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1. INTRODUCTION

Coals are organic sedimentary rocks that have
their origin from a variety of plant materials and
tissues deposited in more or less aquatic
locations. A coal is characterized by a number of
chemical, physical, physico-chemical and
petrographic properties. In proximate analysis,
moisture, ash, volatile matter and fixed carbon
are determined. The cokeability of coal is an
important technological parameter of coals
during the reduction process in the electric
furnace method. This is usually determined by
the Free Swelling Index [1].

The different models currently available for
predicting coke quality take into account selected
properties of the coals that make up the blend.
Each steel company employs models adapted to
its operational characteristics which change as a
function of the coals available on the market.
However, the role of inerts (breeze, pet coke,
anthracite, etc.) added to the coal blend has still
not been fully clarified in most of the models.
Recently some of the most relevant methods
applied in coke quality prediction have been
reviewed [2].

The simplest test to evaluate whether a coal is
suitable for production of coke is the free

swelling index test. It involves heating a small
sample of coal in a standardized crucible to
around 800 degrees Celsius (1500 °F).

The free swelling index in British Standards
Index (BSI) nomenclature (the crucible swelling
index number (CSN) in ISO nomenclature) is a
measure of increase in the volume of coal when
heated, with the exclusion of air. This parameter
is useful in evaluating coals for coking and
combustion. Coals with a low free swelling index
(0-2) are not suitable for coke manufacture. Coals
with high swelling numbers (+8) can not be used
by themselves to produce coke, as the resultant
coke is usually weak and will not support the
loads imposed within the blast furnace [3].

When bituminous coals are heated, they
develop plastic properties at about 350 °C and as
a result. Exhibit fluidity, swelling, expansion and
contraction in volume and after carbonization
produce a coherent residue the strength of which
depends on the ranking of the coal. This plastic
property of coals is commonly indicated in the
free swelling index, Gieseler plastometry, Ruhr
dilatometers, Audibert-Amu dilatometer and
Gray-king assay tests.

Gieseler plastometer and Ruhr dilatometer are
commonly used to study the plastic properties of
coal for coke making. In Gieseler plastometry,
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the softening temperature, re-solidification
temperature and maximum fluidity of coals are
determined to predict their coke ability. In Ruhr
dilatometry, the coking capacity, G, defined by
Simonis as [4]:

(1)

is used to predict the cokeability of coals.
When the coal particle is heated, its surface

becomes plastic while devolatilization occurs
from both inside and outside the particle.

Various parameters such as coal type, heating
conditions and coal properties affect on free
swelling index. For example, Koh Kidena studied
the effect of hydrogen/carbon, oxygen/carbon,
volatile matter and heating conditions on CSI [5].
In this work the effect of coal chemical properties
on swelling index were studied. 

After heating for a specified time, or until all
volatiles are driven off, a small coke button
remains in the crucible. The cross sectional
profile of this coke button compared to a set of
standardized profiles determines the Free
Swelling Index [3].

Artificial neural network (ANN) is an
empirical modeling tool, which is analogous to
the behavior of biological neural structures [6].
Neural networks are powerful tools that are
capable of identifying highly complex underlying
relationships from input–output data only [7].
Over the last 10 years, artificial neural networks
(ANNs), and, in particular, feedforward artificial
neural networks (FANNs) have been extensively
studied to present process models, and their use
in industry has been rapidly [8].

The aim of the present work is the assessment
of properties of more than 200 Illinois coals with
reference to the FSI and chemical properties of
coal with respect to moisture, volatile matter
(dry), fixed carbon (dry), ash (dry), total sulfur
(organic and pyretic) (dry), Btu /lb (dry), carbon
(dry), hydrogen (dry), nitrogen (dry) and oxygen
(dry) using ANNs methods, MATLAB software
package.

This work is an attempt to solve the following
important questions: (a) which parameters of
chemical coal properties have maximum and
minimum and positive and negative effect on FSI

wide range of Illinois coals? (b) Can we improve
the correlation of predicted FSI with actual
measured FSI by using of artificial neural
network?

2. DATA SET

One of the most important stages in the ANN
technique is data collection. The data was divided
into training, testing and validating datasets using
sorting method to maintain statistical
consistency. Datasets for testing and validating
were extracted at regular intervals from the sorted
database and the remaining datasets were used
for training. The same datasets were used for all
networks to make a comparable analysis of
different architecture. In the present study, 200
datasets were collected among which 25% were
chosen for testing and validating. Our data
collected from Illinois State Geological Survey
website (http://www.isgs.illinois.edu/maps-data-
pub/coal-maps/nonconf_masterfile.xls). These
data was collected from Illinois state coal mines
and geological database.

3. INPUT PARAMETERS

In the present study, input parameters include
moisture, ash (dry), volatile matter (dry), fixed
carbon (dry), total sulfur (dry), Btu (dry), carbon
(dry), hydrogen(dry), nitrogen (dry) and oxygen
(dry) to predict the FSI. The ranges of input
variables to FSI prediction for the 200 samples
are shown in Table 1. 

In the present work all inputs (before feeding
to the network of matlab software) and output
data in training phase, preprocesses the network
training set by normalizing the inputs and targets
so that they have means of zero and standard
deviations of 1:

Np = (Ap – mean Aps ) / stdAp (2)

Where, Ap is actual parameter, mean Aps is
mean of actual parameters, stdAp is standard
deviation of actual parameter and Np is
normalized parameter (input). Np of each data’s
has been used in network then targets of each
parameter converted to actual parameter and after
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these processes figures have been drawn [9]. 

4. ARTIFICIALNEURALNETWORK DESIGN

AND DEVELOPMENT INVESTMENT

Neural networks, in general terms, are
input–output mapping models that can be used to
attack complex or non-straightforward problems.
Neural networks are particularly useful in cases
where mathematical or statistical methods, such
as linear, non-linear regression, curve fitting, etc.
cannot provide a satisfactory solution, i.e. the
solution can be too general, or too specific that
the model cannot react well to new data points. A
successful model must have a good
generalization and should not be affected by the
outlier data points, but at the same time be able to
successfully respond when new data points are
introduced [10].

Neural networks are simplified models of the
biological structure found in human brains [7].
Derived from their biological counterparts,
ANNs are based on the concept that a highly
interconnected system of simple processing

elements (also called “nodes” or “neurons”) can
learn complex nonlinear interrelationships
existing between input and output variables of a
data set [11]. Neural networks are powerful tools
that have the ability to identify underlying highly
complex relationships from input–output data
only [7].

To develop the ANN model of a system, feed-
forward architecture namely MLP is most
commonly used. This network usually consists of
a hierarchical structure of three layers described
as input, hidden, and output layers, comprising I,
J, and L number of processing nodes,
respectively [11]. The general MLP architecture
with two hidden layers is shown in Fig 1. When
an input pattern is introduced to the neural
network, the synaptic weights between the
neurons are stimulated and these signals
propagate through layers and an output pattern is
formed. Depending on how close the formed
output pattern is to the expected output pattern,
the weights between the layers and the neurons
are modified in such a way that next time the
same input pattern is introduced, the neural

Coal chemical properties Max Min Mean St. Dev.

Moisture (%) 15.94 6.03 10.32 2.21224 

Volatile matter, dry (%) 45.10 25.49 36.87 2.458445 

Fixed carbon, dry (%) 60.39 30.70 50.58 4.152964 

Ash, dry (%) 43.81 4.41 12.56 4.861197 

Total sulfur, dry (%) 9.07 0.62 3.00 2.018264 

Btu/Ib, dry 14 076.00 8 025.00 12 631.08 841.5436

Carbon, Dry (%) 79.32 44.03 70.43 5.026348 

Hydrogen, dry (%) 5.36 3.39 4.78 0.310245 

Nitrogen, dry (%) 3.03 0.35 1.40 0.290988 

Oxygen, dry (%) 12.57 2.16 7.53 1.660288 

Free swelling Index 8.50 1.00 4.39 1.268707 

Table1. The ranges of variables in coal samples (as determined)
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network will provide an output pattern that will
be closer to the expected response [12]. 

Various algorithms are available for training
neural networks. Feed forward back-propagation
algorithm is the most versatile and robust
technique, which provides the most efficient
learning procedure for multilayer perception
(MLP) neural networks. Also, the fact that the
back-propagation algorithm is especially capable
of solving predictive problems makes it so
popular. The network  model presented in this
article is a supervised back-propagation neural
network, making use of the Levenberg-
Marquardt approximation.

This algorithm is more powerful than the
common used gradient descent methods, because
the Levenberg-Marquardt approximation makes
training more accurate and faster near minima on
the error surface [13].

The method is as follows:

(3) 

In Eq. (3) the adjusted weight matrix is
calculated using a Jacobian matrix J, a transposed
Jacobian matrix JT, a constant multiplier m, a
unity matrix I and an error vector e. The Jacobian
matrix contains the weights derivatives of the
errors:

(4)

If the scalar is very large, the Levenberg-
Marquardt algorithm approximates the normal
gradient descent method, while if it is small, the
expression transforms into the Gauss-Newton
method [7]. For more detailed information the
readers are referred to Lines and Treitel [13].

After each successful step (lower errors) the
constant m is decreased, forcing the adjusted
weight matrix to transform as quickly as possible
to the Gauss-Newton solution. When after a step
the errors increase the constant m is increased
subsequently. The weights of the adjusted weight
matrix (Eq. (4)) are used in the forward pass. The
mathematics of both the forward and backward
pass is briefly explained in the following.

The net input (netpj) of neuron j in a layer L and
the output (opj) of the same neuron of the p th
training pair (i.e. the inputs and the
corresponding swelling index value of the
sample) are calculated by:

(5)

Where, the number of neurons in the previous
layer (L -1) is defined by n =1 to last neuron and the
weights between the neurons of layer L and L -1 by
wjn. The output (opj) is calculated using the
logarithmic sigmoid transfer function:

(6)

Where, is the bias of neuron j.
In general the output vector, containing all opj

of the output layer neurons, is not the same as the
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Fig.1. MLP architecture with two hidden layers [12]
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true output vector (i.e. the measured FSI value).
This true output vector is composed of the
summation of tpj. The error between these vectors
is the error made while processing the input-
output vector pair and is calculated as follows: 

(7)

When a network is trained with a database
containing a substantial amount of input and
output vector pairs the total error Et, (sum of the
training errors Ep) can be calculated [7].

(8)

To reduce the training error, the connection
weights are changed during a completion of a
forward and backward pass by adjustments ( )
of all the connections weights Eqs. (4) and (5)
calculate those adjustments. This process will
continue until the training error reaches a
predefined target threshold error.

Designing network architecture requires more
than selecting a certain number of neurons,
followed by training only. Especially phenomena

such as over fitting and under fitting should be
recognized and avoided in order to create a
reliable network. Those two aspects - over fitting
and under fitting - determine to a large extent the
final configuration and training constraints of the
network [7].

The number of input and output neurons is the
same as the number of input and output variables.
For this research, different multilayer network
architectures are examined (table 2). Acording to
table 2 the best model for network is (10-10-4-1)
and the transfer function of model is LOGSIG-
LOGSIG-LOGSIG.

During the design and development of the
neural network for this study, it was determined
that a Four-layer network with 14 neurons in the
hidden layers (two layers) would be most
appropriate. Artificial neural network (ANN)
architecture for predicting of the free swelling
index is shown in fig2.

The learning rate of the network was adjusted
so that the training time was minimized. During
the training, several parameters had to be closely
watched. It was important to train the network
long enough so it would learn all the examples
that were provided. It was also equally important

w∆

∑= pt EE

∑ −=
2

)(
2

1
pjpjp otE

5

Iranian Journal of Materials Science & Engineering Vol. 7, Number 3, Summer 2010     

No               Transfer function     Model                              SSE
5

1                  TANSIG-LOGSIG                 10-5-1                              1.34 

2                  LOGSIG-LOGSIG                 10-7-1                               0.7 

3                  LOGSIG-LOGSIG-LOGSIG    10-4-3-1                           1.21 

4                  TANSIG-TANSIG-LOGSIG    10-5-3-1                           1.02 

5                  LOGSIG-LOGSIG-LOGSIG    10-6-4-1                           0.46 

6                  LOGSIG-LOGSIG-LOGSIG    10-7-4-1                           0.3 

7                  LOGSIG-LOGSIG-LOGSIG    10-8-4-1                           0.18 

8                  LOGSIG-LOGSIG-LOGSIG    10-8-6-1                           0.03 

9                  LOGSIG-LOGSIG-LOGSIG                       10-10-4-1                         0.014 

Table 2. Results of a comparison between some of the models
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to avoid over training, which would cause
memorization of the input data by the network.
During the course of training, the network is
continuously trying to correct itself and achieve
the lowest possible error (global minimum) for
every example to which it is exposed. The
network performance during the training process
is shown in Fig.3, where the optimum epochs of
train achieved 400 epochs.

To evaluate a model, a comparison between
the predicted and measured values of FSI can be
fulfilled. To this end, MAE (Ea) and mean
relative error (Er) can be used. Ea and Er are
computed as follows [7].

(9) 

(10)

Where Ti, Oi and represent the measured and
predicted output.

For the optimum model Ea and Er were equal
to 0.02627 and 0.006635 respectively.
Comparison between measured and predicted
free swelling index for training, testing and
validating datas are shown in Figs. 4, 5 and 6
respectively. Correlations achieved from these
figures, between measured and predicted free
swelling index from training, testing and
validating data, indicate that the network has high
ability for predicting free swelling index (Figs.7,
8 and 9).

5. SENSITIVITY ANALYSIS

A useful concept has been proposed to identify
the significance of each factor (input) on the
factors (outputs) using a trained network. This
enables us to hierarchically recognize the most
sensitive factors affecting the coal swelling
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Fig.2. ANN architecture for predict the Free Swelling Index

Fig.3. Network performance during the training process
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Fig.4. Comparison of measured and predicted Free Swelling Index for different samples of training data

Fig.5. Comparison of measured and predicted Free Swelling Index for different samples for testing data

Fig.6. Correlation between measured and predicted Free Swelling Index for validating data
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Fig.7. Correlation between measured and predicted Free Swelling Index for training data

Fig.8. Correlation between measured and predicted Free Swelling Index for testing data

Fig.9. Correlation between measured and predicted Free Swelling Index for validating data
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index. This is performed by incorporating values
of ‘relative strength of effect’ (RSEs) [14]. After
a BPNN has been trained successfully, the neural
network is no longer allowed to adapt. The output
for a one-hidden-layer network can be written as:

(11)

Where

(12)

(13)

Where, w is a connected weight, is a
threshold and oi is the value of input unit. Thus,
we have.

(14)

Since the activation function is sigmoid
Eq.(11), it is differentiable. The variance of Ok

with the change of Oj for a network with n hidden
layers can be calculated by the differentiation of
the following equation:

(15)

Where , Ojn, Ojn-1, Ojn-2,
… Oj1 denote the hidden units in the n, n-1, n-2,
…, 1 hidden layers, respectively [14]. Obviously,
no matter what the neural network approximates,
all items on the right hand side of Eq.(15) always
exist. According to Eq. (15), a new parameter
RSEki can be defined as the RSE for input unit i
on output unit k [14].

Definition of RSE: For a given sample set
S={s1, s2, s3, ... , sj, … , sr} where Sj={X,Y},
X={x1,x2,x3, …. , xp}, Y={y1, y2, y3, … , yp}, if

there is a neural network trained by back-
propagation algorithm with this set of samples,
the RSEki exists as:

(16)

Where C is a normalized constant which controls
the maximum absolute value of RSEki as unit and
the function G denotes the differentiation of the
activation function. G, w and e are all the same as in
Eq. (15).

It should be noted that the control of RSE is
done with respect to the corresponding output
unit, which means all RSE values for every input
unit on corresponding output unit are scaled with
the same scale coefficient. Hence, it is clear that
RSE ranges from -1 to 1 [14].

Compared with Eq. (15), RSE is similar to the
derivative except for its scaling value. But it is a
different concept from the differentiation of the
original mapping function. RSE is a kind of
parameter which could be used to measure the
relative importance of input factors to output
units, and shows only the relative dominance
rather than the differentiation of one to one input
and output. The larger the absolute value of RSE,
the greater the effect the corresponding input unit
on the output unit will be. Also, the sign of RSE
indicates the direction of influence, which means
a positive action applies to the output when
RSE>0, and a negative action applies when
RSE<0. Here, a positive action denotes that the
output increases with the increment of the
corresponding input, and decreases with the
reduction of the corresponding input. On the
contrary, negative action indicates that the output
decreases when the corresponding input
increases and increases when the corresponding
input decreases. The output has no relation with
the input if RSE=0. RSE is a dynamic parameter
which changes with the variance of input factors.
In a further section, the RSE will be used for a
sensitivity analysis of the influence of factors on
the free swelling index predicted by a trained
neural network. 

Fig.8 shows the average RSE values of the
factors calculated for all 200 field data that are
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used in the previous sections. It can be seen in
Fig. 8 that ‘moisture’ and ‘nitrogen’ are usually
the most sensitive parameters. Remaining  factors
including Btu (dry), carbon (dry), fixed carbon
(dry), hydrogen (dry), oxygen (dry), total sulfur
(dry) and volatile matter (dry) were also studied
by the neural network method. In addition, a
positive value of RSE indicates that, for example,
if ‘carbon’ has a positive RSE (see Fig. 10)
increases the value of RSE, the FSI will
increases, and inverse effects will take place in
the case of negative RSE (i.e. ‘ash’, etc.)..

6. CONCLUSIONS

The authors have drawn the following
conclusions:
1. The optimum ANN architecture has been

found to be ten and four neurons in the first
and second hidden layer, respectively, and
one neuron in the output layer.

2. In the ANNs method, results of the artificial
neural network show that square correlation
coefficients of the training, testing and
validating data (R2) achieved 0.9967,
0.9181 and 0.9584 respectively.  

3. Network RSEs show that nitrogen (dry)
(+0.845), moisture (-0.665), oxygen (dry)
(-0.545), carbon (dry) (+0.525), ash (dry) (-
0.48), total sulfur (dry) (-04275), Btu (dry)
(+0.425) and volatile matter (dry) (+0.375)

were parameter effective on the free
swelling index (Fig.10).

4. For network training performance, when
the number of epochs is 400, error of
training network was minimized and after
this point suitable performance was
achieved.

5. RSE of Fixed carbon (dry) was +0.0425
and it had lowest effect on free swelling
index. 

6. Results from the neural network showed
that nitrogen (dry), carbon (dry), hydrogen
(dry), Btu (dry), volatile matter (dry) and
fixed carbon (dry) had positive effects on
the free swelling index. With increasing
these parameters free swelling index of coal
will be increased. The negative effects of
input parameters were related to moisture,
oxygen (dry), ash (dry) and total sulfur
(dry). These parameters had reverse effects
on the free swelling index.
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