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ABSTRACT 
 

In this paper, a procedure has been presented to develop fragility curves of structures 

equipped with optimal variable damping or stiffness semi-active tuned mass dampers 

(SATMDs). To determine proper variable damping or stiffness of semi-active devices in 

each time step, instantaneous optimal control algorithm with clipped control concept has 

been used. Optimal SATMDs have been designed based on minimization of maximum inter-

story drift of nonlinear structure which genetic algorithm(GA) has been used to solve the 

optimization problem. For numerical analysis, a nonlinear eight-story shear building with 

bilinear hysteresis material behavior has been used. Fragility curves for the structure 

equipped with optimal variable damping and stiffness SATMDs have been developed for 

different performance levels and compared with that of uncontrolled structure as well as 

structure controlled using passive TMD. Numerical analysis has shown that for most range 

of intensity measure optimal SATMDs have been effective in enhancement of the seismic 

fragility of the nonlinear structures which the improvement has been more than passive 

TMDs. Also, it has been found that, although variable stiffness SATMD shows to be more 

reliable in lower mass ratios, however in higher mass ratios variable stiffness and damping 

SATMDs performs similarly to improve reliability of the structure. 
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1. INTRODUCTION 
 

Tuned Mass Damper (TMD) is a passive structural control mechanism that absorbs seismic 

energy by oscillating under dynamic loads such as earthquakes and winds. Effectiveness of 
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TMD in structural response reduction has led to pay much attention during past years and 

even implementation in many actual buildings [1-3]. TMD consists of a mass, spring and 

damper which is usually installed at the top floor of buildings. Due to the fact that TMD 

should be tuned to a fixed frequency, it may have no benefits during some earthquakes 

which induce the structure to vibrate in other frequency bands. Furthermore, under severe 

earthquakes, the structure undergoes nonlinear behavior which may detune the TMD and 

consequently will lead to inefficiency. Recently, the semi-active tuned mass damper 

(SATMD) with variable damping [4] or variable stiffness [5] has been proposed to 

overcome the disadvantageous of conventional TMDs. Many studies have focused on the 

performance assessment and optimal design of SATMDs for linear and nonlinear structures 

in a deterministic manner [6]. 

However, loading uncertainties caused by random nature of earthquakes could heavily 

affect the efficiency of SATMDs. Thus, the uncertainties in applied excitation should be 

considered in assessing the performance of SATMDs in a probabilistic framework. A 

systematic way to probabilistic analysis and reliability assessment of structures dealing with 

randomness of the input excitation is development of fragility curves. Fragility curves 

represent the conditional probability of being in or exceeding some performance limit states 

capacity over prescribed intensity measure. Seismic fragility analysis was first used for 

safety assessment of nuclear power plants. In the following, it has extended especially for 

bridges and buildings [7].  

During past decade, many investigations have been done on developing fragility curves 

for structures equipped with control systems such as passive, active and semi-active 

mechanisms. Some researchers have developed fragility curves of structures equipped with 

passive control systems. Castaldo et al. [8] have developed fragility curves for a linear base 

isolated structure which structure and isolation parameters uncertainties have been 

considered by using uniform random numbers. Incremental Dynamic Analysis (IDA) has 

been conducted using generated artificial earthquakes and fragility has been calculated for 

each intensity measure. Wilbee et al. [9] have developed fragility curves for a nonlinear 

benchmark building equipped with MR dampers with constant voltage as passive devices. 

Wong and Harris [10] have developed fragility curves for a nonlinear frame equipped with 

TMD on the top floor. TMDs with different mass ratios have been considered and 

Incremental Dynamic Analysis has been performed on the structure by using artificial 

earthquake records. Results have illustrated that installing TMD has the ability to improve 

seismic fragility of the structure. In some researches, the effectiveness of active and semi-

active control systems in fragility improvement have been studied. Taylor [11] has 

developed fragility curves of nonlinear structures equipped with passive dampers and active 

controllers and studied the effect of placement of control systems. Barnawi [12], has 

evaluated fragility relationships of a nonlinear structure equipped with passive, active and 

semi-active mechanisms. Magnetorheological (MR) dampers have been used as passive and 

semi-active as well as ideal actuators as active control systems. In a similar study, Barnawi 

and Dyke [13], have investigated the performance of passive and semi-active MR dampers 

and ideal active controllers in mitigating the fragility of the nonlinear structures. Cha and 

Bai [14], have studied the effectiveness of semi-active MR dampers in fragility of high-rise 

structures. As a result of all studies, it has been found that semi-active control systems have 

the capability of reducing fragility of the structures more effective than passive and active 
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control systems. In previous studies, there is no study in the field of fragility curves of 

structures equipped with SATMDs. Due to the capabilities of SATMDs with variable 

damping and stiffness and their superiority than TMDs especially for control of nonlinear 

structures, in this paper, it has been focused on fragility curves of optimal SATMD 

controlled structures. 

In this paper, a procedure to develop fragility curves for structures equipped with variable 

damping and stiffness SATMDs has been presented. SATMDs with different mass ratios 

based on instantaneous optimal control and clipped control concept have been designed for a 

nonlinear shear building using an optimization technic. Fragility curves have been developed 

and performance of optimal variable damping and stiffness SATMDs in reducing seismic 

fragility have been investigated and compared with fragility curves of uncontrolled structure 

and equipped with passive TMDs. 

 

 

2. FRAGILITY CURVES 
 

Fragility represents the conditional probability of being in or exceeding some performance 

limit state capacities by structural demand responses over prescribed intensity measure. 

Mathematic formulation of fragility is defined as follows: 

 

 IMRRPF LS  (1) 

 

where R is the response of the structure such as displacement, drift, acceleration and etc., RLS 

is the limit state capacity related to the response R and IM is the intensity measure of the 

input excitation. The limit state function is defined as: 

 
RRg LS   (2) 

 

which means if g>0, structural performance is acceptable and the structure is safe. Else, g≤0 

structural performance is not acceptable and the structure is failed. By assuming lognormal 

distribution for response R and by assuming limit state capacity RLS as a deterministic 

threshold from code requirements, the fragility relationship can be derived by the following 

equation [12]: 
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where Φ is standard normal cumulative distribution function. λR│IM is natural logarithm of 

median of the response in a specific intensity measure which is determined based on the 

estimated relationship between intensity measure and response of the structure. βT is total 

uncertainty of the system consisted of demand, capacity and modeling uncertainties as 

follows: 
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   (4) 

 

Demand uncertainty, βR│IM, is as: 

 

)1( 2SLnIMR   (5) 

 

where s2 is standard error as: 

 

  2/)()(
22   nRLnRLnS pi  (6) 

 

In this equation, Ri and RP are observed and predicted response of the structure 

respectively. n is the number of response sample data. 
LSR  and βM are capacity and 

modeling uncertainties, which the value of 30% is a reasonable choice for them [12].  

 

2.1 Relationship between response and intensity measure 

The relationship between the intensity measure (IM) and response (R) can be determined by 

power-law model [12] or IDA curves. In this paper, the power-law model procedure has 

been used as follows: 

 
bIMaR )(  (7) 

 

By logarithmic transformation of Equation (8), the linear form can be derived as: 

 
)(ln.)ln()ln( IMbaR   (8) 

 

A linear regression analysis can be used to find unknown constants of a and b. Different 

intensity measures such as Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), 

spectral acceleration (Sa), spectral displacement (Sd) and etc could be used for the fragility 

analysis. In this research, Sa has been considered as earthquake intensity measure. 

 

2.2 Limit state capacity  

Several limit states have been used based on various responses of structure subjected to 

earthquake, but specific code guidelines to choose appropriate limit state thresholds are 

limited. FEMA356 recommends using inter-story drift ratio (θ) to identify structural 

performance levels. Inter-story drift ratio is the ratio of the relative displacement between 

the successive stories and the story height. In this research, limit state of maximum inter-

story drift ratio as safety criterion has been used to seismic fragility analysis of structure by 

following FEMA guideline for performance levels, i.e. Immediate Occupancy (IO), Life 

Safety (LS) and Collapse Prevention (CP) according to Table 1.  
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Table 1: limit state capacities considered for fragility analysis 

Performance levels Inter-story drift ratio 

Immediate Occupancy 0.007 

Life Safety 0.025 

Collapse Prevention 0.05 

 

 

3. VARIABLE DAMPING AND STIFFNESS SATMD 
 

In this paper, optimal variable damping SATMD (SATMD-VD) and variable stiffness 

SATMD (SATMD-VS) with different mass ratios have been designed for the nonlinear 

structure. Instantaneous optimal control algorithm with clipped control law has been used to 

determine the proper damping or stiffness of the semi-active devices in each time step. 

Optimal properties of the semi-active control system have been designed based on defining 

an optimization problem to minimize maximum inter-story drift of the structure and have 

been solved by genetic algorithm (GA). 

 

3.1 SATMD-structure equation of motion 

The equation of motion of the nonlinear n story shear building frame equipped with a 

SATMD installed on its top subjected to ground acceleration gX  is as follows: 

 

    gSASD Xtu(t)(t)(t)  MeDXFXFXM  )(  (9) 

 

),,...,,( 21 satmdn xxxxX , ),,...,,( 21 satmdn xxxxX   and ),,...,,( 21 satmdn xxxxX   are displacement, 

velocity and acceleration vectors of the SATMD-structure system with respect to the 

ground, respectively. )1(1]1,...,1,1[  n
Te  is ground acceleration-mass transformation 

vector. M is the diagonal mass matrix as follows: 
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FD and FS are vectors of damping and restoring force which are functions of velocity and 

displacement [15], respectively. 
)1(1]1,1,...,0,0[  n

TD  is the location matrix of semi-active 

device and uSA is the semi-active control force applied between mass damper and the top 

floor of the structure. In case of variable damping SATMD which is constructed by 

substituting conventional damper of TMD with a semi-active device such as semi-active 

fluid viscous damper [4], uSA is as follows: 
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damperdSA xtctu  )()(  (11) 

 

which, damperx  is the velocity of mass damper with respect to the top floor. cd is variable 

damping coefficient of the SATMD which is determined by the control algorithm in each 

time step. On the other hand, Variable stiffness SATMD is constructed by substituting 

conventional spring of TMD with a semi-active device such as SAIVS [5] and semi-active 

control force is as follows: 

 

springdSA xtktu  )()(  (12) 

 

which springx  is the displacement of mass damper with respect to the top floor. kd is variable 

stiffness of the SATMD and is determined by the control algorithm. The Newmark 

integration method [16] has been used to solve equation of motion of the structure. 

 

3.2 Instataneous optimal control algorithm and clipped control law 

The semi-active control law is consisted of two stages. The first one is determining active 

control force based on instantaneous optimal control algorithm which is developed for the 

nonlinear structures [15], by the following equation: 

 

 )()()()()( 31241
*1 tatatttu T
n

T
active XQXQXQKDR   

 (13) 

 

Q1, Q2 and Q3 are (n+1)×(n+1) positive semi-definite weighting matrices corresponding 

to the penalty of structural responses. R is a matrix corresponds to penalty of the control 

force which is a scalar in case of SATMD with one controller. *
nK  is generalized stiffness 

matrix which in time step k is: 
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*

1kC  and *
1kK  are the nonlinear damping and stiffness matrices at time step k-1. a1 and 

a4 are the coefficients of Newmark’s numerical integration method [15]. 

In the second stage, based on clipped control law the properties of semi-active devices 

adjust such that the most similar control force to the ideal active control force be generated 

and applied to the structure. In case of variable damping SATMD, the damping coefficient 

in each time step is calculated as follows: 
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Similarly, for variable stiffness SATMD, the stiffness is calculated as follows: 
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4. OPTIMAL DESIGN OF SATMDS 
 

A procedure has been used to design variable damping SATMDs as well as variable stiffness 

SATMDs using an optimization technic. In this method which has been proposed previously 

for designing active mass damper systems [15] and active tendon control systems [17], 

parameters of weighting matrices Q1, Q2 and Q3 of the control force applied to the nonlinear 

structure according to equation (13), are considered as design variables. Herein, for SATMD 

system the upper and lower bound of semi-active damping or stiffness devices are also 

considered as design variables. In most of previous researches on designing control systems, 

the amount of reduction in maximum inter-story drift of the structure as safety criterion has 

been used to assess the effectiveness of the structural control system. In this paper, too, 

minimization of the maximum inter-story drift of the structure has been considered as 

objective function. In practice, due to limited space available for SATMD installation, the 

maximum stroke length should be limited in design and implementation process of 

SATMDs. Thus, the optimization problem with the objective function of minimization of 

maximum inter-story drift with constrain on SATMD stroke length has been defined as the 

following equation. 
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where kmax is total number of time steps and drifti(k) is inter-story drift of the ith story at time 

step k. UL is the maximum acceptable stroke length of SATMD which can be defined by the 

designer considering practical limitations. The arrangement for weighting matrices has been 

considered as follows [15]: 
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where [I] is unit matrix and [0] is zero matrix. Each weighting matrix has two parameters. 

So, there are eight design variables for SATMDs. The constrained optimization problem was 
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reformulated as an unconstrained optimization problem by adding a penalty term for 

violation of constrain to the objective function. The optimization problem is as follows: 
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(21) 

 

where β is penalty coefficient and has been selected as β=200. 

 

4.1 Solving the optimization problem using GA 

Genetic algorithm (GA) is one of the most effective optimization methods which has been 

presented first by Holland [18] and has been inspired by the evolution process in nature. It 

has been extensively used in engineering application as well as civil engineering [19-21] and 

also structural control system design [22-24], because of its simplicity and capability for 

solving nonlinear optimization problems with large number of design variables. GA has 

three main operations including selection, crossover and mutation [25]. In this study, the 

stochastic universal sampling [26] has been used for selecting the individuals for mating, 

where the probability of selecting an individual is as follows: 
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where F(xi) is the fitness of chromosome xi, P(xi) is the probability of selecting xi and Nind is 

the number of individuals. The selected chromosomes are then chosen through crossover 

operator to generate newborns. The intermediate recombination method [27] has been used 

for crossover, where newborns are produced based on linear combination of parent genes as 

follows: 

 
)( 1212,1 PPPG    (23) 

 

where G1 and G2 are the newborn chromosome genes, P1 and P2 are the corresponding 

parent chromosome genes and α is a scale factor that is selected randomly over [-0.25, 1.25] 

in order to produce newborn genes. Mutation operator in GA algorithm has been used to 

avoid local minima and to ensure searching all individuals. The number of mutated 

individuals is calculated from: 

 

var.. NNmN newrmutated   (24) 

 

where mr is the mutation rate which has been suggested to be a small number and in this 

paper has been chosen to be 0.04. Nnew and Nvar are the number of newborns and variables in 

each generation, respectively. 
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5. NUMERICAL ANALYSIS AND DISCUSSION 
 

In this section, the methodology of developing fragility curves for structure equipped with 

variable damping and stiffness SATMDs has been presented through numerical analysis. 

Optimal SATMDs with different mass ratios have been designed for the nonlinear structure 

with objective of minimization of maximum inter-story drift. SATMDs have been installed 

on the top of an eight-story nonlinear shear building frame as shown in Fig. 1. The nonlinear 

behavior of the structure has been assumed as bilinear hysteretic model shown in Fig. 2. The 

elastic stiffness is K1=3.404×105kN/m and post-elastic stiffness is K2=3.404×104kN/m. All 

characteristics are similar for all stories. The story mass is m=245.6ton and linear viscous 

damping coefficient is c=734.3kN.s/m. Story height is 3.2m and Yielding inter-story drift is 

uy=2.4cm. Fundamental period of the structure based on its initial stiffness is T1=1.087s. 

 

 
Figure 1. SATMD-structure model 

 

 
Figure 2. Bilinear elastic-plastic stiffness model 
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5.1 Ground motions 

Loading uncertainty is one of the most important issues which could have heavy effect on 

structural performance. Because of the inherent random nature of earthquakes, the structure 

may be subjected to any ground motion which has its unique properties. In fragility analysis, 

this uncertainty is taken into consideration by using a set of different earthquakes with 

different intensities. There are no clear code guidelines about required number of records for 

fragility analysis, but about twenty records could be enough to assess seismic demand 

accurately. A set of 10 pairs of earthquakes with probability of occurrence of 10% in 50 

years proposed for SAC project and recommended in ASCE/SEI-7-05 design code for 

downtown Los Angeles have been used for fragility analysis which their properties has been 

presented in Table 2. It has been assumed that the structure to be located on stiff soil which 

corresponds to site class D based on this code. The fn component of the Imperial Valley 

1940, El Centro earthquake which shows most compatibility to the design spectrum than 

other earthquakes, has been selected as the design record, where its acceleration time history 

has been shown in Fig. 3. Fig. 4 shows the acceleration response spectrum of the selected 

earthquakes, design record and ASCE design spectrum. 

 
Table 2: Selected earthquake records used in current study 

Earthquake 

code 
Earthquake name Year Staion Magnitude Distance (km) PGA (g) Sa(T1,ξ=5%) (g) 

La01 Imperial Valley-fn 1940 El Centro 6.9 10.0 0.46 0.58 

La02 Imperial Valley-fp 1940 El Centro 6.9 10.0 0.68 0.87 

La03 Imperial Valley-fn 1979 Array #05 6.5 4.1 0.39 0.69 

La04 Imperial Valley-fp 1979 Array #05 6.5 4.1 0.49 0.39 

La05 Imperial Valley-fn 1979 Array #06 6.5 1.2 0.30 0.40 

La06 Imperial Valley-fp 1979 Array #06 6.5 1.2 0.23 0.31 

La07 Landers-fn 1992 Barstow 7.3 36.0 0.42 0.52 

La08 Landers-fp 1992 Barstow 7.3 36.0 0.43 0.63 

La09 Landers-fn 1992 Yermo 7.3 25.0 0.52 0.85 

La10 Landers-fp 1992 Yermo 7.3 25.0 0.36 0.76 

La11 Loma Prieta-fn 1989 Gilroy 7.0 12.0 0.67 0.71 

La12 Loma Prieta-fp 1989 Gilroy 7.0 12.0 0.97 0.36 

La13 Northridge-fn 1994 Newhall 6.7 6.7 0.68 0.91 

La14 Northridge-fp 1994 Newhall 6.7 6.7 0.66 1.08 

La15 Northridge-fn 1994 Rinaldi RS 6.7 7.5 0.53 0.93 

La16 Northridge-fp 1994 Rinaldi RS 6.7 7.5 0.58 1.16 

La17 Northridge-fn 1994 Sylmar 6.7 6.4 0.57 0.47 

La18 Northridge-fp 1994 Sylmar 6.7 6.4 0.82 0.82 

La19 
North Palm 

Springs-fn 
1986 - 6.0 6.7 1.02 0.49 

La20 
North Palm 

Springs-fp 
1986 - 6.0 6.7 0.99 1.05 

 



FRAGILITY CURVES FOR STRUCTURES EQUIPPED …. 
 

 

447 

 
Figure 3. Time history of ground acceleration of the design record 

 

 
Figure 4. Acceleration response spectrum of the selected and design earthquake records and the 

design response spectrum at downtown Los Angeles for site class D 

 

5.2 Optimal design of SATMDs using GA 

In this section, variable damping SATMDs as well as variable stiffness SATMDs with mass 

ratio of μ=1%,5%,10%,15% installed at top floor of the considered nonlinear shear building 

has been designed based on an optimization technic using GA. The properties of the TMDs 

including mass, stiffness and damping have been designed based on Sadeck et al. [28] 

procedure according to Table 3 and have been used to design SATMDs. 

 
Table 3: Optimum parameters of TMDs 

Mass ratio μ(%) mtmd (ton) ktmd (kN/m) ctmd (kN.s/m) 

1 23.676 773.478 35.739 

5 118.379 3503.623 363.084 

10 236.759 6237.180 940.360 

15 355.138 8382.565 1594.505 

 

Each SATMD has 8 design variables including parameters of weighting matrices q1, q2, 

q3, q1m, q2m, q3m as well as upper and lower limit of semi-active device where in case of 

variable damping SATMD are cmin and cmax and in case of variable stiffness SATMD are kmin 

and kmax. For different values of SATMD mass ratio and both variable damping and stiffness 

semi-active strategies, the optimization problem defined in equation (21) with the objective 
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of minimization of maximum inter-story drift of the structure under design record with 

constrain on SATMD stroke length equal to UL=1.0m has been solved frequently by GA. 

The parameters of the GA have been chosen as presented in Table 4. To ensure the accuracy 

of the optimization procedure, at least four different runs of GA with different initial 

population have been conducted for the considered optimization problem.  

 
Table 4: Parameters of genetic algorithm 

Nind Number of individuals in each generation 50 

Nelites Number of elites 5 

mr Mutation rate 0.04 

Nmax Maximum number of generation 200 

 

To show the procedure of solving the optimization problem, the convergence of the GA 

best objective function value towards the optimum answer, as sample, for variable damping 

SATMD with mass ratio of μ=15% for four different runs has been reported in Fig. 5. It can 

be observed that all four runs have led to approximately the same optimum answer while the 

convergence speeds were different. Also, Fig. 6 shows the fitness value of individuals at the 

final generation for four different runs which shows the same value for most individuals and 

accuracy of the procedure. 

 

 
Figure 5. The best objective function for four runs during generations 

 

 
Figure 6. Objective function value at final generation for four runs 
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Normalized maximum inter-story drift of the structure equipped with optimal SATMDs 

subjected to the design record has been shown in Fig. 7. In this figure, the responses have 

been normalized to the maximum drift of the uncontrolled structure. The responses of 

passive TMDs have also been presented for comparison. It is observed that the performance 

of SATMDs in reducing maximum drift is more effective than TMDs. As predicted and 

shown in other studies [2], the response reduction is amplified by increasing the mass ratio 

of TMD. This phenomenon has also been observed in SATMDs with variable damping and 

stiffness. However, sensitivity to the mass ratio in SATMD with variable stiffness is less 

than variable damping and in higher mass ratios the SATMDs show similar performance. 

Particularly, in mass ratio of μ=15%, SATMD with variable damping and stiffness has 

reduced maximum drift near to 69% with respect to the uncontrolled structure and about 

53% with respect to the TMD controlled structure. 

 

 
Figure 7. Normalized inter-story drift and of the designed variable damping (VD) and variable 

stiffness (VS) SATMDs 

 

5.3 Regression analysis 

The structure has been subjected to earthquakes and maximum responses of the uncontrolled 

structure and equipped with TMDs and optimal SATMDs have been derived. These 

maximum responses under each seismic record are taken as samples to be used for 

regression analysis. By assuming power-law model according to Equation (7), the 

relationship between natural logarithm of Sa and natural logarithm of the response of the 

structure would be linear.  Linear regression analysis has been used to identify the properties 

of these lines such as slope, intercept and correlation. The values of parameters a and b in 

power-law model has been calculated with determined slope and intercept of the lines. Fig. 8 

and 9 shows observed and estimated maximum inter-story drift ratio of the structure 

controlled by variable damping and stiffness SATMDs with mass ratio of μ=15%, 

respectively. The calculated power-law model parameters and demand uncertainty for 

uncontrolled structure and equipped with TMDs and SATMDs for estimating the 

relationship between Sa and inter-story drift ratio has been presented in Table 5. 
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Figure 8. relationship of intensity measure and inter-story drift ratio of variable damping 

SATMD 

 

 
Figure 9. relationship of intensity measure and inter-story drift ratio of variable stiffness SATMD 

 

Table 5: power-law model parameters and demand uncertainty for uncontrolled structure and 

equipped with TMDs and SATMDs 

mechanism a b βR│PGA 

Uncontrolled 0.0323 0.9291 0.234 

TMD(μ=1%) 0.0325 1.0049 0.232 

TMD(μ=5%) 0.0311 1.0832 0.262 

TMD(μ=10%) 0.0290 1.1250 0.312 

TMD(μ=15%) 0.0272 1.1370 0.347 
SATMD-VD(μ=1%) 0.0325 1.0434 0.223 
SATMD-VD(μ=5%) 0.0292 1.1858 0.309 

SATMD-VD(μ=10%) 0.0261 1.1402 0.356 
SATMD-VD(μ=15%) 0.0235 1.1053 0.363 
SATMD-VS(μ=1%) 0.0316 1.0023 0.267 
SATMD-VS(μ=5%) 0.0254 1.1444 0.310 

SATMD-VS(μ=10%) 0.0243 1.1158 0.366 
SATMD-VS(μ=15%) 0.0234 1.1769 0.331 
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5.4 Fragility curves of SATMDs 

Optimal variable damping and stiffness SATMDs with mass ratios of μ=1%,5%,10%,15% 

have been used for seismic response control of nonlinear structure. Fragility curves of the 

structure equipped with SATMDs have been generated according to Equation (3) and 

compared to fragility curves of the uncontrolled structure and equipped with TMDs. Fig. 10 

presents fragility curves of SATMDs with different mass ratios for IO performance level. It 

is observed that using SATMDs enhances the seismic fragility of the structure especially, for 

higher mass ratios and enhancement is slightly more effective than passive TMDs. Also, the 

performance of variable damping and stiffness SATMDs are almost similar in this 

performance level. Reliability is defined as the complement of the fragility probability at 

specific intensity measure. SATMDs with mass ratio of μ=15% has increased the reliability 

with respect to the uncontrolled structure about 20% at Sa=0.5g. 

 

 

 
Figure 10. Fragility curves of uncontrolled structure and controlled with TMD and optimal 

SATMDs with mass ratio of a) μ=1%, b) μ=5%, c) μ=10% and d) μ=15% for IO performance level 

 
Fragility curves of the structure for LS and CP performance levels have been shown in 

Fig. 11 and 12 respectively. Results show that regardless of performance level, using TMD 

and SATMDs with mass ratio of µ=1% is ineffective in reducing fragility of the structure. 

However, for higher mass ratios the SATMDs are effective in mitigating the fragility of the 

structure.  
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Comparing variable damping and stiffness SATMDs, it is observed that similar to the 

design record, fragility curves of SATMD with variable stiffness is less sensitive to the mass 

ratio than variable damping and by increasing mass ratio they perform similarly. In 

particular, at LS performance level and intensity measure of Sa=1.0g, variable stiffness 

SATMD with mass ratio of µ=5%,10%,15% has increased the reliability with respect to the 

uncontrolled structure about 19%, 22% and 25%, respectively and Also, These reliability 

improvements for variable damping SATMDs are about 8%, 17% and 24%. At CP 

performance level and intensity measure of Sa=1.5g, SATMDs with mass ratio of 

µ=5%,10%,15% has increased the reliability about 11%, 13% and 15% in case of variable 

stiffness as well as -1%, 8% and 16% in case of variable damping, respectively. 

By comparing the performance of SATMDs with their passive counterpart, TMD, it is 

observed that SATMDs are more reliable than TMDs and have the ability to enhance seismic 

fragility of the structure especially, under severe earthquakes which the structure undergoes 

nonlinear behavior and TMDs are practically detuned. Particularly, for LS performance level 

and intensity measure of Sa=1.0g, variable stiffness SATMD with mass ratio of 

µ=5%,10%,15% has increased the reliability with respect to the TMD controlled structure 

about 16%, 13% and 10%, respectively and These enhancements for CP performance level 

and intensity measure of Sa=1.5g are about 13%, 11% and 9%, respectively. 

 

 

 
Figure 11. Fragility curves of uncontrolled structure and controlled with TMD and optimal 

SATMDs with mass ratio of a) μ=1%, b) μ=5%, c) μ=10% and d) μ=15% for LS performance 

level 
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Figure 12. Fragility curves of uncontrolled structure and controlled with TMD and optimal 

SATMDs with mass ratio of a) μ=1%, b) μ=5%, c) μ=10% and d) μ=15% for CP performance 

level 

 

 

6. CONCLUSIONS 
 

This study deals with developing fragility curves for assessing the robustness of optimal 

variable damping and stiffness SATMDs on a nonlinear eight-story shear building. 

SATMDs with mass ratios of µ=1%,5%,10% and 15% have been designed based on an 

optimization technique with the objective function of minimization of maximum inter-story 

drift ratio as safety criterion which genetic algorithm has been used to solve the optimization 

problem. Uncertainty of the applied excitation has been considered by using 20 earthquake 

records and fragility curves of the structure equipped with optimal SATMDs have been 

developed and compared with the fragility curves of the uncontrolled structure and 

controlled structure using TMD. Numerical results show that in most range of intensity 

measure, especially IO and LS performance levels, using variable damping or stiffness 

SATMDs has enhanced seismic fragility of the structure and have the capability of 

improving reliability of the structure. Also, it has been found that increasing the mass ratio 

of the SATMDs has led to more enhancement on fragility of the structures. As an example, 
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variable stiffness SATMD with mass ratio of µ=15% has increased reliability of the 

structure about 20%, 25% and 15% with respect to the uncontrolled structure for IO, LS and 

CP performance level, respectively at Sa=0.5g, 1g and 1.5g. Comparing fragility curves of 

variable damping and stiffness SATMDs shows that similar to the design process, fragility 

curves of variable stiffness SATMD is less sensitive to the mass ratio than variable damping 

SATMD and by increasing the mass ratio both control systems perform almost similarly. 

For instance, at LS performance level and intensity measure of Sa=1.0g, variable stiffness 

SATMD with mass ratio of µ=5%,10% and 15% has increased the reliability of the structure 

about 19%, 22% and 25%, where variable damping SATMDs improved reliability about 

8%, 17% and 24%, respectively. Also, it has been shown that SATMDs with variable 

damping and stiffness are more reliable than passive TMDs, especially, under severe 

earthquakes which the structure undergoes nonlinear behavior and TMDs are practically 

detuned. For example, at LS performance level and intensity measure of Sa=1.0g, variable 

stiffness SATMD with mass ratio of µ=5%,10% and 15% has increased the reliability of the 

structure about 16%, 13% and 10%, respectively in comparison with TMD. 
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