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ABSTRACT 
 

Structural reliability theory allows structural engineers to take the random nature of 

structural parameters into account in the analysis and design of structures. The aim of this 

research is to develop a logical framework for system reliability analysis of truss structures 

and simultaneous size and geometry optimization of truss structures subjected to structural 

system reliability constraint. The framework is in the form of a computer program called 

RBO-S&GTS. The objective of the optimization is to minimize the total weight of the truss 

structures against the aforementioned constraint. System reliability analysis of truss 

structures is performed through branch-and-bound method. Also, optimization is carried out 

by genetic algorithm. The research results show that system reliability analysis of truss 

structures can be performed with sufficient accurately using the RBO-S&GTS program. In 

addition, it can be used for optimal design of truss structures. Solutions are suggested to 

reduce the time required for reliability analysis of truss structures and to increase the 

precision of their reliability analysis. 
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1. INTRODUCTION 
 

Structural optimization can be defined as the creation of a structure of materials, which bear 

loads optimally [1]. In structural engineering, the optimization aims mainly at designing 

structures with high efficiency, while their design and construction require minimum cost 

and materials. In this regard, special attention has been paid to optimization of truss 

structures, which are among the most common structures in the construction industry. In 

general, truss structure optimization problems can be classified into three different 
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categories of 1) size optimization, 2) geometry optimization, and 3) topology optimization. 

In most structural optimization problems, either a dual combination of these three areas is 

used or all three areas are considered. 

Although numerous attempts have been made for optimization of truss structures, in most 

cases the stochastic nature of structural parameters was neglected and optimization was 

carried out as a deterministic process [2-5]. However, the uncertainties are sometimes so 

severe that if ignored, the resulting model fails to simulate the actual conditions 

satisfactorily. Nevertheless, in most common methods of structural design, the stochastic 

nature of structural parameters is not directly incorporated into the design. In such methods, 

coefficients known as the safety factor are used to maintain the structure’s safety level at a 

specific level. These factors are used to eliminate the concerns resulted from the alleged 

certainty of structural parameters and from the incorporation of simplifying approximations 

and assumptions in structural design. 

For optimal design of structures, especially complicated structures, it is necessary to 

include the stochastic nature of structural parameters directly in their analysis and design. 

Hence, approaches provide the possibility of assessment of uncertainties in computer 

models, loads, structure geometry, materials properties, production processes, and 

operational environment should be considered. The structural reliability theory provides a 

reasonable approach to consider the aforementioned uncertainties in the analysis and design 

of structures and introduce the safety and performance requirements quantitatively into their 

design. 

Since the 1930s, researchers have studied the probabilistic methods of structural safety 

analysis. The first formulations of structural safety problems can be ascribed to Wierzbicki 

[6] and Streletzki [7]. These researchers realized the stochastic nature of load and resistance 

parameters. However, practical application of the structural reliability theory was not 

possible before the pioneering studies by Cornell [8] and Hasofer and Lind [9] in the late 

1970s and early 1980s as well as the researches by Rackwitz and Fiessler [10] in the late 

1980s. These researchers showed how to assess the reliability of individual structural 

members in a logical process. However, subsequent studies revealed that to provide an 

acceptable reliability analysis of structures, it is necessary to employ methods assessing 

structural reliability at the structural system level rather than on the basis of reliability 

analysis of individual members [11]. It is because these methods allow the inclusion of the 

interaction between structural members into the analysis and design and also make it 

possible to design structural members regarding their status in the structural system. In 

general, failure of the first member of a statically indeterminate truss structure does not 

necessarily lead to the failure of its structural system. Methods for reliability analysis of 

these structures can be classified into three main categories of 1) numerical integration 

methods, 2) simulation techniques, and 3) failure-path-based methods [12]. In the numerical 

integration method, to assess the structure’s failure probability, it is usually necessary to 

calculate complicated multidimensional integrals and sometimes insolvable integrals. Hence, 

application of numerical integration method is limited to two-dimensional spaces and simple 

structures. Thus, a concept known as the “reliability index” is used to quantify the structural 

reliability [13]. 

The main concept of simulation techniques is to simulate a probabilistic phenomenon 

numerically and then observe the frequency of a certain event in that phenomenon [13]. 
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Some of the most important simulation techniques include the following: 1) Monte Carlo 

simulation technique, 2) Rosenblueth’s point-estimate method, and 3) Latin hypercube 

sampling method. These techniques can be used easily, but in the case of small failure 

probabilities, which normally occur in real structures, the number of required simulations is 

so high that makes these techniques practically useless. 

Usually one of the failure-path-based methods is used to analyze the reliability of 

structures at the structural system level. In such methods, the structure’s reliability analysis 

is done based on its dominant failure modes. The dominant failure modes of a structure are 

failure modes that are probabilistically dominant and probabilities of their occurrence are 

larger than its other failure modes. In these methods, it is basically assumed that it is 

possible to estimate the failure probability of structures satisfactorily using their dominant 

failure modes. The most important failure-path-based methods are as follows: 1) Branch-

and-bound method, 2) β-unzipping method, and 3) Incremental loading method [14]. In 

these methods, the structure’s reliability analysis is usually done in two general steps: 1) 

Identification of the structure’s dominant failure modes, and 2) Calculation of failure 

probabilities of the identified dominant failure modes and estimation of the failure 

probability of the total structural system [12]. 

In most studies using structural reliability theory to optimize truss structures, 

optimization is carried out based on constraints on the reliability of individual structural 

members rather than the structural system reliability constraint. Moreover, researchers who 

have optimized truss structures with structural system reliability constraint, have often 

avoided actual system reliability analysis and have instead employed simpler methods and 

assumptions to estimate the failure probabilities.  

Some of the most important studies are further reviewed. Murotsu et al. [15] optimized 

size and topology of truss structures using constraints on the failure probabilities of 

individual members. Stocki et al. [16] imposed restrictions on the values of componental 

reliability indices corresponding to the allowable displacements of some specified nodal 

points, allowable stress or local buckling of the structural members as well as a global loss 

of stability to optimize size and geometry of truss structures. Kaveh and Kalatjari [17-19] 

employed the force method and genetic algorithm to optimize truss structures. Park et al. 

[12] proposed a new method for reliability assessment of structural systems. Togan and 

Daloglu [3] considered the failure probability of a truss structure to be equal to the sum of 

failure probabilities of its members and optimized cross-sectional areas of truss members. 

Kalatjari et al. [20] used the algebraic force method and artificial intelligence to assess the 

reliability of statically indeterminate trusses. Kalatjari and Mansoorian [21] used the branch-

and-bound and the competitive distributed genetic algorithm methods to optimize size of 

truss structures. Kaveh et al. [22] proposed some strategies to improve the accuracy of 

reliability analysis of truss structures and to increase the speed of optimization of truss 

structures against system reliability constraint. Kim et al. [23] used the selective search 

method to identify the dominant failure modes of structural systems. Kaveh et al. [24] 

utilized charged system search (CSS) algorithm as an optimization tool to achieve minimum 

reliability index under limit state function. Kaveh and Ilchi Ghazaan [25] utilized some 

recent metaheuristic algorithms for structural reliability assessment. 

Despite many attempts to optimize truss structures subject to structural reliability 

constraints, no study has been focused on simultaneous size and geometry optimization of 
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truss structures subject to system reliability constraint. The present study is an attempt to 

improve the results of system reliability analysis of truss structures and to develop a logical 

framework for simultaneous size and geometry optimization of truss structures subject to 

system reliability constraint. The goal of optimization is to minimize the truss structure’s 

total mass against the aforementioned constraint. Optimization is done through genetic 

algorithm. Reliability analysis of truss structures is performed through a modified branch-

and-bound method. Through the modified branch-and-bound method, system reliability 

analysis of truss structures will be done more accurately in a shorter period of time. Visual 

Basic 6.0 programming software is employed to write the codes.  

 

 

2. MATERIALS AND METHODS 
 

2.1 Failure of truss structures 

There are two common definitions of failure of truss structures. In the first definition, the 

truss is considered to be failed once one of its members exceeds its critical capacity. In this 

case, probability of failure of the truss structure is equal to the failure probability of the 

member with the largest failure probability among all of the truss members. In the second 

definition, the measure for the failure of a truss structure is formation of a collapse 

mechanism in its structural system. According to this definition, failure of the first member 

of a statically indeterminate truss does not necessarily lead to the failure of the total 

structural system. Rather, after the failure of a structural member, the internal forces are re-

distributed among the remaining members and the next member exposed to failure is 

detected. For stress analysis, after the failure of each member of truss, a force equal to the 

residual resistance of the failed member is applied to the truss structure along the failed 

member axis and the failed member stiffness matrix is set to zero. The residual resistance of 

the failed member is determined based on the failure type (tensile failure, compressive 

failure, or buckling-induced failure) and the type of the material to be used. The process of 

discarding members and redistributing the internal forces continues until a collapse 

mechanism forms and the truss structural system fails completely [11]. In a truss structure, 

the requisite for the emergence of a collapse mechanism is that the determinant of the truss 

structure stiffness matrix which consists of the remaining members would be equal to zero. 

For example, assume that a specific number of pq members (e.g. members r1 to rpq
) are 

omitted from an n-member statically indeterminate truss structure. In this case, singularity of 

truss structure stiffness matrix consisting of (n⎼pq) remaining members is the requisite for 

the formation of a collapse mechanism. The truss structure stiffness matrix consisting of 

(n⎼pq) remaining members is denoted by K̿(pq). Therefore, the collapse mechanism forms 

when: 

 

|K̿(pq)| = 0 (1) 

 

In the above equation, |K̿| represents the determinant of the stiffness matrix K̿. 
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2.2 Reliability analysis of truss structures 

The sequence of some members of a truss in which the consecutive failure and omission of 

members lead to the formation of a collapse mechanism is known as a complete failure path 

(failure mode). Statically indeterminate trusses usually have a large number of failure 

modes. Thus identification of all of them is not practically possible. Some of the failure 

modes have high failure probabilities, whereas others have relatively low failure 

probabilities. Reliability of a truss structure should be assessed so that its dominant failure 

modes could be involved in the assessment. Each of the failure modes of a truss structure 

can be modeled based on a parallel system. Failure of a truss structure occurs in its most 

probable failure mode. If any of the failure modes of a structure occurs, the structure fails 

completely. Hence, the relationship between failure modes of a structure can be modeled 

based on a series system. As a result, the failure event of a truss structure is equivalent to the 

union of the events corresponding to its failure modes. The probability of failure of series 

systems is generally estimated through the bounding methods. Some of the bounding 

methods specifically developed for series systems with correlated failure modes include the 

following: 1) Cornell’s bounds, 2) Ditlevsen's bounds, and 3) Vanmarcke’s upper bound. To 

identify the failure modes of a truss structure, first it is necessary to generate its failure 

paths. In the next section, generation of failure paths of truss structures will be explained. 

 

2.3 Limit state functions of truss structures 

Consider a three-dimensional n-member statically indeterminate truss structure. The data on 

configuration of the structure and mechanical properties of the material to be used is also 

available. The i-th member of this truss fails when its internal force exceeds its resistance. 

Therefore, the safety margin of i-th member (Mi) is:  

 

Mi = Ri(Cyi, Ai) − Si(A1, … , An;  L1, … , L3u; l1, … , ln;  E1, … , En) (2) 

 

In the above equation, n and u denote the number of truss members and the number of 

nodal points, respectively. Lj is the external load exerted on the truss at j-th degree of 

freedom (j = 1, 2, … , 3u). Ri, Ai, Ei, li, Cyi, and Si stand for the resistance, cross-sectional 

area, elasticity modulus, length, stress corresponding to load-bearing capacity, and internal 

force of i-th member, respectively. 

If the internal force and resistance of i-th member (Si, Ri) are statistically uncorrelated 

random variables with normal probability distributions, it can be proved that the following 

relationship exists between the reliability index of i-th member (β
i
) and its probability of 

failure ((Pf)i): 

 

(Pf)i = Φ(−β
i
) (3) 

 

In Equation (3), Φ(X) denotes the univariate standard normal cumulative distribution 

function X.  

The reliability index of i-th member (β
i
) is: 

 



K. Biabani Hamedani and V.R. Kalatjari 

 

570 

β
i

=
μRi

− μSi

√σRi

2 + σSi

2

 
(4) 

 

where, μRi
 and μSi

 show the mean values of resistance and internal force of i-th member, 

respectively. In addition, σRi
 and σSi

 refer to the standard deviations of resistance and 

internal force of i-th member, respectively. 

The internal force of i-th member (i.e. a structural member that remains sound after 

failure of r1 to rp−1 members) at p-th stage of failure (after failure of r1 to rp−1 members) is: 

 

S
i(r1,r2,…,rp−1)

(p)
= ∑ bij

(p)
Lj

(p)
=

3u

j=1

∑ bij
(p)

Lj

3u

j=1

− air1

(p)
Rr1

− ⋯ − airp−1

(p)
Rrp−1

 (5) 

 

In Equation (5), p is the failure path length and (r1, r2, … , rp−1) represents the failed 

members and their sequence of failure. Moreover, aij
(p)

 is the internal force of i-th member at 

p-th stage of failure, which results from application of a unit load along j-th failed 

member. bij
(p)

 is the internal force of i-th member at p-th stage of failure, which results from 

application of a unit load along j-th degree of freedom. Lj
(p)

 is the external load applied to j-

th degree of freedom of the structure at p-th stage of failure. S
i(r1,r2,…,rp−1)

(p)
 is the internal 

force of i-th member at p-th stage of failure. 

Hence, the safety margin of i-th member at p-th stage of failure (M
i(r1,r2,…,rp−1)

(p)
) is: 

 

M
i(r1,r2,…,rp−1)

(p)
=  CyiAi − |S

i(r1,r2,…,rp−1)

(p)
| (6) 

 

Probability of the failure path r1 ⇾ ⋯ ⇾ rp−1 ⇾ rp is calculated through the following 

equation: 

 

Pfp(r1r2…rp−1rp) = 1 − P[⋃ Mri(r1,r2,…,ri−1)
(i) > 0

p

i=1

] (7) 

 

In Equation (7), Pfp(r1r2…rp−1rp) refers to the probability of the failure path r1 ⇾ ⋯ ⇾

rp−1 ⇾ rp. 

When the failure path length exceeds 3 (p > 3), precise calculation of the failure path 

probability using Equation (7) becomes complicated and time-consuming. Therefore, the 

upper and lower bounds of the failure path probability are usually estimated. One of the 

equations proposed for the upper and lower bounds of the failure path probability is [11]: 
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Pfp(r1r2…rp−1rp)(L)

= max [0, P[(Mr1

(1)
≤ 0)]P [(Mr1

(1)
≤ 0)⋂(Mr2(r1)

(2)
> 0)]

− ∑ min {Pfp(r1r2…rj−1)(U), p [(Mr1

(1)
≤ 0)⋂ (M

rj(r1,r2,…,rj−1)

(j)
> 0)]}

p

j=3

] 

(8) 

Pfp(r1r2…rp−1rp)(U) = min
jϵ{2,…,p}

P [(Mr1

(1)
≤ 0)⋂(M

rj(r1,r2,…,rj−1)

(j)
≤ 0)] (9) 

 

where, Pfp(r1r2…rp−1rp)(U) and Pfp(r1r2…rp−1rp)(L) denote the upper and lower bounds of the 

probability of the failure path r1 ⇾ ⋯ ⇾ rp−1 ⇾ rp, respectively. 

 

2.4 Calculation of the joint failure probability of members 

If the loads applied to the truss structure and its members’ resistance are uncorrelated 

random variables with normal probability distributions, the safety margins corresponding to 

j-th stage of failure (the truss lacking r1 to rj−1 bars) and k-th stage of failure (the truss 

lacking r1 to rk−1 bars) can be expressed as linear combinations of a number of uncorrelated 

random variables with standard normal probability distributions. For instance, 

 

Mrk(r1,r2,…,rk−1)
(k)

= a∘ + ∑ aizi

n

i=1

 (10) 

M
rj(r1,r2,…,rj−1)

(j)
= b∘ + ∑ bizi

n

i=1

 (11) 

 

In the above equations, the zi variables are uncorrelated random variables with standard 

normal probability distributions. In addition, ai and bi are the constants of the zi variables in 

the safety margins corresponding to k-th and j-th stages of failure (i = 1, 2, … , n). 

It should be noted that the mean of a standard normal random variable is equal to zero, 

while its standard deviation equals one. Equations (10) and (11) indicate that the safety 

margins corresponding to j-th and k-th stages of failure will also have standard normal 

probability distributions. In this case, the statistical correlation coefficient between the safety 

margins corresponding to j-th and k-th stages of failure (ρjk) is as follows: 

 

ρjk = ∑ aibi

n

i=1

 (12) 

 

For an arbitrary pair of structural elements, the bivariate normal cumulative distribution 

function with zero mean values (Φ2(X1, X2; ρ)) is: 
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Φ2(X1, X2; ρ) = Φ(X1)Φ(X2) + ∫

exp (−
1

2(1 − z2)
(X1

2 + X2
2 − 2zX1X2))

2π√1 − z2
dz

ρ

0

 
(13) 

 

In Equation (13), X1 and X2 are the random variables corresponding to a desired pair of 

structural elements and ρ shows the statistical correlation between X1 and X2 random 

variables.  

If in Equation (13), −β
j
 and −β

k
 are assumed to be the values of X1 and X2 variables and 

ρjk is regarded as the value of the ρ variable, then the calculated value of Φ2(−β
j
, −β

k
; ρjk) 

is equal to the joint failure probability of j-th and k-th structural members. 

  

2.5 The branch-and-bound method 

In the branch-and-bound method, matrix methods are initially used to generate failure paths 

of the structure. Then, the dominant failure paths of the structure and the failure paths to be 

discarded are identified through branching and bounding operations, respectively. The 

branch-and-bound method generally involves three main operations of 1) partitioning 

operation, 2) branching operation, and 3) bounding operation. 

Partitioning operation: During the partitioning operation, a new failure stage is added to 

the previous failure stages of the incomplete failure path under consideration. In other 

words, all the structural members potentially prone to failure are added to the incomplete 

failure path under consideration. “Potentially prone to fail members” refer to members 

which can fail during the present failure stage. The failure paths generated during this stage 

are called “partitioned failure paths”. In each step of generating failure paths, all newly 

partitioned failure paths are entered as input to the “set of candidate failure paths for 

branching operation”. Equations (8) and (9) are used to calculate the upper and lower 

bounds of the failure paths’ probability. Close examination of these equations reveals that, in 

these bounds, only the safety margins of the failure path at the first failure stage and the 

present one are used. Therefore, only the safety margin of the failure path at the first failure 

stage needs to be saved. Consequently, this would lead to less computer memory space 

occupation and reduction of program execution time. This issue is useful, especially about 

structures with a high degree of indeterminacy where the number of failure paths required 

for acceptable evaluation of the structural system reliability cannot be predetermined [11]. In 

addition, these equations take into account the statistical correlation between safety margins 

of different stages of failure in each failure mode. 

Branching operation: Branching operation can be defined as the operations performed to 

select the members in order to achieve stochastically dominant failure paths [11]. In each 

step of generating failure paths, selected member must be the member with the most 

probable branching failure path compared to other newly partitioned failure paths. In other 

words, selected failure path must be the failure path which has taken the maximum value of 

Pfp(r1r2…rp−1rp)(U) at the present step of generating failure paths. The member selection 

process is continued until the formation of a collapse mechanism. 

Bounding operation: Bounding operation is for eliminating unnecessary failure paths 

from among the candidate failure paths for branching operation [11]. Unnecessary failure 
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paths refer to failure paths which do not play a determinative role in evaluating the 

probability of failure of the structural system. Suppose that a new member is added to one of 

the incomplete failure paths. The upper bound of the failure path probability is a non-

increasing function of failure path length (p). Therefore, the probability of consecutive 

failure of 1 to p members of a failure path is smaller than or equal to the probability of 

consecutive failure of 1 to p − 1 members of the same failure path. Therefore, there is no 

need to continue the branching operation on the failure paths with smaller upper bounds of 

probabilities in comparison to a certain value. It is because even in this stage of the 

branching operation, it is possible to recognize that these failure paths are not the probable 

and dominant failure paths. Hence, these failure paths are ignored and removed from the set 

of candidate failure paths for branching operation. The bounding operation should be 

repeated after identifying each new failure mode. After identifying each new failure mode, 

to find the unnecessary failure paths, the upper bounds of probabilities of all of the failure 

paths in the set of candidate failure paths for branching operation are compared to the value 

of the “bounding reference” variable. All of the failure paths with smaller upper bounds of 

probabilities in comparison to the current value of the bounding reference are omitted from 

the branching operation. After identification of n-th failure mode of the truss, the bounding 

reference is a multiple of the largest lower bound of the probability of failure of these n 

failure modes. The bounding reference (Br) is calculated through the following equation: 

 

Br = Re ⨯ 10−δ (14) 

 

where, δ is the branch-and-bound constant, Re is the branch-and-bound variable. 

After identification of n-th failure mode of the truss, Re variable’s value is equal to the 

largest lower bound of failure probability of these n  failure modes. δ  is a constant 

determined in relation to the precision desired by the user and type of the given structure. As 

the value of δ constant gets larger, the number of discarded failure paths declines and, 

consequently, the precision of computations escalates. On the other hand, as the value of 𝛿 

constant gets larger, the time allocated to the structural reliability analysis expands. It is, 

therefore, concluded that the upper bounds of probabilities of all of the failure paths omitted 

from the branching operation are smaller than the final value of Br variable [11]. 

The branch-and-bound operation continues until the set of candidate failure paths for 

branching operation becomes null. Reaching this status indicates that the branch-and-bound 

operation is over. Following the branch-and-bound operation and identification of the 

dominant failure modes of the structure under consideration, a specific bounding method is 

applied to estimate the structure’s failure probability. In this research, Cornell’s method is 

used to estimate the structure’s failure probability. Suppose that a specific number of nk 

failure modes are identified as the dominant failure modes of the structure. Based on the 

Cornell’s method, the upper and lower bounds of the structure’s failure probability are 

respectively [26]: 

  

Pup−s = 1 − ∏ [1 − Pfp(r1r2…rp−1rp)(U)(i)]

nk

i=1

 (15) 
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Plow−s = max
iϵ{1,…,nk}

[Pfp(r1r2…rp−1rp)(U)(i)] (16) 

 

In the above equations, Pup−s  and Plow−s  are the upper and lower bounds of the 

structure’s failure probability, respectively. Pfp(r1r2…rp−1rp)(U)(i) and Pfp(r1r2…rp−1rp)(L)(i) are 

the upper and lower bounds of failure probability of i-th identified dominant failure mode of 

the structure.  

 

2.6 Structural system reliability-based optimization of truss structures 

In this research, optimization of a truss structures is conducted by minimizing its total mass 

subject to system reliability constraint. To formulate the problem of minimizing mass of a 

truss structure subject to system reliability constraint we have: 

Minimize: 

 

W(X1, X2, … , XNDv) = ∑ Ailiρi

NE

i=1

 (17) 

 

So that: 

1) The truss structure would be geometrically stable; 

2) The following conditions would not be violated. 

 

βS(X1, X2, … , XNDv) ≥ βmin
System

 (18) 

Xi
L ≤ Xi ≤ Xi

U (i = 1,2, … , NDv) (19) 

 

In the above equations, W is the total mass of the truss structure, NDV shows the number 

of design variables, Xi is i-th design variable, NE presents the number of truss members, βS 

is the system reliability index of the truss, βmin
System

 refers to the minimum allowable value of 

the system reliability index of the truss, and Pfp𝑚𝑎𝑥

System
 is the maximum allowable value of the 

structure’s failure probability. Moreover, Xi
L and Xi

U are the lower and upper bounds of i-th 

design variable, respectively. ρi is the density of i-th member of truss. 

 

2.7 Genetic algorithm 

In this study, optimization is conducted using the genetic algorithm as one of the most 

important subcategories of evolutionary algorithms. To optimize through genetic algorithm, 

first a specific number of random designs (solutions) are generated, then the relative fitness 

of all of them are assessed against predetermined criteria. The solutions are encoded as bit 

strings composed of 0’s and 1’s (binary encoding). The resulting strings are called 

chromosomes. Next, chromosomes of higher relative fitness are selected and are put in a set 

called the “mating pool”. Afterwards, by imposing a number of operations such as 

crossover, mutation, etc. on the selected chromosomes, the next generation is created. It is 

tried to generate the chromosomes of new generation so that their mean fitness would 

increase compared to the mean fitness values of previous generations. This process is 
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repeated until the optimal solution of the problem is obtained based on predetermined 

convergence criterion (or criteria). In order to select the fit chromosomes, a combination of 

the tournament selection method [27] and the method presented in reference [28] is used. In 

this method, the mating pool contains a collection of chromosomes including some of the 

fittest chromosomes of the current generation and some other manipulated chromosomes. 

Manipulated chromosomes are those created by making slight changes to the two bits on the 

right side of the substrings of the best chromosome of the current generation. Changes in the 

substrings of this chromosome are made separately. The elitism strategy is also used, which 

makes the genetic algorithm introduce some of the fittest chromosomes of the current 

generation directly to the next generation [29]. Experience has shown that the elitism 

strategy improves the performance of GA considerably [30]. Through this strategy, it is 

possible to ensure that the fittest chromosome of each generation is not less fit than the 

fittest chromosome of former generations. The elitism strategy is always employed along 

with other selection methods. For the crossover operations, the two-point crossover method 

is used. Moreover, for the mutation operation, a decreasing mutation rate is used. The 

highest value of the decreasing mutation rate belongs to the first generation of GA. With an 

increase in the number of generations, the decreasing mutation rate declines linearly. As a 

result of the decreasing mutation rate, mutation occurs with a higher probability in the first 

generations and, consequently, the search space expands. In the next generations, the 

mutation probability declines and the search focuses on more fit solutions. 

 

2.8 Features of the code written for optimization of truss structures 

The code written for optimization of truss structures is called RBO-S&GTS, which stands 

for “Reliability-Based Optimization of Size and Geometry of Truss Structures.” RBO-

S&GTS program can be divided into three main subprograms of 1) analysis subprogram, 2) 

genetic algorithm subprogram, and 3) reliability analysis subprogram. As follows, solutions 

are proposed to reduce the execution time of the optimization process and to increase the 

precision of reliability analysis results. 

 

2.8.1 The genetic algorithm subprogram solution 

In the genetic algorithm subprogram, a simple solution is proposed to reduce the execution 

time of the subprogram. In this solution, if a duplicate chromosome is produced during the 

optimization operation, the program does not reassess the design corresponding to the 

duplicate chromosome. Instead, it directly uses the results saved for the duplicate 

chromosome. To apply the solution, non-duplicate chromosomes of all generations are 

stored in a set namely “set of non-duplicate chromosomes” ({SetCh}). A non-duplicate 

chromosome is one that is not generated during previous generations. For each chromosome, 

the values of penalty function and objective function are stored. From the second generation 

onward, if a chromosome similar to one of the chromosomes of the {SetCh} set is generated, 

it is not sent to the assessment phase. Rather, the results saved for the duplicate chromosome 

are used. Using the string comparison functions of Visual Basic 6.0 software, it is possible 

to compare the chromosome strings and identify the duplicates. 
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2.8.2 Reliability analysis subprogram solution (modified branch-and-bound method) 

The truss structures reliability analysis subprogram is written based on a modified branch-

and-bound method. To increase the accuracy of reliability analysis of truss structures and to 

reduce the time needed for reliability analysis, the modified branch-and-bound method is 

proposed as follows:  

Consider that at p-th stage of formation of failure paths (p ≥ 2) a total number of m new 

failure paths are branched out of a specific failure path such as r1 ⇾ r2 ⇾ ⋯ ⇾ rp−1 (Fig. 

1). The failure path branched out into the m new failure paths is called “main-branch failure 

path”, whereas the branched-out failure paths are called “subbranch failure paths”. The 

lengths of main-branch failure path and subbranch failure paths are p − 1 and p, 

respectively. 

 

 
Figure 1. Scheme of the main-branch failure path and its subbranch failure paths 

 

As mentioned earlier, the bound presented in Equation (9) is a non-ascending function of 

the failure path length. Therefore, each subbranch failure path is a subset of the main-branch 

failure path. In other words, 

 

P
fp(r1…rp−1rpi

)(U)
≤ Pfp(r1…rp−1)(U) (i = 1,2, … , m) (20) 

 

Consider an arbitrary probabilistic phenomenon. Assume that a specific number of 

distinctive events of the probabilistic phenomenon under consideration (e.g. k events) are 

subsets of another event called common event. In this state, it could be concluded that the 

union of these k events is definitely a subset of the common event. Similarly, it could be 

concluded that the union of the failure paths branched out of the main-branch failure path 

(i.e. the union of subbranch failure paths) is a subset of the main-branch failure path. In 

other words, the probability of union of subbranch failure paths should not ever exceed the 

probability of their main-branch failure path. That is to say, 

 

Pfp [⋃ M
rpi

(r1r2…rp−1)

(pi)
≤ 0

m

i=1
] ≤ Pfp(r1r2…rp−1)(U) (21) 

 

If Cornell’s method is used, the probability of union of subbranch failure paths is equal to 
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the sum of probabilities of subbranch failure paths. In other words, in Cornell’s bounds, the 

real statistical correlation between subbranch failure paths is not considered. Rather, the 

lower and upper Cornell’s bounds correspond to the complete statistical independence of 

subbranch failure paths and complete statistical correlation of subbranch failure paths, 

respectively. On the other hand, subbranch failure paths generally have a high level of 

statistical correlation. Therefore, it cannot be said with certainty that the sum of probabilities 

of subbranch failure paths is smaller than the main-branch failure path probability. As a 

result, during the implementation of the truss structures reliability analysis subprogram 

(especially for truss structures with high degrees of static indeterminacy), the sum of upper 

bounds of probabilities of subbranch failure paths may exceed the upper bound of the main-

branch failure path probability. If no solution is developed for these cases and the program 

continues in the same way as before, the estimate of the upper bound of failure probability 

of the total structure will be wrong and conservative. 

If the aforementioned state occur (i.e. where the sum of upper bounds of probabilities of 

subbranch failure paths exceeds the upper bound of the main-branch failure path 

probability), the modified branch-and-bound method causes RBO-S&GTS program to omit 

all subbranch failure paths from the set of candidate failure paths for branching operation 

and consider the main-branch failure path as one of the failure modes of the structure. In our 

reliability analysis, the failure probability of this failure mode is considered equal to the sum 

of probabilities of the discarded subbranch failure paths. As follows, RBO-S&GTS program 

goes to the next main-branch failure path and the branch-and-bound operation continues. 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Verification of the modified branch-and-bound method 

To investigate the efficiency and accuracy of the modified branch-and-bound method, 

results of reliability analysis of a statically indeterminate truss structure are examined and 

compared with the findings of other references. In addition, the data resulted from 

modification of the branch-and-bound method is examined and compared with non-modified 

condition. Consider the truss shown in Fig. 2 ( L1 = 121.9 cm, L2 = 91.44 cm ). Data 

relevant to dimensions of members are summarized in Table 1. The loads applied to the truss 

and the yield stresses of its members are assumed to be uncorrelated random variables with 

normal probability distributions (with mean values equal to 44.45 kN  and 276 MPa , 

respectively). Elasticity modulus of members is 206 GPa. Members’ behavior under tension 

and compression are assumed to be identical. Failure due to buckling of members is 

considered. Buckling stress is assumed to be a normal random variable with the following 

probability distribution parameters [31]: 

 

μCc
=

1

2
(Cy + CE +

W0

Rg

CE) {1 − √1 − (4CyCE) (Cy + CE +
W0

Rg

CE)2⁄ } (22) 
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CVCc
=

√(CVCy
Cy)2 + (CE Rg⁄ )2(CVW0

W0)2

(Cy + CE +
W0

Rg
CE) {1 − √1 − (4CyCE) (Cy + CE +

W0

Rg
CE)2⁄ }

 
(23) 

 

where, CE =
π2E

(l Rg⁄ )
2 is the Euler buckling stress. Moreover, W0, μCc

, Cy, Rg, E, and l stand 

for the initial deflection, mean value of buckling stress, yield stress, radius of gyration, 

elasticity modulus, and length of member, respectively. CVCc
, CVCy

, and CVW0
 denote the 

coefficients of variation of buckling stress, yield stress, and initial deflection, respectively 

(
W0

Rg
= CVW0

= 0.1). 

 
Figure 2. Statically indeterminate 16-bar truss 

 
Table 1: Data of dimensions of members of the 16-bar truss 

Member Cross-sectional area (cm2) Radius of gyration (cm)  

1 3.35 2.43 

2, 5 8.64 4.45 

3, 4, 14 5.76 3.03 

6 2.29 1.70 

7, 8, 10 4.03 2.43 

9 7.35 3.82 

11, 12, 15 1.58 1.36 

13, 16 2.29 2.14 

 

Reliability analysis results of the 16-bar truss are summarized in Table 2. Reliability 

analysis is carried out for two different conditions, A and B. Conditions A and B are related 

to the states in which the branch-and-bound method is modified and not modified, 

respectively. The data shown in Table 2 are obtained through RBO-S&GTS program. Table 
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3 shows the results reported by Murotsu et al. [32]. Comparing the results of conditions A 

and B shown in Table 2 reveals that the modified branch-and-bound method significantly 

decreases the time allocated to the reliability analyses. In addition, the modified branch-and-

bound method reduces the number of failure modes identified as dominant failure modes of 

the truss structure in all cases. A closer examination of table 2 shows that modification of 

the branch-and-bound method reduces the upper bound of failure probability of the structure 

in all cases. Comparing the results presented in Tables 2 and 3 reveals that, almost in all 

cases, the modified branch-and-bound method makes the upper bound of failure probability 

of the structure closer to the results reported by Murotsu et al. [32]. These comparisons 

confirm the accuracy and precision of RBO-S&GTS program and efficacy of the modified 

branch-and-bound method. It can be said that our reliability analysis results are more 

accurate than the results reported by Murotsu et al. [32]. Because our modified branch-and-

bound method incorporates statistical correlation of subbranch failure paths more accurately 

in reliability analysis calculations. 

 
Table 2: Results of the reliability analysis of the 16-bar truss (δ = 3) 

0.2 0.2 0.1 0.1 0.1 Coefficient of variation of loads 

0.1 0.05 0.1 0.05 0.02 
Coefficient of variation of yield 

stress of members 
When the truss is composed of ductile members. CooC  

1.03⨯10−2 4.69⨯10−3 8.65⨯10−4 1.22⨯10−7 4.17⨯10−8 Condition A 
Pup−s* 

4.02⨯10−2 6.50⨯10−3 2.72⨯10−3 1.71⨯10−7 4.19⨯10−8 Condition B 

20 10 12 7 2 Condition A 
N** 

423 77 323 27 3 Condition B 

0.125 0.0625 0.0625 0.0469 0.0313 Condition A 
Time (sec) 

0.8398 0.1875 0.6094 0.0781 0.0313 Condition B 

When the truss is composed of brittle members.   

2.62⨯10−2 8.29⨯10−3 4.99⨯10−3 2.17⨯10−5 8.65⨯10−8 Condition A 
Pup−s 

7.91⨯10−1 3.79⨯10−1 2.37⨯10−1 1.32⨯10−3 4.44⨯10−6 Condition B 

6 5 5 2 2 Condition A 
N 

486 322 305 179 175 Condition B 

0.0469 0.0313 0.0469 0.0313 0.0352 Condition A 
Time (sec) 

0.75 0.5195 0.4609 0.2773 0.3086 Condition B 

* The upper bound of the structure’s failure probability 

** Number of dominant failure modes 

 
Table 3: Results of the reliability analysis of the 16-bar truss (δ = 3) (Murotsu et al. [32]) 

0.2 0.2 0.1 0.1 0.1 Coefficient of variation of loads 

0.1 0.05 0.1 0.05 0.02 
Coefficient of variation of yield 

stress of members 
When the truss is composed of ductile members.  

6.87⨯10−3 4.59⨯10−3 8.88⨯10−4 3.02⨯10−7 6.47⨯10−8 Pup−s 

155 11 58 6 11 N 

When the truss is composed of brittle members.  
2.18⨯10−2 6.34⨯10−3 3.90⨯10−3 3.87⨯10−6 6.51⨯10−8 Pup−s 

18 5 12 3 2 N 
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3.2 Numerical optimization examples 

To describe our proposed reliability-based optimization approach, we use RBO-S&GTS 

program to optimize two truss structures. Design variables are discrete and structures are 

composed of ductile members. The loads applied to structures and the yield stresses of their 

members are assumed to be uncorrelated random variables with normal probability 

distributions. The members’ behavior under compression and tension are assumed to be the 

same. In both examples, failure due to buckling of members is not included. The upper 

bound of failure probability of structural system is considered as problem constraint and the 

total mass of truss structure as objective function. In each example, convergence history of 

the structure’s total mass is shown. 

 

3.2.1 Example 1: A 25-bar statically indeterminate truss 

In the first example, size optimization of a statically indeterminate 25-bar truss shown in 

Fig. 3 is performed. Cross-sectional areas of members are optimized to achieve minimum 

mass truss structure subject to system reliability constraint. The modulus of elasticity is 

210 GPa, and the material density is 2700 kg m3⁄ . The mean and coefficient of variation of 

the yield stress of members are 27.6 kN cm2⁄  and 0.05, respectively. Coordinates of the 

truss nodes, loading condition of the truss, and parameters of probability distribution of the 

loads applied to the truss are summarized in Tables 4, 5 and 6, respectively. The total 

number of size design variables is 13. The set of available cross-sections for size design 

variables ({S}) is: S = {(1 + 0.08 i);  i = 0, 1, … ,127} cm2 

 

 
Figure 3. Statically indeterminate 25-bar truss 
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Table 4: Coordinates of the truss nodes (25-bar truss) 

Number of node x (cm) y (cm) z (cm) 

1 0 95.25 508 

2 0 -95.25 508 

3 95.25 95.25 254 

4 95.25 -95.25 254 

5 -95.25 -95.25 254 

6 -95.25 95.25 254 

7 254 -254 0 

8 -254 -254 0 

9 254 254 0 

10 -254 254 0 

 
Table 5: Data of the loading condition (25-bar truss) 

Number of node X Y Z 

1 L1 L1 −L2 

2 −L1 −L1 −L2 
3 L1 L1 0 

5 −L1 −L1 0 

 
Table 6: Parameters of the probability distributions of loads (25-bar truss) 

Load Mean value (kN) Coefficient of variation 

L1 88.9 0.2 

L2 22.6 0.2 

 

Table 7 shows the optimization results of 25-bar truss along with the results achieved by 

other researchers. Although Kalatjari and Mansoorian [21] also optimized the truss structure 

shown in Fig. 3 against system reliability constraint, but they used a loading condition 

different from our study. Therefore, we can not compare our optimization results with theirs. 

According to Table 7, RBO-S&GTS program (present research) offered better results 

compared to other researches. The convergence history of optimization of 25-bar truss is 

shown in Fig. 4. A brief examination of Fig. 4 reveals that the convergence history has a 

non-ascending course. The non-ascending course of convergence history could be attributed 

to the use of the elitism strategy in genetic algorithm. 

 
Table 8: Comparison of the optimization results of the 25-bar truss 

Design variable 
Present 

research 

Thoft-Christensen and Murotsu 

[11] (Identical failure probability 

for members) 

Togan and Daloglu [33] 

(Continuous design 

variables) 

Togan and Daloglu 

[33] (Discrete design 

variables) 

A1 (cm2) 4.68 4.36 4.387 6.90 

A2 = A5 (cm2) 5 4.56 4.588 5.15 

A3 = A4 (cm2) 7 7.47 7.450 6.90 

A6 = A9 (cm2) 4.6 2.39 4.376 5.68 
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A7 = A8 (cm2) 7.24 7.52 7.496 9.54 

A10 = A11 (cm2) 1.72 1.51 2.204 6.90 

A12 = A13 (cm2) 1.88 1.77 1.778 3.18 

A14 = A17 (cm2) 4.6 4.88 4.600 3.18 

A15 = A16 (cm2) 2.12 1.89 2.179 4.31 

A18 = A21 (cm2) 1.72 1.78 1.810 2.79 

A19 = A20 (cm2) 2.84 2.63 2.595 2.06 

A22 = A25 (cm2) 4.76 4.89 4.933 6.90 

A23 = A24 (cm2) 7.72 7.66 7.483 9.54 

Total mass (kg) 95.806 97.8 95.81 118.7 

Pup−s 9.93⨯10−6 10−5 10−5 10−5 

Pfpmax

System
 10−5 10−5 10−5 10−5 

 

 
Figure 4. Convergence history of the 25-bar truss 

 

3.2.2 Example 2: A 18-bar statically determinate truss 

In the second example, simultaneous size and geometry optimization of a statically 

determinate 18-bar truss shown in Fig. 5 is carried out. The material density is 

2768 kg m3⁄ , and the modulus of elasticity is 68.9 GPa . The mean and coefficient of 

variation of the yield stress of structural members are equal to 13.789 kN cm2⁄  and 0.05. 

Also, the mean and coefficient of variation of loads applied to the truss are 88.9 kN and 0.1, 

respectively. The set of available cross-sections for size design variables ({S}) is: 
S = {(2 + 0.32 i) ⨯ 2.542;  i = 0, 1, … ,127} cm2 

 

 
Figure 5. Statically determinate 18-bar truss 
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The upper and lower bounds of geometry design variables are presented in Table 8. The 

optimization results of 18-bar truss structure are presented in Table 9. Moreover, Fig. 6 

shows the convergence history of 18-bar truss. According to Fig. 6, RBO-S&GTS program 

reduces the structure’s total mass from 5250 kg to 2300.4 kg in a non-ascending course 

through two hundred generations. The convergence history shows that the convergence rate 

of genetic algorithm is very high in the first optimization generations (up to the 20th 

generation); consequently, the structure’s total mass decreases rapidly in the above-

mentioned generations. From the 100th generation onward, no change occurs in the optimal 

design of the structure. Fig. 7 shows the geometry of the structure’s final design.  

 
Table 8: Upper and lower bounds of geometry design variables (18-bar truss) 

Design variable Lower bound (cm) Upper bound (cm)  

x3 1968.5 3110.9 

x5 1333.5 2475.9 

x7 698.5 1840.9 

x9 63.5 1205.9 

y3, y5, y7, y9 -571.5 621.9 

 
Table 9: Optimization results of the 18-bar truss 

Geometry design variable (cm) Size design variable (cm2) 

x3 2258.68 
A1 = A4 = A8 = A12 = A16 91.35 

x5 1619.88 

x7 1019.93 
A2 = A6 = A10 = A14 = A18 122.32 

x9 644.75 

y3 472.14 
A3 = A7 = A11 = A15 21.16 

y5 355.14 

y7 181.98 
A5 = A9 = A13 = A17 45.94 

y9 60.3 

Total mass (kg) 2300.4 

Pup−s 9.99⨯10−6 

Pfpmax

System
 10−5 

 

 
Figure 6. Convergence history of the 18-bar truss 
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Figure 7. Geometry of the optimum design of the 18-bar truss 

 
 

4. CONCLUSION 
 

In this study, a computer program, RBO-S&GTS, is developed for reliability-based 

optimization of size and geometry of truss structures. A logical framework is introduced to 

solve simultaneous size and geometry optimization problems of truss structures subjected to 

system reliability constraint. Results of the optimized examples indicate that efficiency of 

the developed program. In addition, a modified branch-and-bound method is proposed to 

perform the structural system reliability analysis of the truss structures with sufficient 

accuracy. Reliability analysis results indicate that the modified branch-and-bound method 

makes it possible to obtain a satisfactory system reliability analysis of the truss structures. 

The modified branch-and-bound method has the following advantages: 

 It reduces the time required for reliability analysis of truss structures significantly, thus 

makes it suitable for optimization.   

 It decreases the number of failure modes identified as dominant failure modes of truss 

structures. 

 It makes the upper bound of failure probability of truss structures closer to the exact 

values, so increase the accuracy of reliability analysis estimations and prevents from 

overestimating failure probability of truss structures. 

 Although it is tried to perform structural system reliability analysis of truss structures as 

accurate as possible, occasionally its time-consuming complicated stochastic nature forced 

us to use simplifying approximate methods. Therefore, two suggestions can be suggested for 

further research: (a) More failure stages should be used to estimate the failure probabilities 

of failure modes, because using only two failure stages may in some cases lead to very 

conservative estimate of failure probabilities. (b) To employ methods taking into account the 

real statistical correlation between failure modes, because correlation between failure modes 

is neglected in Cornell’s method. 
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