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ABSTRACT 
 

Among the different lateral force resisting systems, shear walls are of appropriate stiffness 

and hence are extensively employed in the design of high-rise structures. The architectural 

concerns regarding the safety of these structures have further widened the application of 

coupled shear walls. The present study investigated the optimal dimensional design of 

coupled shear walls based on the improved Big Bang-Big Crunch algorithm. This 

optimization method achieves unique solutions in a short period according to the defined 

objective function, design variables, and constraints. Moreover, the results of the present 

study indicated that the dimensions of the coupling beam in the shear wall significantly 

affect the wall behavior by maximizing its efficiency which implies on its practical 

application by considering the wall in the flexural model. 
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1. INTRODUCTION 
 

Improving behavior of concrete structures has been a major issue among structural 

engineers, leading to developing different ways. In recent decades, profiting from other 

phenomena such as temperature, magnetism, and electricity in engineering applications has 

drawn a lot of interest among scientists. These phenomena are widely used in either 

developing smart structures or improving physical properties of concrete [1].  

In many structures, the lateral load applied to the building is resisted by the separate 

reactions generated by the shear walls. However, under practical conditions, the walls are 

connected through bending-resistant members. For instance, in residential buildings, one or 

more rows of openings are included in the external walls as windows, and the internal walls 

                                                   
* Faculty of Civil Engineering, Semnan University, Semnan, Iran, P.O.BOX: 35131-19111 
†E-mail address: Orezayfar@semnan.ac.ir (O. Rezaifar) 



B. Eftekhar, O. Rezaifar and A. Kheyroddin 

 

182 

also comprise a number of openings for the doors or hallways. Home units in residential 

complexes are usually designed and located longitudinally on the two sides of a central 

hallway along the building. This type of architectural spaces requires the construction of 

partition walls vertical to the building length as well as walls along the hallways and 

external faces of the building. In addition to partitioning the units, confining the spaces, and 

providing sound and thermal insulations between the units, continuous walls at appropriate 

places are responsible for carrying vertical and horizontal loads. Such shear walls connected 

through bending resistant members are known as coupled walls. Presence of such coupling 

bending members would increase the system stiffness and efficiency. Optimization methods 

can be employed to design the coupled shear walls having considerably lightweight, 

inexpensive and constituting materials. 

In recent decades, various optimization techniques have been discovered and employed, 

among the oldest of which the genetic algorithm [2] and ant colony optimization algorithm 

[3] can be pointed out. Particle swarm optimization methods [4],[5], which are based on the 

flocking behavior of migrating of birds and harmony search method [6], have been tested on 

different structures in the past decade and acceptable results were obtained. The big bang-

big crunch (BB-BC) method, which has been used in recent years, was introduced by Erol-

Eksin [7] and was initially employed in civil engineering by Camp [8]. Taking into account 

the optimization procedure in this method, Camp improved the performance of this method 

by modifying the regeneration equipment and importing the best global solution to produce 

a candidate solution for each design variable. Inspired by the idea behind PSO algorithm, 

Kaveh and Talatahari [9] achieved a better convergence for the BB-BC method by importing 

the best global and local solutions in the population generation in the Big Bang (BB) stage. 

This method involves two stages, the first of which, i.e., BB, scatters the population, 

dissipates energy, and requires a long runtime. However, in the second stage known as the 

Big Crunch (BC), all the points are drawn into order around a point referred to as the center 

of mass, causing the optimization process to speed up. After a number of iterations in the 

BB-BC method, the space in which the particles are randomly distributed gradually gets 

smaller in the BB stage, and then the particles gather around the center of mass in the BC 

stage, consequently causing the algorithm and the convergence rate to speed up. 

 

 

2. ANALYSIS OF COUPLED SHEAR WALLS 
 

Similar to other structures, coupled shear walls can be analyzed both approximately and 

accurately. Shear Continuum Theory is the most important approximate method which 

makes simplifications by assuming all horizontally connected members create a continuous 

connection medium between vertical members along the entire height of the building. The 

result of this simplification is the transformation of the building from a 2D to a 1D model, 

where all main forces are a function of vertical coordinates across the building height. This 

enables us to explain the structural behavior through linear differential equations which will 

ultimately result in a closed-form solution. In order to keep the discussion short and to the 

point and since a practical point of view is a matter of concern in this study, the proofs for 

the equations are overlooked, and only the principal and practical equations are presented. 

Coupled shear walls, similar to other structures, can be analyzed both approximately and 
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accurately. The approximate methods are faster and more appropriate for manual 

calculations and in obtaining initial estimations of the cross-sectional dimensions; However, 

they can only be used for regular and semi-regular structures and loads. On the other hand, 

accurate methods are capable of analyzing irregular structures and complex loadings, but 

also require computers as their calculation tool. The analysis method is usually selected 

based on the structural form and the required degree of accuracy. 

 

2.1 Continuous Medium Method 

The initial assumptions of the analysis are as follows: (1) The details of the walls and 

coupling beams along the height are maintained, and the height of stories are identical. (2) 

The cross-sectional planes of all structural members maintain their form and remain as 

planes before and after bending. (3) Flexural rigidity EI_b of coupling beams, are replaced 

with flexural rigidity EIb/h per unit height associated with the equivalent continuous 

coupling medium, where h is the storey height. To achieve further accuracy, the inertia of 

the highest beam is assumed to be half those of the other beams. (4) Horizontal displacement 

of the walls is identical due to the high rigidity of the surrounding slabs and axial stiffness of 

the coupling beams. Therefore, the slope of walls is similar in each level across the height. 

By directly employing the slope-displacement equations, it could be assumed that the 

coupling beams, i.e., the continuous coupling medium, experience a bending deformation 

with an inflection point in the middle. Moreover, this assumption also suggests that since the 

wall curvatures are similar at all heights, the bending moment in each wall is proportional to 

its flexural rigidity. (5) The axial and shear forces and the bending moments of the coupling 

beams can be replaced with the equivalent continuous distribution and intensities of n, q, and 

m per unit height, respectively as shown in Fig. 1 and Fig. 2. 

 

 
Figure 1. Demonstration of the coupled shear wall with the continuous model. 
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Figure 2. Internal reaction forces in the coupled shear wall. 

 

The basic equations are as follows: 

The governing differential equation for the coupled shear walls are expressed as: 
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where c is the free end of the beams. Other specifications are given in Fig. 3. 

Moreover, we may write 
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Figure 3. Specifications of the coupled shear wall employed in the equations. 

 

When walls are subject to lateral loads, the ends of connected beams undergo rotation, 

vertical displacement, and two-axis bending to carry the moments in the wall. The flexural 

behavior of walls causes shear in the connected beams, and they, in turn, impose moments to 

both walls opposite to the applied external moments. The shears also cause axial loads in the 

walls. Therefore, the moment due to lateral load in any structural level is carried out by the 

sum of bending moments in the walls in the same level and the moment caused by the axial 

force [10]. 

 

 
Figure 4. Demonstration of the forces formed in the coupled shear wall [10]. 

 

The axial load at each level is equal to the sum of shears in the coupling beams above the 

same level, which is dependent on the stiffness and strength of coupling beams. The degree 

of coupling for the wall η_w can be defined according to Eq. 5: 
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where T0 is the sum of shear forces in the coupling beams and a is the distance between the 

centers of each of the coupled walls according b toy Fig. 4. The degree of coupling for 

different walls usually ranges from 0.3 to 0.5. 

T0.a denotes the inverse moment caused by bending of coupling beams resisting against 

free bending of the walls. This parameter approximates zero for walls with joint 

connections, while its maximum occurs in the case of infinitely rigid coupling beams. 

Accordingly, the length of the coupling beams the opening increases, the effect of axial 

force in the wall and the bases is decreased. 

The diagram of Eq. 5 is demonstrated in Fig. 5 for a coupled wall comprising two walls 

with the stiffness of El1=El2. The horizontal and vertical axes denote, respectively, the 

internal moment in each wall and the slenderness ratio hb/Ib, where hb and Ib are the height 

and span of the coupling beam. The slenderness ratio in our case is considered as the 

stiffness of the coupling beams. A slenderness ratio of zero in a beam is equivalent to no 

bending stiffness and, thus, the wall moments are divided proportional to the stiffness of 

each of the walls according to Eqs. 6 and.7 In other words, the axial force is zero in the walls 

[11]. 
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Figure 5. Effect of the stiffness of the coupling beam on the moments carried out by Walls 1 and 

2, where I1=2I2 [11]. 

 

The shear in coupling beams is increased as their bending stiffness increases. 

Consequently, the contribution of overturning moment resisted by the axial couple 𝑇0 × 𝑎 is 

considerably increased. As their major effect, the coupling beams reduce the experienced 

𝑀𝑤1 and 𝑀𝑤2 in the base of the two walls, which facilitates the transfer of wall reactions to 

the foundation. The coupling beams also decrease the lateral deformations. The two walls 

act as a single independent wall in case the beams are fully rigid, i.e. are of infinite stiffness. 

This is demonstrated in Fig. 5. Actual decomposition of the external 𝑀0 moment into the 

internal moments 𝑀𝑤1, 𝑀𝑤2, 𝑇0 × 𝑎 depends on parameters such as ℎ𝑏/𝐼𝑏[12]. 

Harris [13] showed that the ductility capacity of a coupled wall system increases as the 

degree of coupling is increased. The degree of coupling is a function of stiffness and relative 

strengths of beams and walls. Saatcioglu et al. [14] demonstrated that coupling beams 

should be capable of improving a system with a displacement ductility of roughly 4 to 6. 

Coupling beams may be rectangular or T-Shaped beams or a part of the floor slab. In 

earthquake-prone regions, the coupling beams may also comprise diagonal rebars. 

The Canadian concrete regulations assert that the contribution of the moment 𝑇0 × 𝑎 

should be at least 66 percent of the moment 𝑀0 in seismic design, in which case the ratio 

ℎ𝑏/𝐼𝑏 should be roughly 0.2 according to Fig. 5. In case this percentage is lower than the 66 

percent threshold, the wall is referred to as partially coa upled wall. 

The general behavior of coupled shear walls against lateral loads should be such that the 

plastic joint is initially formed in the coupling beams (Fig. 6a). The coupled shear wall 

system undergoes a stiffness decrease, and the walls begin to necessarily operate as 

individual cantilever walls, in which case is bending plastic joints are formed in the base of 



B. Eftekhar, O. Rezaifar and A. Kheyroddin 

 

188 

the walls similar to the behavior of strong column-weak beam in a flexural frame system as 

shown in Fig. 6b [15]. 

The coupling beams should be of sufficiently high stiffness and strength so that the 

system can perform favorably. In any case, these beams should yield before the base of the 

walls reaches that point and, thus, should be ductile in their performance and demonstrate a 

high energy absorption property. In fact, the design objectives in this lateral force resisting 

system require the coupling beams to be the first members to fail, which is similar to the role 

of a primary fuse in limiting the overall demands of the system. As a result, they are usually 

subject to large plastic rotations and should provide a reliable energy dissipation mechanism. 

 

 
Figure 6. Locations for formation of plastic joints. (a) The system of the coupled shear 

wall, (b) Flexible system. 

 

Flexural behavior is the dominant behavior in tall shear walls and/or walls with small-

width bases, where the created moment in the wall due to the lateral loads are resisted by a 

couple and a moment. 

In general, it can be concluded that the behavior of this type of walls is highly affected by 

the stiffness, strength, and ductility of the coupling beams. Understanding the critical 

regions including plastic areas and joints is of great importance in assessing the nonlinear 

behavior of shear walls. 

In another study, Safari and Gharemani [16] concluded that increasing the height of the 

coupling beam leads to increased ultimate strength. However, increasing this height greater 

than 33 percent of the story height does not significantly affect the ultimate strength of the 

wall and, instead, decreases the ductility. 

Kheyroddin et al. [17] proposed an equation to calculate the development length of steel 

coupling beams and concluded that the presence of this member results in the uniform 

development of cracks in shear walls, which in turn affects energy absorption and increases 

ductility. 
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The coupling beams connected to the structural walls provide stiffness and energy 

absorption. In some cases, geometrical and architectural limitations in the coupling beam 

lead to a large span-to-depth aspect ratio. Deep coupling beams may also be controlled by 

shear and undergo a drastic decrease in strength and stiffness when subject to seismic loads. 

 

2.2 Differnt loading types  

Lateral uniform distributed loading: Consider a two coupled shear walls supported by a 

rigid foundation and subject to uniformly distributed loading with a magnitude of w per unit 

height. 

Equations for point loading applied from above and triangular distributed loading: In this 

section, the continuous method is used to solve the problem for two other forms of standard 

loading, i.e. point load P and triangular distributed load with a maximum magnitude of p, 

where both are applied to the top of the structure. (Triangular distributed loading with a 

magnitude of p(z/H)) 

 

3. OPTIMIZATION 
 

3.1 A Big Bang-Big Crunch method 

This method includes two phases, namely the Big Bang (BB) and Big Crunch (BC) phases, 

respectively. In the former, the candidate solutions are randomly distributed in the search 

space. The random distributions lead to energy dissipation and cause generation of new 

candidate solutions for the next phase. 

A description of the BB-BC method in the optimal dimensional design of coupled shear 

walls is given as follows: 

1) Determining the objective function and design constraints: 

 

Minimize W({x})=
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where W({X}) is the structural weight, n is the number of structural members, 𝛾𝑐  is the 

specific weight of concrete, 𝐿𝑖  is the length of the coupling beam or the shear wall 

depending on the element type, 𝑡𝑖 is the thickness of the coupling beam or the shear wall 

depending on the element type, ℎ𝑖  is the height of the coupling beam or the shear wall 

depending on the element type, 𝐾1 is the percentage of the individual cantilever behavior 
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(moment coefficient) of each wall in resisting moments, 𝐾2 is the percentage of compound 

cantilever behavior (moment coefficient) of both walls in resisting moments, H is the overall 

height of the structure, 𝑌𝐻 is the maximum displacement at the highest point of the structure, 

and 𝐿𝑐  and ℎ𝑐  are, respectively, the length and height of the coupling beam which can 

display shear, shear-bending, or bending behavior depending on the defined constraints. 

2) Generating a given number of random initial candidate solutions for the design 

variables: 

After defining the design variables, values are generated for them using the following 

formulas and based on the constraints of the candidate solutions: 

 

)( minmaxmin hhRandhhi   (10) 

 

)( minmaxmin LLRandLLi   (11) 

 

)( minmaxmin ttRandtti   (12) 

 

3) Structural analysis according to the values of design variables suggested by a 

candidate solution and calculating the penalty functions for each candidate solution: 

The methods that can be used to calculate the penalty values are different, and none 

significantly affects the optimization procedure. The value of a given constraint can either be 

within its allowed boundaries or out of the upper and lower boundary values. In the former 

case, the penalty value is considered zero, and in fact of latter case, the penalty is equal to 

the ratio of the difference between the constraint value and the allowed limit to the permitted 

limit. 
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4) Calculating the fitness function 

The value of fitness function for each candidate solution can be calculated according to the 

following equation. The candidate solutions can be classified based on their minimum 

fitness value, meaning that the minimum value of the fitness function corresponds to the 

optimal solution. The amount of the objective function is calculated from the following Eq. 

16: 
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where 𝑤𝑘  is the value of objective function under the influence of the 𝑘𝑡ℎ  candidate 

solution, and 𝜑𝜎
𝑘

, 𝜑𝑌𝐻/𝐻
𝑘 , and 𝜑𝐿𝑐/ℎ𝑐

𝑘
denote the penalties caused to the structure by the 

𝑘𝑡ℎ candidate solution. 𝜀 is a positive number which incrementally increases from 1.5 to 3 

[9]. 

5) Calculating the center of mass 

The center of mass can be calculated in the BC phase for each design variable based on 

the following equation and the inputs obtained from the BB phase: 
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where 𝐴𝑖
𝑘𝑗

 is the 𝑖𝑡ℎ component of the 𝑗𝑡ℎ generated candidate in the 𝑘𝑡ℎ iteration, N is 

the population size in the BB phase, 𝑀𝑒𝑟𝑗  is the value of fitness function for the 𝑗𝑡ℎ 

candidate solution. 

6) Calculating the values of new candidate solutions around the center of mass 
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In this equation, 𝑟𝑗 is a normally distributed random number and 𝛼1 is the parameter that 
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determines the contribution of the allowed interval associated with the design variables. 

7) Returning to Step 2 and reiterating the algorithm until the termination criterion is 

reached. 

The termination criterion can be a given number of times that the best solution is 

repeated. 

 

3.2 An Improved Big Bang-Big Crunch method 

Several optimization methods can be combined based on the principal ideal in the HPSACO 

algorithm [18] to derive a new metaheuristic method. As mentioned earlier, local search 

agents should be used to improve the HBB-BC algorithm. To this end, the ACO and 

harmony search (HS) algorithms can be employed and added to the original BB-BC 

algorithm to improve its performance. Similar to HPSACO algorithm, the ACO algorithm is 

used to perform a local search around the best global position of a particle, while HS is used 

to prevent violating the constraints in the IHBB-BC algorithm. To provide a better 

description of this algorithm, their incorporation in the proposed method is discussed as 

shown in Fig. 7.  

The definition and description of the ant colony optimization algorithm and HS method 

can be found in [18] and [19], respectively. 

 

3.2.1. Descriptions on IBB-BC 

IBB-BC uses BB-BC in its core for global optimization. However, the steps involved in 

HBB-BC is used in IBB-BC due to its better performance compared to BB-BC. On the other 

hand, the ACO algorithm enters the optimization process as a local search agent and updates 

the position of particles, their current best positions, and their best global positions. The 

ACO algorithm suggests generation of as many ants as the number of particles in the 

population. In the ACO step, each ant generates a solution around 𝑃𝑔𝑏𝑒𝑠𝑡
𝑘  as expressed in the 

following equation: 

 

𝑍𝑖
𝑘 = 𝑁(𝑃𝑔𝑏𝑒𝑠𝑡

𝑘 , 𝜎) (19) 

 

where 𝑁(𝑃𝑔𝑏𝑒𝑠𝑡
𝑘 , 𝜎)  is a normally distributed random value with an average and a 

variance of 𝑃𝑔𝑏𝑒𝑠𝑡
𝑘  and 𝜎, respectively, where 

 

𝜎 = 𝑁(𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛) × 𝛾 (20) 

 

In this relation, 𝜂 is used to control the size of sthe earch space. A normal distribution 

with an average of 𝑃𝑔𝑏𝑒𝑠𝑡
𝑘  can be considered an appropriate equivalent to continuous 

pheromone. In ACO algorithm, tthe he probability of selection of a path with the highest 

pheromone is greater compared to others. Similarly, in normal distributa ion, the probability 

of selection of a solution from the neighborhood of 𝑃𝑔𝑏𝑒𝑠𝑡
𝑘  is higher than other solutions. 

These principals in IHBB-BC are factors which help directing exploration and increase 

control over exploitation. 

In this method, the value of the objective function 𝑓(𝑍𝑖
𝑘) is calculated and the current 
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position of 𝑖𝑡ℎ ant, i.e. 𝑍𝑖
𝑘, is replaced with the current position of 𝑖𝑡ℎ particle or 𝑋𝑖

𝑘 in case 

𝑓(𝑋𝑖
𝑘) > 𝑓(𝑍𝑖

𝑘) and the 𝑖𝑡ℎ𝑡ℎ𝑒  ant is located in the search space. Moreover, the best global 

and local positions of particles can be updated by making appropriate comparisons. 

Instead of particle-to-particle comparisons, overall comparisons can be constructively 

used to improve the performance of this step in the algorithm. Therefore, the population 

within which both the primary particles and the ant population are present is sorted in an 

ascending order to create a new population with the same number of particles, and this new 

population is considered the basis of further calculations. Thus, this process retains all good 

particles. However, in case the comparisons were made particle-to-particle, some particles 

with competency to remain in the particle population could have been removed in the 

comparison procedure due to their higher fitness function values, which consequently would 

have allowed weak particles to enter the population. 

The particles that violate the allowed range of variables can be revised based on the HS 

principals. Two methods are proposed in this regard, one of which is similar to the HPSACO 

method proposed by Kaveh and Talatahari [5], where an HM is hired to be filled with the 

best global particles 𝑃𝑔𝑏𝑒𝑠𝑡
𝑘  in each iteration of the algorithm. As one of the drawback in this 

method, the HM is gradually filled as it stores new particles in each iteration. Therefore, 

lower number oa f particles are available in the memory in the first iterations, hence limiting 

the selection domain for the violating variables and decreasing the exploration rate for that 

variable. As another drawback, the particles with small errors, which may be capable of 

generating appropriate values for this type of variables using the PAR operator, may not 

enter the memory. The effect of HM on the optimization procedure may be weakened since 

only one particle at a time is allowed to enter this memory, and the particle is definitely 

error-free given its lower objective function value. Despite this, as the number of iteration 

increases and better particles enter the memory, the exploitation power is increased. Hence, 

the particle is stored in an HM with a size half, third, or fourth the number of particles in the 

population. Then, those components of the (particle) vector which have violated the 

permitted boundaries can then be randomly generated by updating the HM and applying the 

HS algorithm. This allows the particles with low penalty values to enter the HM in the initial 

iterations and help generating proper values for the violating particles using HS parameters, 

consequently increasing the exploration power of the algorithm from the very beginning. 

As the process develops, the particles with penalties are removed, making space for those 

particles with low objective function values which can be highly influential similar to the 

memory in the previous case. As a side note, the optimal values of some variables may be 

located near the boundary values and, therefore, the generated values for which during the 

optimization procedure may violate the boundaries. In case, similar to the original algorithm, 

such violating values are replaced with neighboring values within the permitted range or 

reassigned a newly generated value; the optimization procedure may be derailed or require a 

more significant number of iterations to achieve the optimal solution. 
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Figure 7. Flowchart of the IBB-BC algorithm. 
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However, in our case, the governing principals of HS algorithm can be employed to 

assign new values to such variables from the solutions stored solutions in the HM, which are 

more appropriate and closer to the optimal value. This process has proven to be very 

efficient in optimization problems with continuous and discrete variables with equal 

distances in their values since solutions of high precision can be generated for this type of 

problems.  

 

 

4. DESIGN EXAMPLES 
 

In this section, the above equations regarding the design of coupled shear walls are used 

along with the aforementioned optimization methods to solve some cases so that the 

efficiency of the optimization methods in the optimal design of coupled shear walls can be 

validated. 

 

4.1 Example one  

Given the geometrical specifications of the shear walls on the two sides, as well as the 

length and thickness of the coupling beam, determine the optimal height of the coupling 

beam using the presented optimization methods so that the given constraints are satisfied. 

The considered building comprises 20 stories. A coupled shear wall with the following 

specifications is used in one of the spans of this frame with a 14 m length. This coupled 

shear wall in this frame is only subject to lateral loading, all of which should be resisted by 

the shear wall as its lateral resisting system requires so. The objective is to obtain the 

optimal height of the coupling beam according to the type of lateral load applied to the 

structural frame by taking into account the following constraints. 

Design constraints: 

The height of the coupling beam should be obtained so that the moment coefficients of 

the compound contribution and the individual cantilever contribution, i.e. 𝐾2  and 𝐾1 , 

respectively, are obtained as 67% and 33%. This constraint is selected so due to the fact that 

the performance of this type of walls is higher under such conditions and hence the coupling 

beam works as a fuse. In addition, the ratio of maximum displacement of the top point of the 

building to its height should be smaller than 0.002. Moreover, the weight of the wall should 

be minimized with respect to the optimal height of the coupling beam. 

0<=height of the coupling beam<=storey height 

Geometric specifications of the coupled shear wall: 

Overall structural height: 56 m 

The height of each story: 2.8 m 

Length of the wall on the right side: 7 m 

Length of the wall on the left side: 5 m 

Length of the shear wall: 2 m 

The thickness of the wall and the coupling beam: 0.3 m 

Note that this coefficient was calculated for the most critical case, i.e. the moment at the 

base of the structure. 
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Table 1. Calculation of the optimal height of the coupling beam for the first example. 

Optimization 

time (s) 

Optimal 

weight (kN) 
 KαH 

𝐿

𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙

  𝐾2 

Optimal 

height 

(m) 

Loading 

magnitude 

Loading 

type 

1.03 259.8 4.776 3.85 66.75 0.52 (kN/m)16.5 

Uniform 

distributed 

loading 

0.44 258.75 4.02 4.45 66.63 0.45 (kN/m)25 

Triangular 

distributed 

loading 

P(z/H) 

0.51 257.4 3.031 5.56 67.16 0.36 (kN)100 
Point 

loading 

 

As shown, the optimal height for the coupling beam was obtained within a significantly 

short duration using the described optimization method. As mentioned earlier, the value of 

KαH parameter should be within 1 and 8 so that the coupled shear wall acts as a compound 

element resisting against lateral forces. This fact is hence validated in this study according to 

the results according to Table. 1. 

It can also be concluded from the results that the obtained optimal height is one third the 

story height. As mentioned before, coupling beam heights higher than one-third of the story 

height are not efficient and, in addition, increase the weight of the wall. 

Moreover, the program for the optimization and design procedures was written in 

MATLAB and run on a CORE i7 CPU. The termination criterion was considered 1000 

unchanging solutions, and more than 50000 candidate solutions were tested for each 

optimization process. 

 

4.2 Second Example  

The same building subject to similar loadings as that of Example 1 is considered in this 

example, with the two following exceptions: the geometric specifications of the shear wall 

on both sides are unknown, and only the length of that span of the frame within which the 

couple shear wall is to be placed is given. In this example, the length, height, and thickness 

of the coupling beam along with the lengths of the shear walls on both sides, which are 

considered identical, as well as the thickness of the shear walls on both sides, which is equal 

to the thickness of the coupling beam, are considered the independent optimization 

parameters. 

Design constraints: 

The independent parameters of the coupled shear wall which were mentioned in the 

example should be obtained such that the moment coefficients of the compound contribution 

and the individual cantilever contribution, i.e. 𝐾2 and 𝐾1, respectively, are obtained as 67% 

and 33%. In addition, the ratio of maximum displacement of the top point of the building to 

its height should be smaller than 0.002. Moreover, the weight of the wall should be 

minimized with respect to the optimal height of the coupling beam. 

Other constraints: 

Frame span length: 14 m 

0<=height of the coupling beam<=storey height 
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0.2 m<=thickness of the coupling beam and the coupled shear wall<=storey height 

1.5 m <=length of the coupling beam<= frame span length 

Note that this coefficient was calculated for the most critical case, i.e., the moment at the 

base of the structure. 

 
Table 2. Calculation of the optimal parameters of the coupling beam in the second example. 

Optim

ization 

time 

(s) 

𝐾2 𝑘𝛼𝐻 

Optimal 

weight 

(kN) 

𝐿𝑜𝑝𝑡𝑖𝑚𝑎𝑙

𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙

 

Optimal 

Length 

of the 

Shear 

Wall (m) 

𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

(m) 

𝐻𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

(m) 

𝐿𝑜𝑝𝑡𝑖𝑚𝑎𝑙 

(m) 

Loading 

magnitu

de 

Loading 

type 

20.09 67.65 3.08 134.2 12.82 3.475 0.23 0.55 7.05 100 kN 

Uniform 

distribut

ed 

loading 

20.39 66.25 3.96 165.34 11.26 3.115 0.29 0.69 7.77 
25 

kN/m 

Triangul

ar 

distribut

ed 

loading 

P(z/H) 

16.7 66.75 5.05 157.1 8.73 3.465 0.25 0.81 7.07 
16.5 

kN/m 

Point 

loading 

 

As shown, the optimal height for the coupling beam was obtained within a significantly 

short duration using the described optimization method. As mentioned earlier, the value of 

𝑘𝛼𝐻the parameter should be within 1 and 8 so that the coupled shear wall acts as a 

compound element resisting against lateral forces. This fact is hence validated in this study 

according to the results as shown Table. 2. 

It can also be concluded from the results that the obtained optimal height is one third the 

story height. As mentioned before, coupling beam heights higher than one-third of the story 

height are not efficient and, in addition, increase the weight of the wall. Moreover, by 

assuming the length of the coupling beam and the wall and their thickness are variable in 

addition to the height of the coupling beam, it was shown that the weight of the coupled 

shear wall is lower than that in the previous examples, which is a more optimal solution. 

We may also impose another constraint on this problem for further investigations and to 

reach a meaningful conclusion. This constraint is the ratio of the optimal length of the 

coupling beam to its height, the effect of which on the performance of the coupled shear 

wall is a matter of concern to us. As explained before, the coupling beam can be considered 

shear, shear-bending, or bending if the ratio of its span length to its height is, respectively, 

smaller than 2, between 2 and 5, and greater than 5. Therefore, this raises the question that 

what value should be assigned to this ratio so that the above constraints are met? In this case 

and for a better comparison, the thickness of the coupled shear wall was considered 0.3 m 

for all situations. 

As illustrated in the diagram of Fig. 8, in order to take advantage of the total capacity of 

the coupled shear wall, its weight should be minimized and 67% percentage of the external 
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moment should be carried by the coupling beam. To this end, the ratio of span length to the 

optimal height of the coupling beam should be greater than 5, meaning that it should act as a 

bending beam. This is obviously demonstrated in the previous tables. The weight of the wall 

begins to decrease as the length of the coupling beam is reduced in a frame span with a fixed 

length. 

 
 

Figure 8. Diagram of values of 𝐾2 with respect to different ratios of the optimal length of the 

coupling beam to its optimal height. 

 

 

5. CONCLUSION 
 

A new meta-heuristic algorithm was introduced which is considered as one of the best 

optimization techniques. The method avoids solving complex mathematical equations and 

merely uses a randomized procedure to generate optimal solutions for a problem. In this 

method, the problem is solved in an optimized manner through defining objective functions 

and design constraints which act as penalty functions. These methods are capable of 

achieving acceptable solutions in a short time by repeating a set of limited optimization 

operations. In fact, the convergence rate in this algorithm is higher than the other 

optimization methods which are all based on solving complex mathematical equations. The 
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IBB-BC obtains considerably good results since in structural optimization, a number of local 

solutions exist in the neighborhood of the optimal solution. Therefore, the probability of 

finding a good optimum is increased by additional searches in the vicinity of the local 

optimum. This algorithm conducts an extra search around the local optimum and, therefore, 

has a good chance of obtaining a good solution in a few number of iterations. Thus, not only 

the results are improved by increasing the exploitation power through of applying the 

pheromone guiding mechanism to update the particle positions, but also the magnitude of 

standard deviation is decreased. As well as the present method employs two factors, namely 

the random search and the selected information from the search space during the 

optimization process. The former factor dominates the latter in the initial iterations. 

However, as the number of iteration increases, the strength of factor of selected information 

gradually increases and takes over the factor of a random search. In IHBB-BC, the ACO 

stage acts as a supporting rule to increase the speed of applying the factor of selected 

information, subsequently causing a rapid increase in the convergence rate. Moreover, this 

prevents particles from violating the specific constraints of the problem and creating 

decreased exploration. This problem can also be tackled by the HS algorithm. Coupled shear 

walls are widely used in high-rise buildings as they are very rigid and allow preparation of 

appropriate spaces for implementation of elevators and stairways. Therefore, it of utmost 

importance to optimize the weight of this structural resistive system. As the results 

indicated, in case the length of the coupling beam is greater than five-fold of its height, i.e., 

the beam is highly rigid, it acts as a bending beam, and the entire capacity of the wall and 

the coupling beam can employ to resist external moments. Finally, as reported by previous 

studies, the optimal length of a coupling beam should be smaller than one-third of the story 

height so that its entire capacity can be utilized and simultaneously its weight could be 

optimized. 
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