically or by an approximate method. Analytically, Eq. (5.3.5) can be solved
directly or by the so-called state-space approach used in control theory (see [11,12]).
As for approximate methods, the Ritz, finite difference, and finite element methods
are good candidates. Here we discuss direct analytical solution, analytical solution
by the state-space approach, and approximate solution by the Ritz method.

5.3.2 Analytical Solutions

The general form of the analytical (exact) solution to the fourth-order differential
equation (5.3.5) consists of two parts: homogeneous and nonhomogeneous (or
particular) solutions. The homogeneous solution is of the form

Wh(z) = Cexp (Az) (5.3.6)
where X\ denotes a root of the algebraic equation
D11 A* — 2(Dia + 2Dg6) B2A? + Dan 8t = 0 (5.3.7)

Since there are four roots, the solution (5.3.5) can be written as a linear combination
of functions of these four roots. The true form of the solution depends on the nature
of the roots, i.e., real or complex and equal or distinct. We consider three cases. -

Case 1: Roots are real and distinct
When (D12 + 2Dgg)? > D11 Das, the roots are real and unequal:
2

(M)? = (=X)? = % [Dm + 2Dgs — \/(D12 +2Dgg)* — D11D22}

2

0 = (M7 = 5

Dy [D12 + 2Dg6 + \/(D12 + 2Dgg)? — D11D22} (5.3.8)
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The homogeneous part of the solution is of the form

W,’;‘(ac) = A, cosh \{z + By sinh \iz + C,, cosh A\sx + D,, sinh A3z (5.3.9)

Case 2: Roots are real and equal

When (D12 + 2Dgg)? = D11 D22, the roots are real but equal

2
A=A =—-A3=—-N\ = )\, )\2 = % (D12 + 2D66) (5.3.10)

and the homogeneous part of the solution is of the form

Wh(z) = (A + Bnz) cosh Az + (Cp, + Dypz) sinh Az (5.3.11)

Case 3: Roots are complex

When (Dys + 2D66)2 < D11Da2, the roots are complex and they appear in complex
conjugate pairs A; £ ¢dg and —A1 £iXg (i =/—1,A1 > 0,2 > 0):

2
(A)? = 2f)11 [\/ D11 Dgg + (D12 + 2D66)]

2
(\2)? = 21ﬂ711 [\/ D11Dag — (D12 + 2D66)] (5.3.12)

The homogeneous part of the solution is of the form

W,?(x) = (Ay, cos Aax + By, sin Agx) cosh A\
+ (Cy cos Aoz + Dy, sin Agz) sinh Az (5.3.13)

The particular solution of the fourth-order differential equation (5.3.5) in the
general case in which @, is a function of z can be determined using the method of
undetermined coefficients (see Pipes and Harvill [10]). When @, is a constant the
particular solution is a constant k, and it is determined by substituting it into Eq.
(5.3.5). We obtain kDg23* = @Q,,. Hence, the particular solution becomes

Wilz) = =Qn (5.3.14)

The four constants Ay, By, Cy, and D, in Egs. (5.3.9), (5.3.11), and (5.3.13)
can be determined using the four boundary conditions associated with the edges
z = 0,a (in addition to the simply supported boundary conditions on the edges
y = 0,b). Note that the particular case (i.e., Case 1, Case 2, or Case 3) in a problem
is dictated by the plate stiffnesses, D;;. Here we illustrate the procedure for simply
supported and clamped boundary conditions in the case of real and distinct roots.
The solution in this case is given by

o0
wo(x,y) = Z (A, cosh Mz + By, sinh \yx + C), cosh Az
n=1

+D,, sinh A3z +WP) sin By (5.3.15)
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In the following discussion we assume that the applied transverse load is uniformly
distributed.
Simply supported plate

The simply supported boundary conditions on edges x = 0, a are

82’LU0 8211}()) -0

wo =0, My, =— (Dllm + DlQW (5.3.16)

Using (5.3.15) in (5.3.16), we obtain
Ap +Cr+Qn =0
A, cosh A\ja + By, sinh Aja + Cy, cosh Aza + Dy, sinh Aza + @, = 0
Dir (A2 An +2Cp) = Dia (An+ Co+ Qn) 82 =0
D1y (A,A% cosh \ya + By A2sinh A\ja + Cp A2 cosh Aza + Dy A3 sinh Aga)
—D19 (An cosh A1a + By, sinh Aja + C), cosh A3a + D, sinh Aza + Qn> 82=0

where Qn =Qn/ B*Dyy. By virtue of the first two equations, the coefficients of Dy
in the last two equations are identically zero. The four equations can be expressed
in matrix form as

1 0 1 0 Ay, On
cosh A\ja sinh A\1a cosh Aza sinh Asa B, | Qn
A 0 Y 0 Co (T 10
MecoshAdja AisinhAja AcoshAza  A3sinh Asa D, 0
(5.3.17)

The determinant of the 4 x 4 coefficient matrix in Eq. (5.3.17) is (A} —
A?)2sinh Ajasinh Aza. The solution of the matrix equation yields

R A2 ~ A (1 — cosh Ara)
Ap=—Qnrg—oc, Bn=— 3
" @n (A3 -3 " @n sinh Aya (A3 — A3)
. Y ~ A?(1 — cosh Aza)
Cp=Qn—-t—, D,= L 3.1
“ (A2 —A?) = Aza (A3 — A2 (5.3.18)
Simply supported at y=0,b and clamped at x=0,a
For clamped boundary conditions on edges x = 0, a, we require
wp =0, % =0 (5.3.19)
which yield
1 0 1 0 Ap On
cosh A\1a sinh Aja cosh A\za sinh Asza Bol _ ) Qn
0 Al 0 A3 Cn [ 0
Arsinh Aja Ajcosh Adja Azsinh Aga  Agcosh Aza D, 0
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The solution of the matrix equation (5.3.20) is

A, = QJ;A?’ [(A1sinh Aza — As sinh A\ja) sinh Asa
+ Aj (cosh A\ja — cosh Aga) (cosh Aza — 1)]
:QAn)\3

B, [Az sinh Aga (cosh Adja — 1) + Ap sinh Aja (1 — cosh Aza)]

Ey
all

Con=-(An+Qn), Dn= Y B, (5.3.21)
3

where F,, is the determinant of the coefficient matrix

En = — (Agsinh A\ja — Ay sinh Aza) (A sinh Aja — Agsinh Aza)
+A1A3 (cosh Aga — cosh /\1a)2 (5.3.22)

An alternative method of solving Eq. (5.3.5) is provided by the state-space
approach [12]. The approach involves writing a higher-order ordinary differential
equation as a first-order matrix equation, and its solution is obtained using matrix
methods in terms of the eigenvalues of the matrix operator. In the present case,
the linear ordinary differential equation in (5.3.5) with constant coefficients can be
expressed in the form of a single, first-order matrix differential equation

{Z'} =T Z} + {F} (5.3.23)
w,, 0 1 0 0 0
) w, 1o 0 1 0 o
W, Ci 0 Cy 0O Qn
Do 4 (D12 +2D¢gg) 5 A Qn
Ci=—==8 Cp=92-2 """ g2 (g =20 5.3.25
1 Dnﬂ 2 Do B8°, Q Dy ( )

The general solution of Eq. (5.3.23) is given by

Z(z) = eT® (K + /0 " F(¢) d§>
= G(z)K + H(z) (5.3.26)

Here eT® denotes the matrix product

eM?® 0
eT” — [E| [E]~! (5.3.27)
0 e

Here [E] is the matrix of distinct eigenvectors of matrix [T, [E] ™! denotes its inverse,
Aj (4 = 1,2,3,4) are the eigenvalues associated with matrix [T], and {K} is a vector
of constants to be determined using the boundary conditions of the problem.
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As an example, consider the case of simply supported boundary condition at
x = 0 and clamped boundary condition at x = a. The simply supported boundary
conditions (5.2.2a,b) at x = 0 imply [see Eq. (5.3.1)]

Wn(0) =0, D W, (0) — D123°W,(0) =0 (5.3.28a)
The clamped boundary conditions (5.3.19) at x = a imply
Wa(a) =0, W/ (a)=0 (5.3.28b)

These four conditions in turn yield, in view of Eq. (5.3.26), the following four
nonhomogeneous algebraic equations among K; (i =1,2,3,4):

4
ZGU<O)KJ + Hi(0)=0

4
> (D11G39 — 32D12G1;(0 )) Kj + D11 H3(0) — D128°Hi1(0) = 0
j=1

ZGIJ K +H1( ) 0

4
Z ng(a)Kj + Hg(a) =0 (5.3.29)
j=1
These equations can be solved for the four constants. In general, the procedure is
algebraically complicated, and therefore all calculations, i.e., matrix multiplication,
determination of eigenvalues and constants K;, and evaluation of the solution, are
made using a computer.

Table 5.3.2 contains numerical results for three-layer, cross-ply (0°/90°/0°),
square laminates under uniformly distributed transverse load. The lamina material
properties used are Fy = 19.2 msi, Fo = 1.56 msi, G2 = 0.82 msi, and vy = 0.24.
The transverse deflection and stresses are nondimensionalized as follows:

3 h2
W = wp(0,0) < ) X 10%; Gpp = 042(a/2,b/2,h/2) ( ) x 10

atqo a’qo

h2
Oyy = oyy(a/2,b/2,h/6) <a2—q0> x 10 (5.3.30)

The notation SF, for example, is used to denote a plate with edge x = 0 is simply
supported (S) and edge z = a is free (F); of course, edges y = 0,b are simply
supported.
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Table 5.3.2: Nondimensional center deflections (w) and in-plane normal stresses
(Gzx and Gyy) of symmetric cross-ply (0°/90°/0°) square plates
subjected to uniform distribution of transverse load and for various
boundary conditions.

Variable SS SC CC FF FS FC
w 1.206 0.544 0.280 10.920 5.992 2.376
Oza 7.251 4.082 2.787 0.195 3.778 1.685
Tyy 1.938 0.651 0.185 21.597 11.621 4.313

5.3.3 Ritz Solution

Equation (5.3.5) can also be solved using the Ritz method. In the Ritz method, we
seek solution of (5.3.5) in the form

N
Wy(z) ~ Z cipi(x) (5.3.31)
j=1

where ¢;(x) are approximation functions that must meet the continuity and
completeness conditions and satisfy the homogeneous form of the geometric
boundary conditions [see Eq. (1.5.2)]. The parameters c¢; are then determined
by requiring that the weak form of Eq. (5.3.5) be satisfied:

a d*W,, d26W, dW,, d6W,

— D n n 9 D 2 n n

0 / [ Uy gt (D12 + 2Dgs) 8 e
Doy AW, 6W,, — Q. 6W,, | dx (5.3.32)

where 6W,, denotes the virtual variation in W,
N
Wh(z) = be; pi(x) (5.3.33)
i=1

Substituting (5.3.31) and (5.3.33) into (5.3.32), we obtain

ozi ZN:o/a D d2%d2%+2(1} +2D~)52%d%
SN o |7 da? da? 2 )7 e da
+DnfB 05 dx—/ Qn%dﬂf}(sci (5.3.34)
0

Since the above expression must hold for all arbitrary values of d¢;, it follows that
the expression in the curly bracket must be zero. We have

0= iv: AijCj — Fz' or [AHC} = {F} (5335&)
j=1
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where
ol dipjdPe; dpj dp;
Af:/'z) 1Y 9 (Dyy + 2Dge) B2 LY L Dyl | da
i= [ Wy 3 +2(D12 + 2Dgs) 8 o T 220700 | dr
a
F;, = / Qn@i dz (5335b)
JO

Equation (5.3.35a) represents a set of N algebraic equations among ¢;.
As an example, we consider the case in which the edges x = 0,a are clamped.
The geometric boundary conditions are given by Eq. (5.3.19):

6w0
=0, — =0 5.3.36
wo 3 O ( )
Hence, the approximation functions ¢; must be selected such that ¢; = 0 and

(dpi/dx) are zero atz = 0, a.
If an algebraic polynomial is to be selected, one may begin with the five-term
complete polynomial

gol(:v) =Ko+ Kz + K2I2 + K31E3 + K4$4

and determine four of the five constants K; in terms of the remaining constant using
the four boundary conditions. The constant is arbitrary and may be set to unity.

We obtain ) )
T x
o= (-3)
a a

The ith function can be written as

@Ax)::<§>ﬂl(1-f)2, i=1,2,...,n (5.3.37)

a
For the choice of ¢;(z) in (5.3.37), we have
1

[etr=alins ivstita)
e = a B )
o ¥ i+2 i+3 44

/a J ( 1 4 N 6 4 . 1 )
o dr = a _ _

o Fi¥aar itj+3 i+j+4 i+j+5 i+j+6  it+j+7
“d%d%Fm__1P%+DU+1) 2u+1ﬂm+m+wj+nu+2>

Jo dz dz al i+j+1 i+j+2
G+ +3)+46+2)J+2)+(E+3)(G+1)
i+j+3
LG +3) +(+3)( +2) @+@U+3q
i+j+4 i+j+5
w2 o il . i . .
i+ 1) +2)+3)+4E+ DHE+2)G+ 1) +2)
i+j+1
+j@+m@+$u+1y%u+m@+$0+mg+3)
i+j+1 i+j+3

_.l_

_.I_

(5.3.38)
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For N =1, Eq. (5.3.35a) gives

4 4 a a
—_ D11 + —— (D12 + 2Dgg) 82 + —D 4} = _—
Py D+ o (D12 + 2Des) B° + gag P22l | a1 = 35@n

and the solution (5.3.1) becomes

2 0

wo(z,y) ~ [<£> — <§>21 c1(n) sin By (5.3.39a)

a a el

with § = nn/b and

1 al4 4 2 9, | s 4]
= — -D — (D 2D —D .3.39b
c1(n) 30Qna [5 11+ 105( 12 + 2Dgg) B°a” + 630 2208%a (5.3.39b)

The center deflection is given by

(ab)wli (n)si nmw
wo 5'5) 16 c1(n) sin 5

n=1

1
:R [e1(1) — e1(3) + c1(5) —...] (5.3.40)
For a symmetric cross-ply laminate (0/90/0) with ply properties E; = 19.2 msi,
Ey = 1.56 msi, G2 = 0.82 msi, and v12 = 0.25, the bending stiffnesses, for h = 0.01,
are D11 = 1.5528, Dio = 0.031347, Do = 0.18531, and Dgs = 0.068333 1b-in. For
uniformly distributed load ¢p, we have (s = a/b)

4qo
an) = 30nm (1.24224 + 0.06317n2s2 4 0.02865n4s4)
forn =1,3,5,---. For a square plate, the maximum deflection becomes

a b q0a4 4
wo(=, =) & 16 (0.03181 — 0.003424 + 0.001509 — .. .) goa

The series converges slowly unless we also increase the number of parameters in the
z—coordinate [see Eq. (5.3.31)]. The “exact” solution for a square laminate under
uniformly distributed load is

wg(%, g) = 0.001795goa’ (5.3.41)
whereas the one-term (n = 1 and N = 1) solution predicted by Eq. (5.3.40) is
0.001988goa*. The two-term solution (n = 1,3 and N = 1) is 0.001774gpa*.

Other choices of ¢;(z) are provided by the eigenfunctions W(z) of beams
developed in Chapter 4 [see Eq. (4.2.46a)]. For example, for clamped boundary
conditions, we use the eigenfunctions of a beam with clamped ends. From Eq.
(4.2.46a) and Table 4.2.3, we have

wi(z) = sin \jz — sinh A\;z + «; (cosh \jz — cos A\;x) (5.3.42a)
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dep; .
dgo = A [cos \jx — cosh Az + v (sinh Az + sin A;z)] (5.3.42b)
X

where A; are the roots of the characteristic equation (4.2.59)

cos \;acosh hia —1=0 (5.3.43)

and inh Mia — sin A hA A
o = sinh Aja —sin dja C(?S a ({03 ia (5.3.44)
cosh \;a — cos \;a  sinh A\ja + sin A\;a

Clearly, v; and (dy;/dx) are zero at = 0,a. Recall from Table 4.2.3 [also see Eq.
(4.2.60)] that the roots A; of the characteristic equation (5.3.43) are given by

Aa = 4.730, doa = 7.853, - , MNa = (20 + 1)% (5.3.45)
The corresponding values of «; are
ap = 1.0178, ap = 0.99922, «; =1 fori > 2 (5.3.46)

Hence, the first two eigenfunctions are

p1(z) = sin LEN sinh 4'2336 +1.0178 <cosh 113z cos 4'7337)
os(z) = sin 7.8531‘ _ sinh 7.853x 4 0.9992 <COSh 7.853x _ cos 7.8j3$>
(5.3.47)
For N =1, Eq. (5.3.35a) yields
c1(n) = 0.84555Qna* [518 5313511 + 12.7442 (D13 + 2Dgg) (nm)?s
+1.035965D22(mr)4s4] - (5.3.48)

For the symmetric cross-ply laminate considered above, the center deflection
(X1(a/2) = 1.61637) predicted for n = 1 is 0.002009¢pa* compared to the exact
solution of 0.001795qga?.

5.4 Bending of Rectangular Plates with Various
Boundary Conditions

5.4.1 Virtual Work Statements

The Navier and Lévy type solutions do not exist for rectangular plates with all four
edges clamped or when two parallel edges are not simply supported. Therefore,
an approximate method must be utilized to determine solutions of these plates.
In this section, we discuss applications of the Ritz method to determine the
bending deflections of specially orthotropic rectangular plates with various boundary
conditions.
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The virtual work statement (or weak form) and the total potential energy
expressions for a specially orthotropic rectangular plate are [see Eq. (3.3.19)]

0= / / (Meo6e) + Myy8ll) + May62L) — gbug) dady

%6 8wy 0%6 0%wy 926
_/ / [ A wo w0+D12< Wo w0+ wWo w())

0r2  Ox? Oy?  0Ox? or?  Oy?
(9 Wy 8 6w0 (9211)0 825100
4D, _— —_— = 4.1
+ % 520y Oxdy + Do 52 O q5w0] dxdy (5.4.1)

and

2 2
8wy 8%wy 9wo
2D, 20w Ly
M(wo) = //{ ( ) T g TR (83683/

+D %2—2111}161 (5.4.2)
22 342 quwo|axray =t

The above expressions should be appended with appropriate terms due to any
additional applied edge forces and moments.

5.4.2 Clamped Plates

Consider a rectangular plate with all edges clamped and subjected to distributed
transverse load ¢(z,y). The boundary conditions associated with the clamped plate
are

0
wo = 0 and T g at z =0,a (5.4.3a)
Ox
Owg
wp = 0 and T—O at y =0,b (5.4.3b)
Y

We assume the Ritz approximation in the form

wO(-T y) mn(x y ZZCU ‘PZJ z y) (5'4'4)

i

wheve the approximation functions ¢;; satisfy all the (homogeneous) geometric
boundary conditions in Egs. (5.4.3a,b). For this problem, therefore, both
the Galerkin and Ritz methods give the same solution for the same choice of
approximation functions.

In view of the rectangular geometry and clamped boundary conditions, the
approximation functions ¢;;(z,y) can be expressed as a tensor product of the one-
dimensional functions given in Eq. (5.3.37) or (5.3.42a):

eij(z,y) = Xo(x)Y;(y) (5.4.5)
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where
NGE £\ 2
Xi(z)=1{ - 1--—
(@) (a> ( a)
A _ y 7+1 ( B g)2
Vi =(4) " (1~ (5.4.6)
or
Xi(x) =sin \jz — sinh A\jz + «; (cosh A\jz — cos \;z)
Y;(y) =sin A\jy — sinh A;y + a5 (cosh A\jy — cos A\;y) (5.4.7)

fori=1,2,---,m; j =1,2,---,n. The parameters A; and «o; are defined in Eq.
(5.3.43) and (5.3.44), respectively.
Substituting Eq. (5.4.4), with ¢;; given by Eq. (5.4.5), and

m k13
Wy = Z Z 6CpqPpq
P q

into Eq. (5.4.1), we obtain

m n

T & dX; dY; dX, dY,
0= : D SR
‘ézq:{ ch/ / [ 15 d 2 dr dy dr dy

d?Y; d* X, d’X d?Y,

D | X; Py 4+ YX

+12< o e 1t de>
d%y; . d?*Y,

+D22X d 2 pd Q]dmdy

b
—/ / qX,Y, dxdy}écpq (5.4.8a)

0 JO

Since the statement should hold for any arbitrary variations éc,,, the expression
inside the curly bracket should be zero for all p,g =1,2,--:

d2 dX;dY; dX, dY,

”{EU/%l R
d?Y: d°X d?X; dy;
Dy | X;—2 Py Y X q
+ 12( dy? dx? et dz? TP dy?

d’Y d2
+ Do X; a0 2Xpd 5 dzdy s c;j

b
—/ / qXpYy dxdy (5.4.8b)
0o Jo

Equation (5.4.8b) represents m X n algebraic equations among the coefficients
cij. Note that all integrals in (5.4.8b) are line integrals, and they involve evaluating
five different integrals

a a @ dX, dX,
A Xl dﬂj, /0 X1Xp dl', ) dr -gl‘x—
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a d2X adZX. 2
/ X;——L dz, id Xy dx (5.4.9a)
0 dz? 0

dx? dz?

As an example we consider the algebraic functions in (5.4.6) with m =n =1
and g = qo (uniformly distributed load). The integrals in Eq. (5.4.9a) for this case
are given by

a a @ a adX1 dX1 2
== XX, dr = — ntel Rkt R g
/0de$ 30 /o LA OE =050 Jy dz dz T 105a
a  d?X, 2 ad?X, d?>X, 4
X80 dp = — de = — 5.4.9b
/0 Va2 ¢ 105a * Jo dx? dz? T 53 ( )

Substituting the integral values into (5.4.8b), we obtain

0= (5as) () 20+ 42 (552 (o) 22 (10 ()
REE PRI N

7 4 7 49
{;Dn + W(Dw + 2Dgs) + b—4D22] e = 40 (5.4.10)

and the one-parameter solution becomes

or

(5.4.11)

) wat [2— (@ [ - ®Y

W =
1z, y) ( 8 ) 7TD11 + 4(D1a + 2Dgg)s2 + TDoost

where s = a/b denotes the plate aspect ratio. The maximum deflection occurs at
z=a/2and y = b/2:

(2, 8y = 0.00342 a0’
Myrg/ =™ Dy + 0.5714(D1g + 2Dgg)s% + Dogs?

(5.4.12)

The algebra involved in evaluating the integrals in Eq. (5.4.9a) is quite tedious
for the choice of approximation functions in (5.4.7). An algebraic manipulator (e.g.,
Maple or Mathematica) may be used to evaluate them. For m = n = 1, the
functions in (5.4.7) are given by

4.73 4. 4. 47
Xi1(z) =sin " Y _ sinh £ +1.0178 <cosh B cos 3:6)
a a
473 4. 4. 4.
Yi(y) =sin ——>Z — gsinh —7b3}i+ 1.0178 (cosh Y cos %) (5.4.13a)

and substitution into (5.4.9b) gives

e dX1dX; d 12.7442
xTr =

a a
/ X, de = 0.845550, / XX, dz = 1.035966a,
0 0 o dr dx a
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a 42X, 12.7442 o d?X, d2X, 518.531348
= — dr = 5.4.13b
/0 X1 dxz? dx a " Jo dx? dx? * ad ( )

Then Eq. (5.4.8b) becomes

-—~(—I§———— 11 (D12 + 2D66) —+ —3D22 c11 = 0.715¢qgab (5414)

[537.1811) 324.829 537.181a
b

The maximum deflection is given by (X;(a/2) = Y1(b/2) = 1.6164)

4

a b goa
Wii(=, =) = 0.00348 5.4.15
11(2 2) D116t + 0.6047(D12 + 2D66)82 + Dogs? ( )
where s = a/b denotes the plate aspect ratio. For an isotropic square plate

(a/b=1,D11 = Dag = D12+ 2Dgs = D), the maximum deflection (5.4.15) becomes
Wi (L) = 0.0013490%
Mayrg/ =™ D

whereas Eq. (5.4.12) gives

ab, qoa’
W11(§,§)—0.00133 D

The “exact” solution (see Timoshenko and Woinowsky-Krieger [6]) is

b 4
W11(g, 5) = 0.001269%1

5.4.3 Approximation Functions for Other Boundary Conditions

Here we discuss the approximation functions ¢;; = X;(x)Y;(y) required in the Ritz
approximation (5.4.4) of specially orthotropic rectangular plates with a variety of
boundary conditions (see Hearman [8]). The choice is restricted to the products of
eigenfunctions (see Table 4.2.3) of beams with corresponding boundary conditions.

Clamped at z = 0,a and simply supported at y = 0,5

Xi(x) =sin \jz — sinh A\jz + a; (cosh A\jz — cos A\jz)

Y;(y) =sin % (5.4.16a)

where A; are the roots of the characteristic equation
cos A;a coshh\;a—1=0 (5.4.16Db)

and _ -
sinh \;a — sin A\;a
= 4.1
. cosh \;a — cos \;a (5.4.16c)
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Clamped at z = 0, free at r = a, and simply supported at y =0,b

Xi(z) =sin A\jz — sinh \;z + a; (cosh Az — cos A\;x)
Y;(y) :sinQZ—y (5.4.17a)
where ); are the roots of the characteristic equation

cos h;a coshha+1=0 (5.4.17b)

and b\ -
smh A;a + sin A;a
ge— 5.4.17
4= Cosh Aia + cos \ja ( °)

Free at x = 0,0 and simply supported at y =0,b

Xi(x) =sin A\jz + sinh \jz — a; (cosh A\;x + cos A\;x)
Y;(y) =sin % (5.4.18a)

where A; are the roots of the characteristic equation
cos A\;a cosh Aja —1 =10 (5.4.18b)

and inh A in A
sinh A\;a — sin \;a
. — 5.4.18
i cosh \;a — cos \;a ( ¢)

Simply supported at x =0 and y = 0,5, and clamped at z = a
X;(z) =sinh A\jasin A;x + sin A\;a sinh \;x
JTy

Y;(y) =sin > (5.4.19a)

where ); are the roots of the characteristic equation

tan A\;a — tanh \;a = 0 (5.4.19b)

Simply supported at x =0 and y = 0,b, and free at x = a
Xi(z) =sinh M\ja sin \jz — sin \ja sinh Az

Yj(y) =sin Y

; (5.4.20a)

where \; are the roots of the characteristic equation

tan Ad;a — tanh A\ja = 0 (5.4.20b)
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Clamped at £ =0, and free at x =a and y =0,b

X;(x) =sin \jz — sinh \;z + «; (cosh \;z — cos A\;x)
Y;(y) = sin p;y + sinh pjy — 5; (cosh pyy + cos piy) (5.4.21a)

where A; and p; are the roots of the characteristic equations
cos A\ja coshAja+1 =0, cospjbcoshpb—1=0 (5.4.21b)

and
= sinh A\;a + sin \ja . B = sinh p4;b — sin p;b (5.4.21¢)
cosh A;a + cos \a cosh p1;b — cos ;b

Clamped at = = 0, simply supported at y =0, and free at t =a and y =b

Xi(x) =sin \jx — sinh \jz + «; (cosh A& — cos \;x)
Y;(y) =sinh ;b sinpy — sin p;b sinh gy (5.4.22a)

where A; and ji; are the roots of the characteristic equations
cos \;a cosh \;a +1 =0, tanpu;b— tanhpu;b =0 (5.4.22Db)

and inh A - sin A
sinh A\;a + sin \;a
;= 5.4.22
& cosh A\ja + cos A\;a ( 2

Similarly, one can construct the approximation functions for any combination of
fixed, hinged, and free boundary conditions on the four edges of a rectangular plate.
Of course, the most difficult part is to evaluate the integrals of these functions as
required in Eq. (5.4.8b). One may use a symbolic manipulator, such as Mathematica
or Maple, to evaluate the integrals. When general laminated plates are considered,
products of the beam eigenfunctions can still be used for the approximation of the
transverse deflection with appropriate functions for the in-plane displacements. In
general, the Ritz method for general rectangular laminates with arbitrary boundary
conditions is algebraically more complicated than a numerical method, such as the
finite element method.

5.5 Buckling of Simply Supported Plates Under
Compressive Loads

5.5.1 Governing Equations

When a plate is subjected to in-plane compressive forces, Nyw < 0, Nyy < 0, and
NT,y = 0, and if the forces are sufficiently small, the equilibrium of the plate is stable
(see Figure 5.5.1). The plate remains flat until a certain load is reached. At that
load, called the buckling load, the stable state of the plate is disturbed and the plate
seeks an alternative equilibrium configuration accompanied by a change in the load-
deflection behavior. The phenomenon of changing the equilibrium configuration at

the same load and without drastic changes in deformation is termed bifurcation.
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The load-deflection curve for buckled plates is often bilinear. The magnitude of the
buckling load depends, as will be shown shortly, on geometry, material properties,
as well as on the buckling mode shape. Here we determine the critical buckling
loads of simply supported specially orthotropic plates using the Navier method.
For the buckling analysis, we assume that the only applied loads are the in-plane
forces and all other mechanical and thermal loads are zero. Since the prebuckling
deformation wq is that of an equilibrium configuration, it satisfies the equilibrium
equations, and the equation governing buckling deflection wg is given by (see Section
4.2.3)
o*w} 0w o*wl - 0wl 0wl
69540 + 2 (D12 + 2Dgg) W + D22W40 = Niz 8x20 y 8y20
For simplicity, we will omit the superscript “b” on buckling deflection wg. We wish
to determine a nonzero deflection wy that satisfies Eq. (5.5.1) when the in-plane
forces are

D + N, (5.5.1)

\ Nyy

Nz = —No, Ny = —kNo, k= (5.5.2)

>

rr

and the edges are simply supported.

5.5.2 The Navier Solution

As in the case of bending, we select an expansion for wy that satisfies the boundary
conditions in Eq. (5.2.2)

wo(z,y) = Wi sinazx sin Sy (5.5.3)
Substituting Eq. (5.5.3) into Eq. (5.5.1), we obtain (for any m and n)
0 :{_ [D110¢4 +2(D12 + 2Dgg)a” 8% + D2254] +(o® + kﬁz)No}
X Wmn sinaz sin By (5.5.4)

0
N, Yy

Nyy

Ny
Figure 5.5.1: Buckling of a plate under in-plane compressive edge forces (Nm =

—Np Nyy = _Nyoy)-

T
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Since the equation must hold for every point (z,y) of the domain for nontrivial wq
(i.e., Win # 0), the expression inside the curl brackets should be zero for every m
and n. This yields
dmn
No(m,n) = ———+— 5.5.5
where

dun = D +2(D1z +2Dgs)a? 8 + Do, o= ==, §="25  (5.5.5D)

Thus, for each choice of m and n there corresponds a unique value of Ny. The
critical buckling load is the smallest of Ng(m,n). For a given laminate this value
is dictated by a particular combination of the values of m and n. We investigate
critical buckling loads of various laminates next.

5.5.3 Biaxial Compression of a Square Laminate (k= 1)

For a square laminate subjected to the same magnitude of compressive load on both
edges (i.e., biaxial compression with k£ = 1), Eq. (5.5.5a) yields

(5.5.6)

2\ [Dyymt + 2(Dyo + 2Dge)m2n2 + Dosnd
No(m,n):<7r_>[ um* +2(D12 + 2Dgg)m*n® + Dagn?|

a? m?2 + n?

Now suppose that D1 > Das. Then Dqym? increases more rapidly than the decrease
in Dao/ m?2 with an increase of m. Thus, the minimum of Ny occurs when m = 1:

(5.5.7)

a? 1+mn?

2\ [D 2(D 2Dg6)n° + Doont
Ng(l,n):<7r—>[ 11 + 2(D12 + 2Dgg)n* + Dagn?]

The buckling load is a minimum when n is the nearest integer to the real number R

D D12 + 2D
R2= 1415 M —2My, M =22 = 212t 2066 (5.5.8)
. D22 D22

For example, for modulus ratios of M; = 10 and My = 1, we obtain R = /2 or
n = 1. Hence, the critical buckling load becomes

D
No = No(1,1) = 6.5 (” 2”) (5.5.9)
a

For modulus ratios of M7 = 12 and My = 1, we obtain R = 1.52 or n = 2, and the
critical buckling load becomes

2
Nep =T7.2 <7r D”) (5.5.10)

For an isotropic (D13 = D22 = D, Dio = vD, and 2Dgs = (1 — v)D) square
plate under biaxial compression, the buckling can be calculated from Eq. (5.5.6):

No(m,n) = (m? +n?) (ﬂj—QD) (5.5.11)
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and the critical buckling load occurs at m = n =1, and it is equal to

New = No(1,1) =2 <@> (5.5.12)

a2

5.5.4 Biaxial Loading of a Square Laminate

When the edges z = 0,a are subjected to compressive load Nyz = —Np and the
edges y = 0, b are subjected to tensile load Ny, = kNg, Eq. (5.5.5a) becomes

ﬁ [D11m4 + 2(D12 + 2D66)m2n2 + D22n4]

NO(man) =3

(5.5.13)

a m2 — kn?

for n? < m?/k. For example, when k = 0.5, the minimum buckling load occurs at
m =1 and n = 1. For the isotropic material properties used in Section 5.5.3, we

have )
D
N,y = 26 (”—) (5.5.14)

5.5.5 Uniaxial Compression of a Rectangular Laminate (k = 0)

When k = 0 (N, = 0), we have

) = 2 [ () e () () 0 ()

a

= 3 [D11m4 (E) +2(D12 + 2Dgg)m*n? + Doyn’ (3) 1 (5.5.15)

An examination of the expression in Eq. (5.5.15) shows that the smallest value of
Ny, for any m, occurs for n = 1:

7r2D22 oDh1 (b 2 (D12 + 2D66) 1 a\?
— LR 2L 24 = 5.5.1
No(m, 1) 2 | Do <a> * Doo N m? <b> ( 6

The critical buckling load is then determined by finding the minimum of Ny = Ng(m)
in Eq. (5.5.16) with respect to m. We have

aNo

D 4
I =0 gives m*=22 <E> (5.5.17)

" Dy \b

The second derivative of Ny with respect to m can be shown to be positive. Since
the value of m from Eq. (5.5.17) is not always an integer, the minimum buckling
load cannot be predicted by substituting the value of m from Eq. (5.5.17) into Eq.
(5.5.16). The minimum value of Ny is given by Eq. (5.5.16) when m is the nearest
integer value given by Eq. (5.5.17). Since the value of m depends on the ratio of the
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principal bending stiffnesses as well as plate aspect ratio, we must investigate the
variation of Ny with aspect ratio a/b for different values of m for a given laminate.
As an example, consider a laminate with Dj1/Dss = 10 and a/b = 1.778. Then

we have ) ) )
™ D22 2 b 1 a
with
4 Doy fa\?! 4
mt=22(2) =0.1x (1.778)* = 0.9994 ~ 1 (5.5.18b)
Dy \b
In fact, for aspect ratios (a/b) less than 2.66, we have
D 4
mi =22 (E) = 0.1 x (2.66)* or m =1.496 (5.5.19)
Dy \b

Thus the closest integer is m = 1. The critical buckling load of a laminate with

D
110, (Di2 +2Dgg) = Daa, = < 2.66 (5.5.20)
Doo b
is given by
b\? a\?| D
= _ .2 22
Ncr = ]\fo(l7 1) =T |:10 (a) + 2+ (g) :l ? (5521)
For various aspect ratios, we have
2 2
a T DQQ a . ™ D22
Ezl: Nep =13 B2 ; 5:1.0. N, = 8.69 52
a 7'['2D22 Q 7T2D22
522: N =85 P 5:25 N = 9.85 B2

It can be shown that if the laminate aspect ratio a/b is greater than 2.66 but
less than 4.44, the buckling load is the minimum for n = 1 and m = 2 [using Eq.
(5.5.17)]. For example, for a/b = 3, we have from Eq. (5.5.21)

109 72D 2D
No(1,1) =~ b222 ~12.11 6222
313 72D 2D
No(1,2) = %72-3 ~ 8.69 6222 = N,
2p
No(1,3) = 135 b222

Thus, for aspect ratios between 2.66 and 4.44, the plate buckles into two half-
waves in the z-direction (and one half-wave in the y-direction). Thus larger
aspect ratios lead to higher modes of buckling. Figure 5.5.2 contains a plot of the
nondimensionalized buckling load Ny = Nob? /(7% Das) versus plate aspect ratio a/b
for laminates whose material properties are D11/Day = 10, (D124+2Dgg) = Day. For
aspect ratios less than 2.5, the plate buckles into a single half-wave in the z-direction
(see Figure 5.5.3). As the aspect ratio increases, the plate buckles into more and
more half-waves in the z-direction. Note that intersections of two consecutive modes
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Figure 5.5.2: Nondimensionalized buckling load, N = Nyb?/(n2Dag), versus
plate aspect ratio a/b.
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Figure 5.5.3: Nondimensionalized buckling load, Ny, versus number of half-
wavelengths m in the z-direction.
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correspond to certain aspect ratios (see Figure 5.5.3). Thus, for each of these aspect
ratios, there are two possible buckled mode shapes. The Ny versus a/b curve gets
flatter with the increasing aspect ratio, and it approaches the value

72 Do D11 (D12 +2Deg)
N,y =2 5.5.22
( b2 Dy * Dy ( )

which is obtained from Eq. (5.5.16) after substituting for m? from Eq. (5.5.17). For
the data in Eq. (5.5.20), this limiting value of the critical buckling load is

72 Do
N,, = 8.32456 ( = (5.5.23)

For a square isotropic plate (D11 = D2 = D, D1y = vD, and 2Dgs = (1 —v)D), we
have m =1 [from Eq. (5.5.17)], and the critical buckling load from Eq. (5.5.16) is

™D

Table 5.5.1 shows the effect of plate aspect ratio and modulus ratio (anisotropy)
on the critical buckling loads N = Nyb?/(72Dss) of rectangular laminates (0/90),
under uniform compression (k = 0) and biaxial compression (k = 1). In all cases
the critical buckling mode is (m,n) = (1,1), except for a/b = 0.5 and k = 1, for
which case the modes are (1,1), (1,2), (1,2), (1,2), and (1,3) for modulus ratios 5,
10, 20, 25, and 40, respectively. The nondimensionalized buckling load increases as
the modulus ratio increases.

Table 5.5.1: Effect of plate aspect ratio and modulus ratio on the
nondimensionalized buckling loads N of rectangular laminates
(0/90)s under uniform compression (k = 0) and biaxial compression
(k‘ = 1) (El/EQ varied, G12 = G13 = 0.5E2, G23 = 0.2E2, Vo =
0.25; all layers of equal thickness).

a E; _
k T E—i =5 10 20 25 40
0.5 13.900 18.126 21.878 22.874 24.590
0 1.0 5.650 6.347 6.961 7.124 7.404
1.5 5.233 5.277 5.310 5.318 5.332
0.5 11.120 12.694 13.922 14.248 14.766
1 1.0 2.825 3.174 3.481 3.562 3.702
1.5 1.610 1.624 1.634 1.636 1.641

Figure 5.5.4 shows plots of nondimensionalized critical buckling load N =
Nob? /(72 Dag) as a function of the plate aspect ratio, a/b, for two different materials:

Material 1: E1=25FE,, G2 =G13=0.5E,, vi9=0.25
Material 2: Ei =40FE2, Gi2 = Gi13=0.6FEy, 112 =0.25

There is a mode change around a/b > 2.2 from (1,1) to (1,2).



278 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

40.0 T!(l[Tfll(le!fll[l'llITYIIIII_

30.0 (0/90/90/0), E1/Eq = 40
i - - = = (0/90/90/0), E4/Eq = 25

Buckling load, N
Do
S
o

Simply supported laminates

lIl1[11\I[IIKI‘Illl[lllllllllillll(lll

0.0 ITIIlIIlI‘\I"{IIIT\}l—r'llllll_Y_fllll
00 05 10 15 20 25 30 35

Plate aspect ratio, a/b

Figure 5.5.4: Nondimensionalized uniaxial critical buckling load (V) versus plate
aspect ratio (a/b) of symmetric cross-ply laminate (0/90) for two
different modular ratios.

5.6 Buckling of Rectangular Plates Under
In-Plane Shear Load

5.6.1 Governing Equation

In this section we consider buckling of specially orthotropic rectangular plates
under in-plane shear load, Ngy. The problem does not permit the Navier solution;

therefore, we use a variational method to solve the problem. When Nyp = Ayy =0
and N, = Ngy (see Figure 5.5.1), the governing equation (5.5.1) takes the form
Dty 9* 8w o 0%wo

wo
D11—+2(D12+2D66)W+ 22a—y4“-_— " Hzdy

5 (5.6.1)

5.6.2 Simply Supported Plates

When the plate is simply supported on all its edges and subjected to in-plane shear,
the Navier solution does not exist because the cross derivative term involving Na?y
will have a different coefficient (cos ax cos By) than the rest of the expression in Eq.
(5.6.1). Hence, we will seek the solution by a variational method.

Since the expression given in Eq. (5.5.3) for wy satisfies the geometric boundary
conditions of the problem, the same functions are admissible in the Ritz method:

N M
wo(x,y) =~ Wyn = Z Z Cmn Sinazx sin By (5.6.2)

n=1m=1
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where a = mm/a and 5 = nn/b. Since the approximation functions

n fb% (5.6.3)

also satisfy the natural boundary conditions of the problem, the Ritz and Galerkin
solutions are the same. Thus, substitution of Eq. (5.6.2) in the total potential
energy functional for the Ritz method

8211)0 2 (’)2w0 82100 82’11)0 g
M(uwo) 2/ /{ < > +2D12 ox? Oy? + 4Dss Oxdy

2 2 o
+ Do2 Two) _ 2NV (%ﬂﬂ dxdy (5.6.4)
Oy? o y

. max
Somn(wa y) = sin

or the weighted-integral statement for the Galerkin method

©pq dxdy

(5.6.5)
would lead to the same equations for the coefficients ¢p,,. Using the Galerkin
method, we obtain

wo Ot 8411)0 0 Pw
= 2N,
0= A / l'DH +2 (D12 -+ 2D66) Oz 28 3 + DQQ ay4 Iyd a

N M

0=>" Z/ /{ D11a + (D12 + 2Dgg) a2 +Dggﬁ}¢,nn

n=1m=1

~2aﬁN§y COS (LT COS ﬁy}cmncppq dxdy (5.6.6)

Using the identities

a 0, m 7é n
. mmnr | nAT
/ sin sin — dx =
0 a a @ m=n
' u) cos(A + u)w}
sin Az cosux dx = [ + (5.6.7)
/ 1) (A + 1)
we arrive at
ab pr\ 4 o qm\ 2 q7r>4
0= ) [Dn (;) + (D12 + 2Dsgs) < - > (T) + Do <T Coq
N Mo
_2NO Z Z < ) (_> S(mn)(pq) Cmn (568&)
m=1n=1
where
b ra
Smn)(pg) = /0 /0 cos m;ra: cos mbry sin pzx sin % dxdy

4ab pq 2 2, 2 2
= <?) =) ) for p° # m* and ¢° # n (7.6.8b)
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and the coefficients are zero when p = m,p + m even, or when ¢ = n,q £ n even.
The set of mn homogeneous equations (5.6.8a) define an eigenvalue problem

(4] - N2, 18]) {c} = {0} (5.6.9)

which has a nontrivial solution (i.e., ¢y, # 0) when the determinant of the coefficient
matrix is zero. Note that [A] is a diagonal matrix while [S] is a nonpositive-definite
matrix; hence, the solution of (5.6.9) requires an eigenvalue routine that is suitable
for nonpositive-definite matrices. It is found that the solution of (5.6.9) converges
very slowly with increasing values of M and N (see [3,7]).

5.6.3 Clamped Plates

The total potential energy expression for the clamped rectangular plate under in-
plane shear load Ng?y is

82w\ 82wo 82wo 82w \
I Z 9z "0 ndihad )}
(wo) = //[ < > + 2D ox? Oy? + 4Des Ordy
2 2
+ Doy <8—;”°> —2NY, <a—?a—u;>]d:cdy (5.6.10a)

The minimum total potential energy principle requires that 6II = 0. We have
b ra
0= / / (Mabel) + Myyell) + May61Y) — gdwo) dady

026 Zwg 826 D% wg 626
—//[11 2wy wO+D12< wo 0"0wg 07w wo)

ox? 0Ox? Oy?  Ox? 0x? 0Oy?
82100 626’1110 + 6211)0 62611)0
Oxdy dxdy 20y2  0y2

8(511)0 ng 6’(1)0 86w0> ]
N0 dzd 5.6.10b
(6m8y+(9x8y zdy ( )
We assume a Ritz approximation of the form
m n
wo(:c,y) ~ Wmn(l’,y) = ZZC’L] Soz] xZ, y (5611&)
i=1j=1
where
pij(z,y) = Xi(2)Y;(y) (5.6.11b)
with ™ ) - ,
z\' z )’ y
Xi(z) = { -~ 1-= ) =1{> - 6.1
@=(2) (1-5) vw=-(4) (-Y) (56.12)
or

X;(x) =sin \jz — sinh A\;z 4 o (cosh A\jz — cos A;x)
Y;(y) =sin \jy — sinh A;y + a; (cosh Ajy — cos \;y) (5.6.13)
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fori = 1,2,---,m; j = 1,2,---,n. The parameters \; and a; of Eq. (5.6.13) are
defined in Eq. (5.3.45) and (5.3.46), respectively. Substituting Eq. (5.6.11) into Eq.
(5.6.10b) we obtain

borar  2X, X dX; dY, dX, dY,
0:{/ /[ “W”—p’ﬁ?(DmHD%) ax;aXpdl,
0 JO

T dx? dr dy dzr dy

d?Y, dX; dY, dY; dX
+DnXif d R Ngy(d M i i )dedy}c”q
(5.6.14)

When functions in Eq. (5.6.13) are used, at least two terms should be used
because the coeflicient of Ngy is zero for m = n = 1; other coeflicients are zero for
m=1n=2and m=2,n=1. Using the approximation

wo(;L‘, y) =~ 011X1 (I)Yl(y) + CQQXQ(Z’)YQ(@/) (5.6.15&)
with [see Eq. (5.3.47)]

4.73x . 4.73x
— sinh

X1(z) =sin +1.0178 (cosh

7.853z .. 7.853z 7.853x 7.853x>
— sinh — cos

+ 0.9992 (cosh
a a a a

4. . 4.
—@ inh 47% + 1.0178 <cosh 473y — cos %Q)

853y 7.853y>
b b
(5.6.15b)

4.73x 4.73:6)

— COS

Xo(z) =sin

Yi(y) =sin

7.853y 7.853y

— sinh

Y2(y) =sin + 0.9992 <cosh

we obtain

[537.181(} 324.829 537.181a
Dy + -

23 11 ab (D12 + 2D66) B3 D22:| c11 — 23. 107N0y022 =0

{3791.53% 4227.255 3791.532a

3 Dy + (D12 + 2D66) DQQ] coo — 23. 107N0 yCl11 = 0
a ab b3

or in matrix form

ail Ni’yam] {011 } {0} 5
= — .6.16
Ngyalg a9 €29 0 (5 a)

537. 181 324.829 537.181 23.107
Dy + T (D12 + 2Dgs) + A ————Dg9, a2 = 3

where

a1 =

3791.532D 4227.255 3791.532

g2 = — 3 1 + w22 (D12 +2Dgg) + A Dy (5.6.16b)



282 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

For a nontrivial solution, the determinant of the coeflicient matrix should be zero,
a11a29 — algalg(Ngy)2 = 0. Solving for the buckling load Na?y, we obtain

1
Ngy = :i:;wauagg (5.6.17)
1

The =+ sign indicates that the shear buckling load may be either positive or negative.
For an isotropic square plate, we have a = b and D1; = Dy = (D12+2Des) = D,
and the shear buckling load predicted by Eq. (5.6.17) is

D
0 _
Ny, = £176- (5.6.18)

whereas the “exact” critical buckling load is
D
0

The two-term Ritz solution (5.6.18) is over 21% in error.

This concludes the discussion of shear buckling of rectangular plates. The
variational solutions presented here for buckling under in-plane shear are only for
illustrative purposes. More than two-term variational approximations are required
to obtain accurate buckling loads. Once again, a symbolic manipulator proves to be
effective in evaluating the integrals in the variational methods.

5.7 Vibration of Simply Supported Plates

5.7.1 Governing Equations

For natural vibration, all applied loads and the in-plane forces are set to zero in Eq.
(5.1.1)

8411)0 84w0 04w0
Din——+2(D 2D¢6) =55 + Dog——
157 +2 (D12 + 2Dsg) 02201 + a2 Ee
. 0%y O
+ [()'w() - 12 ('51'—2 + ay2 =0 (5.7.1&)
where
- 1 k) (3 3
In=> py (21— 2), Ip= 3 > p0 (zk+1 - Zk) (5.7.1b)
k=1 k=1

where L denotes the total number of layers in the laminate.

5.7.2 Solution

We assume a periodic solution of the form

Wi (t) = W0 et (5.7.2)
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where ¢ = y/—1 and w is the frequency of natural vibration. Substituting (5.7.2) in
(5.7.1a), we obtain (for any m and n)

{DHO/‘ +2(D1z + 2Dge)a?B? + D' — ? [Io + (o + #7) I }
X Whnsinaz sinfy =0 (5.7.3)

Since the equation must hold for every point (x,y) of the domain 0 < z < a and
0 < y < b, the expression inside the braces should be zero for every m and n. This
yields

2 i a (b ! 2. 2(b
w Diym (a> +2(D12+2D66)mn <a>

mn — —I?b—‘l
~ 2 2
fo=1Io+ I K?) + <%> 1 (5.7.5)

For different values of m and n there corresponds a unique frequency wm, and a
corresponding mode shape

2
+ D22n4] (574)

where

wo(z,y) = W2 sin m;m sin n_7bry (5.7.6)

where W9 is the amplitude of the vibration mode (m,n). For square laminates,
Eq. (5.7.4) reduces to

W

2 <E>4 [D11m4 + Q(Dlg + 2D66)m2n2 + Dggnﬂ

5.7.7
o [Io-f—[g (%)2 (m2+n2)} ( )

a

When the rotatory inertia I is not zero, it is not simple to find the lowest natural
frequency (fundamental frequency). The rotary inertia has the effect of reducing
the frequency for any m and n.

When the rotary inertia I is neglected, the frequency of a rectangular specially
orthotropic laminate reduces to

’/T4 b 4 b 2
wz,m =703 |:D11m4 (*) +2(D12 + 2D66)m2n2 <> + D22n4} (5.7.8)
Ipb a a
and for a square plate we have
-
W = 777 |[Dum® + 2(Diz + 2Dgs)m*n® + Dyan’| (5.7.9)
0

The fundamental frequency occurs at m =n = 1:

7.[.4

b\* b\?
2
=—1|D - 2(D 2Dgg) | — D 7.1
Wi I()b4{ 1 (a) +2(D12 + 60)<a> + Do (5.7.10)
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For a rectangular isotropic plate, when the rotary inertia is neglected, the
frequency equation (5.7.8) becomes

Dn* b\ b\? Dn? b\? 2
2 _ 4(0 2.2(0 al T o (0 2
Win = T [m <a> + 2m“n (a) +n*| = Tob! m (a) +n (5.7.11)

and the fundamental frequency is given by

o =" [P (9)2+1
11_b2 IO a

Nondimensionalized frequencies, @mn = wWmn(b?/72)\/ph/Dag, of specially
orthotropic square laminates are presented in Table 5.7.1 for modulus ratios
E]_/E2 = 10,20 (G12 = G13 = 0.5Ey, Gz = 0.2E;, vy = 0.25). The results
presented in Table 5.7.1 are for m,n = 1,2,3, and for the case in which the
rotary inertia is neglected. The first four frequencies for an orthotropic (0°)
plate correspond to the modes, (m,n)=(1,1), (1,2), (1,3), and (2,1), whereas for
symmetric cross-ply plates the first four frequencies are provided by the modes:
(m,n)=(1,1), (1,2), (2,1), and (1,3). Table 5.7.2 contains nondimensionalized
fundamental frequencies of symmetric (0/90)s laminates for various aspect ratios
and modulus ratios. The fundamental frequency increases with modular ratio. The
effect of including rotary inertia is to decrease the frequency of vibration, and the
effect is negligible for this case. Figure 5.7.1 shows a plot of nondimensionalized
fundamental frequency @;; as a function of plate aspect ratio for symmetric (0/90)
graphite-epoxy laminate (E1/Ey = 40, G1o = G13 = 0.5EF5, v15 = 0.25).

(5.7.12)

Table 5.7.1: Nondimensionalized fundamental frequencies of symmetric cross-
ply laminates according to the classical plate theory (@Wm, =

Winn (b2 /72)\/ph[Das).

£ m n 0° (0°/90°),
1 1 3.672 2.519
1 2 5.996 4.986
1 3 10.648 9.783
2 1 13.075 8.515

10 2 2 14.690 10.077
2 3 18.181 13.783
3 1 28.868 18.704
3 2 30.258 19.911
3 3 33.053 22.674
1 1 4.847 2.638
1 2 6.781 4.917
1 3 11.111 9.637
2 1 18.193 9.354

20 2 2 19.388 10.554
2 3 22.153 13.826
3 1 40.539 20.752
3 2 41.542 21.578
3 3 43.623 23.746
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100 JTTTTyroroT TTT I"l—l_T_| T I TTTT TTTT IR rrﬁ TT l TT ]

- g 0_; Simply supported, rectangular, _;
13 ] (0/90) symmetric laminates ]
& = j
8‘ 6.0‘: -
& ] 3
I - g
-2 — -
5 B 3
g 4.0 3
a 3 ]
.= . ]
= =
2 :
2.0 3

0.0 = TTTT ’ TTTT | TTTT I TTTT } TTTT I TTTT | TTTT I TTTT ’ TTT IA

00 05 10 15 20 25 3.0 35 40 45

Plate aspect ratio, a/b

Figure 5.7.1: Nondimensionalized fundamental frequency w7 as a function of
plate aspect ratio a/b for symmetric (0/90), laminate.

Table 5.7.2: Nondimensionalized fundamental frequencies @;; of symmetric
cross-ply laminates (0/90), according to the classical plate theory.

Without Rotary Inertia With Rotary Inertia

a/b g—; =10 20 30 40 10 20 30 40

0.5 8.515 9.355 9.716 9.917 8.513 9.353 9.714 9.916
1.0 2.519 2.638 2.691 2.721 2.519 2.638 2.691 2.721
1.5 1.531 1.536 1.538 1.539 1.531 1.536 1.538 1.539
2.0 1.246 1.229 1.221 1.216 1.246 1.229 1.221 1.216
2.5 1.138 1.119 1.110 1.105 1.138 1.119 1.110 1.105
3.0 1.087 1.071 1.063 1.059 1.087 1.071 1.063 1.059

5.8 Buckling and Vibration of Plates with Two
Parallel Edges Simply Supported

5.8.1 Introduction

The Lévy method can be used to determine natural frequencies and critical buckling
loads of rectangular laminates for which two (parallel) opposite edges are simply
supported and the other two edges have any boundary conditions, as described
in Section 5.3 for bending analysis. For other combinations of fixed, hinged, and
free boundary conditions on the edges of rectangular plates, one may use the Ritz
method with the approximation functions suggested in Section 5.4.3.
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Consider a rectangular laminate with in-plane dimensions a and b and total
thickness h. The laminate coordinate system (z, y, z) is taken such that —a/2 < z <
a/2,0 <y <b,—h/2 <z < h/2 (see Figure 5.8.1). Here we assume that the edges
y = 0, b are simply supported, and the other two edges each have simply supported,
clamped, or free boundary conditions. The equation governing buckling under in-
plane normal forces and natural vibration of a specially orthotropic laminated plate
is given by Eq. (5.1.1):

(94w0 64w0 84100
Dyy—+2(D 2D66) =57 + Dao——
g+ (D12 + 2Degs) 0170 + D2 3y
~ 62’11)0 ~ 82’(00 . 82’[[10 821'[)0
- Naxt%? — Nyya—y2 + I()’w() - IQ 8332 + 8y2 =0 (581)

Recall that in the Lévy method the partial differential equation (5.8.1) is reduced
to an ordinary differential equation in z by assuming solution in the form of a single
Fourier series

wo(z,y) = Wa(z) sinfy, B=-= (5.8.2)

which satisfies the simply supported boundary conditions

wo =0, My =— (Dn— =0 (5.8.3)

on edges y = 0,b. The ordinary differential equations obtained in the Lévy method
can be solved either by direct integration or by means of the state-space approach.
We discuss both procedures in the following sections.

Y
b [ simply supported
l / edges

Figure 5.8.1: Geometry and coordinate system of a rectangular plate used in the
Lévy method.
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5.8.2 Buckling by Direct Integration

Here we consider buckling under uniaxial compressive forces
Noz =0, Ny, =-NJ, (5.8.4)

Substituting (5.8.2) and (5.8.4) into the governing equation (5.8.1) with the inertia
terms zero, for any y, we obtain

4w, d*W,

2
D1y o —2(D12 + 2Dgg) 8 dz?

+ Dy B*Wy, — N, B2 Wy, = 0 (5.8.5)
We assume the general solution of Eq. (5.8.5) in the form
W, (z) = A, cosh Mz + By, sinh A\yz + C), cos Aoz + Dy, sin Asx (5.8.6)
where \; are the roots of the characteristic equation
DA = 2(Dig + 2Dgs) B°A? 4 D' — N, 8°A = 0 (5.8.7)

and they are given by

2 ~
(M)? = % l\/(;u +2Dg6)” + D1y (N;)y - D22) + (D12 + 2D66)J
/82

(/\2)2 — l:\/(D12 + 2D66)2 + D1 (Ngy - Dgg) — (D12 + 2D66):| (588)

Du

where ]\Nfz?y = Ngy/QQ. The constants A,,, B,,C,, and D, must be determined using
the boundary conditions at x = 0, a.
For clamped boundary conditions on edges x = 0, a, for example, we require

daw,
W, =0, =0 (5.8.9)
dx
which yield the eigenvalue problem
1 0 1 0 A, 0
0 A1 0 A9 B, O
cosh A\1a sinh A\1a COSs \2a sin A\2a Co{ 10 (5.8.10)
A1 sinh Aja ArcoshAdja  —Ag9sindea  Aa cos Aaa D, 0

For a nontrivial solution, A, # 0,B, # 0,C, # 0, and D,, # 0, we set the
determinant of the coefficient matrix in (5.8.10) to zero. We have [cf. Eq. (4.2.58)]

201 A2 (1 — cosh Aa cos Asa) + (A2 — A2)sin A\ja sinh Asa =0 5.8.11
1 2

Since A1 and Ag contain the buckling load Ngy, Eq. (5.8.11) can be used, in theory,
to determine the critical buckling load of the plate. However, the complexity of

(5.8.11) makes it less useful in readily computing the buckling loads.
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5.8.3 Vibration by Direct Integration

Here we consider natural vibration of a specially orthotropic plate. For periodic
motion, we assume that A
wo(z,y,t) = Wo(x,y)e™* (5.8.12)

where ¢ = /—1 and w is the frequency of natural vibration. Then the amplitude
of vibration @y is approximated as in Eq. (5.8.2). Substituting (5.8.2) and (5.8.12)
into the governing equation (5.8.1), with the in-plane forces zero, for any y and t we
obtain

d4Wn 9 ) d2Wn ) ) .
Dll drt + |:12w _2(D12+2D66)/B ] dx2 - [UJ (IO+I2ﬁ ) _DQZIB ] W,=0
(5.8.13)
or . )
d*W, d“W,
Pt T4 gm ~ rWn =0 (5.8.14a)
where

p=Dn, q=15hw—2(Dis+2De) B, r=w?(Io+ D% — Dnft (5.8.14b)

Equation (5.8.14a) is of the same form as Eq. (4.2.44), and the procedure described
in Section 4.2.4 can be used to determine the natural frequencies for various
boundary conditions on edges x = 0, a.

5.8.4 Buckling and Vibration by the State—Space Approach

As explained in Section 5.3, the governing differential equation in (5.8.1) can be
reduced, with Eq. (5.8.2), to a system of a first-order matrix differential equation

{(Z'} = [T){ 2} (5.8.15)
where
Wi 0 1 0 O
W, 0 0 1 0
(7} = WW , [T = 0 0 0 1 (5.8.16)
W CL 0 Cy 0
Ny = —Ngz, Nyy = —Ngy, and
C — (;64D22 - ﬁzNyy) C, = [2/32(1)12 + 2D66) - Nxz] (5 3 17)
' Dy C T D11 o
for buckling analysis and
3* Dy — Iow}, 26%(D1y + 2Dgs) — Lpw?
C, = _( 5 ) L Cy= [28%(D12 +DD66) 2w ] (5.8.18)
11 11

for free vibration analysis. Here wy, denotes the frequency of vibration of the mth

mode, Iy = Iy + #2I,, and i = /—1.
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The solution of Eq. (5.8.15) is given by
Z(z) = e*K (5.8.19)

and the vector K of constants is to be determined from the boundary conditions.
Substitution of Eq. (5.8.19) into the set of boundary conditions (expressed in terms
of Z;) results in a homogeneous system of equations

[M{K} = {0} (5.8.20)

For a nontrivial solution, the determinant of the coeflicient matrix in (5.8.20) should
be zero:

|M;;| =0 (5.8.21)

The roots of the above equation are the squares of the frequencies of natural
vibration, or, in the case of buckling, they denote the buckling loads.

The Lévy type solution procedure is used to evaluate the natural frequencies
and critical buckling loads under uniaxial compression of specially orthotropic
rectangular laminates. The lamina material properties used are

E]/EQ = 40, G12 = G13 - 0.6E2, Vio = 0.25

Numerical results for the nondimensionalized fundamental frequencies and critical
buckling loads under uniaxial compression

a2

w= w(z) p/E2, N = Ngsz/(Eth)

of square, symmetric, cross-ply laminates are presented in Table 5.8.1 for various
ratios of principal moduli of the material. Note that the nondimensionalized
frequencies and buckling loads are the same for any odd number of layers n =
3,5,7,--- (with the total thickness of all laminates being the same). Table 5.8.2
contains numerical results for various boundary conditions (see [16]). As before, the
notation SF, for example, is used to indicate that edge x = a/2 is simply supported
(S) and edge x = —a/2 is free (F).

Table 5.8.1: Nondimensionalized fundamental frequencies and critical buckling
loads under uniaxial compression of simply supported symmetric
cross-ply square plates as a function of the modulus ratio.

Laminate EL—3 10 20 30 40

E

Fundamental Frequencies, & =w (%) P/ Es

{0/90/0), 7.5357 10.650 13.948 16.605 18.891
(0/90/90/0)  7.5357 10.650 13.948 16.605 18.891
Uniaxial Critical Buckling Loads, N = NJ,b2/Eqh3

(0/90/0),, 5.754 11.492 19.712 27.936 36.160
(0/90/90/0)  5.754 11.492 19.712 27.936 36.160
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Table 5.8.2: Nondimensionalized fundamental frequencies and critical buckling
loads under uniaxial compression of symmetric cross-ply (0°/90°/0°)
square plates for various boundary conditions and modulus ratios.

E SS SC CC FF FS FC

Eq

Fundamental Frequencies, & =w (%) v/ p/E2

10 10.650 15.199 21.118 3.294 4.088 5.419
20 13.948 20.610 29.166 3.721 4.443 6.515
30 16.605 24.870 35.431 4.106 4.770 7.445
40(1)* 18.891 28.501 40.743 4.457 5.076 8.269
40(2) 26.938 34.533 45.233 17.827 18.473 19.789
40(3) 46.208 51.192 59.023 40.113 40.761 41.505

Biaxial Critical Buckling Loads, N = N9 b2/F,h3

10 5.746 9.353(2) 13.468(2)  1.123 1.661 3.202
20 9.591(2)t 14.026(2) 21.709(3)  1.420 1.978 4.683
30 12.147(2) 18.703(2) 28.081(3)  1.722 2.288 6.142
40 14.704(2) 23.381(2) 34.454(3)  2.025 2.596 7.595

* Denotes the mode number m.
f Mode m in which the lowest buckling load occurs (otherwise, m = 1).

5.9 Transient Analysis
5.9.1 Preliminary Comments

In this section we will develop transient solutions to specially orthotropic plates.
Recall that in the static bending analysis of plates we developed the analytical
solutions using the Navier method, the Lévy method, and the Ritz method. The
same methods can also be used to approximate the spatial variations of the transient
solutions of plates. The resulting ordinary differential equations in time can be
solved exactly when possible or numerically using a time-integration method. Here
we consider simply supported plates to illustrate these ideas (see Reddy [21]).

5.9.2 Spatial Variation of the Solution

The equation of motion governing bending deflection wg of a specially orthotropic
plate, assuming no applied in-plane and thermal forces, is [see Eq. (5.1.1)]

6411)0 8411)0 6411}()
—|Puga T2 (D12 + 2Dsg) FISEw +Dn—p 3 } +q(z,y,1)
Oy | 0o
= lowo — I2 | == 5.9.1
owo — {2 ( 922 + 5y° ( )

Suppose that the plate is simply supported with the boundary conditions
wo(x,0,t) =0, wo(x,b,t) =0, we(0,y,t) =0, wyla,y,t)=0 for t>0

Mgz (0,y,t) =0, Mgz(a,y,t) =0, My, (r,0,t) =0, My, (x,b,t)=0 for t>0
(5.9.2)
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and assume that the initial conditions are

8w0

wo(x,y,0) = do(x,y), W(w,y,O) =vo(z,y) forall z andy (5.9.3)
where dy and vg are the initial displacement and velocity, respectively.
We assume the following expansion of the transverse deflection to satisfy the

boundary conditions (5.9.2) for any time ¢ > 0
0.} 0
(z,y,t Z Z mn(t) sinazx sin By (5.9.4)

where o = (mn/a) and 3 = (nm/b). Similarly, we assume that the transverse load,
initial displacement, and initial velocity can be expanded as

q(z,y,t) Z Z Qmn(t) sinax sin [y (5.9.5)
n=1m=1
o0 o0

do( = Z Z D,,,, sinax sinBy (5.9.6)
o0

vo(z,y) = Z Vinn sinazx sin By (5.9.7)

n=1lm

where, for example, Q. are given by

4 b fa
Qmn(t) = %/ / q(x,y,t) sinax sinfy dxdy (5.9.8)
0 Jo

Substituting the expansions (5.9.4) and (5.9.5) into Eq. (5.9.1), we obtain

Z Z { mn {Dna + 2(D12 + 2Dgg )% + D22/34]

n=1m=1

[Io + Iy (a + ﬁ2)} an} sinaz sinfy =0 (5.9.9)
Since the above expression must hold for all z and y, it follows that

Winn [D11a4 +2(Dy2 + 2Dgg)a23% + Dmﬁﬂ
+ [0+ I (0® + 32)] Winn — Qun =0 (5.9.10a)

or
KmnWmn(t) + MypnWinn = an(t) (5910b)

where

Kpn =D11a* + 2(D1g + 2Dgs)a 5% + Do 31
Myn =Ip + I (? + 3°) (5.9.10c)
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5.9.3 Time Integration

The ordinary differential equation (5.9.10a) can be solved either exactly or
numerically. The numerical time integration methods will be discussed in the
subsequent chapters. To solve it exactly, we first write Eq. (5.9.10a) in the form

d*Winn n (Kmn

1 .
di? an) Winn = 37— Qmn(t) = Qma(t) (5.9.11)

MTTLTL
The solution of Eq. (5.9.11) is given by
Winn(t) = CreMt 4 Coe?2t + WP (1) (5.9.12)

where C and C5 are constants to be determined using the initial conditions, WP, (t)
is the particular solution

() =m0 5 (5.9.13a)

Whatt) = |

o 71(7)r2(T) = F1(T)ra(7)
with 71 (t) = eM? and ro(t) = 2!, and A\; and )y are the roots of the equation

K Kmn

N R 0 A = —ip, Ao =g, i=V—1, p= .9.13b
+ M, 0; M i, Ao =i, 1 . M A, (5.9.13b)
The solution becomes
Winn(t) = Acos ut + Bsin ut + WP (¢) (5.9.14a)
1 . 't , t
WP (t) = — (e“‘t/ e "M Qun(T)dT — e_’“t/ e””an(T)dT> (5.9.14b)
2ip 0 0

Once the load distribution, both spatially and with time, is known, the solution can
be determined from Eq. (5.9.14a).

For a step loading, Q.. (t) = Q2,,H(t), where H(t) denotes the Heaviside step
function, Eq. (5.9.14a) takes the form

1
Wmnn(t) = Acos ut + Bsin ut + I 0 (5.9.15a)

mn
mn

Using the initial conditions (5.9.3), we obtain

— , B=— 5.9.15b

A= Dy —
Thus the final solution (5.9.4) is given by

oo 00 V. 0
wo(z,y,t) = Z Z Dy cos ut + Zm sin pt + K—m" (1 —cosput)| sinax sin By
m=1

(5.9.16)

n=1
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The coefficients Q¥,,, are given in Table 5.2.1 for various types of distributions. The
same holds for D,,, and V,,,,.

It should be noted that the procedure outlined above is valid irrespective of
how one arrives at Eq. (5.9.10b); e.g., Eq. (5.9.10b) could have been obtained
using the Ritz method or other methods. The exact solution of the differential
equation (5.9.10b) can also be obtained using the Laplace transform method. Once
the solution wy is known, stresses can be computed using Eqs. (5.2.13).

Figure 5.9.1 contains plots of the nondimensionalized center deflection w =
wo(E2h3 /a*qy) as a function of time for a simply supported (SS-1) symmetric cross-
ply (0/90/0) laminate (hl = h3 = h/4, hg = h/2; E]/EQ = 25, G12 = G13 = 0.5E2,
vig = 0.25; a = b = 25 cm, h = 5 cm) under a step loading that is sinusoidally
distributed (SSL) or uniformly distributed (UDL) over the plate surface. Tt is
assumed that the plate motion ensues from rest, i.e., dy = 0 and vg = 0. The solution
is plotted to show one complete wavelength. The dashed curve corresponds to the
solution when the rotary inertia is neglected. The rotary inertia has the effect of
increasing the wavelength slightly. Figure 5.9.2 contains plots of nondimensionalized
center normal stress g, — am(h2 / a2q0) as a function of time for the same laminates.
Note that the stress variation for the uniformly distributed load case is not as smooth
as for the sinusoidally distributed load case.

5.10 Closure

In this chapter analytical and Ritz solutions for bending, buckling, natural vibration,
and transient response of specially orthotropic plates are presented. In most
cases, the numerical determination of actual solutions require evaluation of a series
solution, solution of a transcendental equation, or determination of eigenvalues (in
the state-space approach). Thus, even the “exact” solutions become approximate
because of the truncation of an infinite series or round-off errors in the solution of
nonlinear equations. The analytical solutions developed herein serve to help one
understand, at least qualitatively, the behavior of laminated plates.

Problems

5.1 Determine the displacement field of a simply supported plate strip under a concentrated (line)
load Fjy at the center using the Navier solution method.

5.2 Derive the Navier solution of a simply supported rectangular plate under the following
temperature distribution
T(ZE,:l/,Z) = TO(I,U) + ZT] (l~y)

where 7 and 77 are known functions of x and y only, which can be expanded in double
Fourier series in the same way as the mechanical loading ¢(z,y).

5.8 Derive the expressions for transverse shear stresses from 3-D equilibrium equations when the
plate is subjected to the temperature distribution of the form given in Problem 5.2. Assume
that Ty and 77 can be expanded in double sinc scrics.

5.4 Determine the constants A,, Bn,Cn, and D, in the Lévy solution (5.3.15) of a specially
orthotropic rectangular plate with simply supported edges at y = 0,b and = = a, and clamped
at x = 0. Assume uniformly distributed transverse load.
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Figure 5.9.1: Nondimensionalized maximum transverse deflection (w) versus time
for a simply supported symmetric cross-ply (0/90)s laminate.
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Figure 5.9.2: Nondimensionalized maximum normal stress (Gz,) versus time for
a simply supported symmetric cross-ply (0/90)s laminate.
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Determine the constants Ay, Byn,Cr, and D, in the Lévy solution (5.3.15) of a specially
orthotropic rectangular plate with simply supported edges at y = 0,b, clamped at x = 0,
and free at x = a. Assume uniformly distributed transverse load. The boundary conditions for

the free edge are

Mup =0, V= Qo+ Dby _ 0w, 00y

oy or Oy =0

These boundary conditions can be expressed in terms of the transverse deflection as

33wy
Ox3

83
+ (D12 +2Dgg) =l = 0

82’[1)0
- dy2or

oy?

0, Dy

Determine the constants A,, Bn,Cr, and D, in the Lévy solution (5.3.15) of a specially
orthotropic rectangular plate with simply supported edges at y = 0,b and * = a, and free
at x = 0. Assume uniformly distributed transverse load.

Use the following one-parameter Ritz approximation to determine the deflection of a simply
supported rectangular plate:

wo(z,y) ~ crz(a — z)y(b - y)

2,2 .
Ans: The parameter c; is given by ¢ = %%% with

1 1 1
—2[lp sl 2Dgg)a2b? + — D 4}
Ry =2 [15 b+ 9(D12 + 2Dgg)a“b” + 15 D220

Show that the one-parameter Galerkin solution with the algebraic functions in Eq. (5.4.6) is
also given by Eq. (5.4.11).

Use one-parameter Ritz approximation of the form
2 2
wo(z,y) = cq1 (1 — CO8 %) (1 — cos %)

to determine the deflection of a rectangular plate with clamped edges and subjected to uniformly
distributed transverse load.

Verify the result in Eq. (5.4.14).

Verify the result in Eq. (5.6.16).

Determine the critical buckling load of a rectangular orthotropic plate simply supported on
edges y = 0,b and clamped on edges x = 0,a using the one-parameter Ritz approximation of

the form

27x
wo(z,y) = c1y (1 — cos _71':1") sin _n;)ry
a

Determine the critical buckling load of a rectangular orthotropic plate simply supported on edges
y =0,b and z = 0, and clamped on edge x = a using the one-parameter Ritz approximation of

the form )
z T . nwy
zy) = y(1-2 nry
wo(x,y) = c11 (a) ( a) sin —

Determine the transient response of simply supported specially orthotropic plate under
transverse loading (a) q(z,y,t) = gqoH (t —ty) and (b) ¢(z, y,t) = go6(t —tg), where H(t) denotes
the Heaviside step function and 6(t) is the Dirac delta function.

Solve Eq. (5.9.10) using the Laplace transform method.
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6

Analytical Solutions of Rectangular
Laminated Plates Using CLPT

6.1 Governing Equations in Terms of Displacements

In this chapter analytical solutions of antisymmetric cross-ply and angle-ply
laminated plates based on the classical laminated plate theory (CLPT) are
developed. The Navier method, the Lévy method with the state-space approach,
and the Ritz method are used, depending on the boundary conditions. In all
cases considered in this chapter, the von Karman nonlinear terms in the strain-
displacement relations are omitted. Before we begin with the derivation of the exact
solutions, it is useful to express the governing equations in terms of the generalized

displacements of the theory.

The linear equations of motion of the classical laminated plate theory (CLPT)
can be obtained from Eqgs. (3.3.45)-(3.3.47) by setting the nonlinear terms to zero:

AM%Q%’ + 2’416328 + Ago %2;20 + Als(?; > + (A12 + Ass) g a[; +

— lBu% + 3B16£Tw; + (B12 + 2Bes) % + B26%%%}

_ <?g_§” + 85;3’) = gty — Il%

Awﬂ + (A2 + A66) o uo +A2682u0 +A668200 + 2A265—— O v
Ox? Ay? dx? 0xdy
[316683 + (B2 + 2Bgs) 32 5 33265:;;”—;2 + Bzz%ﬁﬁ}

_ (gé\;éjL %%) = Iytg —1185:0

BH%‘; + 331‘55@32% + (Blz + 2Bgs) aagg o+ BQ()%;U—;)

\ B %31;3 + (Bis + 2366) 28 + 3Bag 853(;;;2 + By %?Z?

535, o +2(D12 + 2Dg6) =7

B [ & wy g Mg Mty

822)0
26 8y2

(6.1.1)

82 Vo
22 8y2

(6.1.2)
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2asT oM o2MT R 2 . 2 . 2
_ aMzz+2 2y | vy +szw+2Nwa wo yya wo
Ox? dxdy Oy? Ox? Oxdy Oy?

dilg O 8 a2w0> (6.13)

+q=I1 (%—FEJ)%—IOIDQ—IQ <W+ 0y2

where N7 and MT denote thermal resultants defined in Eq. (3.3.41), and Nia, ny’

and Nyy denote the applied edge forces (see Figure 6.1.1).
Equations (6.1.1)-(6.1.3) can be cast in differential operator form as

¢l ci2 €13 U min 0 mag 1iQ 0 7t
Cl12 €29 (o3 Vo + 0 Mo Ma3 Vg =<0+ sz (6. 1.4)
13 €23 €33 wo mi3 Mag  M33 wo q il

where coefficients ¢;; are defined by

1

c1n = And2 + 2A16dzd,, + A66d§,
c12 = Aveds + (A12 + Ags)dody + Angd,,
e = — | Bud3 + 3Bigd2dy + (Biz + 2Bos)dzd;, + Baods |
con = Agpd= + 2As6dydy + A22d§
¢33 = — | Biod3 + (Bra + 2Bes)d2dy + 3Basdyd; + Bayds]
c33 = Di1dy + 4D1gd3dy + 2(D12 + 2Dgg)dad? + 4Dagdeds + Doady,
= [Naod? +2Nydydy + Ny (6.1.5a)

0
Noy

Figure 6.1.1: A plate with applied edge forces (N, = — N9

X

Nyy = _Ng(/)y)'

1 In order to make the coefficient matrices [C] and [M] symmetric, the third equation is
multiplied with a negative sign.
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coefficients m;; and f] are defined by

my = —Iod; , miz = Lded; , may = —Iod]
maz = Lidyd; | mas = Iod; — Ld} (d2 + d2) (6.1.5b)
4T = ONL, . ONZ,
U7 e Oy
T T
fT — % + 8_]\7_3&
2 ox Oy
2T OPME 9PM]
== M, +2 LA Yy (6.1.5¢)
Ox? Oyox Oy?
and di, d},, and dj denote the differential operators
, o - o O
T 8.’131 ’ y ayz ’ i 8# (Z 3 &y ) ( )

Note that the thermal forces and moments, (NI, NI NTy) and (ML, ML ]\ﬁ;),

zx Yyt Tz Pyy
are known in terms of the temperature distribution and material coefficients as

defined in Egs. (3.3.41a,b).

6.2 Admissible Boundary Conditions for
the Navier Solutions

In the Navier method the generalized displacements are expanded in a double
trigonometric series in terms of unknown parameters (see Section 5.2.2). The choice
of the functions in the series is restricted to those which satisfy the boundary
conditions of the problem. Substitution of the displacement expansions into the
governing equations should result in a unique, invertible, set of algebraic equations
among the parameters of the expansion. Otherwise, the Navier solution cannot be
developed for the problem.

The Navier solutions can be developed for rectangular laminates with two sets of
simply supported boundary conditions. Even for these boundary conditions, not all
laminates permit the Navier solution. We will determine which lamination schemes
permit such solutions. The geometry, laminate coordinate system, and the two types
of simply supported boundary conditions are shown in Figure 6.2.1. The two types
of boundary conditions are given below.

Simply Supported (SS-1): The displacement boundary conditions are

u(z,0,0,t) =0, u{x,b,0,t) =0, v(0,y,0,t) =0, v(a,y,0,t) =0
w(z,0,0,t) =0, w(z,b,0,t) =0, w(0,y,0,t) =0, wla,y,0,t) =0
ou Ou ov oLl
0z ' 9z ' 0z 0z

(0,9,0,t)

0

?

(,0,0,t) (,6,0,t) “llay.0.t)

(6.2.1)
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The boundary conditions associated with stress components (for a plate theory) are

R
/2 022(0,y,2,t)dz = 0, /

/ oyy(z,0,2,t)dz = 0,

ozz{a,y,z,t)dz =0

NESNTEN £

oyy(z,b,2,t)dz =0

SR
T
Nl

1 h
/2h 20.:(0,y,2,t)dz = 0, /2} 2042 (a,y,2,t)dz =0
2
[ﬁ z2oyy(z,0,2,t)dz = 0, /_ﬁ 2oyy(z,b,2,t)dz =0 (6.2.2)

2 2

d
| a .
__________ e B
' ]
at x=0 and x=a 1 I
3 I
vo=tg=32=01 |, S$S-1 b
Nu=My=0 | |, |
e |
—
at y=0 and y=b x
u0=wo=%:0
Nyszyy=0
d
| @ -

at x=0 and x=a T

¢
[
o~

uozwoz%flg=0
Ny=M, =0 L
b e e e e
at y=0 and y=b X
Ny=M,, =0

Figure 6.2.1: Types of simply supported boundary conditions, SS-1 and SS-2,
used in the analytical solutions of rectangular laminated plates.
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Simply Supported-2 (SS-2): The displacement boundary conditions are
u(0,%,0,t) =0, u(a,y,0,t) =0, v(x,0,0,t) =0, v(x,b,0,t)=
w(z,0,0,¢t) =0, w(z,6,0,t) =0, w(0,y,0,t) =0, wla,y,0,t) =0

ou ou Ov ov
a— =V, a_ =Y, = =Y, AT = O
000 “lzp0) “loy0.0) “layon
(6.2.3)
The boundary conditions associated with stress components are
h h
gl 2
/-ﬂ 02y(0,7,2,t)dz =0, /_g Oryla,y, z,t)dz =0
2
/_Eamy(x,(),z,t)dz:(), /any(a;,b,z,t)dz:(J
A i n i
2 2
/hzam 0,y,2,t)dz =0, /hzam(a,y,z,t)dzzo
N x
2 2
/’ zoyy(x,0, 2,t) dz = 0, /h 20yy(x,b,2,t)dz =0 (6.2.4)
3 3

In Egs. (6.2.1)-(6.2.4), a and b denote the in-plane dimensions along the x and y
directions of a rectangular laminate. The origin of the coordinate system is taken
at the lower left corner of the midplane, as shown in Figure 6.2.1.

As will be shown in the following sections, the Navier solutions using SS-
1 boundary conditions can be obtained only for laminates whose stiffnesses
Aig, Agg, Big, Bog, D1g, Dag, and Ay are zero. Thus, the Navier solutions for the
SS-1 boundary conditions can be developed for laminates with a single generally
orthotropic layer, symmetrically laminated plates with multiple specially orthotropic
layers, and antisymmetric cross-ply laminated plates. Similarly, the Navier solutions
using SS-2 boundary conditions can be obtained only for laminates whose stiffnesses
Aqg, Aog, B11, B, Bag, Beg, D16, Dog, and Ays are zero, i.e., for laminates with a
single generally orthotropic layer, symmetrically laminated plates with multiple
specially orthotropic layers, and antisymmetric angle-ply laminated plates.

6.3 Navier Solutions of Antisymmetric Cross-Ply
Laminates

6.3.1 Boundary Conditions

The stress boundary conditions in Egs. (6.2.2) imply, in view of Eq. (3.3.2), the
following SS-1 boundary conditions on the displacements and stress resultants of
the classical laminate theory:

up(z,0,t) =0, wo(x,b,t) =0, v9(0,y,¢) =0, wvo(a,y,t)=0
wg(CU,O,t) = 07 ’lU()(CE,b, t) O w0(07yat> = Oa wO(aay’t) =0
6w0 6w0

=0, =2
ox (2.b1) Ay

Owo
Oz

_o, Owo

(z,0,t)

=0
(a,y.t)

Y

(0,y,t) 9y

(6.3.1)
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Nzz(0,y,t) =0, Nm(a,y,t) =0, Nyy(m,O,t) =0, Nyy(l‘,b,t) =0
Mer(0,y,8) =0, Myz(a,y,t) =0, My(z,0,t) =0, My, (z,b,t)=0 (6.3.2)

The displacement boundary conditions of SS-1 in (6.3.1) are satisfied by assuming
the following form of the displacements

o0 [ee]
uo(z,y,t) = Z Z Upn(t) cos oz sin By (6.3.3a)
n=1m=1
o0 o0
(z,y,t) Z Z Vinn (t) sinax cos By (6.3.3b)
n=1m=1
o0 oo
(z,y,t Z Z )sinax sin By (6.3.3c)
n=1m=1
where @« = mn/a and 8 = nw/b and (Upmn, Vinn, Wimn) are coeflicients to be

determined. To see if the boundary conditions (6.3.2) on the stress resultants are
also satisfied, we substitute expansions (6.3.3) into the expressions for Ngz, Nyy
Nzy, Mgz, Myy, and My, given in Eqgs. (3.3.43) and (3.3.44):

8 8 8UO 8’1)0
=A A A
Ry + 128y+ 16(8 +8x)
82w0 82w0 82100
- B -B — 2B NT
153 12 5y° 168x8y s

o
gk

[—aAuUmn — BA19Vim + (Bua2 + B1252) Wmn] f(z,y)

3
ﬂ.
3
ﬂ\

[A16 (BUmn + aVimn) — 208B16Wia) g(z,y) — NL, (6.3.4a)

n
]38
K

3
I
—
3
I
)

ou ov Oug  Ov
Nyy = A1z~ + Azp > + Agg <*0 + —O>

8wy &%wy %y T
- Bio a2 B2 B2 - 2B268 Ay Nyy
=>> {—-OCA12Umn — BA2Vin + (B12a2 + 32252) Wmn} flz,y)

1m=1

3
Il

n
8
K

[A26 (BUmn + &Vinn) — 208BagWinnl g(2,y) — N, (6.3.4b)

n=1m=1
Oug Ovg Oug  Ovg
N. —
ay = A1~ + A By + Ao ( 5y + 8x>
T d?wy d%wq
- B - B - 2B —- NL
=> 3 [—aAwUmn — BA26Vinn + (316a2 + 326/32) Wmn] flz,y)
n=1m=1

[A66 (BUmn + aVinn) — 208BesWinn) g(z,y) — NI, (6.3.4c)

_|..
M8
NE

3
[
~
3
l
~
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Oug Oy <3u0 Ovo
M, Biy— +Bis;—+ B —_— 4 —
xx 11 or -+ 19 8y + D¢ ay (9$>
9wo &%y &%
-D D ML
o2 1275y 020 v

i i [ aB11Umn — BB12Vinn + (Dlla + D12f3 ) mn] f(z.y)

n=1m=1
+ Z Z [316 (ﬁUmn + avmn) - QCYﬁDIGWmn] g(I, y) - Mg;p (6353‘)
n=1m=1
U v ou v
Myy = By 8—0+B228—0+Bzﬁ<80 +a—;>
(9211}0 82w0 (92 T
-~ Dhg 922 Dss o 2D26a By - M,
Z [ OZBHUmn BBQQV’mn + (D12a + DQQBQ) mn} f(l' y)
n=1m=1

n=1 m:l
Oug Jug Oug dug
Myy = Big—— B
1675 +3268 + 66(8 +6a~>
62w0 82w0 6 wo
-D -D - 2D - Mr
16753 26 o° GGOxa Ty

= Z Z [ aB1gUmn — BBogVin + (Dl(}a + Dag3 ) mn} f(z,y)

+ Z Z [Bﬁb’ (ﬁUmn + avmn) - 20‘/6D66‘/an} g(.’II, Z/) - Affl/ (635C)

n=1m=1

where

flz,y) =sinax sinfBy , g(z,y) = cosazr cosfy (6.3.6)

Note that the boundary conditions in Eq. (6.3.2) on the stress and moment
resultants Ngg, Nyy, Mgz, and My, can be satisfied only if the laminate stiffnesses
Aqg, Age, Bis, Bag, D16, Dag are zero (because g(x,y) # 0 for z = 0,a or y = 0,b);
in addition, the thermal force and moment resultants must satisfy the boundary
conditions in Eq. (6.3.2). Thus, the Navier solutions for rectangular laminated
plates with SS-1 boundary conditions may exist only when the laminate stacking
sequences are such that

Ajg = Aog = Big = Bog = D16 = D2 =0 (6.3.7a)
NL(0,y,t) = Nl (a,y,t) = NL(2,0,t) = Nl (z,b,t) =0 (6.3.7b)

ME(0,y,t) = M (a,y,t) = M, (2,0,t) = M, (x,b,t) =0 (6.3.7¢)
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From Section 5.2.2, it follows that plates with a single generally orthotropic
layer, symmetrically laminated plates with multiple specially orthotropic layers, and
antisymmetric cross-ply laminated plates, which include the former cases as special
cases, admit the Navier solutions for the SS-1 boundary conditions. Although the
Navier solutions cannot be developed for general laminates, i.e., with no restrictions
on laminate stiffnesses, approximate or numerical solutions may be constructed, as
shown later in this chapter or in subsequent chapters.

6.3.2 Solution
Substitution of Eqgs. (6.3.3) and (6.3.7) into Egs. (6.1.1)—(6.1.3) yields

Z Z [—— (AHO(Q + A66ﬂ2> Umn - (A12 + A66) aﬂvmn

n=1m=1

+ (Blla3 + Blgaﬁ2) Wonn — ToUsnn + Ilann] cos ax sin By

_ (ONL, ~ON]L

= (uﬁ:v + 5% (6.3.8a)
> — (A12 + Age) aBUpmn — (A66a2 + A2252> Vinn
n=1m=1

+ (B12628 + B8 ) W — IoVinn + Ilﬁv"vmn} sin az cos By

ONT — 9NT
_ Ty yy
= <——8x 4 —8y ) (6.3.8b)

i i [ (Buiio® + Bi2a8?) U + (B12628 + B8 ) Vinn
n=1m=1

- <D11a4 +2D120° 8% + D22ﬂ4) Winn

- (QQN:M + ﬁQNyy) Wmn

+ IlaUmn + Il/gvmn - (IO + I?(a2 + ﬁ2)) Wmn‘| sinax sin ﬁy

T T
_ [(*M, N 282M$y . PM
Ox? Oxzdy oy?

yy) —q(z,y) (6.3.8¢)

where

Bia = Biz +2Bgs, Diz = Dia + 2Dgs (6.3.9)

Note that the edge shear force ny is necessarily zero (otherwise, the Navier solution
does not exist). In addition, for the class of lamination schemes admissible here,
inertia I must be zero.

An examination of Egs. (6.3.8) shows that the mechanical force ¢ and thermal
forces and moments of Egs. (6.3.8a-c) should also be expanded in the same form as
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their counterparts on the left side of the equality in Eqgs. (6.3.8a-c). For example,
the left side of Eq. (6.3.8c) has the form

g mm nm
Z Z Cgm sinazx sinfy, a=—, f=—
a
n=1m=1
where C2, is the expression in the square bracket of Eq. (6.3.8¢). Hence, the right

side of Eq. (6.3.8¢), which consists of the transverse load and thermal moments,
should also be expanded in double sine series. Thus, g(x,y,t) must be expanded as

q(z,y,t) = Z Z Qmn(t) sinazx sin By (6.3.10a)
n=1m=1
4 a rb
Qumn(t) == / q(z,y,t) sinax sin By dzdy (6.3.10b)
o Jo

Since the thermal moments ML M T, and My:';/ are defined in terms of the same

temperature increment AT(z,y,t) but they enter Eq. (6.3.8¢) with different
derivatives, it is expected that not all of them will contribute to the solution. If
the temperature increment is expanded as

o [e o]
AT(z,y,z,t) = z Z mn{(2,t) sinazx sin By (6.3.11a)

n=1m=
4
Ton (2, 1) :@/0 /0 AT(z,y,z,t) sinazx sin By dxdy (6.3.11b)

then we have from Eq. (3.3.41a,b)

N, oo oo [ Nha(t)
{ Ng; } = Z Z { 2 (1) } sin ax sin By (6.3.12a)
Ng;/ n=1m=1 mn(t)
Mg\ oo oo [ My(t)
{ Mg;, } = Z Z { M2, (t) } sin ax sin By (6.3.12b)
MII;; n=1m=1 M'r?zn(t)
N Zk4+1
(N (D)} = 3 / 0B (™) Ty (2, 1) d2 (6.3.13a)
k;l .
(M)} =S / QI {a}® Ton(2, 1) = dz (6.3.13b)
k=1"7%k

Thus we have
ONL, . ONZ,
Ox oy

= Z Z [ozN1 ) cos ax sin By + BNE, . (t) sinaz cos ﬂy} (6.3.14a)

n=1m=1

I =
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T T
ONE, | 0Ny,

T _
fr = ox dy
= Z Z [aNf,m(t) cosax sin By + SN2, (t) sin ax cos ﬂy] (6.3.14Db)
n=1m=1
o #PML  OPML,  0°M),
3 Ox? Oyox Oy?
o0 oo
= Z Z [— (aQM,%m(t) + B2M§m(t)) sin ax sin By
n=1m=1
+ 2a8M%, (t) cos ax cos ﬁy} (6.3.14c)

This particular expansion of temperature distribution necessarily requires that NS,
and M$ . be zero because they must be of the form [see Eqs. (6.3.8a-c)]

= i i fL (t) cosaz sin By

n=1m=1

= Z Z ff,m(t) sin az cos By
n=1m=1

fi= Z Z f3.(t) sinaz sin By (6.3.15)
n=1m=1

This requirement places a restriction on the lamination scheme in order for the
Navier solution to exist in the presence of temperature changes. The lamination
scheme must be such that

N Zk41 _ & N qlrm

3 / 101" (&Y B T (2, 8) dz = { N2, (6.3.16a)

k=1"%k 0

N Zk+1 M%@n
> / QP& O T (2,t) 2 dz = { M2, (6.3.16b)
k=1"%k

For single-layer plates with a generally orthotropic layer, symmetrically laminated
plates with multiple specially orthotropic layers, and antisymmetric cross-ply
laminated plates, the conditions in Eq. (6.3.16a,b) are automatically satisfied. In
order to include NS, and MS$,, the temperature distribution should be expanded
in a double cosine series. Then N\, N2 . M} =~ and M2 must be zero.

Substituting the expansions (6.3.10a) and (6.3.14) with N8, = M$S = 0 into
Eq. (6.3.8), we obtain expressions of the form

o 00

g

amn(t) cosazx sin By =0

3
Il
3
I

NE
M]3

bmn(t) sinax cos By =0

3
i
L
3
[
-

Cmn(t) sinax sinfy =0 (6.3.17)

Nk
Nk

3
I
o
3
l
~
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where @, bmn, and ¢, are coeflicients whose explicit form will be given shortly.
Since Eqs. (6.3.17) must hold for any m,n, z, and y, it follows that a,,, = 0, bmp =

0, and ¢, = 0 for every m and n. The explicit forms of the coefficients amn, bmn,
and ¢,,, are given by

A = — (A11a2 + A66,82) Upmn — (A12 + Ass) a8Vmn

+ (Bua?’ + BlzaﬂQ) Winn — aNL  — IoUpn + laWppn =0 (6.3.18a)

byn = — (A12 + Ags) aBUry, — <A66a2 + A22ﬁ2> Vinn

+ (3120126 + BQQBS) Wmn - ﬂann - I()an + Ilﬂwmn =0 (6318b)

Cmn = (311a3 + 312a52> Upin + (312012ﬂ + Bmﬂg) Vinn
- (D11a4 +2D120%3% + D22ﬁ4) Winn + Qmn
+a?ML 4+ BPME - (aQNm + ﬁzNyy) Wonn

+ 10U + 11 8Vmn — (I + Ia(0? + %)) Winn = 0 (6.3.18¢)
or in matrix form
¢11 C12 ¢13 Umn mi1 0 —ha Unin
é12 é22 é?S an + 0 m22 _Ilﬂ an
¢13 €23 (33 + 533 mn —La —5Lf M3 Won
0 —aN}
=< 0 4+ —BN2. (6.3.19)
Qmn a2]\/[71nn + ﬁ2M72nn
where ¢;; and m;; are
é11 = (A110? + Age3?)
¢12 = (A12 + Ags)af
é13 = —B11a® — (Bia + 2Beg)af?
o = (Agsa® + Aga8?)
é93 = —(B1a + 2Bgg)a’3 — By 3
¢33 = Dijot + 2(Dyy + 2Dg6) 0 5% + Doy 8
mi1 = Mo = I
M3z = (10 + L(a? + ﬁQ))
G233 = A® Ny + 2N, (6.3.20)

and @ = mm/a and 3 = nx/b.
Equations (6.3.19) provide three second-order differential equations in time
among the three variables Uy, Vinn, and W, for any fixed values of m and n.

For transient (i.e., time dependent) response, the differential equations in time can
be solved either exactly or approximately.
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6.3.3 Bending

The static solution can be obtained by solving the algebraic equations resulting from
Egs. (6.3.19) by setting the time derivative terms to zero:

Ci1 Ci2 13 Unn 0 —aNpy,
Ciz  C22 Ca3 Vim =< 0 »+ —BN2, (6.3.21)
¢13 ¢23 ¢33+ 833 ] \ Wi Qmn o?M}L, + B2 MZ,

which can be solved for the coefficients Upp, Vinn, and Wi, in terms of the
coefficients Qunn, N}, N2, ML ~—and M?2,. Then the final solution is given by
Egs. (6.3.3a-c).

Equations (6.3.21) can be solved using Cramer’s rule or by the method of static
condensation. The latter allows the elimination of a selected set of variables and
retains a desired set of variables. The method is useful in later discussions of this
book, and therefore it is described here. First, the column of unknowns is subdivided
into two parts, {Al} and {A2}, according to what is to be eliminated and what is to
be retained. Suppose that we wish to eliminate the coefficients associated with the
in-plane displacements and retain those associated with the transverse deflection.
Then Eq. (6.3.21) can be written as

[[[K”] [K”]] {{N}} _ {{Fl}} (6.3.22)

K (k2] ({a%}] T {7
where
{a'} = { gm” } , {A%} = Winn (6.3.23a)
mn
(K] = [2; gﬂ K= {22 }’ [K??) = &3 + 533
1y _ _aN71nn 27 _ 2ar1 2202
{F } - _BN2 ’ {F } - an t+a an + ﬁ ‘an (6323b)
mn

Equation (6.3.22) represents a pair of two matrix equations:
(KA + (KA = {F1), [KP2]T{AY) + [K2{A% = {F?} (6.3.24a,b)
Solving Eq. (6.3.24a) for {A'}, which is to be eliminated, we obtain
(A} = (K] (") - [K2){A%) (6.3.25)
Then substituting the result into (6.3.24b), we obtain
(&) - KRR ) (A% = (72} - (KT K Y HF'} (6.3.260)

or
[KP2{A%} = {F?} (6.3.26b)
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where

[KZZ] — [KQZ] _ [KlZ]T[K”]_l[Km]

(£} = {F?} - [K2)T [k EY (6.3.26¢)
This procedure of eliminating (or condensing out) a subset of unknowns is known in
structural mechanics as the method of static condensation. The calculation involves

solving for {A?} first, and then, if desired, solving for {A'!} next using Eq. (6.3.25).
Using the definitions (6.3.23) in (6.3.26) we obtain (when 5§33 = 0)

1 a a
Won = |:an + QQMszn + ﬁQMrin - (OZNT%WL) - (ﬁann)}
mn ag ag
1 1 - 2 .
Unmn = a_O [CLIWmn - aNmnC22 + ,BNmn012]
1 1 4 2 4
Vinn = a_ [GQWmn + aNmnCIQ - BNmncll} (6.3.27&)
0

where
A L, a1 L)
Amn = C33 + C13— + Co3—
ap ag
ap = C11622 — €12€12
a1 = C12€23 — €13C22
as — 613612 — 611623 (632713)

Solution of Eq. (6.3.27a) for each m,n = 1,2, ... gives (Unn, Vinn, Wmn), which can
then be used to compute the solution (ug, vy, wp) from Eq. (6.3.3). If there are no
thermal loads, the solution becomes

a a
Wmn _ an ’ Umn _ 1an an _ Qan

M
Amn aglmn apglmn

(6.3.28)

Note that for antisymmetric cross-ply laminates, Bgg = 0 and the coefficients in Eq.
(6.3.27a) can be simplified.

6.3.4 Determination of Stresses

The in-plane stresses in each layer of a laminate are calculated from constitutive
relations in Eq. (3.3.12a). Accounting for only mechanical and thermal effects, we

obtain
Ozx (k) —Qll QlQ QlG_ (k) Exx (87
Tyy = |Gz Qa2 Q% Eyy ¢ — 1 Qyy ¢ AT
Ty L Q16 Q2 Qo6 ] 2e4y 20y

[Qu Q12 Qs ] Foeh —ame To
= | Q2 Q22 Q2 { ey — yy T0 }
Qs Qa6 Qes] L 2(e), — auwy To)
Qu Qu Qis]" ( €t —Th
+z EQQ Q22 QQG] { Egy — Oy T } (6.3.29a)
Qs Q2 Qe 2(eg, — azyT1)
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where temperature increment AT is assumed to be of the form

AT(z,y,2,t) = Z (Tr?m + zTﬁm) sin ax sin By (6.3.29b)

m=1n=1

The in-plane stresses of a simply supported (SS-1) cross-ply laminate (i.e., when
Q16 = Q26 = 0 and oy = 0) are then given by

{O’xw }(k) o 0o [Qu Qiz 0 }(k) { (REX + zS*% Ysin ax sin By }

Oyy => Z Quz Qxn 0 (RYY, + zSY%Y )sin o sin By
Oy m=ln=1| 0 0  Qses (RYY + zS* ) cosax cos By
(6.3.30a)
R;tnxn —0oUmn — aIITr?m angil QZWmn - aszr}nm
RY b =3 —BVin —ayyTon ¢+ § S, ¢ =2 B*Wpn — ayy Ty } (6.3.30b)

The maximum normal stresses occur at (z,y,2) = (a/2,b/2,—h/2), and the shear
stress is maximum at (z,y, z) = (a,b, —h/2).

The transverse stresses in a laminate can be determined using the 3-D equilibrium
equations [see Eqs. (5.2.14)] for any 2z < z < 241

z (9 Q(E];) (k)
== ( G+ ) a v P
Zk

Ox dy
z Bag(gk) Aol
a?(j;) :—/ < aa:y —l—a—?;y dz+C§k)(3:,y)
Zk
z (568 gtk
o,ﬁ’?:—/ ( g; +g—z dz + CF (3, y) (6.3.31)
2k

where o), U;(zjky)7 and 03(,];) are known from Eq. (6.3.29), and Ci(k) are functions to be

determined using the boundary conditions
0222, y, —h/2) = oy (x,y, —h/2) = 0, (x,y,—h/2) =0 (6.3.32)

and continuity of stresses at layer interfaces:

g.s:l;) (.’E, Y, zk-{-l) = 0;§+1)(l‘, Y, Zk+1)
O-g(jg) (37, Y, Zk+1) = ag(jlz+1) (l‘, Y, Zk-i—l)

O-,(zlz) (:I:v Y, Zk-l-l) = U§§+1) (CL‘, Y, Zk:+1) (6333)

Substituting for the in-plane stresses from Eq. (6.3.30) into Eq. (6.3.31) and
integrating with respect to z, we obtain

(k) (k) 2_ 2 (k) (k)
Ozz _ _ Az, z “k B;. C1
{Uyz} (2= =) { Ayz} + ( - ) { Byz} + { 02} (6.3.34a)
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where
k k
AW = - [le) (€9, — QaaTh) o + le ( — ayyTo) o + 2Q§6)(52y — QazyTo) o
kK, o0 T k), 0 T 9
+Q1¢ (22 — az 0),y + Qg (5yy Qyy 0) + QGG( Exy — azyTo) y
k k k
Bg(c'i) == [Q(u) (5:}:1- - O‘MTI),I + ng) (‘Eg}/y - O‘nyl),r + QQgﬁ) (5alcy — azyT1) e
(k)1 k), 1 ]
+Q16 (gzz - amTl),y + Q26 (gyy - anyl) + QQ()() ( Exy azyTl),y
Ag(/];) = - lezs)(fgx — 0 To) o + Qgg') (5211 — ayyTo) z + 2Qgé)(52y — agyTo)
k k k ]
+Q15 (% — 0aaTh) y + Q8 (29, — gy To) y + 2Q8 (2, — 0y To)

B = — Q) (e, — aweTi) o + Q3 (eh, — ayy T1) o + 2Q) (€L, — ay T1)

+Q<"’>( — g Th) g + Q%) (el — ayTh)., +2Q(k)( —agyT)y
(6.3.34b)

and a comma followed by x or y denotes differentiation. The boundary conditions
(6.3.32) yield C R C’é ) — 0. The interface continuity conditions (6.3.33) result in

k+1 k
Y = o (@, y, zk1), CFY = o) (2, y, 2ap) (6.3.35)
for k=1,2,---,n, where n denotes the number of layers.

Substitution of the displacement and temperature expansions from Eqgs. (6.3.3a-
¢) and (6.3.14a-~c) into Eq. (6.3.34b) yields the following expressions for interlaminar
transverse shear stresses:

hE
NE

ng)(x,z ,2) = [(z — zk)_AT(ﬁzl + 1 2

2( - z%)Bﬁ,’f}L} cos ax sin By

I
—
3
I
—

m

+ oD (a,y, 1)

Mg

Nz,y,2) =Y

m—=

1
{ z—z)CR) 4 §(z2 — zﬁ)Dﬁ,{fg} sin azx cos By

_

3
I}

MR

+ oDz, y, 2) (6.3.36a)

where ag(cg)(:c,y, z1) =0, a@(f? (z,y,21) =0 and

Aﬁr’;)m = (a2Qﬁ) + 52(2%[2)) Umn + aﬁ <Q12) + Q(k)) mn
+a (Qllaxx + Ql2ayy) Tgm
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Bﬁ,’f% = - {ag‘Qﬁ) + a3 (QY;) + 2@%2))} W,
& (Qllaxx + Ql?ayy) Trl,m
e = ap (QF + QL) Unn + (a2 + 5*Q%)) Viam
+ 8 (QlQamz + QQQayy) Tyorm
DY), = - o8 (Q1F) +20K)) + 5°Q% | W
+ 3 (Ql?awz + Q22ayy) Tr%m (6336b)
The maximum of o, occurs at (z,y, z) = (0,b/2,0), and the maximum of o, occurs

at (z,y,2) = (a/2,0,0).
The transverse normal stress is given by

0o o0 2
sy = - 3| (5 - o) (oAl + 50f)
1

23 22k

2k () (k) (k)
+ ( - — 2k ) (aB) + 5DR)) + X

X sin az sin By (6.3.37)

where the functions E,Sfr)b are determined using the boundary and interface continuity
conditions. We obtain

£ = =" (ad) + L) + 2 (o) + 5DD)

£ = £ff) - anys (52 — ) (ad®) + ACfh)
— Zkt1 (% - %’3> <al37(,lf7)1 + ﬁpgf'r)z)
_%(Q'Ak—kl +ﬁck+1)
_ % (aggfrjl) + BDKFD ) (6.3.38)

fork=1,2,---,n
The bending moments can be calculated from Egs. (6.3.5a-c)

My, o o |Biy1 By 0 RZ sin oz sin By
{ My, } = Z Z Bia Bys 0 { RYY sin az sin By }
Mz, m=1n=1| 0 0 Bes RZY cos ax cos By
o oo |Diy Dig 0 SEL sin ax sin By
+ Z Z D1y D9y 0 { Syy sin ax sin By } (6.3.39)
m=in=1[ 0 0  Des SEY cosax cos By
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For the definitions of R’s and S’s, see Eq. (6.3.30b). The maximum values of
My, and My, occur at (z,y) = (a/2,b/2), and the maximum of My, occurs at
(z,y) = (0,0).

The following nondimensionalizations are used in presenting the numerical
results:

b = wo(a/2,0/2) 1 P (a/2,b/2,2) e (6.3.40a)
w = 0 ’ a4q0 v Oxx = Ogzg 9 ) (12(10 Q.

h? h?
Tyy = oyyla/2,b/2, 2) (@g) . Oxy = 0y(a, b, 2) <%> (6.3.40b)

Tables 6.3.1 and 6.3.2 contain nondimensionalized deflections and stresses for
antisymmetric cross-ply laminates (all B;;, except for By = —Bag, are zero, and
Ag = Agg = D1g = Do = 0) under various types of mechanical loads. For
comparison, results of symmetric laminates are also included. From these results
it is clear that, for the same laminate thickness, antisymmetric cross-ply laminates
with four or more layers are more desirable than two-layer laminates due to the
reduction in deflections as well as stresses. The difference between two-layer and
four- or eight-layer laminates is due to the bending-stretching coupling coefficients
B;j, which are dominant in the case of two layers. As the number of layers increase,
the B;; decrease and the laminate essentially behaves like a specially orthotropic
plate.

The effect of stacking sequence on nondimensionalized maximum deflection
w x 10% and in-plane normal stress —o.(a/2,b/2,—h/2) of (0/90) and (0/90)ks
laminates under uniformly distributed transverse load can be seen from the results
presented in Table 6.3.3. The following notation is used: (0/90)2 = (0/90/0/90)
and (0/90)2s = (0/90/0/90)s. The material properties used are G'12 = G13 = 0.5F3,
Gz = 0.2F5, and vo = 0.25, and the series is evaluated using m,n =1,3,---,30.

Table 6.3.1: Transverse deflections and stresses in composite laminates
subjected to sinusoidally distributed transverse load (E;/Es = 25,
G =Gz = 0.5F9, Gag = 0.2Fy, 1o = 0.25).

Laminate (b/a=1)* (b/a=3)t
W x 102 Gy Fyy Gy @ x 102 Gy —Fyy Ty

0 0.4312 0.5387 0.0267 0.0213 0.4859 0.6016 0.0087 0.0080
(0/90/0) 0.4312 0.5387 0.0267 0.0213 0.5034 0.6233 0.0090 0.0083
(0/90) 1.0636 0.0843 0.7157 0.0525 2.4628 1.6411 0.2065 0.0417
(0/90) 0.5065 0.0357 0.4868 0.0250 1.0850 1.0332 0.1267 0.0181
(0/90)4 0.4479 0.0296 0.4950 0.0221 0.9519 1.0425 0.1269 0.0158

* Gaox(aj2,b/2,h/2), Tyy(a/2,b/2,h/2), and Gry(a,b,—h/2) = —Fuy(a,b,h/2). For square

antisymmetric cross-ply laminates, we have

oax(a/2,b/2,£h/2) = Fo,y(a/2,b/2,Fh/2).
P Gun(a)2,b/2,~h/2), ayy(a/2,b/2,h/2), and Gay(a, b, —h/2).
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Table 6.3.2: Transverse deflections and stresses in square laminates subjected to
uniformly distributed transverse load (UDL) or central point load
(CPL) (El/EQ = 25, Gio = G13 = O.5E2, G23 = 0.2E2, V19 =
0.25; m,n = 1,3,---,20 are used to evaluate the series). See the
foot note (*) of Table 6.3.1 for stress locations.

UDL CPL
Laminate Wx 102 Gya Gyy Oxy wx 102 Gy Tyy Oy
(0/90) 1.6955 0.1268 1.0761 0.0933 4.6664 0.8019 6.8217 0.1932
(90/0) 1.6955 1.0761 0.1268 0.0933 4.6664 6.8217 0.8019 0.1932
(0/90)3 0.8085 0.0541 0.7367 0.0442 2.2105 0.3298 4.4952 0.0932
(0/90)4 0.7150 0.0449 0.7496 0.0391 1.9536 0.2728 4.5553 0.0825

Table 6.3.3: Effect of lamination scheme on the deflections @ x 10? (first row)
and stresses G,; (second row) in square laminates subjected to
uniformly distributed load (UDL).

[(0/90)]* [(0/90)s]
k BL=5 10 15 20 25 £=5 10 15 20 25
2 2
1 3.071 2529 2169 1.902 1.695 2.273 1435 1.047 0.824 0.680
0.503 0.714 0.867 0.984 1.076 0.569 0.704 0.765 0.801 0.824
2 2440 1.620 1214 0971 0.809 2.282 1.445 1.057 0.833 0.687
0.500 0.619 0.678 0.713 0.737 0.568 0.704 0.767 0.803 0.827
4 2.321 1.487 1.094 0865 0.715 2.283 1447 1.058 0.834 0.688
0.523 0.641 0.697 0.729 0.750 0.565 0.700 0.763 0.799 0.823

* goe(z=—h/2) = oyy(z =h/2). T —0ua(z=—h/2) = 04u(z = h/2).

For the (0/90)x (antisymmetric cross-ply) laminates, both heterogeneity and
anisotropy ratio influence the deflections, which decrease as the number of layers is
increased. For (0°/90°)s laminates, heterogeneity has little effect on deflections and
stresses. The anisotropy ratio affects deflections and stresses; deflections decrease
and stresses increase with increasing value of E;/F,. Also, for antisymmetric
laminates the deflections decrease and stresses increase with the number of layers
for a fixed anisotropy ratio.

Figures 6.3.1 through 6.3.4 show the effect of bending-stretching coupling and
plate aspect ratio on the transverse deflection w = wgEh3/ (qob4) and normal
stresses & = [h?/(qob?)]o(a/2,b/2,2) for a fixed z = 2. The material properties
used are E)/FEy = 25, Gio = Gi13 = 0.5F, and vi2 = 0.25. The magnitude of
deflections and stresses of symmetric laminates (0/90/90/0) are about two to three
times that of antisymmetric (0/90/0/90) laminates for a/b > 1. For the uniformly
distributed load there corresponds an aspect ratio, around a/b = 2.25 for (0/90)2
and a/b = 3.5 for (0/90)s, for which the deflection is the maximum of all aspect
ratios.
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Figure 6.3.1: Nondimensionalized center transverse deflection (w) versus plate
aspect ratio (a/b) of simply supported (SS-1) laminates.
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Figure 6.3.2: Nondimensionalized normal stress (F..(a/2,b/2,—h/2)) versus
plate aspect ratio (a/b) for simply supported (SS-1) laminates.
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Figure 6.3.3: Nondimensionalized normal stress (Gy,(a/2,b/2,h/2)) versus plate
aspect ratio (a/b) of simply supported (SS-1) laminates.
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The effect of coupling is to increase the deflections and stresses. The coupling
coefficients B;; decrease in magnitude (hence the effect of coupling decreases) with
the increase in the number of layers (for the same total thickness of the plate)
in antisymmetric cross-ply laminates. The nondimensionalized center deflection
w = wyFah3/(qob*) versus the aspect ratio a/b is shown in Figure 6.3.5 for (0/90);
(k = 1,2,3,4) laminates under sinusoidal transverse loading (E; = 25E,, G2 =
Gz = 0.5F3, Gog = 0.2F9, v192 = 0.25). The nondimensionalized deflections of the
six-layer and eight-layer plates approach the limiting case of an orthotropic plate.

The dependence of the coupling effect on the modulus ratio is illustrated in
Figure 6.3.6, where the maximum nondimensionalized deflection is plotted against
the modulus ratio E1/FEs (G12 = G13 = 0.5E5, and v12 = 0.25) for the sinusoidal
load. The solution rapidly approaches that of an orthotropic plate for increasing
number of layers.

Figures 6.3.7 and 6.3.8 show the distribution of the nondimensionalized maximum
normal stress and transverse shear stress

Oz = Urx(a/2a b/2a Z)(h2/QObQ)a Orz = 042(a, b/27 Z)(h/QOb)

computed using the 3-D equilibrium equations, through the thickness of two-
layer and eight-layer antisymmetric cross-ply laminates under sinusoidal loading
(a/b=1, a/h =100, E; = 25E,, G2 = G13 = 0.5F, 112 = 0.25). The two-layer
plates experience larger stresses than eight-layer plates, and the stress concentration
is reduced in the latter. Thus, the effect of the bending-stretching coupling present
in two-layer plates on stresses is to increase the magnitude of stresses.

6.3.5 Buckling

For buckling analysis, we assume that the only applied loads are the in-plane forces

. . N,
Nzz = —No, Nyy = —kNo, k= =% (6.3.41)

rr

and all other mechanical and thermal loads are zero. From Eq. (6.3.19) we have
the eigenvalue problem

é11 é12 é13 U’mn 0
G2 €22 C23 Vim =140 (6.3.42)
é13 CGa3 33 — No(a? + k3?) Winn 0

where ¢;; are the coefficients defined in Eq. (6.3.20). For a nontrivial solution,
Unn £ 0, Vi # 0, and W, # 0, the determinant of the coefficient matrix in
(6.3.42) should be zero:

cir Ci2 €13
Cla €22 é23 =0 (6.3.43)
¢13 Ga3 e33 — No(a? + k%)

or
dinn, mm nmw

B== (6.3.44a)

Ny ————— _
0% W@+ kpd) T a0 b
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where . . .

€11 C12 (13
C12 Coa  Co3
¢13 Co3  Cs3

rmn = , ap = C11622 — C12C12 (6.3.44b)

Alternatively, using the static condensation procedure described in Eqgs. (6.3.22)-
(6.3.26), we obtain

¢13Co9 — Co3l 11093 — €192€

. 9 9 1322 — C23612 11623 — ¢12613

{033~—N0 (a +k5>—————A ~ ————f13 — ——————Co3| Wpin =0
é11692 — é12¢12 é11622 — €12612

Since Wi, # 0, we obtain

1 . C13Co2 — €23C12 , ¢11623 — C12€13
Ny 33 ¢13 — o3

- - = — - 6.3.45
a? + k32 C11€22 — €12€12 C11€22 — €12€12 ( )
Clearly, for each pair of m and n, there is a unique value of Ny. The critical

buckling load is the smallest of all Ny = Ny(m,n):

min
Ner = {No(m,n)} (6.3.46)

1<m,n<oo

Since ¢;; depend on m and n, No(m,n) is a complicated function of both m and n
and no simple conclusions can be drawn about the mode (m,n) at buckling.

Antisymmetric cross-ply laminates have special stiffness characteristics given in
Eq. (6.3.7a). Hence the buckling load for antisymmetric cross-ply laminates is given
by Eq. (6.3.44a) or (6.3.45) with coefficients ¢;; from Eq. (6.3.20).

For specially orthotropic plates, neither shear-twist coupling nor bending-
extension coupling exists (¢é13 = é3 = 0), and therefore Up,, and Vi, are zero
prior to onset of buckling. Therefore, we have (cf. Eq. (5.5.5a))

€33
Nog=——+—"—— 6.3.47
07 (o + kB ( 8)
¢33 = Dot + 2(Dyg + 2Dgs)a* 8% + D3t a = % , B= pg (6.3.47b)

Table 6.3.4 shows the effect of stacking sequence, plate aspect ratio, and
modulus ratio on nondimensionalized critical buckling loads N = Nc,,(b2 /72 Das)
of rectangular laminates under uniform compression (k = 0) as well as biaxial
compression (k = 1). The following material properties were used: material 1:
E\/Ey = 25, G2 = Gi13 = 0.5E3, v13 = 0.25; and material 2: E\/FEy = 40,
G12 = G13 = 0.5F3, v12 = 0.25. In all cases (also see Figures 6.3.9 through 6.3.11)
the critical buckling mode is (m,n)=(1,1), except for the antisymmetric cross-ply
laminate, with aspect ratio a/b = 1.5, in uniform compression. In the latter case,
the mode is (2,1). The nondimensionalized buckling load increases for symmetric
laminates whereas it decreases for antisymmetric laminates as the modulus ratio
increases.
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Table 6.3.4: Effect of lamination scheme, aspect ratio, and modulus ratio on the
nondimensionalized buckling loads N of rectangular laminates under
uniform compression and biaxial compression (material 1).

(0/90)as = (0°/90° /0° /90°) (0/90), = (0°/90° /90° /0°)

% =5 10 20 25 40 10 20 25 40
2

Sl
I
[

Uniaxial compression (k = 0)

0.5 4.705 4.157 3.828 3.757 3.647 13.900 18.126 21.878 22.874 24.590
1.0 2.643 2.189 1.923 1.866 1.778 5.650 6.347 6.961 7.124 7.404
1.5 2.955 2487 2.211 2.152 2.061 5.233 5.277 5310 5.318 15.332

Biaxial compression (k = 1)

0.5 3.764 3.325 3.062 3.005 2.917 11.120 12.694 13.922 14.248 14.766
1.0 1.322 1.095 0.962 0.933 0.889 2.825 3.174 3481 3.562 3.702
1.5 1.009 0.860 0.773 0.754 0.725 1.610 1.624 1.634 1.636 1.641

The mode number is (m,n) = (1,1) for all cases, except for the following: (a) (0°/90°)s, a/b=1.5
and k = 0: mode is (2,1); (b) (0°/90°)s, a/b = 0.5 and k = 1: modes are (1,1), (1,2), (1,2), (1,2),
and (1,3) for modulus ratios 5, 10, 20, 25, and 40, respectively.
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Figure 6.3.9: Nondimensionalized buckling (N) load versus plate aspect
ratio (a/b) for simply supported (SS-1) antisymmetric cross-ply
laminates (0/90), under uniaxial compression.



322 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

5-0 _] TTTT TTTT TTTT TTTT TTTT ’ r1rrr I TTTT 1T I_

_: Material 1 _:

4.0{ alb=05 (n=n=1) —j

Iz, = —
g N < y Y .
= ] Ny 3 H bl = No 1
& 3.0 =2 v & -]

i ] a —> ]
g 3

m n ab=15 m=2, n=1)
2.0 =

E ab=1 (m=n=1) E

1.0 - TTTT I TTTT I TTTT [ TTTT I TTTT | TTT1T | T T 17 | T 171 I*

0 5 10 15 20 25 30 35 40
Modulus ratio, E{/Es

Figure 6.3.10: Nondimensionalized buckling load (N) versus modulus ratio
(E1/E») for antisymmetric cross-ply laminates (0/90)2 under
uniaxial compression.

@
o

IIIIXIIIIIYIII]IIIIIIIIIIIII

All laminates have the Material 2
same total thickness

w0
=)
I

Buckling load, N

2.0

[y
Ot

(0/90),

e = '
9] [
I NS A W

(0/90)

Illlllllllillill}LllLllllllllIllll

o
o

l\||III|||IIVI|ITII|IIII|IITI

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Plate aspect ratio, a/b

Figure 6.3.11: Nondimensionalized biaxial buckling load (/N) versus plate aspect
ratio (a/b) for antisymmetric cross-ply laminates (0/90), (n =
1,2,3) under biaxial compression (k = 1).



ANALYTICAL SOLUTIONS OF RECTANGULAR LAMINATES USING CLPT 323

6.3.6 Vibration

For free vibration, all applied loads and the in-plane forces are set to zero, and we
assume a periodic solution of the form

Unn(t) = U2, €™t Vin(t) = VO et Wi (t) = WO, et (6.3.48)

mn mn

where i = v/—1 and w is the frequency of natural vibration. Then Eq. (6.3.19)
reduces to the eigenvalue problem

11 Ci2 €13 myp 0O 0 Ul 0
( G1o b9 bog | —w? | 0 g O > Vo =<0 (6.3.49)
613 623 633 0 0 Thgg ng 0

For a nontrivial solution, UY, # 0, V2 +# 0, WO, # 0, the determinant of
the coefficient matrix in (6.3.49) should be zero, which yields the characteristic
polynomial

X+l —rA+s=0 (6.3.50)

where A = w? is the eigenvalue and

muir 0 0 11 C12 €13
p= 0 myp 0 |, s=|Ca (o (23
0 0 a3 €13 Cp3 €33
cn 0 0 mip ¢z 0 min 0 éi3
qg=|Cla Moo 0O |+ 0 D) 0O |+] O Moy €23
iz 0 1hgg 0 Co3 7hgs 0 0 ¢33
¢ir ¢z 0 i 0 éig myp iz C13
r =g €99 O |+1c1a Moy éo3|+]| O Cons (o3 (6351)
C13  C23 33 ci3 0 ¢33 0 ¢Go3 €33

The real positive roots of this cubic equation give the square of the natural frequency
wmn associated with mode (m,n). The smallest of the frequencies is called the
fundamental frequency. In general, wi; is not the fundamental frequency; the
smallest frequency might occur for values other than m =n = 1.

If the in-plane inertias are neglected (i.e., M1 = Moz = 0), and irrespective of
whether the rotary inertia is zero, Eq. (6.3.50) takes the same form as Eq. (6.3.43)
with No(a? + k3?) replaced by w?rs33. Hence, from Eq. (6.3.43) we have

1 C13C22 — C23C C11C23 — C12€
2 R 13€22 — €23C12 11€23 — C12€13
C33 — €13 — 23 (6.3.52)

W == P P : P -~
ma33 C11€C22 — C12C12 C11C22 — C12€12

Note that if the in-plane inertias are not neglected, the eigenvalue problem cannot
be simplified to a single equation even if the rotary inertia is zero.
Nondimensionalized frequencies, &, = wmn(b?/72)\/ph/Das, of specially
orthotropic and antisymmetric cross-ply square laminates are presented in Table
6.3.5 for modulus ratios F1/FE9=10 and 20 (G12 = G13 = 0.5F3,Ga3 = 0.2F5, 112 =
0.25). All layers are of equal thickness. Results are presented for m,n = 1,2, 3, and
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for the case in which the rotary inertia is neglected. The fundamental frequency
increases with modular ratio. As noted earlier, the effect of including rotary inertia
is to decrease the frequency of vibration. Note that the first four frequencies for
an orthotropic (0°) plate correspond to the modes, (m,n)=(1,1), (1,2), (1,3), and
(2,1), whereas for antisymmetric cross-ply plates they are (m,n)=(1,1), (1,2), (2,1),
and (2,2). For symmetric cross-ply plates the first four frequencies are provided by
the modes: (m,n)=(1,1), (1,2), (2,1), and (1,3). Also, we note that wy,, = wnm, for
antisymmetric laminates.

Table 6.3.5: Nondimensionalized frequencies @ of cross-ply laminates according
to the classical plate theory.

m n (0) (0/90) (0/90)5 (0/90) (0/90).
Ey/Ey =10
1 1 3.672 1.183 1.479 1.545 2.519
1 2 5.996 3.174 4.077 4.274 4.986
1 3 10.648 6.666 8.698 9.136 9.783
2 1 13.075 3.174 4.077 4.274 8.515
2 2 14.690 4.733 5.918 6.179 10.077
2 3 18.181 7.927 10.034 10.494 13.783
3 1 28.868 6.666 8.698 9.136 18.704
3 2 30.258 7.927 10.034 10.494 19.911
3 3 33.053 10.650 13.317 13.904 22.674
Ey/Ey =20
1 1 4.847 0.990 1.386 1.469 2.638
1 2 6.781 2.719 3.913 4.158 4.917
1 3 11.111 5.789 8.456 8.998 9.637
2 1 18.193 2.719 3.913 4.158 9.354
2 2 19.388 3.959 5.547 5.877 10.554
2 3 22.153 6.702 9.507 10.088 13.826
3 1 40.539 5.789 8.456 8.998 20.752
3 2 41.542 6.193 9.507 10.088 21.578
3 3 43.623 8.908 12.481 13.224 23.746

Figure 6.3.12 shows a plot of fundamental frequency @ versus aspect ratio a/b for
symmetric (0/90), cross-ply and antisymmetric (0/90)2 cross-ply laminates. The
material properties used are F1/Fy = 40, G12 = G135 = 0.6F, and vi2 = 0.25.
Figure 6.3.13 shows the effect of coupling between bending and extension on
the fundamental frequencies of antisymmetric cross-ply laminates. The material
properties used are E1/Fy = 25, G1a = G153 = 0.5Es, and v12 = 0.25. With an
increase in the number of layers, the frequencies approach those of the orthotropic
plate. The bending-stretching coupling has the effect of lowering the vibration
frequencies. For example, the two-layer plate has vibration frequencies about 40
percent lower than those of eight-layer antisymmetric laminate or orthotropic plate
with the same total thickness.
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6.4 Navier Solutions of Antisymmetric Angle-Ply
Laminates

6.4.1 Boundary Conditions

The SS-2 boundary conditions in Egs. (6.2.7) imply the following conditions on the
generalized displacements and stress resultants of the classical laminate theory:

u0(05y7t) = 07 uO(a Y, ) 0 Uo(.’E,O,t) = 05 UO(CE b t) =0
wo(x,0,t) =0, wo(z,b,t) =0, we(0,y,t) =0, wy(a,y,t)=0

Bwo
Oz

Bwo
oz

9o
2 8y

9w
? 8y

=0,
(2,0,t)

=0 (6.4.1a)
(a,y,t)

(z,b;t) (0.3:%)

Niy(0,7,t) =0, Npyla,y,t) =0, Ngy(z,0,t) =0, Ngy(z,b,t)=0
M2 (0,y,t) =0, Mge(a,y,t) =0, Myy(z,0,t) =0, My (z,bt)=0 (6.4.1b)

The displacement boundary conditions in (6.4.1a) are satisfied by assuming the
following form of the displacements

o] o0

uo(z,y,t) = Z Z Upnn (1) sinazx cos 3y (6.4.2a)
n=1m=1

volz,y,t) = Z Z Vin(t) cos ax sin By (6.4.2b)
n=1m=1
o0 oo

wo(z,y,t) = Z Z Wn(t) sinaz sin By (6.4.2¢)

n
3
n

n

where a@ = (mn/a) and 8 = (nn/b). Substituting the expansions (6.4.2) into the
expressions for Ny, Nyy, Ney, Mgz, My, and My, we obtain

Oug Ovg Oug  Ovg
Ana +A128 +A16(8 +6x>
92wy 82wy % wy
- - B -2
Bu— 5 —Bup o By 16 520y
= Z Z (aA11Umn + BA12Vimn — 2B16a Wy, ) cos az cos By
n=1m=1
+ Z Z [ Ate (/BUmn + O4an) (Blla + BLZ/BQ) mn] sin ax sin By
n=1m=1
Buo (9 8UO 81)0
Nyy = Alo——=+ Ao A
Y 128x+ 8y+ 26((9 +8m>
8wy 8wy 0%wg
-~ Bij9——=— —B — 2B
12753 2o 5,2 2683:83/
o0 o>

Z Z (aA12Unmn + BA22Vimn — 2BogaSWn, ) cos ax cos By
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+
]38
M8

[ 926 (BUpmn + aVipn) + (Blga + B3 ) mn] sin ax sin Sy

n=1m=1
6u0 (9 auO 81)()
Ny, = A + A A
Ty 1683: 268y+ 66<a +8x)
8271)0 (9211)0 02100
— Big——5 — — — 2B
16753 Bas 12 5 5udy

Z Z OfAAl()[]mn + /8A26‘/;HTL - 20‘6866Wmn] COs ar COS By

.
+y Z [ Age (BUmn + aVipn) + (31604 + B3 ) mn:| sin ax sin By

n=1m=1

My = Buaauo + B2 %UO + Big (% %)
_ D11 8211}0 o 82’LU0 16 (9211)0
Ox? Oy? 0y
o o0
= Z [aB11Umn + BB12Vimn — 208D16 W] cosax cos By
n=1m=1

+> 03 {—Bm (BUpin + aVinn) + (Dna + D123 ) mn} sin o sin By

Oug dvg Jug Ovg
My, = Bio—— o + Bag—— By + Bog (8_ + W)
(9211)0 6211}0 8211)0
~Duga ~Degy —2ng0,
= Z Z [a312U7n7L + ﬁB22‘/mn - QaﬁDQ(}Wmn] COS x&r COS /By
n=1m=1
+ Z Z [ B26 ﬁUmn + avmn) (D120( + D2252) mn} sinazx sin ﬁy
n=1m=1
aUO 8’00 (9U() 81)0
M., = Big— + Boys— + B i)
Ty 1€8x+ 26ay+ 66(8 +8$>
*wy 0%wo 9wy
— Dya—9 _ _
16753 Dag 52 66575

oo oo
= Z Z [aBlﬁUmn + BB26Vinn — QQﬂDGGWmn] cos ax cos By

n=1m=1

+ Z Z [ Bes (BUppn + aVipn) + (lea + Dogf3 ) ,,m} sin ax sin By

n=1m=1

(6.4.3)

Note that the boundary conditions in (6.4.1b) on the stress resultants N, M., and
M, can be satisfied only if the laminate stiffnesses A1g, A2g, B11, B12, Bao, 366, D,
and Dgg are zero. Thus, the Navier solutions for rectangular laminated plates with
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SS-2 boundary conditions exist only when the stacking sequences are such that
A1g = Age = B11 = Bia = Baa = Beg = D1 = D2g = 0 (6.4.4)

In addition, for dynamic problems, we must have I; = 0. Thus plates with a single
generally orthotropic layer, symmetrically laminated plates with multiple specially
orthotropic layers, and antisymmetric angle-ply laminated plates admit the Navier
solutions for the SS-2 boundary conditions.

6.4.2 Solution

Substitution of Eq. (6.4.2) into Egs. (6.2.1)—(6.2.3) yields

0 o

> [- (A11a2 + A66,62) Umn — (A12 + Ae6) aBVimn + (3Bl6a2ﬂ + 32653) Winn

n=1m=1
ONL  ON, ;’;l
AL + %I
Or dy

—_

- IOUmn] sinax cos By = ( (6.4.5a)

hE
™8

[— (A12 + Ass) aBUpn — (Aesa + A2252> Vinn + (31604 + 3Bysaf ) mn

3
I
)
3
l
~

(6.4.5b)

’ . Nl ~ONL
- IOan} COsS @ sSIn ﬂy = y +

Ox Oy

o0 oo
Z Z [(3316042ﬁ + 32653> Unin + (316a3 + 332604/52) Vi

=1m=1

3

- (D11a4 + 2(D12 + 2Dgg)a% 32 + D2254> |44

- (aQNm + ﬁQNyy) Wonn — (Io + L(a? + ﬂz)) mn] sinax sin By

#MT - PMI  PML
— 9 zy vy | _ 4
( Ox? Oxdy dy? 9(z,y) (6.4.5¢)

Note that the edge shear force ny is necessarily zero. In addition, inertia [; is
zero. If the transverse load and thermal resultants are expanded as before [see Egs.
(6.3.10)—(6.3.13)], then it follows from Eq. (6.3.14) that N}, N2, and MS,  must
be zero. If the temperature field is expanded in double cosine series, Nmn, M},m,
and M2, must be zero.

Equations (6.4.5) can be expressed in matrix form as

¢11 Ci2 ¢13 Unin mir 0 0 Umn
é12 é22 é23 an + 0 m22 0 an
C13 Co3 €33 + 533 Win 0 0 Wonn

0 —0BN,, Och
:{ 0 }+{ —aN }or{ } (6.4.6)
Qmn oM}, +52 —2a8M
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where

¢ = Ana® + Age
¢1o = (A12 + Age)af
¢13 = —(3B1ga” + Bys3*) B
bar = Agea® + Agp 3
¢z = —(Bisa® + 3Bas3%)ax

¢33 = Diia’ +2(D1g + 2Dgg)a5% + Dgy 3 (6.4.7a)
S35 = &2 Nyg + 32Ny, (6.4.7b)
mi1 = Thae = Iy
thas = Iy + I(a” + 3°) (6.4.7¢)

and o = mn/a and § = nw/b. The second column of thermal forces in Eq. (6.4.6)
are valid for the case in which the temperature field is expanded in double cosine
series.

6.4.3 Bending

The static solution can be obtained by setting the time derivative terms in Eq.
(6.4.6) to zero:

Ci1 Ci2 13 Unmn 0 —aNg,
C12 €22 €23 Vinn ¢ = 0 + —BNE,, (6.4.8)
613 é23 é33 + <§33 Wmn an azj\lrlnn + ﬂQAIerL

Using the static condensation procedure presented in Egs. (6.3.22)—(6.3.26), we can
determine the solution to Eq. (6.4.8) (when 333 = 0) as

1 aq as |
Wmn = |:an + O‘QMrInn + 62]\/[73171 - (_a + _5> N;r)m:|
Amn aop ag
1 . A 6
Unmn :% |:a1Wmn - (ac22 - 5012) Nmn}
1 . ; 6
Vinn =— [angn + (a1z — Bénn) Nmn] (6.4.92)
0
where
A L a1 . a2 PO FU
Amn =C33 + C13— + Ca3—, Qg = C11C22 — C12C12
ap ag
a1 =C12623 — 13622, az = €13¢12 — €11€23 (6.4.9b)

Solution of Eq. (6.4.9a) for each m,n = 1,2,... gives (Unn, Vinn, Wimn), which can
then be used to compute the solution (ug, vg, wp) from Eq. (6.4.2a-c). If there are
no thermal loads, the solution becomes

aq a
Wmn _ an ’ Umn _ an van - 2an

Qmn aghmn aolmn

(6.4.9c)
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6.4.4 Determination of Stresses

The stresses in each layer of an antisymmetric angle-ply laminate can be calculated
from [see Eq. (6.3.29)]

Ozx (k) C211 C212 C216 (k) Exx Cxs
Tyy = | Q12 Q2 Q% Eyy ¢ — % Quy ¢ AT (6.4.10)
Oy Q6 Q2 Qs 25xy 2axy

Exx [0 7% aUmn 9mn — am:Tr?lnfmn
Eyy — Olyy AT | = BVin Gmn — anyr?mfmn
25y 2015 (

- 5Umn +aVop, + 2aacyT791n) fmn
(QQWmn - O‘er'r}zn) fmn
+ z

[V]8
[M]8

1

3
1§

n

V]38
]2

(ﬁ2 Winn — Ofyy ) fmn

m=1n=1 '—2aﬁWmn 9mn — 2azy mnfmn
(6.4.11a)
fmn =sinax sinBy , gmn = cosar cos By (6.4.11b)

Note that the in-plane stresses in angle-ply laminates will have nonzero contributions
from Qg;. Also, the maxima of (0,0y,) occur at (a/2,b/2), and they have
contributions from €% el | and E;y. The values of shear stress o., at (0,0)
and (a/2,b/2) may be comparable, and relative maximum depends on the specific

laminate construction.
The transverse stresses are determined as described in Section 6.3.4. For the
isothermal case, we obtain
o0 oo

Wey)=3 3 [(z o) AW+

(32 = DBE + ol Ve )

N |

m=1n=1
o0 o.¢)
ol (z,y,2) = Z Z [ z— 2)C8) + = (z #)D “ﬂ + 0y (,y, z)
(6.4.12a)
o (z,y,2) =0, ayz Nz, y,2z1) =0 (6.4.12b)
where

A, = [(0626?51? + 52Q(k)) Upin + 8 (Q12 + Q% ) mn:| sin az cos By
[Mﬁ@““vm + ( QQ('“) + Q) Vi cos az sin iy
B, = [ QW +ap? ( + 205 ” mm COS QT sin By
~ (3Q1¥ a8 + QY 8°) Winn sina cos By
) =[(0*Q%) + F2Q)) Unnn + 208Q4%) Vinn | sin az cos By
+ [0 (QF + QW) Unn + (02QW) + 5°Q%)) Vinn| cos o sin gy
D), =— (@i 0® + 3QL) f2) Winn cos ax sin By
—[a28 (@ +2Q%)) + 8°QLY)] Winn sin a cos 8y (6.4.12¢)
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The maxima of o,. and o,, occur at (z,y) = (0,b/2) and (z,y) = (a/2,0),
respectively, although their values at (z,y) = (a/2,0) and (z,y) = (0,b/2),
respectively, are not zero. The location of the maximum value through the thickness
depends on the lamination scheme.

The bending moments in an antisymmetric angle-ply laminate can be calculated
from Eq. (6.4.3), and it is given by the expression

M, o o0 0 0 Bis alyn cosazx cos By
My, » = Z Z 0 0 Bog OV cos ax cos By
Mg, m=1ln=1 | B1g Bog 0 — (BUmn + &Vipy) sin azx sin By
~ o |Diy Do 0 a*Wyn sin ax sin By
+ Z Z Dis Doy 0 B2W,n sin ax sin By (6.4.13)
m=ln=1| 0 0  Degs —20 W cosaz cos By

Note that the locations of the maximum values of M;;, M,,, and M, cannot be
determined in the general case. However, when the coupling coefficients are zero,
maximum values of M, and M, occur at (z,y) = (a/2,b/2), and the maximum of
Mg, occurs at (z,y) = (0,0).

The effect of bending-extension coupling and the dependence of the coupling on
the modulus ratio can be seen from the deflections w = wo(E2h3/qob*) and stresses
Tuz = Ozz(a/2,b/2,h/2)(h%/qob?) presented in Table 6.4.1 for antisymmetric angle-
ply laminates (-45/45); for k = 1,2, and 4, and subjected to sinusoidal load (first
line) and uniformly distributed load (second line). All laminates are of the same
total thickness, and the layer properties are: E)/E> varied, Gi12 = G153 = 0.5E»,
Goz = 0.2E9, 1192 = 0.25. The series for uniform load is evaluated using m,n =
1,3,---,21 terms. Note that with increasing number of layers the laminate solution
does not tend towards the orthotropic plate solution.

Table 6.4.1: Effect of lamination scheme on the transverse deflections w and
stresses 7, in square angle-ply laminates (—45/45).

Laminate w x 102 Load T
EL—y 10 20 30 40 EL_1 10 20 30 40
2 2
0° 2.639 0908 0.523 0.367 0.283 SSL 0.174 0.462 0.524 0.549 0.563

4.172 1412 0.795 0.548 0415 UDL 0.251 0.693 0.772 0.795 0.801

1t 2.887 1.117 0.757 0.577 0.467 SSL 0.190 0.217 0.242 0.256 0.265
4577 1759  1.190 0906 0.732 UDL 0.278 0.308 0.340 0.358 0.370

2 2.887 0.636 0.345 0.237 0.181 SSL 0.190 0.153 0.147 0.145 0.144
4577 0999 0.542 0372 0.283 UDL 0.278 0.214 0.205 0.201 0.199

4 2.887 0.574 0.304 0.207 0.157 SSL 0.190 0.151 0.146 0.144 0.143
4.577 0902 0.477 0324 0.245 UDL 0278 0.211 0.202 0.199 0.197

 Denotes k in the laminate (—45/45).
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Figure 6.4.1 contains a plot of the nondimensionalized deflection w versus
plate aspect ratio for simply supported (SS-2) antisymmetric angle-ply laminates
(-45/45); under sinusoidal load. Figure 6.4.2 contains w as a function of the
lamination angle 8 for square laminates (-6/6); under sinusoidal load. The material
properties used are Ej/FEs = 25, Gi12 = G135 = 0.5E%, and vi12 = 0.25. Clearly,
the bending-extension coupling is quite significant for two-layered plates, but the
coupling decreases very rapidly as the number of layers is increased. Lastly,
nondimensionalized transverse deflections as a function of the modulus ratio for
square laminates under sinusoidal transverse load are presented in Figure 6.4.3.
The effect of coupling is significant for all modulus ratios except for those close to
unity.

Figures 6.4.4 and 6.4.5 show the plots of nondimensionalized transverse
shear stresses 6,(0,0/2,2) = Gy.(a/2,0,2) and 7,.(a/2,0,2) = &,.(0,b/2,2),
respectively, for two-layer and eight-layer antisymmetric angle-ply laminates (—
45/45/-45/- - -) under sinusoidally distributed transverse load (a/b =1, Ey = 25F»,
G12 = G13 = 0.5F3, v13 = 0.25). Unlike in antisymmetric cross-ply laminates, the
stress 0z, is not zero at (z,y) = (a/2,0), although small in magnitude compared to
that at (x,y) = (0,b/2). Note that through-thickness variations are significantly
altered when the number of layers are increased (for the same total laminate
thickness). The parabolic type variation shown in Figure 6.4.4 is consistent with
that of an orthotropic plate.

0.040 lllI|||IIIIIII|III||III||IIIIIIIIIlIIIIIIIIIlIIII
_: All laminates have the .
N same total thickness (—45/45) ]
0.030—] —
E - -
=] ] ]
=t . ]
5 0.020— -
% . (—45/45)5 .
2 3 (—45/45), <
0.010] (-45/45);
0.000_IIIIII|||II||||IIII|lll|]l||||l||||I!H'|lll]|III_
0 1 2 3 4 5

Plate aspect ratio, a/b

Figure 6.4.1: Nondimensionalized maximum transverse deflection (w) versus
plate aspect ratio (a/b) for antisymmetric angle-ply (-45/45),
(n=1,2,3,4) laminates under sinusoidal load.
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Figure 6.4.2: Nondimensionalized maximum transverse deflection (w) versus
lamination angle (#) for antisymmetric angle-ply (-6/6), (n =
1,2,4) laminates under sinusoidal load.
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Figure 6.4.3: Nondimensionalized maximum transverse deflection (w) versus
modulus ratio (E)/Ey) for antisymmetric angle-ply (—45/45),, (n =
1,2,4) laminates under sinusoidal load.
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Figure 6.4.4: Variation of the nondimensionalized maximum transverse shear
stresses through the thickness of antisymmetric angle-ply (—45/45),

laminates.
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Figure 6.4.5: Variation of the nondimensionalized maximum transverse shear
stresses through the thickness of antisymmetric angle-ply (—45/45),
laminates.
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6.4.5 Buckling

For buckling analysis, we assume that the only applied loads are the in-plane forces
and all other mechanical and thermal loads are zero:

N ~

Nuz =—No, Ny, =-kNy, k= ﬁﬂ (6.4.14)

From Eq. (6.4.6) we have

€11 €12 €13 Umn 0
b1z b é23 Vi v =140 (6.4.15)
¢13 Ga3 C33 — No(a® +kB%) | | Wi 0

where ¢;; are the coeflicients defined in Eq. (6.4.7a). Setting the determinant of the
coefficient matrix in (6.4.15) to zero, we obtain

Ny =

1 . €13620 — 623@12é
———5 | €33 1
a? + k32
A A a A A2 A a2
. 1 o3 2¢12C93C13 — CoaCiy — €11C53
= e 15 13
a? + k32 C11€22 — €19

¢11C23 — C12€13
- ——C13 — T ——— (93
€11€22 — €C12C12 C11€22 — C12€C12

(6.4.16)

Clearly, for each pair of m and n, there is a unique value of Ny. The critical buckling
load is the smallest of all Ny = No(m,n). Since ¢;; depend on m and n, No(m,n)
is a complicated function of both m and n and no conclusions can be drawn about
the mode (m,n) at buckling.

For specially orthotropic laminates (i.e., a plate made up of a single specially
orthotropic layer or a laminate consisting of specially orthotropic layers that are
symmetrically arranged about the laminate middle surface), the only nonzero
stiffnesses are Ai1, A1g, Ags, Agg, D11, D12, Do, and Dgg. Thus, neither shear or
twist coupling nor bending-extension coupling exists. For biaxial compressive in-
plane loading, the buckling load is given by Eq. (6.3.45). The specially orthotropic
solution for antisymmetric angle-ply laminates is the one that corresponds to the
case in which A16, A26, Blﬁ, BQ()‘, Dlﬁ, and DQG are zero.

Table 6.4.2 contains nondimensionalized buckling loads (N = N.b*/E3h?) of
antisymmetric angle-ply laminates under uniaxial and biaxial in-plane compressive
loads. The material properties used for a typical lamina are G12 = 0.5F5, and
v12 = 0.25. The buckling mode is (1,1), except for uniaxial compression with aspect
ratio equal to 1.5.

Plots of nondimensionalized critical buckling loads versus plate aspect ratio
(a/b) for simply supported (SS-2) angle-ply laminates (45/-45); under uniaxial
compressive in-plane loads are presented in Figure 6.4.6 for Ey/Fy = 40, G =
Gz = 0.5F;, and v1o = 0.25. The buckling mode associated with the critical
buckling load is (m,n) = (1,1) for a/b < 1.4, (m,n) = (2,1) for 1.5 < a/b < 2.4,
(m,n) = (3,1) for 2.5 < a/b < 3.4, (m,n) = (4,1) for 3.5 < a/b < 4.4, and
(m,n) = (5,1) for 4.5 < a/b < 5. The effect of bending-stretching coupling is the
most for two-layer laminates, and the orthotropic solution is rapidly approached as
the number of plies is increased.
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Table 6.4.2: Effect of coupling, plate aspect ratio, and modulus ratio on

the nondimensionalized critical buckling load, N =

b2
T E2h§ b

Ne

of rectangular laminates under uniform compression and biaxial
compression (E;/FEy varied, G1g = G13 = 0.5E3, v19 = 0.25).

(45/-45) (45/-45)4

& 10f 20 25 40 10 20 25 40
Uniaxial compression (k = 0)

0.5 12.633 18.140 20.825 28.809 23.746 43.841 53.888 84.020

1.0 9.060 13.373 15475 21.713 17.637 33.320 41.166 64.685

1.5% 9.603 23.963 16.285 22.779 18.565 34.909 43.091 67.607
Biaxial compression (k = 1)

0.5 11.893 14.518 16.660 23.045 18.999 35.076 43.110 67.222

1.0 4530 6.692 7.738 10.856 8.813 16.660 20.578 32.343

1.5 3129  9.021 5270 7.353 6.001 11.251 13.877 21.743

T Modulus ratio.

* Mode is (2,1) for this row (a/b = 1.5); for all other cases, the mode is (1,1).
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Figure 6.4.6: Nondimensionalized buckling load (N = N, thg) versus plate
aspect ratio (a/b) of antisymmetric angle-ply laminates under
uniaxial compressive edge load.
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Nondimensionalized critical buckling loads versus the lamination angle for
uniaxial compression (kK = 0) and biaxial compression (kK = 1) antisymmetric
angle-ply square laminates are shown in Figures 6.4.7 and 6.4.8, respectively, for
Ey = 40Fy, G153 = 0.5E5, and vy = 0.25. The plots shown in Figure 6.4.8 are
symmetric about § = 45°. Note that, once again, the bending-stretching coupling
severely reduces the buckling load for the two-layer plate. The effect is negligible
for eight or more layers. The buckling load is the maximum for 8 = 45°.

6.4.6 Vibration

For free vibration Eq. (6.4.6) reduces to the eigenvalue problem

¢11 612 Ci3 my; 0 0 Ul 0
< 612 622 623 — w2 0 mgg 0 ) Vr(r)m = 0 (6.4.17)
¢13 Co3 (33 0 0 g3 W, 0

where ¢;; and 7h;; are defined in Eq. (6.4.7). Setting the determinant of the
coefficient matrix in (6.4.17) to zero, we obtain the cubic characteristic polynomial

—pN g —rA4+5=0 (6.4.18)

in the eigenvalue A = w?, where

myp 0 0 ¢11 C12 (13
p=| 0 ma 0 |, s=|C2 cCo Co3
0 0 g3 €13 Co3 (33
tn 0 0 mi ¢z 0 min 0 i3
g=icz My 0 +l 0 ¢ O |+| 0 mgy co3
13 0 1hgs 0 ¢Go3 a3 0 0 ¢33

éin 0 éis
Cl2 Thaa Co3
¢i3 0 ¢33

A~

mir G2 C13
0 Ca3 33

¢ ¢z O
r =|€12 €9 0
C13 C23 Th33

i (6.4.19)

If the in-plane inertias are neglected (i.e., 11 = e = 0), Eq. (6.4.17) yields

(6.4.20)

W= —

9 1 /. C13C22 — C23C12 C11€23 — C12€13
- C33 — C13 — Co3
m33

s 5 C13 — T3 -
C11C22 — C12C12 C11C22 — C12€12
Note that w is a function of the mode numbers (m,n) because the coeflicients ¢;;
depend on m and n, as shown in Eq. (6.4.7a).
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Figure 6.4.7: Nondimensionalized buckling load (N) versus lamination angle
() of antisymmetric angle-ply square laminates under uniaxial
compressive edge load (k = 0).
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Figure 6.4.8: Nondimensionalized buckling load (N) versus lamination angle
(8) of antisymmetric angle-ply square laminates under biaxial
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Nondimensionalized fundamental frequencies @ = w(b?/72)\/ph/Das of graphite-
epoxy composites with E1/Ey = 40,G12/E2 = 0.5,v12 = 0.25 and a/b = 1 are shown
as a function of lamination angle in Figure 6.4.9. The bending-stretching coupling
due to the presence of Big and Bgg has the effect of lowering the frequencies.
The coupling is the maximum for two-layer plates, and it rapidly decreases with
increasing number of layers. At 6 = 45°, the fundamental frequency of the two-layer
plate is about 40 percent lower than that of the eight-layer laminate. The same
conclusions hold for results presented in Figures 6.4.10 and 6.4.11. The effect of
coupling is significant for all modulus ratios, and the difference between the two-
layer solution and orthotropic solution increases with modulus ratio.

6.5 The Lévy Solutions
6.5.1 Introduction

The Lévy method can be used to solve the governing equations of various plate
theories for rectangular laminates for which two (parallel) opposite edges are simply
supported and the other two edges can have any boundary conditions. Here we
describe the Lévy solution procedure for cross-ply and antisymmetric angle-ply
laminates using the classical laminate plate theory (CLPT). However, details are
presented for only cross-ply laminates.

Consider a rectangular laminate which has an even number of orthotropic layers
with principal material directions alternating at 0° and 90° to the laminate axes
(i.e., antisymmetric cross-ply laminate). The planar dimensions are taken to be a
and b, and the total thickness h. The laminate coordinate system (z,y, z) is taken
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such that to be a and b, and the total thickness 4. The laminate coordinate system
(x,y, z) is taken such that —a/2 <z < a/2,0 <y < b,—h/2 < z < h/2, as shown
in Figure 6.5.1. Here we assume that the edges y = 0,b are simply supported,
and the other two edges can each have arbitrary boundary conditions (e.g., simply
supported, clamped, or free). The type of the boundary conditions for the classical
laminate plate theory were derived in Section 5.3 [see Eq. (3.3.34)]. Note that only
one quantity in each of the following pairs should be specified on the boundary:

Owg
(unaNnn)’ (US7N7LS)7 (wﬂavn)a (%7Mnn) (651)
where n refers to the normal and s to the tangential directions at the boundary
point.

The simply supported boundary conditions on edges y = 0,b (n = Fy,s =

Fx, U, = Vg, us = Ug, etc.) are expressed as follows:
up =0, Nyy =0, wg=0, My, =0 (6.5.2)

One of the following three types of boundary conditions may be used on the
remaining two edges, z = F5 (n = Fz and s = Fy):

Simply supported (S):

Nez =0, v9=0, wg=0, M, =90 (6.5.3)
Clamped (C):
811}0
U , vg =0, wy =0, 5 0 (6.5.4)
Free (F):
oM. oM,
Npe =0, Npy =0, V= -2 42 =0, My, =0 6.5.5
Y ’ ox + oy o ( )
T e re——————— —

—'— A simply supported edge

(same at y=0)
j— Yo —la—a) _t.}\/

Vy

Figure 6.5.1: The coordinate system used in the Lévy solution.
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The basic idea of the Lévy method is to seek a solution that satisfies the boundary
conditions along the simply supported edges exactly, and thereby reduce the two-
dimensional problem to a one-dimensional problem with respect to the coordinate .
This results in ordinary differential equations in z, which involve usually second- or
higher-order derivatives of the unknown coefficients of the displacement expansion.
These ordinary differential equations are then solved using the so-called state-space
approach (see Brogan [2] or Franklin [3]).

For the case of antisymmetric cross-ply laminates, we have

Big = Bog = A1 = Aog = D1g = Dog =0 (6.5.6)

Consequently, from Eqs. (6.2.1)—(6.2.3), we have the following equations of motion
of the classical laminate theory for the isothermal case:

82u0 8211,0 82?}0
A A A A
152 +Ass By + (A12 + Ass) 220y
8371)0 83’LU0 . O
— [3115‘%};‘ + (B12 + 2B66) W - IOUO it Ilg (657)
32u0 821}0 82’00
Agg) 240 4 Agg T 0 | 4,, 000
(A12 + Aes) duay A5z T A2
8371)0 83w0 (97,'[10
— 2B ——— 4 Boo——— | = Jniin — [ —— 6.5.
[(Bqu 66) 9270y + B By Toto — It oy (6.5.8)

311%3;0 + (B12 + 2Bgs) ( aéfg;z + aizzg)y) + 22%3;—0

- [Du% +2 (D12 + 2Dg) %2’22 + 22%4—?]

+ J\Afm%zl;) + ZNzy% + Nyy%%uz2 T4

=1 (% + ‘2—?) + Iptig — I (% + %) (6.5.9)

6.5.2 Solution Procedure

In the Lévy type procedure, we assume the following representation of the
displacements:

Uo(ﬂ%yat) = Z Um(‘%‘vt) Sinlgy
m=1
UO(:L‘ay?t) = Z Vm(xat) COSBy
m=1
wo(x,y,t) = Y Win(z,1) sin By (6.5.10a)

3
I
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where 8 = (mn/b). The transverse load is expanded as

oo

q(z,y,t) Z (x,t) sin By (6.5.10b)

where (Uy, Vin, Wi ), and @Q,,, denote amplitudes of (ug, v, wo), and g, respectively.
These expansions satisfy the simply supported (SS-1) boundary conditions (6.5.2)
on edges y = 0,b.

The stress resultants derived from the displacement field (6.5.10a) are given by

i
K

AU, — BA1Vi + B2 B1aW,, — BuWr,,’L) sin By

3
I

)
NE

AroUpy, = BAgVin + 8 BaWin — BiaW,, ) sin By

3
I}

=
I
]38

<y BAeeUnm + AseV,, — 28BesW, ) cos By

3
Il

My = 3 (BiiUp, = BB1zVin + 8 D1aWo, — D1iW,,, ) sin By

M8 I M8

i
)

)
™8

,BBGGU + BGGV — 208D W. ) Ccos ﬁy

3
I

BU,, — BB15V,, + 8°D1aW,, — DnW?;/;) sin Sy

3
I

o))
=

I
NE

0%
[l
Mg

3%BsUn, — BBV, + 282 DesW, )blnﬂy

(
(
(
2
(Bially — BBV + 5 DsaWo — DWW, sim iy
(
(
(-
(
(

m=1
aMyU - 2 3
T B8B12Uy, — 32 Baa Vi — BD1a Wy, + 3 Daa Wy, ) cos By
m=1
OM,, &
5t = 2 (8BosUs, + BooVy, — 28DeaW,, ) cos By (6.5.11)

Il
—

m

The boundary conditions in (6.5.3)-(6.5.5) on edges * = Fa/2 require that
(U, Vin, Wi, ) and their derivatives with respect to z satisfy the following boundary
conditions:

Simply supported (411 D11 — B¥, # 0):
U, =0, Vi;p =0, Wy, =0, W, =0 (6.5.12)

Clamped:
Up=0, V=0 Wp=0, W, =0 (6.5.13)
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Free:
AU, — BA Vi + 32BiaWy, — BuW,, =0 (6.5.14a)
BAecUnm + AgsV,, — 28BesW,, =0 (6.5.14b)
—282BeUn + B11U,, — 3 (B2 + 2Bgg) Vi,
+8% (D13 + 4Dgg) W, — DuW,r =0 (6.5.14c¢)
B U, — BB1aVy + 32D1oW,, — DuW,, =0 (6.5.14d)

Substituting Eq. (6.5.10) into Eqs. (6.5.7)-(6.5.9), expressing the results in
terms of the highest derivatives U,,, V,,,, and W, , and substituting for U,, and V,,
into the expression for W,/;L", we obtain (when Ny, = 0)

U, = CiUn + CaV,, — CsW,. + CsW, + D1U, — DaW,, (6.5.15a)
V,, = —CsU,, + CeVim — C1Wy, + CsW,, + D3V — DyWy,  (6.5.15b)

W = CoU. + C1gVim + C11W + CraWo + CoQum
+ DsU, + DgViy, + D7 Wy, + DgW, . (6.5.15¢)

The coefficients C; appearing in Eqs. (6.5.15) are

€2 €3 €4 €5
Clz_a C2:_7 C3Z_a 04:_
€1 €1 €1 €1
€3 €7 €8 €9
Cs=—, Cg=—, Cr=—, Cg=—
€6 €6 €6 €6

Cy = [‘64 +e5C1 + (69 - 6502)05] Co
Cio = [es — (e9 — €5C2)] Co, Co = (e13)™"
Crn = [—e1n1 — (eg — e5C2)Cr] Cy
Cr2 = [e12 — e5C3 — (€9 — e5C2)C3] Co

d
Dl:ﬂ Dy = -2, D3:‘_il, D4:@

€1 ’ €1 €g €6
Ds = (esD1 — d2)Co, Deg = [d3 + (e5C2 — eg) D3] Cy
Dy = [—dys + (e9g — esC2)D4) Co, Dg = (ds — e5D2)Cy (6.5.16a)

where

e1 = A1, ez = B%Aes, e3 = P(A12+ Ass), es = °(Bi2 +2Bes), es = B
e = Agg, er = 2Ags, es=[’Baa, eg = B(B12+2Bses), €10 = D1
el = (ﬂ4D22 + ﬁQNyy) , e12 = 20%(D12 + 2Dg6) + Nuz, €13 = €10 — €3C4
dy=1Iy, dy=1, dy=10, di=1Ip+ L, dy=1I (6.5.16b)

The linear system of ordinary differential equations in (6.5.15) with constant
coefficients can be expressed in the form of a single, first-order, matrix differential
equation

{Z}=[T){Z}+{F} (6.5.17)
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where
Uf,n .0 .
U, DUy, — DyW,
Vm .. 0 e
v, ) D3V — DsWip,
W, 0
W, 0
W, Qm
0 1 0 0 0 0 0 0 ]
c, 0 0 C, 0 -C3 0 C4
0 0 0 1 0 0 0 0
o - ¢ 0 -¢; 0 Cg 0
TI=1o o 0o 0o o 1 0 o0 (6.5.18b)
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
L 0 Cg ClO 0 Cll 0 012 0 ]
and ~ .y . . 4
Qm = CoQm + DsU.,, + D¢V, + DiW,, + DWW, (6.5.180)

Next, we discuss the solution of Eq. (6.5.17) separately for bending, vibration,
and buckling problems. In each case, we solve Eq. (6.5.17) or its special cases.

Bending

In the case of static bending, all variables are independent of time. Equations

(6.5.17) and (6.5.18) hold with

Qm = CoQm (6.5.19)

In addition, NM and Nyy appearing in the definition of the coefficients €12 and e
are assumed to be zero.

The solution of Eq. (6.5.17), Z' = TZ +F, when T is independent of z, is given
by (see Franklin [3], Chapter 3)

X
Z(z) = et (K +/ e TEF(¢) d§> (6.5.20a)
0
where eT? represents the matrix product
e)\]l‘ O
eAQw
™" = [E] 5 (]! (6.5.20b)
0 ez

[E] denotes the matrix of distinct eigenvectors of the matrix [T, [E]! denotes its
inverse, A; (i = 1,2,3,...8) are the eigenvalues associated with matrix [T], and K

is a vector of constants to be determined from the boundary conditions (6.5.12)-
(6.5.14).
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Substitution of Eq. (6.5.20a) into any combination of boundary conditions
(6.5.12)—(6.5.14) on edges z = Fa/2 yields a nonhomogeneous system of equations

[M]{K} = {R} (6.5.21)

which can be solved for the vector { K'}. For example, consider the case in which the
edge ¢ = —a/2 is clamped and the edge = = a/2 is free. For uniformly distributed
load (static bending case), the solution (6.5.20) can be written as

1
e 0 N 0
et - % _
(2} =& Ly (e 3 (B (F)
A8T ) 1
0 € 0 —x
= [G(z){K} + {H(z)} (6.5.22)
Now the components of the matrix [M] and vector {R} in Eq. (6.5.21) can be
defined in terms of the coeflicients G;; and H;, evaluated at # = —a/2 and z = a/2,

as described below.
The clamped boundary condition at x = —a/2 requires [see Eq. (6.5.13)] that

My = Gij(—a/2), My; = Gsj(—a/2), Mzj = G55(—a/2), My = Ge;(—a/2)
(6.5.23a)
The free boundary condition at = a/2 requires [see Egs. (6.5.14a-c)] that
Ms; = A11Gaj(a/2) — BA12Gs;(a/2) + B°B12Gsj(a/2) — B11Gri(a/2)
Me; = BAscG1j(a/2) + AssGuaj(a/2) — 28BesGej(a/2)
Mq7j = C1G1j(a/2) + CaGuj(a/2) + C3Gej(a/2) + CaGsj(a/2)
Mgj = B11Ga;(a/2) — BB12G3;(a/2) + °D12Gs;(a/2) — D11G7j(a/2)
(6.5.23b)
Cy = C1B11 — B*Bgs, Cy = C2B11 — B(Bi2 + Beg)
é3 = —C3B11 + ﬂz(Dlz + 2D66), 64 =CyB11— D1 (6.5.23C)
Similarly, the coeflicients R; are defined by
R1 == —Hl(—a/2), R2 == —Hg(—a/Q), R3 - —H5(—a/2), R4 == —Hﬁ(—'a/2)
Ry = A1 Hz(a/2) — BA12H3(a/2) + 32 B12Hs(a/2) — Bii Hr(a/2)
Rﬁ = ,BAGGH1 (a/2) + A66H4(a/2) — QﬁBﬁﬁHﬁ(a/2)
Ry = C1Hy(a/2) + CoHy(a/2) + C3Hg(a/2) + C1Hg(a/2)
Rs = By1H(a/2) — BB12H3(a/2) + 2 D12Hs(a/2) — D1y Hr(a/2) (6.5.24)

Natural Vibration

In the case of natural vibration, the applied mechanical loads (@, Nya, Nyy) are
assumed to be zero, and the solution is of the form

u(z,y,t) =Un(z)sin By glwmt

v(x, y,t) =Vin(z) cos By e*m*

w(z,y,t) =W (z)sin By e“m’ (6.5.25)
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where w,, denotes the frequency of vibration of the mth mode, and ¢ = /~1.
Equation (6.5.15) becomes

!

{Z (2)} = [Al{Z(2)} (6.5.26a)
with } }
0 1 0 0 0 0 0 0
Ch 0 0 Co 0 —=C3 0 (4
0 0 0 1 0 0 0 0
|10 =Cs Cs 0 —Cy 0 Cg 0
=10 o 0 0o o 1 0 o0 (6.5.26b)
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
| 0 Cg Cl() 0 Cu 0 012 0 ]
where

CAvl = 01 — D1w2, 03 = C3 — D2w2, éﬁ = Cﬁ — D?,(,zj2
Cr = C7 — Dy, Cy = Cy — Dsw?, Cho = Cio — Dew?
éll = Cll - D7w2, 612 = 012 — D8w2 (6526C)
The solution of Eq. (26a) is given by
Z(z) = eA*K (6.5.27)

and the vector K of constants is determined from the boundary conditions.
Substitution of Eq. (6.5.27) into the set of boundary conditions results in a
homogeneous system of equations

[M{K} = {0} (6.5.28)

For a nontrivial solution, the determinant of the coefficient matrix in (6.5.28) should
be zero:
| M| = 0 (6.5.29)

The roots of the above equation are (the squares of) the frequencies of natural
vibration.

Buckling
In the case of buckling, the applied mechanical load @, is zero, and N, and Nyy

are determined. The solution is assumed to be of the form

u(x,y) =Up(x)sin Gy
v(z,y) =Vim(x) cos By
w(z,y) =Wy, (x)sin By (6.5.30)

The operator equation for this case is

{(Z'(2)} = [T){ 2} (6.5.31)



348 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

where [T] is the matrix defined in Eq. (6.5.18b). Note that the buckling loads
enter the matrix through the coefficients C17 and Ci5, which contain e;; and ejo,
respectively [see Egs. (6.5.16a) and (6.5.16b)]. The solution of Eq. (6.5.31) is given
by

Z(x) = eT°K (6.5.32)

and the vector K of constants is determined from the boundary conditions.
Substitution of Eq. (32) into the set of boundary conditions results in a homogeneous

system of equations
[M{K} = {0} (6.5.33)

For a nontrivial solution, the determinant of the coefficient matrix in (6.5.33) should
be zero. The roots of this equation are the buckling loads, N, and Ny,.

Computational Issues

Some comments are in order on the numerical solution of Eq. (6.5.22). Due to
the sparse nature of matrix [T] or [A], the matrix [M] appearing in Egs. (6.5.21),
(6.5.28), and (6.5.33) is often ill-conditioned and results in computer overflow or
underflow. This can be overcome (see, for example, Nosier and Reddy [4]) by
rewriting Eq. (6.5.22) as

e .
eAQw x
(2()} = B) TR e [T () dg
. 0 e’\sﬂ
e -
e . z
B . (K} + T / e TE(FY dE (6.5.34a)
: 0
. 0 e)‘Sx_
and o A
[MI{K}+{F}={0}, {K}=[E] "{K} (6.5.34b)

The matrix [M] is not ill-conditioned and therefore can be easily inverted to solve
for {K} and {K} = [E]{K}. It should be noted that, while {K} and [M] are
real-valued, { K} and [M] are complex-valued arrays.

Another source of difficulty in the numerical evaluation of the eigenvalues of the
matrix [T] or [A] is due to the fact their diagonals have zero entries. This can be
circumvented by adding a nonzero constant to all diagonal elements (i.e., add —c[1]).
The eigenvalues of the original matrix [T] or [A] are obtained from the eigenvalues
of the modified matrix by subtracting the same nonzero constant. The eigenvectors
in both cases are the same.

6.5.3 Antisymmetric Cross-Ply Laminates

Here we present numerical results obtained with the Lévy method and the state-
space solution approach. Khdeir and his colleagues developed solutions for static
and dynamic (natural vibration as well as transient response) analyses and buckling
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of rectangular composite laminates with various lamination schemes and boundary
conditions. The reader may consult the papers cited in the bibliography for detailed
derivations and additional numerical results.

The notation used for rectangular laminates with different boundary conditions
on edges © = *a/2 is as follows (see Figure 6.5.1). The notation SF, for example, is
used to denote a plate for which edge x = —a/2 is simply supported (S) and edge
x = a/2 is free (F). Since edges y = 0,b are always simply supported, we also use
the notation SSSF to denote SF. Thus SS is used in place of SSSS, SC in place of
SSSC, CC in place of SSCC, and so on.

Bending

The following lamina properties, typical of graphite-epoxy material, are used in all
numerical examples presented here:
Ey/Ey, =25, Gia = Gy13=0.5F, Gz =02E;, vip =0.25 (6.5.35)
The loading, in all cases, is assumed to be sinusoidal
q(z,y) = qo cos ax sin By (6.5.36)
where a = (mm/a) and § = (nm/b).

In the tables and figures, the results for deflections and stresses are presented in
the following nondimensional form:

_ E2h3 2
w = wo(0,b/2) 71— x 10 (6.5.37a)
b*qo
i} b h, K _ b h, h?
Opy = —UII(O,i,*g)% X 10, Uyy :O-yy(()’i’i)% X 10 (6537b)

where h is the total thickness of the laminate and gq is the intensity of the distributed
transverse load. For the coordinate system uscd in the nondimensionalization, one
should refer to Figure 6.5.1.

Figures 6.5.2 and 6.5.3 contain plots of w versus F;/E> for two-layer
antisymmetric rectangular (b/a = 2) laminates (G12 = G13 = 0.5E3, vi2 = 0.25)
under various boundary conditions on edges @ = +a/2, showing the effect of material
orthotropy on the deflections. The degree of orthotropy has less influence on the
deflections for large ratios of Fi to E5. Table 6.5.1 contains numerical results of
deflections and stresses for two- and ten-layer laminates.

Numerical results for deflections and stresses of cross-ply laminates subjected to
sinusoidal distribution of temperature

T(x,y,2) = zTi(x,y) = 211 cosax sin By (6.5.38)

are presented in Table 6.5.2. The material properties used are the same as those in
Eq. (6.5.35), with ag = 3c;. The following nondimensionalizations are used:

1
b h 1
Gow = 03(0, 2, — ) —— x 10 6.5.39b
Ogx U:Lw( 5 2 o TibE, X ( )
b h 1
5o 2 10 5.
Tyy yy(0, 5’ 2)a1leE2 X (6.5.39¢)
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Figure 6.5.2: Nondimensionalized maximum transverse deflection (w) versus
modulus ratio (E;1/FE3) for antisymmetric cross-ply (0/90)
laminates (b/a = 2) subjected to sinusoidal load.
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Figure 6.5.3: Nondimensionalized maximum transverse deflection (w) versus
modulus ratio (E1/E3) for antisymmetric cross-ply (0/90)
laminates (b/a = 2) subjected to sinusoidal load.



ANALYTICAL SOLUTIONS OF RECTANGULAR LAMINATES USING CLPT 351

Table 6.5.1: Nondimensionalized center deflections (@) and in-plane normal
stresses (0, and o,,) of antisymmetric cross-ply square plates
subjected to sinusoidal distribution of transverse load and for
various boundary conditions.

No. of Variable SS SC cC FF FS FC
Layers

2 w 1.064 0.664 0.429 1.777 1.471 0.980

O 7.157 5.660 4.800 2.403 4.442 3.042

Gyy 7.157 4.483 2.914 11.849 9.837 6.560

10 w 0.442 0.266 0.167 0.665 0.579 0.380

5.009 3.829 3.167 1.725 2.986 1.865
Oyy 5.009 3.025 1.911 7.480 6.531 4.284

Table 6.5.2: Nondimensionalized center deflections (w) and in-plane normal
stresses (0; and Gyy) of cross-ply square plates subjected to
sinusoidal distribution of temperature distribution and for various
boundary conditions.

Laminate Variable SS SC CcC FF FS
0 w 1.0312 0.4543 0.2443 2.2935 1.6067
(0/90) w 1.1504 0.7183 0.4681 1.2639 1.2152
Tyy 0.6148 5.1916 8.8393 2.1091 1.4684
(0/90)5 w 1.0331 0.6222 0.3914 1.0681 1.0546
(0/90/0) w 1.0312 0.4635 0.2512 1.6645 1.3800
Ora 0.0526 11.1264 15.2675 1.4489 0.8217

Vibration and Stability

The Lévy type solution procedure is used to evaluate the natural frequencies
and critical buckling loads of antisymmetric cross-ply rectangular laminates. The
following material properties are used in the analysis (material 2):

El/EQ = 40, G12 = G13 = 0.6E2, G23 == 0.5E2, V9 = 0.25 (6.5.40)

Numerical results for the nondimensionalized fundamental frequencies of square,
antisymmetric, cross-ply laminates (0/90/0/...) are presented in Table 6.5.3 for
various boundary conditions, number of layers, and ratio of principal moduli of the
material. The fundamental frequencies increase with increasing orthotropy E;/FE2
as well as number of layers. Similar results for critical buckling loads are also
presented in the same table. Results for fundamental frequencies and buckling loads
are presented for various boundary conditions and aspect ratios in Table 6.5.4. The
natural frequencies increase with an increase in the aspect ratio as well as the number
of layers.
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Table 6.5.3: Effect of degree of orthotropy of the individual layers on the
dimensionless fundamental frequency, @ = w(b®/h)\/p/E2, and

critical buckling loads, N = N (b?/Esh3) (k = 0), of simply
supported antisymmetric square laminates (E;j/Ey; = varied,
G12 = G13 = 0.6E2, G23 = 0.5E2, V1o = 0.25).
No. of El/EQ
Layers
3 10 20 30 40
Natural Frequencies (wyq)f
2 6.977 8.031 9.204 10.227 11.154
7.034 8.097 9.278 10.310 11.244
4 7.353 9.987 12.826 15.141 17.145
7.413 10.068 12.931 15.264 17.285
8 7.443 10.422 13.589 16.147 18.352
7.505 10.507 13.701 16.279 18.502
10 7.455 10.473 13.678 16.264 18.492
7.516 10.559 13.790 16.397 18.643
Critical Buckling Loads (k = 0)
2 5.034 6.703 8.816 10.891 12.957
4 5.574 10.295 16.988 23.675 30.359
8 5.709 11.192 19.031 26.870 34.710
10 5.725 11.300 19.277 27.254 35.232

T Fundamental frequencies obtained with (first row) and without (second row) rotary inertia.

When rotary inertia is included, the nondimensionalized frequencies depend on the ratio a/h; the

frequencies are reported for a/h = 10.

Table 6.5.4: Dimensionless fundamental frequencies, w

w(b?/h)v/p/En,

and uniaxial critical buckling loads, N = N, (b%/E2h3), of
antisymmetric cross-ply plates with various boundary conditions

(E1 == 40E2, G12 = G13 = 0.6E2, G23 = O.5E2, V19 = 0.25).

No. of b/a FF FS FC SS SC CccC
Layers
Natural Frequencies (w1)f
2 1 7.267 7.636 8.228 11.154 14.223 18.543
10 1 12.680 12.906 13.779 18.492 23.971 31.709
2 2 7.267 8.677 13.915 30.468 45.554 64.832
10 2 12.680 13.569 22.876 52.292 79.371 113.80
2 3 7.267 10.153 25.769 63.325 96.451 137.71
10 3 12.680 14.606 43.616 111.58 159.65 159.95
Critical Buckling Loads (k = 0)
2 1 5.425 6.003 6.968 12.957 21.116 31.280
10 1 16.426 17.023 19.389 35.232 59.288 89.770

t Frequencies with rotary inertia included (a/h = 10).
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6.5.4 Antisymmetric Angle-Ply Laminates

The Lévy solutions in conjunction with the state-space approach can also be
obtained for antisymmetric angle-ply laminated plates. In this section numerical
results of bending, free vibration, and in-plane compressive buckling of rectangular
laminates are presented (see Khdeir [18]).

Bending

Nondimensionalized deflections, w = wy(0,b/ 2)Exh3 /qobt x 102, of square,
antisymmetric angle-ply laminates (45/-45/45/-45) for various boundary conditions
and uniformly distributed load of intensity ¢g are presented in Table 6.5.5. The
material properties used are the same as those presented in Eq. (6.5.40). As one
might expect, plates with a combination of free and simply supported boundary
conditions deflect the most and those with simply supported and clamped boundary
conditions deflect the least. Table 6.5.6 contains results for two- and ten-layer
antisymmetric angle-ply laminates as a function of the lamination angle and for
different boundary conditions. The material properties used in this case are

FEy =19.2 x 10° psi (132.38 GPa), E, = 1.56 x 10° psi (10.76 GPa), v = 0.24
Gia = G13 = 0.82 x 10° psi (5.65 GPa), Gaz = 0.523 x 10° psi (3.61 GPa)(6.5.41)

It is clear that the bending-stretching coupling is the most significant for two-layer
laminates, and its effect is to make the laminate more flexible and hence deflects
more than the ten-layer plates, for which the coupling is negligible.

Table 6.5.5: Effect of orthotropy on dimensionless deflections @ of a (45/-
45/45/-45) square laminated plate.

E|/E, SS SC CcC FF FS FC
2 3.2142 2.2144 1.5308 10.470 6.2336 4.4460
10 1.0000 0.7467 0.5578 5.5710 2.3451 1.7473
20 0.5418 0.4120 0.3133 3.6574 1.3432 1.0104
30 0.3718 0.2847 0.2179 2.7376 0.9433 0.7121

Table 6.5.6: Effect of ply angle (#) and number of layers (n) on dimensionless
deflection w of a square plate [(8/-0/0/ ... /-0); material properties
are as given in Eq. (6.5.41)].

9 n SS SC CC FF FS FC
30 2 1.6185 1.2996 1.0352 4.3732 2.6983  2.2162
10 0.8187 0.6898 0.5786 2.2621 1.3936  1.1913
45 2 1.5807 1.1675 0.8628 7.8765 3.5696  2.6432
10 0.7391 0.5590 0.4229 4.7291 1.8069  1.3554
60 2 1.6184 1.0218 0.6657 12.3713 4.7491  2.8627

10 0.8187 0.5188 0.3364 10.3035 2.7365 1.6391
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Vibration and Buckling

Numerical results for nondimensionalized frequencies, w

dimensionless uniaxial buckling loads, N =
laminates in Tables 6.5.7 through 6.5.13. The material used in all these cases is
assumed to be a high modulus graphite epoxy with the properties listed in Eg.

(6.5.40):

El/E2 = 40, G12 = G13 = 0.6E», G23 = 0.5E2, r19 = 0.25

w%s/p/Eg, and

2 .
NmE‘;—hg, are presented for various

The fundamental frequencies presented are for the case in which rotary inertia is
neglected. The parametric effects of the lamination angle, plate aspect ratio, and
boundary conditions on frequencies and buckling loads can be seen from the results
presented in these tables.

Table 6.5.7: Effect of in-plane orthotropy ratio on dimensionless fundamental
frequency w of a (45/-45/45/-45) square laminated plate.

E;/Es SS sC cC FF FS FC

2 7.02 8.39 10.24 3.44 4.24 4.62
10 12.54 14.43 16.90 4.65 6.78 7.38
20 17.02 19.43 92.53 5.72 8.92 9.70
30 20.53 23.37 27.00 6.60 10.62 11.55
40 23.53 26.73 30.83 7.37 12.08 13.14

Table 6.5.8: Effect of ply angle () and number of layers (n) on dimensionless

fundamental frequency @ of a square laminate (8/-6/6/ ... /-0).

7 n SS SC CC FF FS FC
30 2 14.24 15.44 17.00 7.58 9.35 9.69
10 23.95 25.59 27.58 12.37 15.38 15.84
45 2 14.64 16.75 19.48 5.12 7.79 8.48
10 25.47 28.91 33.32 7.89 13.03 14.17
60 2 14.24 17.74 22.31 3.47 6.26 7.54
10 23.95 29.86 37.62 4.32 9.92 11.96

Table 6.5.9: Effect of aspect ratio dimensionless fundamental frequency @

w%\/p/Eg of a (45/-45/45/-45) square laminated plate.

a/b SS e cC FF FS FC
1 23.57 26.73 30.83 7.37 12.08 13.14
2 53.74 69.75 90.73 6.32 19.80 25.47
3 98.87 138.20 189.13 5.61 28.39 42.95
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Table 6.5.10: Dimensionless frequency @y, for various mode numbers (m) of (45/—
45/45/-45) square laminated plate.

m SS SC CC FF FS FC

1 23.53 26.73 30.83 7.37 12.08 13.14
2 53.74 56.10 58.88 31.89 37.32 37.91
3 98.87 100.70 102.76 73.58 79.12 79.48
4 160.35 161.82 163.43 132.42 137.92 138.16
5 238.72 239.93 241.25 208.39 213.78 213.95

Table 6.5.11: Effect of plate aspect ratio (a/b) and number of layers (n)
on uniaxial buckling load of simply supported angle-ply (45/-
45/45/...) laminates; N = Ny, (b*/7?Dag).

a/b mode n=2 n=24 n==6 n=28

0.5 (1,1) 3.2071 8.0934 8.9980 9.3150
1.0 (1,1) 2.4014 6.2045 6.9088 7.1552
1.5 (2,1) 2.5231 6.4901 7.2247 7.4819
2.0 (2,1) 2.4014 6.2045 6.9088 7.1552
2.5 (3,1) 2.4495 6.3173 7.0336 7.2843
3.0 (3,1) 2.4014 6.2045 6.9088 7.1552

Table 6.5.12: Effect of in-plane orthotropy ratio on dimensionless uniaxial
buckling loads N = N..b?/E2h3 of a (45/-45/45/-45) square
laminated plate.

E,\/E; SS SC CC FF FS FC
2 4.988 7.126 9.512 1.199 1.819 2.166
10 15.923 21.106 26.278 2.190 4.660 5.521
20 29.333 38.234 46.823 3.313 8.054 9.532
30 42.715 55.321 67.320 4.415 11.421 13.513
40 56.088 72.396 87.803 5.509 14.780 17.484

Table 6.5.13: Effect of ply angle () and number of layers (n) on dimensionless

uniaxial buckling loads N = Ng.b%/Fsh3 of a square plate [(6/-

0/0/...]-0))

0 n SS SC CC FF FS FC
30 2 20.543 24.158 29.269 5.822 8.857 9.520
10 58.135 66.322 77.065 15.499 23.972 25.412
45 2 21.709 28.423 34.963 2.654 6.150 7.283
10 65.714 84.707 102.596 6.300 17.189 20.332
60 2 19.564 23.834 29.547 1.221 3.975 5.756

10 52.945 64.103 79.619 1.889 9.977 14.501
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6.6 Analysis of Midplane Symmetric Laminates
6.6.1 Introduction

In the previous sections of this chapter we considered analytical solutions of bending,
vibration, and buckling of antisymmetric cross-ply and angle-ply rectangular
laminates. In these laminates, in general, the bending-stretching coupling stiffnesses
B;; were not zero, but the bending-twisting coupling stiffnesses D¢ and Dgg were
zero. In this section we consider laminates that are symmetric in both geometry and
material properties about the middle plane. In such symmetric laminates, we have
B;; = 0 and D16 and Do are not zero. The specially orthotropic plates considered in
Chapter 5 are a special case of symmetric laminates. Laminates containing multiple
generally orthotropic layers (i.e., orthotropic layers whose principal material axes
are not parallel to the plate axes) that are symmetrically placed about the midplane
fall into the class of symmetric laminates.

An example of symmetric laminates is provided by the class of reqular symmetric
angle-ply laminates, (0/-6/6), 0 < § < 90 with equal thickness layers. The regular
symmetric angle-ply laminates should contain an odd number of plies. A more
general example of symmetric angle-ply laminate is provided by (30/-60/15/-60/30)
with thicknesses hy = hs, ho = hyq, and the midplane of the plate coincides with the
midplane of the 15° ply. For symmetric angle-ply laminates the coupling terms
A1e, Aog, D16, and Dogg are proportional to 1/N, where N is the total number of
layers in the laminate. Thus the coupling stiffnesses are the largest when N = 3 for
symmetric angle-ply laminates, and they decrease with increasing V.

The symmetric angle-ply laminates, with B;; = 0 and small A, A2, Dis,
and Dog, offer both analysis simplifications and practical advantages over more
general laminates. For example, symmetric angle-ply laminates offer more shear
stiffness than cross-ply laminates. Even when Aig, Asg, Dig, and Dag are small,
they influence the laminate behavior significantly.

6.6.2 Governing Equations

The governing equations of motion of symmetric laminates according to the classical
laminate theory can be obtained from (3.3.45)-(3.3.47) by setting B;; = 0 and
I; = 0. For linear analysis, we obtain

0%ug H?uy Puy 0%y O3ug 8%y
A Apg——+ A Aog——
1522 + A Oxdy + A Oxdy + Ox? + dxdy 26 oy?
Pug v ONL ~ ONZL &g
A _ [ =) 6.1
A6 ( Oy? * Oxdy Ox + Oy 0752 (6.6.1)

=1y (6.6.2)
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8411}() 8411)0 84”11}0 8411}0

=DM (D 4 2Dg6) 20— Dy 0
1.3 (D12 + 66)8m28y2 275

*wo PMT M 92MT
—4D — T 49 Y vy
26 Oxdy3 < Ox? + Oyoz + Oy? ta
J (.~ Ouwg ~ Owg 0 [~ Owg - Ouy
g (M ) g (N + W )
(9211}0 82 82w0 82100
=T S A A . .0.
Corr T Por ( 022 " Oy (6.63)

where Ny, Nyy, and Nmy are the applied edge forces.

Clearly the first two equations governing (ug,vg) are uncoupled from the third
equation governing wg. In the absence of any in-plane loads, the first two equations
yield zero in-plane displacements everywhere. Because of the presence of the
bending-twisting coupling stiffnesses, the Navier solutions of Eq. (6.6.3) cannot
be developed, forcing us to use the Ritz, Galerkin, or the finite element method.
In the following sections we discuss the Ritz solutions for symmetrically laminated
plates.

6.6.3 Weak Forms

We can use the Ritz method to determine an approximate solution to the bending,
buckling, and natural vibrations of symmetric laminates. The weak form or the
statement of the principle of minimum total potential energy for bending, buckling,
and natural vibration problems is given below. For bending, the virtual work done
to applied edge forces and moments should be added to the expression

b a 2 2 2 2 2 2 <
o:/ / {Duawoa 6w0+D12<8 wo O 6w0+8w08 éw())
JO JO

Ox? Oz oy? Oz 0x2  Oy?
0% wg 6wy H%wq 026wy
Doo 2 20 Y 90 g
+ P oy?  Oy? + 266 0xOy Oxdy
2 2 2 2
+2D16 15} ()] 15} 611)() 0 U)Qa 6w0
Oxdy Ox? 0x? Oxdy
8211}() 826111() 8211)0 825100
2D —qgb
+ b (63:8;; oy? Oy? Ox0y qoto

ey %Géwo N (ng Obwyq N Owg 86w0> - %Géwo
T or Ox W\ oy Ox or Oy Wooy oy

8w0 aéwo 811}0 36w0>:| ded
or Ox oy Iy vy

—W? [Io’w()(swo + I ( (6.6.4)

where w denotes the frequency of natural vibration. For bending we set all terms
involving the in-plane edge forces and frequency of vibration to zero. We set ¢ =0
and w = 0 for buckling analysis, and ¢ = 0 and Ny, = Nyy = ]\Afzy = 0 for natural
vibration.
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6.6.4 The Ritz Solution

We begin with the Ritz approximation of the form

wo(x,y) ® Wun(z,y) = ZZCU vij (2, y) (6.6.5)

i=1j=1
where
eij(x,y) = Xi(x)Y;(y) (6.6.6)

and X; and Y; denote any admissible approximation functions for the problem. The
choice is dictated by the essential (or geometric) boundary conditions of the problem.
Substitution of Eq. (6.6.5) into Eq. (6.6.4) results in the following equations:

d2X d dX; dY; dX, dY,
0—2;2{/ / [ 1z Y da? Y + 4D d:cl dyj dxp dyq
=17

+ D2 (X Cf;}; d;xQ Yo+ dd)g YXpCi:yY)

+ Do X Cﬁ;}; Xp‘i;;

42Dy (df e+ dijdd)i%)

+ 2D (dzi%){p(i:;g + %%%) }dmdy}cm

LS [ 0 dXi, dX dy; . dy,
— Ny —LY, +
S [ [ e ey, R G

- Y; dX X; Y,
+ 2N, (X dd de dd Vi X, dd ”dmdy}c”

M N
dX; d
1y X;Y; XpY, + I
S e [ n (G G
ay; a
+X; 7 —1X ddY )] da:dy}cij —/ / qXpYy dzdy  (6.6.7)
o Jo

forp=1,2,---,M and ¢g=1,2,---,N.

6.6.5 Simply Supported Plates

Recall from Eq. (5.2.4) that the choice of the double sine series

ITT ™
pij(z,y) = Xi(z)Y;(y) = sin — sin ‘ng (6.6.8)
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satisfies the simply supported (SS-1) boundary conditions. Substituting (6.6.8) into
(6.6.7) we obtain

M N b ra
0= Z Z l/o /0 (Aiqu sin oz sin By sin apx sin Byy

i=1j=1
+ Bijpq €0s a;x cos By cos ap® oS Byy
— Cijpg COS oy cos 35y sin apx sin Byy

— Djjpg Sin i sin 3,y cos apx cos ﬂqy) daxdy} Cij

b ra
—/ / g(z,y) sinopx sin Byy dedy
0o Jo
M N

b rar .
_ Z Z{/ / [Ngw cos a; T sin By cos oz sin Bgy
0 JO

i=1j=1
+ Nyy sin oy cos By sin oy, cos Byy

+ 2N£y (sin a;x cos By cos apx sin By

+ cos a;x sin By sin apx cos Byy) } d:cdy}cij

M N b ra
- E g {/ / w? [Io sin ;2 sin B,y sin apz sin By
— < 0o Jo

i=1j=1
+ I (cos iz sin By cos apz sin By

+sin oz cos By sinapr cos Bey)] dacdy}cij (6.6.9)

where o; = &, 3; = IT | and
Aijpg =D1107a + D1y ( 20l + a?ﬁ?) + D37 3;
Bijpq =4DgsriBjapfy
Cijpq =2 (Dwaiﬁjai + DQGQiﬁjﬁ(?)
Dijpg =2 (D160‘z‘20‘p5q + D265]2'Oépﬁq) (6.6.10)

Suppose that the load ¢(z,y) is also expanded in double sine series

M N
g(z,y) = Y_ > Qijsinayz sin By (6.6.11)

i=1j=1
In view of the integral identities

a 0, i#J
/ sin oy sin oz dr = (6.6.12a)
0 .
9 t=17
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” { 0, 1#J
/ COS au COs o dr = (6.6.12b)
0 g, =
a 0, i=j and i+ j even
/ cos a;x sinajx de = { A (6.6.12c)
0 T}_ng i#j and i+j odd
Eq. (6.6.9) can be simplified. In particular, when Dig = Dsg = 0, Eq. (6.6.9) gives
the Navier solutions presented in Chapter 5. When Dig and Dsg are nonzero, the
one-term Ritz solution does not exist for a general symmetric laminate, because the
solution does not contain the stiffness terms Dyg and Dsg due to the vanishing of
the integrals. Thus the double sine series solution is incomplete, and it can only give
an approximate solution to the symmetrically laminated plates when many terms
in the series are used.
As reported by Ashton and Whitney [5], for a square plate with Do =
0.1D11, D19+ 2Dgg = 1.5D11, and D1g = Dog = —0.5D11, the maximum deflection
under uniformly distributed load, obtained with M = N = 7 in the series, is

4
wola/2,a/2) = 0.00425 L% (6.6.13)
Dy
For the same case, when Dig and Dog are neglected the maximum deflection is
QOG4
wo(a/2,a/2) = 0.00324-5— (6.6.14)
11

Thus, the deflection is underpredicted by 23.76% when the bending-twisting coupling
is neglected.

Similarly, it is found that the orthotropic plate solutions for buckling loads and
natural frequencies of vibration are overpredicted in comparison to the solutions
obtained with the bending-twisting coupling in place. In general, the task of
computing the Ritz solutions is algebraically complicated, and many terms have
to be included to obtain accurate results.

6.6.6 Other Boundary Conditions

Equation (6.6.7) is also valid for other boundary conditions. Only the choice of the
approximation functions X; and Y; is different for different boundary conditions.
As discussed in Section 5.4.3, the eigenfunctions of the Euler—Bernoulli beams can
be used for these functions (see Eq. (4.2.46a) and Table 4.2.3; also see [22,23]).
For example, for a symmetric laminate with all edges clamped, we can use the
eigenfunctions of a beam with both ends clamped:

Xi(x) =sin \jz — sinh A\jz 4+ «; (cosh \jz — cos \;z)
Yj(y) =sin\jy — sinh A\jy 4+ o (cosh A\jy — cos Ajy) (6.6.15)
fort =1,2,---,M ; j = 1,2,---,N. The parameters X\; are the roots of the

characteristic equation
cos A;acosh \ja—1=0 (6.6.16)
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and . _
sinh A;a — sin \;a cosh \;a — cos \;a )
Q; = = = - (6.6.17)
cosh \ja — cos \;a sinh A;a + sin Aja

We will not consider the topic of solving symmetrically laminated plates for
bending deflections, buckling loads, and vibration frequencies by the Ritz method
further in this book. Interested readers may consult [19-23].

6.7 Transient Analysis
6.7.1 Preliminary Comments

Here we discuss the procedures to determine the transient response of composite
laminates. The equations of motion can be solved using analytical solution methods,
such as the state-space approach (see Khdeir and Reddy [24-26]). Here we discuss
a method which takes advantage of the static solution form for spatial variation and
which uses a numerical method to solve the resulting differential equations in time
(see Reddy [27]).

As described in Section 5.9, there are two major steps in the solution process:
(1) assume a spatial variation of the displacements and reduce the governing partial
differential equations to a set of ordinary differential equations in time, and (2) solve
the ordinary differential equations exactly if possible or numerically. The first step is
amply illustrated in the preceding sections of this chapter. For example, the Navier
solution method can be used to determine the spatial variation of the transient
solution. The only difference is that the coefficients of the double Fourier series
are assumed to be functions of time. Thus a typical dependent variable ¢(x,y,t) is
expanded as [see Eq. (6.3.3)]

¢(.%‘, Y, t) = Z Z Tmn(t)an(xv y)

m=1n=1

where F,,,, are suitable functions that satisfy the boundary conditions and 71;,, are
coefficients to be determined such that ¢(z, y, t) satisfies its governing equation. The
choice of a separable solution form as above implies that the general spatial variation
is independent of time, and its amplitude may vary with time.

6.7.2 Equations of Motion

For simply supported cross-ply and antisymmetric angle-ply laminates, the Navier
solution method can be used to reduce the governing equations of motion to
differential equations in time. These are given by Eq. (6.3.19) for antisymmetric
cross-ply laminates and by Eq. (6.4.6) for antisymmetric angle-ply laminates. In
the absence of thermal effects and applied in-plane forces, these equations are of the
form

é11 é12 é13 Umn mll 0 0 Umn 0
C12 G2 (3 Vien ¢+ 0 1hae O Vion ¢ = 0 (6.7.1)
¢13  C23 (33 Winn 0 0 1hgs Wi Qmn

or

[MI{A} + [K[{A} = {F} (6.7.2)
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where the superposed dot denotes differentiation with respect to time, and

Umn 0
{A} = { Vinn } , {F}= { 0 } (6.7.3)
Wmn an

The coefficients é;; and 7i;; of Eq. (6.7.1) are defined in Eqs. (6.3.20) and (6.4.7),
respectively, for the two classes of laminates.
Equation (6.7.1) is subjected to the initial conditions

U0(3373/,0) = d(l)(.’L',y), Uﬂ(wayvo) = d%(l‘ay)a wO(x7y7O) = d8($7y) (6748’)

0(z,,0) = vh(x,y), t0(z,y,0) = vi(,y), wolz,y,0) = vi(z,y)  (6.7.4b)
We assume that the functions d* and v’ (i = 1,2,3) can also be expanded in the
double Fourier series in the same way as the corresponding displacements. Then we
have

Ay = Unn(0) = D}

mn?

A}nn = Umn(o) = anma A%rm = an(O) = Vnzmn? A?nn =V mn(O) = Vr::m (6~7-5)

where D¢ and V!, are the coefficients in the Fourier expansion of the ith initial
displacement and velocity, respectively.

6.7.3 Numerical Time Integration

The set of three equations in (6.7.2), for any fixed m and n, can be solved exactly
using either the Laplace transform method or the modal analysis methods. Both
methods are algebraically complicated and require the determination of eigenvalues
and eigenfunctions, as in the state-space method. Therefore we will not attempt
them here. Alternatively, we seek numerical solutions to Eq. (6.7.2) using the
well-known family of Newmark’s integration schemes for second-order differential
equations (see Reddy [27]). In this numerical integration method, the time
derivatives are approximated using difference approximations (or truncated Taylor’s
series), and therefore solution is obtained only for discrete times and not as a
continuous function of time.

In the Newmark method, the function (of time) and its first derivative are
approximated using Taylor’s series and only terms up to the second derivative are
included:

(A1)} = {AU)} + 8t A} + 568 (A1)

{Atss1)} = (At} + 6t{A(tsra)}
{A(tssa)} = (1~ At} + afA(ts1)}, 0<a<1 (6.7.6)

where 6t is the time increment, 6t; = ts;41 — ts, and ¢, is the current time and ¢4
is the next time at which we seek the solution. We assume that the solution at time
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ts is known. Substituting the third equation into the first two in Eq. (6.7.6) and
solving for {A}, we obtain

{A}S-H = {A}s + al{A}s + 02{A}s+1

{AYor1 = as ({A}sp1 — {A}s) — as{A}s — as{A}, (6.7.7)
where
a1 = (1 — a)dts, as = adts, az = —%—2 , a4 = agbts, as = (1-1) (6.7.8)
7v(6ts) v

and {-}s, for example, denotes the value of the enclosed vector at time t.

The parameters o and v are selected such that the error introduced in the
approximation (6.7.6) does not grow unboundedly as the scheme is applied at each
time step to determine the solution at the next time. When the error introduced is
bounded (hence the solution is bounded), such schemes are said to be numerically
stable schemes. Sometimes, there is a restriction on the size of the time step that
would make the error remain bounded. In such cases, the scheme is said to be
conditionally stable. All schemes for which v > a > 1/2 are unconditionally stable.
Schemes for which v < « and a > 0.5 are conditionally stable, and the stability
condition is

(MBS

S5t < 6t (6.7.9)

=—(a-—
“ \/§wma:v ( ’Y)
where wpqe denotes the maximum frequency of the discrete eigenvalue problem
associate with Eq. (6.7.2):

(K] = w?[M]) {A} = {0} (6.7.10)

The critical time step can also be expressed in terms of the period of vibration,
T = 27 /w. It should be noted that the frequencies of vibration for different modes,
axial, bending, torsional, and shear modes, are different. The critical time step for
the element is the smallest of the critical time steps calculated using the maximum
frequency of each mode of vibration.

The Newmark family contains several well-known schemes as special cases. The
following choices of « and « define some of the widely used schemes:

o= % , Y= % , the constant-average acceleration method (stable)

o= % , Y= % , the linear acceleration method (conditionally stable)

o= % S % , the Fox-Goodwin scheme (conditionally stable)

o= % , ¥=0, the central difference method (conditionally stable)

o= g , Y= % , the Galerkin method (stable)

o= g , ¥ =2, the backward difference method (stable) (6.7.11)
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Premultiplying the second equation in (6.7.7) with [M]s,; and using Eq. (6.7.2)
at t = ts41 to replace [M]sy1{A}s41, we obtain

[KI{A}os1 = {F} (6.7.12)

[K] = [K]s1 + a3[M]s11
{F} = {F}sr1 + [M]s11 (%{A}s +ag{A}s + a5{A}s> (6.7.13)

An alternative form of Eq. (6.7.12) is given by
[K){A}os1 = {F} (6.7.14a)

where
(K] = [M]s11+ %[K]s+l
{F} = {F}sy1 — [Kls11 ({A}s + Z—‘;{A}s + Z—Z{A}s> (6.7.14b)

where a3, a4, and as are defined in Eq. (6.7.8) in terms of the time step 6t and
the parameters o and 7. Note that for the central difference scheme (v = 0), it is
necessary to use Eq. (6.7.14a).

Equation (6.7.12) or (6.7.14a) represents a system of algebraic equations among
the (discrete) values of {A(¢)} at time ¢ = {341 in terms of known values at time
t = ts. Thus the values Aj(t) = Unn(t), Do(t) = Vin(t), and Az(t) = Wiyn(t)
are determined at time ¢ = t1,%2,---,¢5,--- by a repeated solution (or marching in
time) of Eq. (6.7.12). At the first time step (i.e., s = 0), the values {A}o = {A(0)}
and {A}y = {A(0 )} are known from the 1n1t1al conditions (6.7.5) of the problem.
However, {A}o = {A(0)} is not known at time ¢ = 0. Thus, the Newmark method
is not a self-starting scheme. Although Eq. (6.7.2) is not valid for ¢ = 0, it is used
to determine {A}¢ at ¢t = 0:

{A}o = [M]" {{F} - [K]{A}o} (6.7.15)

The transient solution, for example, for the transverse deflection at time ¢4, s > 0,
is given by (Wyn(ts) = Agm(ts))

(z,y,ts Z Z Wn(ts) sin ;rx sin 1Y (6.7.16)

m=1n=1

6.7.4 Numerical Results

Several examples of applications of the methodology described in this section are
presented here. In all of the numerical examples, zero initial conditions were
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assumed. The following data (in dimensional form) were used in all of the
computations:

a=b=25¢cm, h=1cm (a/b=1, a/h = 25)
p=28x10"% N-s?/em?, Ey = 2.1 x 10° N/cm?
E1 = 25Fy, G1ag = G13 = 0.5Es, 119 = 0.25 (6.7.17)

The values of o and 7 in the Newmark integration scheme are taken to be 0.5, which
correspond to constant-average acceleration method.

The effect of the time step on the accuracy of the solution was investigated
using a simply supported antisymmetric cross-ply (0/90) laminate under uniformly
distributed step loading. Table 6.7.1 shows the nondimensionalized center transverse
deflection, w = wo(Fs h3/qoa4) % 102, at selective times for three different time steps:
6t = 5,20, and 50us (us = 107%). The effect of larger time step is to reduce the
amplitude and increase the period. Plots of the nondimensionalized center deflection
versus time for the same problem are shown in Figure 6.7.1. For all time steps below
10us, the difference is not noticeable on the graphs. In all the following examples,
Ot = Hus is used.

Table 6.7.1 Nondimensionalized center transverse deflections (w) in simply
supported (SS-1) cross-ply (0/90) laminates subjected to uniformly
distributed transverse load (h = lem, Ey/Ey = 25, F2 = 2.1 x 10°
N/cm2, G12 == G13 = 0.5E2, G23 - O.QEQ, V19 = 0.25).

stt t =100t 200 300 400 500 600 700 800 900

5 0.452 1.655 2.931 3.451 2.880 1.628 0.460 —0.003 0.511
20 0.372 1.568 2.862 3.404 2.943 1.796 0.530 ~0.0561 0.467
50 0.271 1.379 2.603 3.372 3.095 2.061 0.774 0.043 0.274

T Denotes time in microseconds (pus).

Figures 6.7.2 through 6.7.5 contain nondimensionalized transverse deflections
and normal and shear stresses in two-layer and eight-layer antisymmetric cross-
ply (0/90/0/---) square plates under suddenly applied transverse load. The
nondimensionalizations used are the same as listed in Eq. (6.3.39), except that
the nondimensionalized deflection plotted in the figures is w = wo( E2h®/qoa) x 102
(note the multiplicative factor). The normal stress Gz = 04 (h%/qob?) presented in
Figure 6.7.4 is computed at z = —h/2, which is larger than that at z = h/2 (see
Figure 6.7.3). The effect of coupling on the transient response can be seen from
the two-layer and eight-layer results. It has the effect of increasing the amplitude
as well as the period. The maximum deflections and stresses for the static case are
summarized next.
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Figure 6.7.1: Nondimensionalized center transverse deflection (@) versus time
(t) for simply supported (SS-1) antisymmetric cross-ply (0/90)
laminates subjected to uniformly distributed step loading; see Eq.
(6.7.14) for the data.
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Figure 6.7.2: Nondimensionalized center transverse deflection (w) versus time
(t) for simply supported (SS-1) two-layer and eight-layer
antisymmetric cross-ply laminates.
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Figure 6.7.3: Nondimensionalized normal stress (,,) versus time (t) for simply
supported (SS-1) two-layer and eight-layer antisymmetric cross-ply
(0/90) laminates.
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Figure 6.7.4: Nondimensionalized normal stress (d,, at the bottom of the
laminate) versus time (¢) for simply supported (SS-1) two-layer
and eight-layer antisymmetric cross-ply (0/90) laminates.
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Laminate (0/90), SSL:
@ = 1.064, Gze(a/2,b/2,h/2) = 0.084

Fou(a/2,b/2,~h/2) = —0.716, G4y (a,b,—h/2) = 0.053 (6.7.18)

Laminate (0/90), UDL:
@ = 1.695, Fun(a/2,b/2,h/2) = 0.127

Frea(a)2,b/2,—h/2) = —1.076, G4y(a,b,—h/2) = 0.093 (6.7.19)

Laminate (0/90/0/---), UDL:
W = 0.715, Guea/2,b/2,h/2) = 0.045

Toa(a)2,b/2, —h/2) = —0.749, &4,(a,b, —h/2) = 0.039 (6.7.20)

Note that the maximum transient transverse deflection of (0/90) laminate under
UDL, which occurs at t = 400 us, is 2.035 times that of the static deflection.
Similarly, the stresses are also about 2.035 times that of the static stresses.

Figures 6.7.6 through 6.7.8 contain nondimensionalized transverse
deflections and shear and normal stresses in two-layer and eight-layer antisymmetric
angle-ply (0/90/0/---) square plates under suddenly applied transverse load. The
same observations made for cross-ply laminates also apply for angle-ply plates. The
angle-ply plates, for the same material and geometric dimensions, have smaller
maximum deflections, stresses, and periods of oscillation. The maximum static
deflections and stresses are given below.

Laminate (—45/45), UDL:

W =1.028, G4z(a/2,b/2,h/2) = 0.351, Gyyla,b,—h/2) = 0.442 (6.7.21)

Laminate (—45/45/-45/---), UDL:
W= 0.386, Gap(a/2,b/2,h/2) =0.201, ogy(a,b,—h/2)=0264  (6.7.22)

The maximum transient deflection for the two-layer plate is 2.114 and it occurs at
t = 305 us; it is about 2.056 times that of the static deflection. In the case of
eight-layer laminate, the maximum transient deflection is 0.7988 and it occurs at
t = 190 us; it is 2.7 times that of the static deflection.
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Figure 6.7.5: Nondimensionalized shear stress (6;,) versus time (t) for simply
supported (SS-1) two-layer and eight-layer antisymmetric cross-ply
(0/90) laminates.
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Figure 6.7.6: Nondimensionalized center transverse deflection (w) versus time
(t) for simply supported (SS-2) two-layer and eight-layer
antisymmetric angle-ply (-45/45), laminates.
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Figure 6.7.7: Nondimensionalized shear stress (&) versus time (t) for simply
supported (SS-2) two-layer and eight-layer antisymmetric angle-ply
(-45/45),, laminates.
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6.8 Summary

In this chapter analytical solutions for bending, buckling under in-plane compressive
loads, and natural vibration of rectangular laminates with various boundary
conditions were presented based on the classical laminate theory. The Navier
solutions were developed for two classes of laminates: antisymmetric cross-ply
laminates and antisymmetric angle-ply laminates, each for a specific type of simply
supported boundary conditions, SS-1 and SS-2, respectively. The Lévy solutions
with the state-space approach were developed for these classes of laminates when
two opposite edges are simply supported with the other two edges having a
variety of boundary conditions of choice. A discussion of symmetrically laminated
plates, which are characterized by nonzero bending-twisting coupling terms, is also
presented. For such laminates, one must use approximate methods, such as the Ritz
method or the finite element method because the Navier solutions do not exist for
symmetric laminates. The Ritz solutions for symmetric laminates are discussed in
some detail. Lastly, a transient solution procedure for antisymmetric cross-ply and
angle-ply laminates is presented. In this procedure, the solutions are assumed to
be products of functions of spatial coordinates (z,y) only and functions of time ¢
only (i.e., separation of variables). The spatial functions are the same as those used
in the static case, and the time variation is determined using the Newmark time
integration scheme.

Numerical results were presented for static bending, buckling, natural vibration,
and transient response of antisymmetric cross-ply and angle-ply laminates. The
presence of bending-extensional coupling in a laminate generally reduces the effective
stiffnesses and hence increases deflections and reduces buckling loads and natural
frequencies. The coupling also increases the period of oscillation in the transient
problems. The coupling is the most significant in two-layer laminates, and it
decreases gradually as the number of layers is increased for fixed total thickness.

The presence of twist-curvature coupling in a laminate also has the effect of
increasing deflections, decreasing buckling loads, and decreasing natural frequencies.
The coupling dies out as the number of layers is increased for fixed total thickness.

The effects of bending-stretching coupling and twist-curvature coupling on
deflections, buckling loads, and natural frequencies of general laminates, for example,
unsymmetric laminates, can only be assessed by specific studies. Such laminates can
be analyzed only with approximate methods of analysis.

In general, the bending-twisting coupling in symmetrically laminated plates
has the effect of increasing deflections and decreasing buckling loads and natural
frequencies of vibration. Analysis of such laminates by the Ritz method is
characterized by slow convergence.

Problems

6.1 Verify Eq. (6.2.4) by casting Eqgs. (6.2.1)—(6.2.3) in operator form.

6.2 Verify Eq. (6.3.19) by substituting expansions (6.3.3) into Egs. (6.2.1)—(6.2.3) and assuming
that conditions in Egs. (6.3.7) hold.

6.3 Verify the solution in Eq. (6.3.27).
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6.4

6.5

6.6

6.7
6.8

6.9
6.10
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Derive the expressions for transverse shear stresses from 3-D equations of equilibrium for the
case of isothermal, antisymmetric cross-ply laminates.

Derive the expressions for transverse shear stresses from 3-D equations of equilibrium for the
nonisothermal case of antisymmetric angle-ply laminates when the temperature distribution
is of the form

AT(z,y,z) = To(z,y) + 2T (z,y)
Assume that both Ty and T can be expanded in double sine series (similar to the mechanical
load).

Verify Eq. (6.4.6) by substituting expansions (6.4.2) into Egs. (6.2.1)—(6.2.3) and assuming
that conditions in Egs. (6.4.4) hold.

Verify the solution in Eq. (6.4.9).

Verify the expressions in Eq. (6.5.11) by substituting expansions (6.5.10) into the definitions
of the resultants in Eqgs. (3.3.43) and (3.3.44).

Verify Egs. (6.5.15).

Consider antisymmetric angle-ply rectangular laminates with edges x = 0 and z = a simply
supported and the other two edges, y = +b/2, having arbitrary boundary conditions. Assume
solution of the form

uo(x’yat) = Z U'rn(y) sin ax

m=1

vo(z,y,t) = Z Vin(y) cos ax

m=1
wolz,y,t) = i Wi (y) sinax (1)
and load expansion in the form "
q(z,y) = i Qm(y)sinaz (2)
m=1

where o = mn/a. Show that the equations of equilibrium of the classical laminated plate
theory for such laminates (without any applied in-plane loading) can be reduced to the
following ordinary differential equations

Ul = ChUp + GV, + C3W), + CyWY
‘ﬁx ::(75LL% +'(76‘6n +’(77L@Qn +'(78L1C%
W' = CoUp, + C1oVin + C11 Wi + C12W5 + C13Qm (3)

where the primes indicate differentiation with respect to y, and the coefficients C; are defined
as

C) = —e1/ea, Co= —eg/es, C3=—eg/er, Cy=—es/ey
Cs = —eg/es, Cp = —erfes, Cr= —eg/eg, Cg=—ero/es
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and the coeflicients e; are defined as
_ 2 _ _ _ a2
e; = —a“Ayy, ey = Ags, ez = —a(Ai2+ Agg), €4 =3a“Big

_ _ _ 2 _

e5 = —Bgg, eg = —€3, e7=—a"Agg, eg = Ao
_ 3 _ _ 4 _ 2

eg = a’Big, ejg= —3aBgg, e11 =a*Dyy, e1n = —20°(D1y+ 2Dgg)

e13 = Doa, €14 =e4, €15 = —eg, €15 =65, €17 = —C€10 (5)

Repeat Exercise 6.10 for the case of biaxial buckling. All definitions in Problem 6.10 hold
with exception of e1; and ey5, which are modified as

e11 = oDy — N2,
e12 = —2a*(Dia + 2Dgg) + NP,
where NO, and ND are the in-plane compressive forces.

Repeat Exercise 6.10 for the case of free vibration. All definitions in Exercise 6.10 hold with
exception of eqq, which is modified as (when I5 = 0)

h/2

e1n = oDy — Ipw?,, I :/ pl™dz
~h/2

where w,, is the frequency of vibration associated with mode m.

Defining the state vector Z(y) as
Z1=Un, Zo=Ul , Za=Vy, Z4=V,,
Zg =W, Zg=W,

o

Zr =Wy, Zg =Wy (1)
express Egs. (3) of Problem 6.10 as a first-order matrix equation of the form
Z =TZ+F (2)

where the matrix T and the column vector F are given by

ro 1 0 0 0 0 0 0 7
c: 0 0 C, 0 C3 0 (4
0 0 0 1 0 0 0 0
lo ¢ g 0 Cc; 0 Cg 0
T= 0 0 0 0 0 1 0 0 3)
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
LO Cg Cio 0 Cpip 0 Cip 0O
F= {07030707070707013 QWI}T (4)
Consider a symmetrically laminated rectangular plate under the transverse load ¢(z,y). The
governing equation for static bending analysis is given by
(94’11)0 841110 841110
Dy — +4D1g=——5— +2(D 2Dgg) —5=5
15z T4D1e 9230y +2 (D12 + 2Dg) 9220,
6411)0 8411)0
Dos—F— +4Dog —= =
+ Da2 oyt + 426 BEE q

The weak form (or the virtual work statement) of the same equation is given by Eq. (6.6.4),
without the in-plane force and inertial terms. Show that the Ritz solution of the form

N

wp(,y) chiqbi(:c,y) 1)

=1



374 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

requires the solution of the algebraic equation

[Rl{c} ={q} (2)

where

82¢; 829
e[ 5 52

3%p; %9,
Oz0y Oxdy

02¢; 02¢;

02¢; 02¢;
dy? 0z
02¢; 02¢;
22 ayg ay2

02¢; 0%¢;
dz? Oy?

+2D1s ( 0z? 0xdy +

02¢; 02¢;

02¢; 02%¢;
dzxdy dz?

+ 2Dz ( Oy? dzdy + dzdy Oy?

b a
=/ / q(z,y)p: dudy
0 0

(3)

6.15 Consider a symmetrically laminated rectangular plate with simply supported edges. The

boundary conditions are given by

’LU()($,O):0, wo(xab)zov wO(Oﬂy):Ov wO(azy):O

MII(Oa y) =0, Mzz(aa y) =0, Myy(x70) =0, Myy(mvb) =0

where the bending moments are related to the transverse deflection by the equations

Find a two-parameter Ritz approximation using algebraic polynomials.

Note that the one-

parameter approximation, wg(z,y) = c1zy(a — z)(b — y) does not give a solution for the case

in which D1g and Dyg are not zero.

Ans: For the approximation of the form
wo(,y) = cray(a - e)(b - y) + c2e’y*(a — z)(b - y)

the Ritz coefficients are given by

ab’® a3b3 aSb
Ry =2 D11T5— +2(Dqg + 2Dgg) —— g T Doy —— 5
a2b7 4b4 7b2 a b a5b3
Riz = | Di1—55- +2(D12 +2Dgg) == 35 T D2y — 2D 45 2650~
[ a3 a5b® a®b3 atb® abpt
Roog = — +2 2D — _—
22 =4 _D11 05 T (D12 +2D¢6) 5o 795 + D2 55= + Dis—5 + Das 5

a3b3 a7b7
q1 —QO¥7 q2 = QOW
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7

Analytical Solutions of Rectangular
Laminated Plates Using FSDT

7.1 Introduction

The classical laminate plate theory is based on the Kirchhoff assumptions, in which
transverse normal and shear stresses are neglected. Although such stresses can be
postcomputed through 3-D elasticity equilibrium equations, they are not always
accurate. The equilibrinm-derived transverse stress field is sufficiently accurate for
homogeneous and thin plates; they are not accurate when plates are relatively thick
(i.e., a/h < 20). In the first-order shear deformation theory (FSDT), a constant
state of transverse shear stresses is accounted for, and often the transverse normal
stress is neglected. The FSDT allows the computation of interlaminar shear stresses
through constitutive equations, which is quite simpler than deriving them through
equilibrium equations. It should be noted that the interlaminar stresses derived from
constitutive equations do not match, in general, those derived from equilibrium
equations. In fact, the transverse shear stresses derived from the equilibrium
equations are quadratic through lamina thickness, as was shown in Chapter 6 for
CLPT, whereas those computed from constitutive equations are constant.

The more significant difference between the classical and first-order theories is
the effect of including transverse shear deformation on the predicted deflections,
frequencies, and buckling loads. As noted in Chapter 6, the classical laminate
theory underpredicts deflections and overpredicts frequencies as well as buckling
loads with plate side-to-thickness ratios of the order of 20 or less. For this reason
alone it is necessary to use the first-order theory in the analysis of relatively thick
laminated plates. In this chapter, we develop analytical solutions of rectangular
laminates using the first-order shear deformation theory. The primary objective is
to bring out the effect of shear deformation on deflections, stresses, frequencies, and
buckling loads.

To discuss the Navier and other solutions, the equations of motion of the first-
order plate theory, Eqs. (3.4.23) through (3.4.27), are expressed in terms of the
generalized displacements (ug, vo, wo, ¢ and ¢,) as

0 dug Ovg Jug Oy Oy O,
A + A A Y
9 { 175 128y+ 16<6y+61>+3118 +312ay
0p, 09 )} 0 Oug Ovp
B Y
+ Big < 3y o0 ) T o oy [Au) o + Agg—— 3y
8UO 8’(10) 8¢)x 8¢ agb d(b
A Oz y zy B
+ 6<8y+8ng +B16a +B68y +B66<8y+ax>]
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where the thermal resultants, (N1, Ng;j,NT) and (ML, Myg, MT) are defined in
Egs. (3.3.41a,b).

(7.1.5)
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7.2 Simply Su Borted Antisymmetric Cross-Ply

Laminate lates

7.2.1 Solution for the General Case

The SS-1 boundary conditions for the first-order shear deformation plate theory
(FSDT) are (Figure 7.2.1):

ug(z,0,t) =0, wug(z,b,t) =0, v9(0,9,t) =0, wo(a,y,t)=0
wo(z,0,t) =0, wy(z,b,t) =0, wo(0,y,t) =0, wola,y,t)=0
¢e(z,0,t) =0 qﬁz(x,b,t) =0, gby((),y,t) =0, ¢y(a,y,t) =0 (7.2.1a)

Nzx(oayat) = {0, Nx (a Y, ) s Nyy(xaoat)

0 0,
Mxx(oayat):()a Mm(a,y, ) 0, Myy(m,O,t) 0,

Il

The boundary conditions in (7.2.1b) are satisfied by the following expansions

(x,y,t) = i i Umn(t) cos azx sin By (7.2.2a)
n=1m=1

vo(z,y,t) = i i Vinn (t) sin az cos By (7.2.2b)
n=1m=1

wo(z,y,t) = i i Wi (t) sin aex sin By (7.2.3)
n=1m=1

da(z,y,t Z Z Xmn(t) cos azx sin By (7.2.4a)
n=1m=1

dy(z,y,t) = Z Z Ymn(t) sinax cos By (7.2.4b)
n=1m=1

where &« = mm/a and 8 = nn/b.

jo— a0 ——»}
R —
i
at x=0 and x=a I 1 T
Uo=w0=¢y=0 : SS-1 il b
Neg=Mye =0 i
| I
Y at y=0 and y=b

Ug=wy=0,=0

Nyy=M;, =0

Figure 7.2.1: The simply supported boundary conditions for antisymmetric
cross-ply laminates using the first-order shear deformation theory

(SS-1).
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The mechanical and thermal loads are also expanded in double Fourier sine series

o X0
q(z,y,t) = Z Z Qmn(t) sinax sin By (7.2.5a)
n=1m=1
AT(z,y,z,t) = Z Z Tn(2,t) sinax sin By (7.2.5b)
n=1m=1
where
4 a rb
Qmn(t) = E/ / q(z,y,t) sinaz sin By dxdy (7.2.6a)
0o Jo
4 a pb
Ton(2,1) = —(E/ / AT(z,y, z,t) sinaz sin Sy dzdy (7.2.6b)
o Jo

Substitution of Egs. (7.2.2)—(7.2.5) into Eqs. (7.1.1)—(7.1.5) will show that the
Navier solution exists only if

A1 =0, Ay =0, Ag5=0, Big=0, By =0, Dig=0, D=0, Iy =0

i.e., for the same laminates as those for the classical laminate theory. For such
laminates the coefficients (Umn, Vinn, Winn, Xmn, Ymn) of the Navier solution can be
calculated from

511 812 0 514 815 Unmn
512 822 0 824 895 Vinn
0  3833+3833 831 835 Wi ¢ +

814 824 834 844 8a5 Xmn

815 8o 535 845 855 Yo
iy 0 0 0 0 Unn 0 aN}
0 thee O 0 0 Vinn 0 BN2,.
0 0 smg 0 O Win p = Qmn g —4 0 (7.2.7a)
0 0 0 rhga O Xonn 0 aM}
0 0 0 0 szl \ Voo 0 M2,

where §;; and 1

11 = (A110® + Ae6B°%), 812 = (A2 + Ags)af3

814 = (Bi1e® + Besf8?), é15 = (B2 + Bes)oB

499 = (Agea® + Ag23?), 624 = 415

405 = (Bgga® + B22f8%), 833 = K(Ass0® + Agsf3?)

S33 = sza2 + Nyyﬂ2

4310 = KAssar, 835 = KAwpB, a1 = (D11e® + Desf3* + K Ass)

845 = (D12 + Deg)af, 855 = (Desa® 4+ DonfB% + K Agq) (7.2.7b)
i = Iy, 7o = Iy, ™y = Iy, Mys = Ia, Mss = Io (7.2.7¢)

where the thermal coefficients N}, N2, ,M},, and M2,
(6.3.13a,b).

are defined in Egs.

3
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7.2.2 Bending

The static solution can be obtained from Egs. (7.2.7) by setting the time derivative
terms and edge forces to zero:

s S12 0 S 8157 ( Unm 0 aN}L.
S12 822 0 824 395 Vinn 0 BNZ,
0  S33 8314 835 Winn ¢ =% Qmn ¢ — 0 (7.2.8)
514 824 8314 Saa Sa5 | | Xen 0 aMl,
S15 S25 835 845 S5 Yin 0 BM?2,,

Solution of Eq. (7.2.8) for each m,n = 1,2,... gives (Umn, Vinny, Winn, Xmn, Yin),
which can then be used to compute the solution (ug, vo, wo, ¢z, ¢y) from Egs. (7.2.2)-
(7.2.4). Antisymmetric cross-ply laminates have the following additional stiffness
characteristics [see Eqgs. (3.5.29a,b)]:

Blg = 0, By = ~BH, B66 =0 (729)

Hence, the matrix coefficients in Eq. (7.2.7b) can be simplified.

The stresses in each layer can be computed using the constitutive equations
(see Section 6.3.4). The in-plane stresses of a simply supported (SS-1) cross-ply
laminated plate (i.e., when Q6 = Q26 = Qa5 = 0 and 0y = 0) are then given by

{om }(k) 00 0o l:@u Q2 0 }(k) { (R 4 2S%2 ) sin ax sin By }

Oyy = Z Z Q2 Q2 0 (RYY + =S¥ )sin az sin fy
Oy m=1n=1| 0 0  Qss (R} + 2zS*Y ) cos ax cos By
(7.2.10a)
where
Rfrfn _aUmn - awar?m Sﬁ% —Oéan - aICBTr}m
{R%fn} = { —BVin — gy T } {Sggn} = { ~BYmn — ayy T } (7.2.10b)
Ry, BUmn + aVin anyn BXmn + aYmn
where temperature increment AT is assumed to be of the form
oo e ¢]
AT(z,y, z,t) = Z Z (T,?m + zTﬁm) sin ax sin By (7.2.10¢)

m=1n=1
The transverse shear stresses from the constitutive equations are given by

{ayz }(k) B i i {Q44 0 }(k) { (Yonn + BWinn) sin az cos By } (7.2.11)
Ozz N 0 Q55 (an + ann) cos azx sin /By o

Note that the stresses are layerwise constant through the thickness.
The bending moments are calculated from

m=1n=1

]W;L-z [ s« ) [ Bll Blg 0 -OzUmn sin ax sin ﬁy
{ My, } = Z Z Bis Bos 0 { —BVn sin oz sin By }
My, m=1ln=1| 0 0 Bsgg (BUmn + aVip) cos ax cos By
oo oo D11 Dig O —aX oy sin ax sin Gy
+ Z Z Dy Doy O { —BY,.n sin ax sin By }
m=ln=1| 0 0 Des (aYmn + BXmn) cos ax cos By

(7.2.12)
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As discussed in Chapter 6, the transverse stresses can also be determined using
the equilibrium equations of 3-D elasticity. Following the procedure outlined in Eqs.
(6.3.31)—(6.3.37), we obtain

oo o 1
(k)(a? Y,2) = Z Z [(z - zk)Agf,)L + 5(22 — z,%)Bf,’f,)l] cos ax sin By
m=1n=1
+Ug(c]2 1)(35 Y, 2k)
1 .
(z,y,2 Z Z [ z = 2z,)C + §(z2 - zz)’D,(,’f)L] sin az cos By
m=1n=1
+ogs Y,y 2) (7.2.13a)

where 0% (z,y,21) = ag(,g) (z,y,21) =0, and

AE, = [(02Q1 + QW) U + 08 (@) + QL) Vi)

B, = [(0*Q1Y + 804 ) Xonn + a8 (QS’? + Q86 Youn|

C) = s (Q““ + Q(“) Unn + (0*QE) + 52Q85)) Vi

D), = [0 Q) + Q) Xomn + (o2QF) + B°Q%)) Yinn|  (7.2.13b)
3

The transverse normal stress can be computed using Eq. (6.3.37) with the
coefficients Agle, 5,’5%, 7(,5%, and Dgf,)] defined in Eq. (5.2.13b).

Specially orthotropic plates

Specially orthotropic plates differ from antisymmetric cross-ply laminates in that
all B;; are zero. Consequently, 814 = 0, 515 = 0, 824 = 0, and 325 = 0. It is clear
from Eq. (7.2.8) that Upy, and Vi, are uncoupled from (Win, Xmn, Ymn):

s 11 § 12 0 0 0 Umn 0 aN Tlrm

G2 8 0 0 0 || Vi 0 ANZ.
0 0 333 830 3835 | 4 Win ¢ =4 @mn ¢ — 0 (7.2.14)
0 0 3831 3844 B8a5| | Xonn 0 aM}.,
0 0 383 3845 355 Yimn 0 BMZ,,

Decoupling the in-plane displacements from the bending displacements, we have
s11 S12] [ Unn } { alNp,, } 791

. . = — .2.15a

[812 822} { Vinn BNZ, ( )

833 834 S35 Wian Qmn 0
Xpm =4 0 »—<{ oM}, (7.2.15b)
Yo 0 BM2

534 544 Sus
The solution of Eq. (7.2.15a) is given by

835 845 855

T /. .
Unpn = _amn (522aNrInn - 512/8N12nn)
1 . A
Vi = — (suﬂNﬁm - smaN},m) (7.2.16)

Omn
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where .., = 811822 — 812812. The in-plane deflections are identically zero when the
thermal (and in-plane edge) forces are zero.

Equation (7.2.15b) can be solved either directly (by inverting the 3 x 3 coefficient
matrix) or by using the static condensation procedure outlined in Chapter 6 [see
Egs. (6.3.22)-(6.3.26)]. Using the latter, we arrive at

1 834 R . LY . .

Wmn = I:QTrLTL + i (aM',}'LnSSS - 6M131n‘545> - ﬁ <a]\/{rlnn8/l5 - /ﬁMTan"’44>:,

bmn bO bo

1 . .
Xonn = 2= |01 Winn — (@M 855 = 80815 )|

0
Yy = - [b M}, 845 — BM72,.8 2

bo

where
by
by = 833 + 834b + 835 b by = 844555 — 845545
b1 = 8453835 — 834855, by = 534845 — 844835 (7.2.17b)

When the thermal forces are zero, the bending deflections are given by

wy Z Z Win sinax sin By (7.2.18a)
Oz(z,y) = i i Xomn cosazx sin By (7.2.18b)
n=1m=1
by(z,y) = i i Yo sinax cos By (7.2.18c)
n=1m=1
with & = m0On/a, 8 = nn/b and
Wonn = ngmm Xonn = %%an Yon = bol;ianm” (7.2.19)

The bending moments are given by

oo o0
Mye == > Y (Di1aXmn + D128Ymn) sinaz sin By (7.2.20a)

n=1m=1
oo 00

Z D120 Xy + D22Yyy) sinaz sin By (7.2.20b)
m=1

||M

Mgy = Degg Z Z (BXmn + aYmn) cosax cos By (7.2.20c)

The in-plane stresses are given by

O (k) 0o oo (Qll o Xy + Qgg)ﬁymn) sinax sin 3y
{%y} =—23_ 370 (@ aXoun + QY BYmn ) sinaw singy p - (7.2.21)
Oxy n=1m=1

“ngcs) (BXmn + aYmp) cosax cos By
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and the transverse shear stresses are given by

{O'yz }(k) _ i i { Q4]Z (Yon + BWpn) sinaz cos By }

3 (7.2.22)
Ozz (Xmn + @Wypnp) cos az sin Sy

n=1m=1

The interlaminar stresses, computed using the 3-D stress equilibrium equations,
are given by

0':5:]? = < > (Tu Xmn +T12)Ymn> cosaz sin By + o8V (x, y, z)
03(,12) = ( > <T12)an +T2(§)Ymn> sinax cos Py + a(k U(m,y,zk)
%z k k . .
o) = gk + 6 (22 - 321%) (T;:El)an + T§2)Ymn) sinaz sin By
(k) (k)
Doy
oD,y ) + (2 — ) | 222 4 0% (7.2.232)
Oox Oy .
where

T = o2QW + 82Q%), TS = as(@QY) + QW)), T = *Q) + B2QL)

Ty = o®QfY + a8 (205 +Q15), Ty = o?B(Q1Y +2Q8) + 5°Q%) (7.2.:23b)
For single-layer plates, Eqs. (7.2.23a) reduce to

h? 2

Ope =~ 5 1— (f) W (T11 Xmn + Th2Ymn) cosax sin By
h? 22\ 2 .

Oy =g 1— - (TheXmn + T22Ymn) sinaz cos By

B3 (] 2z 3]
,=—< |1 miad
o 48{_+<h>_ 3

Numerical results for the maximum transverse deflection and stresses of
symmetric laminates are discussed next. The following nondimensionalizations are
used to present results in graphical and tabular forms:

= w Exh? _ h? _ h?
= Wo b4q0 y Oxzx = Ogx b2q0 y Oyy = Oyy b2q0
_ h? _ h _ h
] C B G NS G L

Table 7.2.1 contains the maximum nondimensionalized deflections and stresses
of simply supported square symmetric laminates (0/90/90/0) and (0/90/0) under

2
1+ ( ;)} } (T51 Xmn + T52Ymn) sinax sin By

(7.2.24)
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sinusoidally distributed load (SSL) as well as uniformly distributed load (UDL) and
for different side-to-thickness ratios (F; = 25Fs, G12 = G13 = 0.5E3, Ga3 = 0.2F,,
vig = 0.25, K = 5/6). The membrane stresses were evaluated at the following
locations: 7,,(a/2,b/2, %), oyy(a/2,b/2, %), and dgy(a, b, ~%) The transverse shear
stresses are calculated using the constitutive equations. For the (0/90/0) laminate,
0z is evaluated at (z,y) = (0,b/2) in layers 1 and 3, and oy, is computed at
(z,y) = (a/2,0) in layer 2.

Table 7.2.1: Effect of transverse shear deformation on nondimensionalized
maximum transverse deflections and stresses of simply supported
(SS-1) symmetric cross-ply square plates.

a/h Load W x 102 Fex Cyy Ty Oz Oy

Orthotropic Plate [0,y is evaluated at (x,y,z)=(a/2,b/2,h/2)]

10 SSL 0.6383 0.5248 0.0338 0.0246  0.3452  0.0367
0.4315  0.04591

UDL 0.9519  0.7706 0.0352 0.0539 0.6147 0.1529
0.7684  0.19117

20 SSL 0.4836  0.5350 0.0286  0.0222 0.3501  0.0319
UDL 0.7262  0.7828 0.0272 0.0487 0.6194 0.1466
100 SSL 0.4333 0.5385 0.0267 0.0213 0.3518  0.0302

UDL 0.6528 0.7865 0.0245 0.0464 0.6206 0.1449

CLPT SSL 0.4312  0.5387  0.0267 0.0213  0.4398  0.03771
UDL 0.6497 0.7866 0.0244 0.0463 0.7758 0.1811F

Symmetric Laminate, (0/90/90/0)

10 SSL 0.6627 0.4989 0.3614 0.0241 0.4165 0.1292
0.3181  0.1807t

UDL 1.0250  0.7577 0.5006 0.0470 0.7986  0.3499

0.6081  0.5091%

20 SSL 0.4912 0.5273 0.2956 0.0221 0.4370 0.1087
UDL 0.7694 0.8045 0.3968 0.0420 0.8305 0.3228
100 SSL 0.4337 0.5382 0.2704 0.0213 0.4448  0.1008

UDL 0.6833 0.8420 0.3558 0.0396 0.8420 0.3140

CLPT SSL 0.4312  0.5387  0.2694 0.0213  0.3393  0.1382f
UDL 0.6796 0.8236 0.3540 0.0395 0.6404  0.4548'

Symmetric Laminate, (0/90/0)

10 SSL 0.6693 0.5134 0.2536 0.0252 0.4089 0.0914
0.3806  0.1108%

UDL 1.0219 0.7719 0.3072 0.0514 0.7548  0.3107
0.7014  0.4156T

20 SSL 0.4921 0.5318  0.1997 0.0223 0.4205 0.0759
UDL 0.7572  0.7983  0.2227 0.0453 0.7697  0.2902
100 SSL 0.4337 0.5384 0.1804 0.0213 0.4247 0.0703

UDL 0.6697  0.8072 0.1925 0.0426 0.7744  0.2842

CLPT SSL 0.4312 0.5387 0.1796 0.0213  0.3951  0.0823f
UDbL 0.6660 0.8075 0.1912 0.0425 0.7191  0.37911

t 0,. and 0. calculated from equilibrium equations (at z = 0).



386 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

The nondimensionalized quantities in the classical laminate theory are
independent of the side-to-thickness ratio. The influence of transverse shear
deformation is to increase the transverse deflection. The difference between the
deflections predicted by the first-order shear deformation theory and classical plate
theory increases with the ratio h/a. For example, for a/h = 10 and sinusoidal
loading, the classical plate theory underpredicts deflections by as much as about
35%, whereas it is only 12% for a/h = 20. Shear deformation has different effects
on different stresses.

Table 7.2.2 contains results for cross-ply laminates (0/90/90/0/90/90/0) and
(0/90/0/90/0), both laminates of the same total thickness. The material properties
used are El = 25E2, G12 = G13 - 0.5E2, G23 == 0.2E2, Vip = 0.257 and K = 5/6
The same nondimensionalization as before [see Eq. (7.2.25)] is used except for the
following guantities:

_ h, h?
Tyy = oyy(a/2,b/2, §)—b2q0
h h
Opz = 0422(0,0/2,k =1,3,5)—, Gy» = 0y2(a/2,0,k =2,4)— (7.2.26)
bgo bgo

Table 7.2.2: Effect of transverse shear deformation on nondimensionalized
maximum transverse deflections and stresses of simply supported
(SS-1) symmetric cross-ply square plates.

a/h Load w Ozx a'yy Ozy Ozxz 5'yz

Symmetric Laminate, (0/90/90/0/90/90/0)

10 SSL 0.6213 0.5021  0.4107 0.0221  0.3459  0.1998
UDL 0.9643 0.7605 0.6016 0.0422 0.6927 0.4630
20 SSL 0.4796 0.5276  0.3748 0.0215 0.3617  0.1840
UDL 0.7575  0.8059 0.5475 0.0396 0.7212  0.4438
100 SSL 0.4332 0.5382 0.3598 0.0213 0.3683 0.1774

UDL 0.6896 0.8260 0.5241 0.0381 0.7322  0.4365

CLPT SSL 0.4312  0.5387 0.3591  0.0213 - -
UDL 0.6867  0.8270  0.5230  0.0380 - —

Symmetric Laminate, (0/90/0/90/0)

10 SSL 0.6277  0.5044 0.3852 0.0226 0.3535 0.1770
UDL 0.9727 0.7649 0.5525 0.0436 0.6901 0.4410
20 SSL 0.4814 0.5285 0.3416 0.0217 0.3685 0.1591

UDL 0.7581 0.8080 0.4844 0.0403 0.7166 0.4188

100 SSL 0.4333 0.5383 0.3240 0.0213 0.3746  0.1519
UDL 0.6874 0.8264 0.4559 0.0386 0.7267 0.4108

CLPT SSL 0.4312  0.5387 0.3232 0.0213 - —
UDL 0.6844  0.8272 0.4546  0.0385 - —
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where k& denotes the layer number. The first-order theory results are slightly
different from those of the classical plate theory. The influence of transverse shear
deformation is less in the case of the laminates presented in Table 7.2.2. Thus, as
the number of layers is increased, the effect of transverse shear strains on deflections
and stresses decreases. Figure 7.2.2 clearly shows the diminishing effect of transverse
shear deformation on deflections, the effect being negligible for side-to-thickness
ratios larger than 20.

Table 7.2.3 contains nondimensionalized transverse deflections w and stresses
[Gez(a/2,b/2,—h/2) = —0yy(a/2,b/2,h/2) and G, = Gy;] of antisymmetric cross-
ply laminates subjected to sinusoidally and uniformly distributed transverse loads.
The stresses are nondimensionalized as in Eq. (7.2.25). The locations of the
maximum stresses, computed using the constitutive equations, are as follows:

ozz{a/2,b/2, —g), oyy(a/2,b/2, g), ozy(a, b, —g)

02:(0,0/2,k = 1), 04.(a/2,0,k = n) (7.2.27)

Table 7.2.3: Effect of transverse shear deformation on nondimensionalized
maximum transverse deflections and stresses of simply supported
(SS-1) antisymmetric cross-ply square plates (hy = h/n,E; =
25E2, G12 = G13 = 0.5E2, G23 = 0.2E27 V12 = 0.25, K= 5/6).

a/h Load W x 102 Tyy Oy Oz 512

Antisymmetric Laminate, (0/90)

10 SSL 1.2373  0.7157 0.0525 0.2728  0.3322
UDL 1.9468 1.0715 0.0960 0.5772  0.7250
20 SSL 1.1070 0.7157 0.0525 0.2728 0.3322
UDL 1.7582 1.0747 0.0943 0.5802 0.7285
100 SSL 1.0653 0.7157  0.0525 0.2728 0.3322
UDL 1.6980 1.0761  0.0933 0.5813  0.7297
CLPT SSL 1.0636  0.7157  0.0525 — 0.3322
UDL 1.6955 1.0761  0.0933 - 0.7297

Antisymmetric Laminate, (0/90)4

10 SSL 0.6216  0.4950 0.0221  0.2728  0.2480
UDL 0.9660 0.7415 0.0420 0.5787  0.5264

20 SSL 0.4913  0.4950 0.0221  0.2728  0.2480
UDL 0.7776  0.7468  0.0402 0.5839 0.5311
100 SSL 0.4496  0.4950 0.0221 0.2728  0.2480
UDL 0.7175  0.7494  0.0391  0.5857  0.5328
CLPT SSL 0.4479  0.4950 0.0221 - 0.2479
UDL 0.7150  0.7496  0.0391 — 0.5330

T Maximum stresses derived from equilibrium. The reported values are at z = +h/4
for (0/90) laminate, and at z = 0 for (0/90)4 laminate.



388 MECHANICS OF LAMINATED COMPOSITE PLATES AND SHELLS

We note that the two-layer laminate exhibits quite different behavior, due to
bending-extensional coupling, from the eight-layer laminate, and the results for the
eight-layer laminate are much the same as those of symmetric laminates in Tables
7.2.1 and 7.2.2.

Figure 7.2.3 shows the effect of transverse shear deformation and bending-
extensional coupling on deflections. The eight-layer antisymmetric cross-ply plate
behaves much like an orthotropic plate (results are not shown in the figure).

Figures 7.2.4 through 7.2.7 show plots of maximum normal stresses,
Gzz(a/2,b/2,2z) and &yy(a/2,b/2,2), and maximum transverse shear stresses,
722(0,b/2,2) and 7y,(a/2,0, z), through the thickness of simply supported square
laminates (0/90/90/0) under sinusoidally distributed transverse load. The material
properties used are Fq = 25F3, G2 = Giz = 0.5F2, Gog = 0.2E2, vio = 0.25,
and K = 5/6. The dashed lines correspond to classical plate theory solutions. In
Figures 7.2.6 and 7.2.7, stresses computed using the constitutive relations are also
included. In the case of &, the equilibrium equations predict a stress variation that
is inconsistent with that predicted by constitutive relations; equilibrium equations
predict the maximum stress to be at the midplane of the plate, while the constitutive
equations predict maximum stress in the outer layers. It turns out that (see Pagano
[6]) the constitutive equations yield, qualitatively, the correct stress variation.

Table 7.2.4 contains nondimensionalized deflections, w = wq/(a1T1b%), of simply
supported plates subjected to the temperature field of the form given in Eq.
(7.2.10¢). The material properties of orthotropic layers are assumed to be F; =
25F5, G1o = G153 = 0.5E5, Go3 = 0.2F5, v12 = 0.25, K = 5/6, and ao = 3as. The
results in the table correspond to Ty = 0 and T7 # 0. We note that the effect of
shear deformation on thermal deflections is negligible.

7.2.3 Buckling

For buckling analysis, we assume that the only applied loads are the in-plane forces

. . N,
Nyz = —No, Ny, =—kNg, k=2

Tr

(7.2.28)

and all other mechanical and thermal loads are zero. From Eq. (7.2.7) we have

511 812 0 S14 815 Umn 0
812 822 0 824 825 Vinn 0
0 0 3833—No(a?+kB?%) 834 35| Wi p =120 (7.2.29)
S14 824 834 844 845 Xmn 0
815 825 835 845 855 Yin 0

Following the condensation of variables procedure to eliminate the in-plane

displacements U,,, and V,,, we obtain
833 — Np (@® + kB%) &34 835 Win 0
Xomn ¢ =40 (7.2.30a)
Yon 0

534 844 845
$35 545 835
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Figure 7.2.2:
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Figure 7.2.4:

Figure 7.2.5:
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Table 7.2.4: Effect of the aspect ratio and side-to-thickness ratio on the
deflection of simply supported
temperature field that is uniform in the zy—plane and linearly
varying through the thickness (g9 = 0,7y = 0,77 = constant).

(SS-1)

plates subjected to

Load a/h a/b=1 a/b=15 a/b=2 a/b=25 a/b=3
IsotropicT
SSL 10 0.6586 0.9119 1.0637 1.1355 1.1855
UDL 10 0.9575 1.3097 1.4798 1.5582 1.5938
Orthotropic
SSL 10 1.0440 2.1129 3.0623 3.6394 3.8883
20 1.0346 2.1128 3.0758 3.6560 3.9002
100 1.0313 2.1127 3.0804 3.6617 3.9042
CLPT 1.0312 2.1127 3.0806 3.6619 3.9044
UDL 10 1.4603 3.1321 4.5966 5.4269 5.6987
20 1.4409 3.1339 4.6243 5.4609 5.7239
100 1.4334 3.1343 4.6342 5.4729 5.7327
CLPT 1.4331 3.1344 4.6346 5.4734 5.7330
Laminate, (0/90)
SSL 10 1.1504 1.4673 1.5186 1.5122 1.4984
20 1.1504 1.4613 1.5091 1.5026 1.4898
100 1.1504 1.4592 1.5058 1.4994 1.4869
CLPT 1.1504 1.4591 1.5057 1.4993 1.4868
UDL 10 1.7213 2.1446 2.1100 1.9862 1.8796
20 1.7269 2.1394 2.0965 1.9703 1.8649
100 1.7293 2.1377 2.0918 1.9649 1.8600
CLPT 1.7294 2.1376 2.0916 1.9647 1.8598
Laminate, (0/90)4
SSL 10 1.0343 1.3000 1.3113 1.2781 1.2469
20 1.0343 1.2837 1.2870 1.2555 1.2280
100 1.0343 1.2776 1.2783 1.2477 1.2216
CLPT 1.0343 1.2773 1.2779 1.2474 1.2214
UDL 10 1.5498 1.9026 1.8166 1.6603 1.56334
20 1.5607 1.8862 1,7816 1.6224 1.5002
100 1.5661 1.8801 1.7690 1.6091 1.4886
CLPT 1.5664 1.8799 1.7685 1.6085 1.4881
Laminate, (0/90/90/0)
SSL 10 1.0421 1.7130 1.9680 1.9807 1.9227
20 1.0343 1.7339 1.9858 1.9854 1.9193
100 1.0313 1.7419 1.9923 1.9871 1.9181
CLPT 1.0312 1.7422 1.9925 1.9872 1.9181
UDL 10 1.5452 2.5733 2.8961 2.8045 2.5921
20 1.5357 2.6169 2.9352 2.8191 2.5877
100 1.5318 2.6343 2.9500 2.8243 2.5859
CLPT 1.5316 2.6350 2.9507 2.8245 2.5859

Ty = 0.3; both CLPT and FSDT solutions are the same and independent of a/h.
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/3 HR U /3 B )
S44 =844 — S147— — 8247, S45 = 845 — S157— — S5
bo by’ bo bo
_ . . by by . ..
555 =855 — S157— — S25.—, bp = 811822 — 512512
bo bo
b1 =814822 — 812824, ba = 811824 — 512814
b3 =815822 — 812825, by = 511825 — 8125815 (7.2.30b)

Repeating the procedure to eliminate X,,, an