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Abstract: Multivariable regression and artificial neural network procedures were used to modeling of the input power
and gas holdup of flotation. The stepwise nonlinear equations have shown greater accuracy than linear ones where
they can predict input power, and gas holdup with the correlation coefficients of 0.79 thereby 0.51 in the linear, and
R2=0.88 versus 0.52 in the non linear, respectively. For increasing accuracy of predictions, Feed-forward artificial
neural network (FANN) was applied. FANNs with 2-2-5-5, and 2-2-3-2-2 arrangements, were capable to estimating of
the input power and gas holdup, respectively. They were achieved quite satisfactory correlations of 0.96 in testing stage
for input power prediction, and 0.64 for gas holdup prediction.
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1. INTRODUCTION

Gas dispersion properties include bubble size
(ds,), gas holdup (g, ,%), while bubble surface
area flux (S;), and input power (P) which are
effective  parameters related to flotation
performance. During the last 10 years, some
investigations have been carried out to measure
these parameters in mechanical flotation cells [1-
7]. The gas holdup as a function of broad groups
of chemical, operational, and machine variables
presents in froth flotation [8-12]. The gas holdup
is related to bubble size (a function of frother
characteristics, concentration, solids coverage,
and air flow rate), slurry flow rate, and solids
content. It also defines the bubble flow density
(or the bubble surface area flux), which is related
to  flotation kinetics [13];  Therefore,
determination of the gas holdup for diagnosing,
and controlling a flotation cell during the
operation should be fruitful.

Based on an operating aspect, the impeller
rotational speed (N,) provides an opportunity to
control the specific input power (P) to the
flotation cell slurry, and impeller tip speed.
Recent studies have highlighted the important
influence of local turbulent energy dissipation (g)
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on the both frequency of bubble—particle
collision, and stability efficiency of the particle—
bubble aggregate [14-16]. Because there is
difficulty in establishing the exact spatial average
of local energy dissipation for a given turbulent
mixing system, the mean energy dissipation (€ )
in a flotation cell containing mass (M) of slurry is
determined by the equation below [17]:

~-_ Db

Y 1)

Typical mean energy dissipation values in
industrial flotation cells change from 1.0 to 5.0
W/kg, depending upon the cell size, installed
motor power, transmission losses, and slurry
density [18]. It is well recognized that energy
dissipation is a local function, and also the
maximum value near the impeller may be higher
than the mean energy dissipation across the entire
cell (10-20 times higher) [19].

It is thought useful to develop empirical
models to estimate gas dispersion factors in
different  conditions  because of  poor
understanding of gas dispersion phenomena, and
difficulty in measuring them in flotation cells. In
other words, these models could be used readily
for applications such as cell comparison,
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selection, new cell installation, scale-up for plant
design, cell optimization, circuit modeling, and
simulation, etc. Using the laboratory data,
computing techniques have been applied to many
aspects of mineral processing that were
mentioned in the references [20-25].

The aim of the present work is prediction of
gas holdup (g, ,%), and input power (P,W)
according to effective variables on froth flotation
(Impeller peripheral speed (N, m/s), superficial
gas velocity (J, , cm/s), and pulp density (P, , %)
using experimental data obtained at a laboratory
scale. The multivariable regression, and feed
forward artificial neural network (FANN) were
used for those estimations.

2. EXPERIMENTAL PROCEDURE

All flotation experiments were carried out in a
laboratory Denver flotation cell. An impeller
diameter of 0.07 m was used for agitation in a cell
with a square section of 0.12 and 0.1 m height.
The type of impeller was a Rushton turbine with
8 paddles, and a stator was used around the rotor.
All tests were done without any baffling in the
flotation cell. MIBC (methyl iso-butyl carbinol),
and Quartz particles (solid density of 2.65 g.cm3
and particle size of -500 ) were used for flotation
experiments. Concentration of the frother was
22.4 ppm.

3. RESULTS AND DISCUSSION
3. 1. Gas Hold Up

The gas holdup (g, ,%) was measured using a
device similar Jameson and Allum [26].
According to Fig. 1, it consisted of a 50 milliliter
volume cylinder with a plunger attached to a
central rod. The plunger had an O-ring for an air
tight fitting when it moved inside the cylinder.
The plunger drew into the cylinder, encapsulating
a volume of aerated pulp in the space between the
cylinder and plunger.

The pulp-air mixture encapsulated between the
cylinder, and plunger was emptied into a
measuring cylinder at which point the air escaped
into the atmosphere. The volume of the space
between the cylinders was determined by water
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Fig. 1. Schematic of a device for measuring gas holdup

calibration. By calculating the difference
between the measured volume of slurry, and the
calibrated volume of water, the volume of air in
the aerated pulp was obtained, finally €, was the
volume fraction of air in each sample.

For 2.93 <N;<6.12 m/s, 0.32<J, < 0.94 cm/s,
and 0 < P, < 15.6 %, gas holdup was obtained
3.04 <g, <22%.

3. 2. Input Power

For calculating net power consumption, at first
equipment power consumption was determined
without pulp. Then, flotation cell was filled with
pulp and power consumption was measured
again. Net power consumption was calculated by
reducing these two measured powers.

For 1.83 <N < 6.12 m/s, and 0 < P, <40 %
input power was achieved 0.05 <P <52.58 W. In
mechanical flotation cells, power intensity of 1 to
2 kW.m=3 is common [27]. Thus, an impeller
peripheral speed of 2.93 < N, < 3.66 (impeller
diameter of 0.07 m and impeller speed of 800 to
1000 rpm) is suitable for the flotation process.

3. 3. FANN Procedure

Few years, artificial neural networks (ANNs),
and particularly feed forward artificial neural
networks (FANNs) have been extensively studied
in academia as process models, and are
increasingly being used in industry [28]. Neural
networks of multi-layer perceptron (MLP) type
are often used as black-box models of systems
where the underlying relations are poorly known
or extremely complex [29]. The main advantages
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of neural network over conventional regression
analysis are: free of linear supposition, large
degrees of freedom, and more effectively deal
with non-linear functional forms [30].

A Feed forward neural network of multi-layer
perceptron type can be used as a nonlinear

black-box model in data-mining tasks, and
typically consists of an input layer, hidden layers
with sigmoid activation functions, and an output
layer with linear activation function. Each node
in the input layer is linked to all the nodes in the
hidden layer using weighted connections. Similar
connections exist between hidden, and output
layer as also between nodes of hidden layers [31].
The number of nodes in the layers is adjustable
parameters, whose magnitudes are governed by
issues such as the desired prediction accuracy,
and generalization performance of the FANN
model. FANN is one of the most popular, and
well documented neural network models, which
has a good software support. In this study, two
FANN models have been developed for
predictions of gas holdup (g, ,%), and input
power (P, W).

3. 4. Regression

By a least square mathematical method, inter
correlations between input, and output variables
were calculated (table 1). From the mentioned
results it can be concluded that the worthy
relationships are for impeller speed with positive

effect on both power, and gas holdup. In addition,
the increase of gas velocity rates have negative
effect on input power, and in contrary term, have
positive effect on gas holdup. The results show
that there is no significant correlation between
pulp density and gas holdup.

The stepwise variable selection procedure was
used to prepare regression equations. The best
linear, and non linear multivariable equations
between the froth flotation operational conditions
with input power (P, W), and gas holdup (g, ,%)
can be presented as the following equations:

P(wat) = -34.137+11.775N, - 12.969J,+ 0.164P2,
R2=0.79 2)

P(wat)=7.809-6.824N+1.718N2,+293.254P -
70.134P2,+5.493P3, - 0.141P4,-6.748],

R2=0.88 3)
£,(%)=-7.285 + 3.282 N+ 5.961 J,
R2=0.51 4)

£,(%)= -12.634+ 3.288 N+ 43.729 1,-76.67312,
+45.5481)5,

R2=0.52 (5)

The distribution of difference between power,

Table 1. Inter- item correlation matrix for input, and output variables

Tt Impeller Pulp s s
Parameters S peripheral density weloeity | boldup
et speed (m/s) (%) (enis) (26}
Input power (wat) 1 0.85 0.06 -0.28 0.30
Impeller peripheral speed (m/s) 0.85 1 -0.02 -0.05 0.64
Pulp density (%) 0.06 -0.02 1 0.05 -0.07
Gas velocity (cm/s) -0.28 -0.05 0.05 1 0.28
Gas holdup (%) 0.30 0.64 -0.07 0.28 1
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Fig. 2. Distribution of the difference between measured power values and estimated power values obtained from
multivariate regression Eq. (2)

and gas holdup predicted from Eq. (3), and (5)
with actual determined amounts of them
according to their frequency are shown in Fig. 2,
and 3, respectively.

3. 5. FANN Results

According to the Egs. (2), and (4), the selected
variables were determined as the best variables
for the predictions of P, and ¢,. Therefore these
variables were chosen as inputs to FANN for the
improvement of estimations.

If certain preprocessing steps (normalizing
processes) were performed on the network inputs
and targets, neural network training can be made

more efficient; therefore, before training, it is
often useful to scale the inputs, and targets
because they always fall within a specified range.
For ANN work, all input, and output data were
scaled using the following model:

N, = (A,- meanA,,) / std A, (6)

Where, A, is actual parameter, mean A  is mean
of actual parameters, stdA,, is standard deviation
of actual parameter and N, is normalized
parameter (input). The mean, and standard
deviation of input, and output variables for pre-
processing are given in Table 2. After
determining the number of input variables by

Table 2. Pre-processing parameters for ANN

Variable Minimum | Maximum | Mean S.td'.
Deviation
Impeller peripheral speed (m/s) 2.93 6.12 4.58 0.84
Pulp density (%) 0 15.6 8.09 6.25
Gas velocity (cm/s) 0.11 0.94 0.46 0.22
Gas holdup (%) 2.8 19.8 10.48 4.16
Input power (wat) 2.01 38.19 15:22 11.72
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Fig. 3. Distribution of the difference between measured gas holdup values and estimated gas holdup values obtained from
multivariate regression Eq. (3)

statistical means, the most appropriate
architecture for the network was determined.
From the total dataset (119 laboratory
experiments) were used for the input power and
gas holdup predictions by FANN, 100 samples
were input for training, and 19 sets were used for
testing the network. The training process was

Several FANNs were created, trained, and
tested to achieve a suitable FANN topology,
which is able to predict accurate values of
outputs. The number of neurons in the hidden
layers was obtained by the trial and error method
so that the error between the desired, and
estimated outputs was minimized. The 2—-5-5-5,
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Fig. 4. Comparison between measured power values and estimated power values obtained from ANN

stopped after 3000 epochs.
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and 2-2-3-2-2 FANN models adequately
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Fig. 5. Comparison between measured gas holdup values and estimated gas holdup values obtained from ANN

recognized the effects of different operational
conditions on the outputs, and usefully predicted
both input power, and gas holdup, respectively.
Figs 4 and 5 show the relationship between
estimated variables by FANN model from testing
phase and their determined value by the
laboratory methods. The testing sets, which
actually test how good the models are, show that
the models can estimate input power, and gas
holdup quite satisfactorily. The correlation
coefficient (R2) values for testing sets are 0.96
and 0.64 for input power, and gas holdup
predictions, respectively. Upon comparison with
the regression results, the FANN models were
shown to have greater accuracy in predicting
values from the same inputs.

4. CONCLUSION

Predicting input power, and gas holdup using
regression, and artificial neural network is put
forward. 119 laboratory data sets were used for
the prediction operations. The input-correlations
between operational conditions with input power,
and gas holdup show that with the increase of gas
velocity rates both input power, and gas holdup
values increase remarkably. Through the

modeling data, the correlation coefficients
between the prediction value, and the laboratory
value of input power, and gas holdup were 0.88,
and 0.52 for the non linear regression, where they
can predict them with greater accuracy than
linear ones with R2=0.79, and 0.51. Using the
FANN method for the modeling and predicting
were achieved R2=0.96, and 0.64 for input power,
and gas holdup, respectively. The results showed
that laboratory operational conditions can be used
as predictors of input power, and gas holdup
successfully, and can create accurate models. As
a comparison between equations, and FANN
models, it was found that the performances of
FANN models are better than regression models.
Therefore, it can be effectively used in
estimations of input power, and gas holdup.
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Actual parameter
Normalized parameter

p
stdA, Standard deviation of actual parameter

Mean of actual parameters

N Peripheral speed

B Local energy dissipation
d;,  Sauter mean diameter

P Input power

€ Gas holdup

Jg Superficial gas velocity
Py Pulp density

€ Mean energy dissipation
M Liquid mass

S, Bubble surface area flux
p Fluid density
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