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ABSTRACT 
 

The flow in sewers is a complete three phase flow (air, water and sediment). The mechanism 

of sediment transport in sewers is very important. In other words, the passing flow must able 

to wash deposited sediments and the design should be done in an economic and optimized 

way. In this study, the sediment transport process in sewers is simulated using a hybrid 

model. In other words, using the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the 

Particle Swarm Optimization (PSO) algorithm a hybrid algorithm (ANFIS-PSO) is 

developed for predicting the Froude number of three phase flows. This inference system is a 

set of if-then rules which is able to approximate non-linear functions. In this model, PSO is 

employed for increasing the ANFIS efficiency by adjusting membership functions as well as 

minimizing error values. In fact, the PSO algorithm is considered as an evolutionary 

computational method for optimizing the process continues and discontinues decision 

making functions. Additionally, PSO is considered as a population-based search method 

where each potential solution, known as a swarm, represents a particle of a population. In 

this approach, the particle position is changed continuously in a multidimensional search 

space, until reaching the optimal response and or computational limitations. At first, 127 

ANFIS-PSO models are defined using parameters affecting the Froude number. Then, by 

analyzing the ANFIS-PSO model results, the superior model is presented. For the superior 

model, the Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and 

the determination coefficient (R2) were calculated equal to 5.929, 0.324 and 0.975, 

respectively. 
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1. INTRODUCTION 
 

Due to the importance of this topic and the mechanism of sediment transport in sewers, there 

are many experimental, analytical and numerical studies carried out on it. Novak and Nalluri 

[1] conducted a study to investigate the critical threshold speed and concluded that there is a 

good fitness because of using the dimensionless parameter Dh/y for demonstrating the bed 

shape influence. They also concluded that the required slope for sewers smaller than 500mm 

is steeper than bigger sewers. Macke [2] conducted three sedimentation experiments using 

three smooth pipes (diameters of 192mm, 290mm and 445mm) with full flow by means of 

sands with average diameters varying 0.16mm to 0.37mm moving as suspended loads. He 

provided the results of the experiment as a relationship. In addition, May et al. [3] carried 

out a number of experiments with shallow sedimentation depths in a pipe in which sediment 

transport was taking place in the form of bed loads. The results obtained from their study 

indicated that in the presence of limited sedimentation depths, more sediment transport 

capacity is expected. Nalluri and Kithsiri [4] proposed a formula for calculating the friction 

coefficient (λs) using the combination of results of other studies conducted on rectangular 

channels with rough beds for transporting non-cohesive sediments as bed load in without 

sedimentation conditions and included wider domain of data. Later, Ota and Nalluri [5] by 

conducted an analytical study to examine the sediment transport occurring in circular 

channels. By analyzing the results of the study, they showed that sediments with bigger 

dimensions require greater discharge for transporting. They calculated sediment 

concentration changes in terms of ppm versus parameters such as channel sediments, 

channel diameter and standard deviation. Sutter et al. [6] studies the relationships provided 

by other researchers in the field of the sediment transport criterion in sedimentation limit 

conditions and indicated that these relationships have a significant error in predicting initial 

erosion and rate of volume fractional for non-uniform particles of sewage sediments. They 

also stated that these relationships yield better results for finer sediments than graded 

materials. They evaluated variations of bed shear stress versus bed load and demonstrated 

that by increasing bed load the amount of bed stress increases. In recent decades, various 

neural network and artificial intelligence techniques have been used by many researchers in 

predicting and pattern cognition of complex, difficult and non-linear phenomena of different 

sciences. In addition, recently neuro-fuzzy models and various neural network algorithms 

have been applied for solving various problems of hydrology and hydraulics. Suspended 

sediment load was predicted by Kisi [7]. Using ANN and Neuro fuzzy models, Kisi modeled 

the sediment growth curve and the multiple linear regressions of observational values. 

Azamathulla et al. [8] using the Gene Expression Programming (GEP) and ANFIS, studied 

suspended sediment in natural rivers. By analyzing the results of their own study, they 

showed that the GEP model predicts observational values with higher accuracy. 

Subsequently, Rajaee [9] modeled values of suspended sediment load using the wavelet and 

Neuro-fuzzy models. They showed that the introduced models are very efficient in modeling 

of sediments. Most of the relationships provided for predicting sediment transport by means 

of the self-washing concept are regression relationships. The basic issue of these methods is 
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the lack of good performance in different situations than what is used for estimating the 

relationship. In this study, due to the good performance of based on artificial intelligence 

methods in various engineering sciences, the minimum velocity required for preventing from 

sedimentation is predicted using a new hybrid method based on the ANFIS and PSO 

(ANFIS-PSO). To this end, the parameters affecting the Froude number are identified and 

by conducting a sensitivity analysis all possible combinations are determined and eventually 

the superior model is introduced. 

 

 

2. METHODS AND MATERIALS 
 

2.1 Adaptive neuro-fuzzy inference system (ANFIS) 

ANFIS is a fuzzy inference model in the framework of multi-layer fuzzy networks developed 

by Jang [10]. The structure of fuzzy networks is created in two conditions including Mamdani 

and Sugeno. If conditional rules constructing the fuzzy network are as fuzzy sentences in 

antecedent and consequent, the Mamdani network is created. If this rule is as a function of 

inputs or a constant function, the Sugeno-fuzzy network is formed. In the situation where 

consequent parameters are fixed in the Sugeno network, the Sugeno-fuzzy network is zero 

degree and if they are as a function of n degree, the Sugeno network. Neuro-fuzzy systems 

have a more flexible structure than other artificial intelligence networks and are able to create 

connection between input and output in non-linear complex systems in a simpler way. These 

systems employ the learning ability of the neural network for correcting membership function 

coefficients which are most important members of fuzzy inference systems. 

 

1111111 ryqxpfByAx:R ++=THENisandisIF  (1) 

2222221 ryqxpfByAx:R ++=THENisandisIF  (2) 

 

In these equations, A1, A2, B1, B2 are membership functions of the inputs x and y and the 

coefficients {p1, p2, q1, q2, r1, r2} are output function parameters. Five different layers of 

ANFIS are defined as follows: 

First layer: each node in this layer represents the membership degree of input parameters. 

 

( ) 2,1ixAμO i1,i ==  (3) 

( ) 4,3ixBμO 2i1,i ==
 (4) 

 

In these equations, x and y are inputs of the node i and Ai and Bi-2 are the fuzzy set related 

to this node. Also, O1,I represents the membership degree of the fuzzy set. Membership 

functions can be in different forms, but due to the good performance of the Guassian 

membership function in different hydraulic problems, this function is used as follows: 
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where, σi and ci are the width and the center of the Guassian membership function known as 

premise parameters. 

Second layer: each node in this layer is denoted by the label П. In this layer, each node 

calculates the activity degree of a rule.  

 

( ) ( ) 2,1iyμxμwO
ii BAi2,i =×==  (6) 

 

where,
 iA and 

iB are the membership functions x and y, respectively.  

Third layer: Nodes of this layer are denoted by the label N. In this layer, the ratio of the 

activity degree of the rule ith to the sum of all rule activity degrees (firing strength) is 

calculated as follows:  

 

( ) 2,1iww/wwO 21ii3,i =+==  (7) 

 

Fourth layer: each node is this layer is as a square node which its output is computed as 

the following function: 

 

( )
iiiiii4,i ryqxpwfwO ++==  (8) 

 

Fifth layer: Each node in this layer is as a circular node. This layer presents the sum of 

input signals as the total output as follows: 
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2.2 Particle swarm optimization (PSO) 

The PSO is a meta-heuristic approach introduced by Kennedy and Eberhart [11] inspired 

from the social behavior of birds. The PSO provides the possibility of local and global 

search and fast convergence to global optimization by adjusting simple parameters. The 

main advantage of this method over other minimization strategies is that abundant amount of 

swarming particles makes this method stable against the local minimizing problem (Shi and 

Eberhart [12], EL-Zonkoly [13]). In this algorithm, first, an initial response set is created so 

that each particle is assumed as a possible solution. Then, for finding the optimized response 

in the possible response space, the response search is conducted by applying generations. 

Each particle is defined as two-dimensional with two situation and velocity values and in 

each step of particle movement the best response in terms of fitness is determined for all 

particles. In other words, the optimized obtained from each step and the optimized obtained 

from all steps are known as pbest and gbest, respectively. Furthermore, all particles obtained 

based on pbest and gbest, update their situations to achieve the global optimized solution. If 

the coordinates x and y related to a N member set of particles are considered as xi and yi and 

its velocity along the axes x and y as vxi and vyi, velocity and situation of each particle in each 

iteration are updated by following relationships: 
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where, t=1,2,…,Imax-1, i=1,2,…,N represents the number of iteration, Imax is the maximum 

iteration, rand() produces a random value on the domain [0 1), c1 and c2 are two positive 

constant values entitled "cognition learning rate" and "social learning rate, pbestx(t) and 

pbesty(t) are the best responses obtained in the tth iteration in the direction of the axes x and y 

and w(t) is inertia weight calculated by the following relationship:  
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minmax
max

I

tww
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  (12) 

 

where, wmin and wmax are the minimum and maximum inertia weights, respectively. 

 

2.3 ANFIS-PSO hybrid method 

In this study, the PSO approach is employed for determining the ANFIS membership 

functions. The main advantage of this method is reducing computational costs for a given 

topology. In this section, the algorithm presented in this study for providing the ANFIS-PSO 

hybrid method is described step by step as follows: 

At first, using a matrix comprising data related to sediment transport including 2 to 7 

input columns and one column as the output or the objective, data are arranged in order to 

estimate the minimum velocity by ANFIS. Using arranged data, the ANFIS training is 

started. The training procedure allows this system to adjust defined parameters as the model 

input or output. The training process is terminated once criteria defined for stopping the 

program such as reaching to the minimum specified for the objective function or finishing 

the number of specified iterations are satisfied. After determination of training data, the type 

of membership functions and the fuzzy inference system are optimized by adapting the 

membership function parameters. In this study, PSO is used for determination of parameters 

depending on membership functions in the fuzzy inference system. Then, a vector with N 

dimensions, where N is the number of membership functions is defined. This vector includes 

membership function parameters which their values are optimized by PSO. The fitness 

function defined in this study is as the Mean Square Error (MSE) function. Next, parameters 

related to the PSO algorithm are defined which their values obtained by trial and error as 

listed in Table 1. At first, parameters are randomly determined, then determined values are 

updated using the PSO algorithm. In each step of iteration, one of the membership function 

parameters is updated. For example, in the first iteration the parameter ci and in the next 

iteration, σi is updated and this procedure continues for all parameters after updating of all 

parameters once, the first parameter is updated for the second time in the next iteration. 

Therefore, all parameters are updated as iteration by iteration in order to reaching to the 

optimal point. The application of PSO in order to optimize the membership function 

parameters includes: 1) In this step a situation and initial velocity are determined with the 
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same size for all particles. 2) Determination of the pbest and gbest values. If the obtained 

value is better than the current value of the particle situation, pbest is updated and its value is 

replaced by new value. Furthermore, if the best value of particle single values is better than 

the gbest total value, the situation of best particles is updated as well. 3) Examination of 

each particle fitness (pbest) and saving of particles with the best fitness value (gbest). 4) 

Correction of velocities in terms of updated values of gbest and pbest. 5) Updating of 

particles. 6) This process continues until finishing the number of iterations. Now, ANFIS 

outputs which their parameters have been obtained by PSO are extracted. Finally, outputs 

related to the prediction of the ANFIS-PSO hybrid method are determined.  

 

2.4 Experimental model 

In this study, the experimental measurements obtained by Ab. Ghani [14], Ota et al. [5] and 

Vongvisessomjai et al. [15] are employed for validating the numerical model. In Table 2, the 

range of the experimental data used in this paper is shown. In this Table, Fr is the flow 

Froude number, Cv is the volumetric concentration of particles, d/R is the ratio of the 

average diameter of sediment particles to the hydraulic radius, D2/A is the ratio of the pipe 

(channel) diameter to the flow cross-section, R/D is the ratio of the hydraulic radius to the 

pipe diameter, Dgr is the dimensionless parameter number (d50(g(s-1)/ν2)1/3), d/D is the ratio 

of the average diameter of particles to the pipe diameter and
sλ is the general resistance 

coefficient of sediment load (sedimentary flow resistance coefficient). 

 
Table 1: Optimized parameters of PSO model 

value parameters 

500 Number of iterations 

300 Number of particles 

0.9 Initial inertia weight 

0.3 Final inertia weight 

1.65 Cognition acceleration 

1.65 Social acceleration 

 
Table 2: Range of experimental values used in numerical simulation 

Parameter minimum maximum mean variance Standard deviation 

discharge (L/s) 4.678E-01 9.522E+01 1.809E+01 2.710E+02 1.646E+01 

Pipe diameter(mm) 1.000E+02 4.500E+02 2.748E+02 7.955E+03 8.919E+01 

Flow depth(m) 2.000E-02 2.291E-01 1.103E-01 2.980E-03 5.459E-02 

Hydraulic radius (m) 1.200E-02 1.138E-01 5.725E-02 6.326E-04 2.515E-02 

Cross-section(m2) 1.401E-03 8.136E-02 2.523E-02 4.147E-04 2.036E-02 

velocity (m/s) 2.370E-01 1.216E+00 6.675E-01 3.902E-02 1.975E-01 

Mean diameter of particles 

(mm) 
2.000E-01 8.300E+00 3.035E+00 6.209E+00 2.492E+00 

Channel slope 5.070E-04 6.000E-03 3.017E-03 2.564E-06 1.601E-03 

general resistance of sediment 

load 
1.290E-02 5.320E-02 2.697E-02 8.826E-05 9.395E-03 
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Volumetric concentration of 

sediments 
1.000E+00 1.280E+03 1.907E+02 6.997E+04 2.645E+02 

Dimensionless particle number 5.059E+00 2.099E+02 7.677E+01 3.972E+03 6.302E+01 

Froude number 1.519E+00 1.126E+01 4.029E+00 3.865E+00 1.966E+00 

 
2.5 Combinations of ANFIS-PSO models 

In this section, the combinations of the numerical model input parameters are evaluated. In 

other words, seven input parameters including Cv, d/R, D2/A, R/D, Dgr, d/D and with 

different combinations are used for modeling the parameter Fr. It should be noted that 127 

different models are developed by combining the introduced parameters. The combinations 

of the mentioned parameters are shown in Fig. 1. 

 

 
Figure 1. Combination of ANFIS-PSO models 

 
2.6 Criteria for studying numerical model accuracy 

In the current study, the root mean square error (RMSE), the mean absolute percent error 

(MAPE), the scatter index (SI and the determination coefficient (R2) are used as follows: 
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 (13) 

 
(14) 

 

(15) 

 

(16) 

 

where (𝑅)𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  , (𝑅)(Pr 𝑒𝑑𝑖𝑐𝑡𝑒𝑑 )𝑖 , (𝑅 )𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  and 𝑛 are experimental values, results 

predicted by the numerical model, the average of experimental values and the number of 

experimental measurements. 

 

 

3. RESULTS AND DISCUSSION 
 

3.1 Superior models 

In the following, the results of the numerical models are investigated. Seven models with 

one input parameter predict values of the flow Froude number. Among all models with one 

input parameter, model 6 estimates experimental values with higher accuracy in both 

training and test cases. The values of R2 for Model 6 in both training and test modes are 

calculated 0.705 and 0.724, respectively. Furthermore, for this model, the values of SI and 

RMSE in the test mode are 0.271 and 1.068, respectively. It should be noted that this model 

is a function of the ratio of the average diameter of particles to the pipe diameter (d/D). In 

addition, 21 models are produced by combining two input parameters (model8 to model28). 

Among all models simulating values of the Froude number with a combination of two input 

parameters, model 8 has the highest accuracy. This model estimates values of the Froude 

number in terms of the volumetric concentration of sediments and the ratio of the average 

diameter of sediment particles to the hydraulic radius. The values of RMSE, MAPE and SI 

for this model in the training mode are obtained 0.289, 5.542 and 0.070, respectively. 

Furthermore, the values of RMSE and R2 for the mentioned mode are calculated 0.324 and 

0.975, respectively. In the following, the results of the models with three input parameters 

are evaluated. In this case, 35 different models are defined for predicting the Froude number. 

In other words, models 29 to 63 mode values of the Froude number with a combination of 

three input parameters. Based on the analysis of the numerical model results, model 33 has 

the highest correlation and the lowest accuracy among the models with three input 

parameter. This model simulates objective function values in terms of Cv, d/R and . In 

both training and testing modes, the RMSE value is 0.340 and 0.329, respectively. In 

addition, 35 different models with a combination of four input parameters are defined. 

Models 64 to 98 are produced with a combination of four input parameters. Among the 
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mentioned models, model 69 has the highest accuracy. Based on the modeling results, this 

model simulates Froude number values with reasonable accuracy. For example, the values of 

RMSE and SI for the training mode of model 69 are calculated 0.377 and 0.092, 

respectively. In addition, according to the combinations of the input parameters, model 69 

estimates values of the Froude number in terms of Cv, d/R, R/D and d/D. It is concluded that 

21 distinctive models with a combination of five input parameters are defined for modeling 

the Froude number of a three-phase flow. In other words, models 99 to 119 are produced by 

four input parameters. According to the modeling results, among models 99 to 119, model 

109 has the highest accuracy. For this model, in the training mode, the values of RMSE, 

MAPE and R2 are approximated 0.425, 9.773 and 0.951, respectively. Furthermore, the SI 

value in the training mode for this model is almost equal to 0.103. In addition, the values of 

MAPE, SI and R2 of this model in the test mode are calculated 11.231, 0.142 and 0.962, 

respectively. In the next section, the accuracy of the ANFIS-PSO model produced by 

combining six input parameters is evaluated. In this regard, seven different models are 

developed by combining six input parameters. In other words, models 120 to 126 predict 

Froude number values with a combination of six input parameters. By analyzing the 

mentioned model results, the most accurate model is model 123. For this model, the R2 

values for both training and testing modes are obtained 0.924 and 0.902, respectively. In 

contrast, the values of SI and R2 in the test mode of model 123 are calculated 0.162 and 

0.902, respectively. In the next section, a model estimating Froude number values of the 

three-phase flow with a combination of seven input parameters is evaluated. In other words, 

this model simulates Froude number values in terms of the volumetric concentration of 

particles, the ratio of the average diameter of sediment particles to the hydraulic radius, the 

ratio of the pipe (channel) diameter to the flow cross-section, the ratio of the hydraulic 

radius to the pipe diameter, the dimensionless particle number, the ratio of the average 

diameter of particles to the pipe diameter and the general resistance coefficient of sediment 

load. According to the modeling results, the SI value in the training and testing modes of 

model 127 are calculated 0.121 and 0.154, respectively. Nonetheless, the values of MAPE 

and R2 for the test mode of model 127 are calculated 13.863 and 0.911, respectively. Next, 

the error distribution of the superior models including models 6, 8, 33, 69, 109, 123 and 127 

which have more accuracy among the models with 1, 2, 3, 4, 5 ,6 and 7 input parameters is 

shown. Furthermore, the results of the error distribution of the mentioned models in the 

training and testing modes are shown. For example, in the training mode of ANFIS-PSO 

models, model 6 predicts about 50% of the numerical results with an error equal to 16%. 

Nonetheless, model 8 estimates about 91% of the Froude number values with an error less 

than 12%, while model 33 predicts about 73% of its results with an error less than 8%. 

According to the modeling results, in the training mode of model 69, predicts about 69% of 

the Froude number values with an error less than 8%. According to the modeling results, in 

the training mode of model 69, the Froude number values have allocated an error less than 

10% to themselves. For model 109, about 38% of the Froude number values have an error 

less than 6%. Furthermore, in the training mode of model 127 predicts 82% of the numerical 

results with an error less than 18%. In the following, the error distribution of the test mode 

of the numerical models is studied. For example, for model 6, the results of 29% of the 

numerical models have an error less than 8%. However, for model 8, about 88% of the 

Froude number results simulated by this model have an error less than 12%. In addition, 
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about 94% of the results simulated by model 33 have an error less than 14%. For model 69, 

about 23% of the results estimated by the mentioned model have an error less than 4%. In 

other words, according to the error distribution results, for model 109 about 56% of the 

simulated values have an error less than 10%. Also, for model 123, about 72% of the 

simulated values of the Froude number have an error less than 16%. Furthermore, 71% of 

the numerical values simulated by model 127 have an error less than 18%. 

 

 
Figure 2. Graphs of superior models error distribution in (a) training mode (b) testing mode 

 

According to the analysis of the results of 127 ANFIS-PSO models, model 8 is 

introduced as the superior model. This model predicts Froude number values of the 

three-phase flow in terms of Cv (volumetric concentration of particles) and d/R (the ratio 

of the average diameter of sediment particles to the hydraulic radius). In Table 8, the 

results of the statistical indices for model 8 are listed. In addition, in Fig. 3, the 

comparison of the predicted Froude number values by model 8 is shown in both training 

and test modes. 

 
Table 3: Statistical indices values for superior model 8 

Mode R2 MAPE RMSE SI 

Train 0.978 5.542 0.289 0.070 

Test 0.975 5.929 0.324 0.082 
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Figure 3. Graph of scatter indices for training and test modes of model 8 

 

The sensitivity of model 8 was examined based on the discrepancy ratio (DR) 

parameter. Discrepancy ratio is the ratio of predicted to experimental results as follows: 

 

( )

( )Observed

edictedPr

R

R
DR =

 

(17) 

 

The discrepancy ratio changes versus Froude number values are shown for the 

superior model in Fig. 4. An average discrepancy ratio (DR(ave)) close to 1 represents the 

proximity between predicted and experimental values. For Model 8, the DR(ave) values 

for training and testing are 0.944 and 1.015, respectively. 

 

 
Figure 4. Discrepancy ratio (DR) values versus Froude number for Model 8 

 

 

4. CONCLUSIONS 
 

In general, circular channels are widely used in urban sewage disposal systems. 

Furthermore, the flow within this type of channels is a three-phase flow composed of water, 

air and sediments. However, many studies have been conducted on the flow within sewage 

channels by different researchers. In this study, a hybrid approach was introduced for 

studying the three-phase flow characteristics. In the following, the most important results of 
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the current study are provided. For models with two input parameters, the model estimated 

the Froude number in terms of Cv and d/R. For this model in the training mode, the values of 

RMSE, MAPE and SI were calculated 0.289, 5.542 and 0.070, respectively. This model 

predicted the objective function values in terms of Cv, d/R and s . The RMSE value for this 

model in the training mode was equal to 0.340. 
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