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Abstract: Till now, different constitutive models have been applied to model the hot deformation flow curves of different
materials. In this research, the hot deformation flow stress of API X65 pipeline steel was modeled using the power law
equation with strain dependent constants. The results was compared with the results of the other previously examined
constitutive equations including the Arrhenius equation, the equation with the peak stress, peak strain and four
constants and the equation developed based on a power function of Zener-Hollomon parameter and a third order
polynomial function of strain power a constant number. Root mean square error (RMSE) criterion was used to assess
the performance of the understudied models. It was observed that the power law equation with strain dependent
constants has a better performance (lower RMSE) than that of the other understudied constitutive equations except for
the equation with the peak stress, peak strain and four constants. The overall results can be used for the mathematical

simulation of hot deformation processes.
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1. INTRODUCTION

API X65 pipeline steel is a high strength low
alloy (HSLA) steel that is characterized by API
(American petroleum Institute) standard code [1].
This steel is produced by thermo-mechanical
processing (TMP) [2, 3]. For designation and
optimization of the  thermo-mechanical
processing of a material, the response of it to the
external loading should be determined. In the
other words, the material behaviour at different
deformation conditions (i.e. at different
temperatures, strains and strain rates) should be
characterized [4].

Till now, many different constitutive equations
have been developed to model the hot
deformation flow curves of different materials [5-
8]. After determination of the material behavior
(using a constitutive equation), finite element
method (FEM) codes can be applied to simulate
the thermomechanical processes [8-10]. The
overall constitutive equations can be divided into
three categories including the physical-based
constitutive equations, the phenomenological
constitutive equations and artificial neural
network (ANN) models [11].

In physical-based constitutive models, the
mechanisms of deformation such as dislocation

dynamics and thermal activation are considered.
Zerilli-Armstrong  [12] and a two-stage
constitutive model [13] developed based on the
classical stress—dislocation relation and the
kinetics of dynamic recrystallization are the
examples of physical-based models. Although,
these models provide higher modeling
performance than that of the phenomenological
models, they have a larger number of constants
and need to numerous

accurate experiments to extract the material
constants [4].

On the other hand, phenomenological
constitutive equations can be developed easily
through the conducting some limited number of
tests (such as hot torsion or hot compression
tests). Till now, many efforts have been done to
develop the new phenomenological constitutive
equations. Johnson-Cook [5], Arrhenius type
constitutive equation [14], a model with the peak
stress, peak strain, and four constants developed
by Mirzadeh and Najafizadeh [8] and a new
simple model developed based on a power
function of Zener-Hollomon parameter and a
third order polynomial function of strain power a
constant number [15] are some examples of
phenomenological constitutive equations. The
Arrhenius type constitutive equation is one of the
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most famous phenomenological constitutive
equations that have ever been used to model the
hot deformation behavior of different materials
[15-17]. For example, Badami et al. used this
model to describe the hot compression behavior
of an Al6061 aluminum alloy [16]. Also, this
model has been applied to express the flow
curves of 20CrMo alloy steel by He et al. [17].

Because of the nonlinear and sophisticated
behavior of materials at elevated temperatures,
artificial neural network models has largely been
used to model the hot flow curves of different
materials [18-22]. For example, Lin et al.
developed an artificial neural network model to
investigate the effects of deformation
temperature, strain rate and strain on the flow
behavior of 42CrMo steel [19]. Also, a three-
layer feed-forward ANN with a back-propagation
learning algorithm has been developed by
Mandal et al. to predict the flow behavior of
austenitic stainless steels at hot deformation
condition [22].

However, according to the literature survey,
the power law equation has not been yet used to
model the flow curves of API X65 pipeline steel.
Arrhenius equation with strain dependent
constants, an equation with the peak stress, peak
strain and four constants and a new simple model
developed based on a power function of Zener-
Hollomon parameter and a third order
polynomial function of strain power a constant
number are the models that has ever been used to
model the hot deformation flow curves of tested
steel [15]. In this study, the power law equation
with strain dependent constants is used to model
the hot deformation flow curves of tested steel.
The results are compared with the results of the
other previously examined equations.

2. THE EXPERIMENTAL FLOW CURVES

The results of single hit compression tests
conducted at elevated temperatures were used to
develop the constitutive equations [23]. The
compression tests were conducted on a 250 kN
Zwick tensile/compression testing machine
equipped with a radiant furnace. More details
about the conducted compression tests have been
reported in Ref. [23]. The chemical composition
of tested steel is presented in table 1.
Experimental flow curves of API X65 pipeline
steel, obtained at deformation conditions with the
temperatures of 900, 950, 1000, 1050, 1100 and
1150 °C with the different strain rates of 0.01,
0.1, and 1 s! for each of the deformation
temperatures are shown in Fig. 1 [23]. The shape
of the true stress—true strain curves obtained at
different deformation conditions is the result of
the competition between the work hardening and
the work softening mechanisms. As can be seen
in most deformation conditions, the flow stress
increases to a peak value and then gradually falls
to a steady state stress that is the common pattern
of dynamic recrystallization (DRX) occurrence.
Though, for the most severe deformation
condition with the temperature of 950 °C and the
strain rate of 1 s'!, true stress—true strain curve
shows a typical dynamic recovery (DRV)
behavior [23].

3. RESULTS AND DISCUSSION

In this section, the power law equation with
strain dependent constants is applied to model the
hot deformation flow curves of API X65 pipeline
steel. Furthermore, the results of this constitutive
equation are compared with the results of a model
has recently been developed based on a power
function of Zener-Hollomon parameter and a

Table 1. The chemical composition of API X65 steel (all in wt%) [21].

Si

Mn

P

S

Cr

Mo

Ni

Al

Cu

v

Ti

Nb

0.072

0.201

1.450

0.008

0.002

0.174

0.240

0.009

0.023

0.008

0.050

0.015

0.047
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Fig. 1. Experimental flow curves of API X65 pipeline steel at different temperatures and strain rates [21].

third order polynomial function of strain power m
(m is a constant) [15].

3. 1. Power Law Equation with Strain Dependent
Constants

To describe the flow stress of different
materials at hot deformation conditions, it is
needed to deal with the effects of temperature and
strain rate on the flow curves as well as the effect
of the strain. Usage of the equations in which the
Zener—Hollomon parameter (Z) is considered as a

function of stress is a common practice for this
purpose [23]:

. Qy _
z=¢exn(3m) = (@) ()
where Q is the activation energy (J/mol), R is the
universal gas constant and 7 is the absolute
temperature. Substituting the power law equation

as the f{o} in Eq. 1, gives:

Z= f(o)=Ac" )
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where A" and n' are material constants. The Eq. 2
should be rewritten for a characteristic stress or a
stress corresponding to a certain strain (for
example for the stress corresponding to the strain
0f'0.3). Usually, these equations are derived for the
peak stress [23, 24]. However, for flow stress
modeling, it is suggested that the constants of the
constitutive equations should be expressed as
polynomial functions of strain to compensate the
effect of strain [4, 11, 23]. Here, to derive the
power law equation, for the tested steel, Eq. 2 was
rewritten for the stresses corresponding to the
strains in the range of 0.1 to 0.7 with step size of
0.05, at the first. Then, the regression analysis was
used to fit polynomial functions over the obtained
constants for different strains. A more detailed
discussion has been provided as in the follow.

Substituting f{o) from Eq. 2 in Eq. 1 and taking
the natural logarithm, yields:

L QY
Ing + i(?) =InA' + n'lnc (3)

The partial differentiation of Eq. (3) can be
written as:

The temperature constant condition in Eq. (4)
gives:

, _ Olng
= dlnc |y ®)

Similarly, the ¢ constant condition in Eq. (4)
gives:

1 6
a(_)é (6)

According to the Egs. (5) and (6) the plots of
Ine-Ino and Ino-1/T (for stresses corresponding to
different strains) can be used to calculate the n'" and
O constant values, respectively. Diagrams of /ns-
Ino plotted for the stresses corresponding to the
strain of 0.3 (extracted from the fifteen
experimental flow curves with different
temperatures and strain rates) are depicted in Fig. 2.

As presented in Fig. 2, the average value of n’
has been calculated equal to 5.996. Moreover,
diagrams of /no-1/T plotted for the stresses
corresponding to the strain of 0.3 (extracted from
the fifteen experimental flow curves with
different temperatures and strain rates) are

., Q. /1 ) .
dlng + ﬁa (T) =n’dlno (4)  depicted in Fig. 3.
As presented in Fig. 3, the average slope value
1
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Fig. 2. Diagrams of Ing-Inc plotted to calculate the average value of n™
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Fig. 3. Diagrams of Inc-1/T plotted to calculate the average
value of Q

has been calculated equal to 7068. According to
Eq. 6, the average slope value obtained from /no-
1/T, should be multiplied by Rr'to calculate the
value of Q. As depicted in Fig. 3, the value of Q
for the stresses corresponding to the strain of 0.3
has been calculated equal to 352336 J/mol.
Substituting the values of »n" and Q in Eq. 3 and
rewriting this equation for different deformation
conditions (i.e. different temperatures and strain
rates), the value of InA’, using a Newtonian
optimization method, has been calculated equal
to 4.55. Similarly, the values of n', Q and /nA’ for
the stresses corresponding to the strains in the
range of 0.1 to 0.7 with step the size of 0.05 are
calculated. The overall results are presented in
Fig. 4.

As depicted in Fig. 4, the regression analysis
was used to express the constants of the power
law equation as polynomial functions of the
strain. The results are summarized as follows:

n' = —10.98¢% + 30.39¢%2 — 22.56g + 10.35 (7

Q = 528,675e2 — 519,309¢ + 456,116 ®)

Ind' = 7.672¢% — 19.962 + 18.82¢ + 0.001 )

Substituting the materials constants as the
functions strain, the following equation (derived
from Eq. 3) was used to model the flow stress:

8 | n' = -10.985* + 30.39€? - 22.56¢ + 10.35
R?=0.993
7
6 4
T s
4 4

T T T T T T T
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Fig. 4. The values of n', Q and /n4’ calculated for the

stresses corresponding to the strains in the range of 0.1 to
0.7.

1

n

o= [e exp (%) /A’] (10)

A comparison between the experimental and
modeled flow curves (using the power law
constitutive equation), at deformation conditions
with two temperatures of 1000 and 1100 °C with
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Fig. 5. The comparison between the experimental and modeled flow curves (using the power law constitutive equation) at
deformation conditions with two temperatures of (a) 1000 and (b) 1100 °C with different strain rates.

different strain rates, are presented in Figs. 5(a)
and 5(b), respectively.

3. 2. The other Previously Examined Constitutive
Equations

In this section, the results of the other
previously examined constitutive equations
including the Arrhenius equation, the equation
with the peak stress, peak strain, and four
constants and The equation developed based on a
power function of Zener-Hollomon parameter
and a third order polynomial function of strain
power a constant number (from the Ref. [15]) for
flow stress modeling of APl X65 pipeline steel
are presented to compare with the results of the
power law equation.

3. 2. 1. Arrhenius Equation
As explained in Ref. [15], using the Arrhenius
equation with strain dependent constants the hot

flow stress of API X65 pipeline steel has been
obtained as follows:

o =tim{@/mmn +[@mm+1]7)
where strain dependent constants of the equation

above can be expressed by the following
equations:

50

a = 0.243s* — 052663 + 04132 —
0.136s + 0.030 (12)

n=12915¢2 — 13.556¢ + 7.403 (13)

Q = —3731.9e* + 5459.1e% — 1965.9¢2 —

141.0¢ + 451.9 (14)

LnA = —381.159&* + 579.768¢3 —

239.617£% + 5.911¢ + 36.087 (15)

More details about finding the constants of the
Arrhenius equation for the tested steel can be
found in Ref. [15].

3. 2. 2. The Equation with the Peak Stress, Peak
Strain, and Four Constants

This equation has been developed firstly by
Mirzadeh and Najafizadeh [8] and it was used to
model the hot deformation flow curves 17-4 PH
stainless steel. This equation has been used by the
author to model the hot flow stress of API X65
pipeline steel [15]:
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0.4
o =0, X (—1.32 + 5.90 (Ei) +

14

—4.93 (é)o.s + 1.32 (é)u) (16)

where, in the equation above the values of g, and
¢, are the peak stress and peak strain and can be
obtained through the following relations from the
previous work of the authors [15]:

o, = 0.576 X 70173 (17)

— 0.153
g, = 0.0045 x Z (18)

More details about finding the constants of this
equation for the tested steel can be found in Ref.
[15].

3. 2. 3. The Equation Developed Based on a Power
Function of Zener-Hollomon Parameter and a Third
Order Polynomial Function of Strain Power a
Constant Number

This equation has been developed by the
author [15] and was used to describe the hot
deformation flow curves of API X65 pipeline
steel. As explained in Ref. [15] using the equation
developed based on a power function of Zener-
Hollomon parameter and a third order
polynomial function of strain power a constant
number the hot flow stress of API X65 pipeline
steel can be expressed as follows [15]:

. 0.169x346238
0169y 1 (

o=¢ = ) x (—0.006 +

2.420£%7 — 3.899e1* + 2.046£21) (19)

More details about finding the constants of this
equation for the tested steel can be found in Ref.
[15].

3. 3. Comparison of the Results of Power Law
Equation with the other Constitutive Equations

The root mean square error (RMSE) criterion
was used to assess and compare the modeling
performance of understudied constitutive
equations:

RMSE = \/m (20)

where ¢, is the target output, y, is the model output
and »n is the number of overall data patterns. The
RMSE value obtained for the power law is
compared with the other previously examined
equations for the tested steel in table 2.

As presented in table 2, the power law
equation with strain dependent constants has a
better performance than that of the other
examined equations, except for the equation with
the peak stress, peak strain, and four constants.

Table 2. Root mean square error (MPa) obtained for the understudied equations.

Constitutive equation Root Mean Square Error (MPa)
Arrhenius equation with strain dependent constants [15] 548

Constitutive equation with the peak stress, peak strain, and four constants [15] 3.64

The model developed based on a power function of Zener-Hollomon parameter

and a third order polynomial function of strain power a constant number [15] 474

Power law equation with strain dependent constants 4.12
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4. CONCLUSION

In this research, the power law equation with
strain dependent constants was used to model the
hot flow curves of API X65 pipeline steel. The
results of this model was compared with the
results of the other previously examined
constitutive equations including the Arrhenius
equation, the equation with the peak stress, peak
strain and four constants and the equation
developed based on a power function of Zener-
Hollomon parameter and a third order
polynomial function of strain power a constant
number. The overall results can be summarized as
follows:

1.  Using the power law equation with strain
dependent constants the hot deformation
flow stress of API X65 can be obtained
through the following equation:

1

'

o feen(@)]

where, strain dependent constants of the equation
above can be expressed by the following
equations:

n'=-10.98 &3 +30.39¢2 - 22.56 ¢ + 10.35
0= 528,675 €2- 519,309 ¢ + 456,116
nA= 7.672¢3-19.96 &2 + 18.82 ¢+ 0.001

2. Using the RMSE criterion, it was found
that the power law equation with strain
dependent constants has a lower RMSE
than that of the other understudied
constitutive equations except for the
equation with the peak stress, peak strain,
and four constants.
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