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ABSTRACT 
 

Presently, the introduction of intelligent models to optimize structural problems has become 

an important issue in civil engineering and almost all other fields of engineering. 

Optimization models in artificial intelligence have enabled us to provide powerful and 

practical solutions to structural optimization problems. In this study, a novel method for 

optimizing structures as well as solving structure-related problems is presented. The main 

purpose of this paper is to present an algorithm that addresses the major drawbacks of 

commonly-used algorithms including the Grey Wolf Optimization Algorithm (GWO), the 

Gravitational Search Algorithm (GSA), and the Particle Swarm Optimization Algorithm 

(PSO), and at the same time benefits from a high convergence rate. Also, another advantage 

of the proposed CGPGC algorithm is its considerable flexibility to solve a variety of 

optimization problems. To this end, we were inspired by the GSA law of gravity, the GWO's 

top three search factors, the PSO algorithm in calculating speed, and the cellular machine 

theory in the realm of population segmentation. The use of cellular neighborhood reduces 

the likelihood of getting caught in the local optimal trap and increases the rate of 

convergence to the global optimal point. Achieving reasonable results in mathematical 

functions (CEC 2005) and spatial structures (with a large number of variables) in 

comparison with those from GWO, GSA, PSO, and some other common heuristic 

algorithms shows an enhancement in the performance of the introduced method compared to 

the other ones. 
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1. INTRODUCTION 
 

Nowadays, with the advancement of engineering science, especially computer science and 

software, researchers and engineers are searching for fast, economical and at the same time, 

workable solutions with high efficiency for their products and structures. In modern times, 

optimization has been able to greatly help researchers and meet their needs [1]. The goal of 

optimization is to find a quick, short, and efficient way to achieve the best results. As 

mentioned, today optimization plays an important role in meeting human needs, especially 

its widespread use in civil engineering and, above all, in construction. The purpose of 

structural optimization is to minimize the weight of the structure and reduce costs. To 

minimize the weight of the structure, its cross-sectional area should be reduced. However, it 

is clear that the cross-section can be reduced to the extent that, firstly, the applied stress to 

the structure does not exceed the allowable stress, and, secondly, the displacement in the 

nodes of the structure does not exceed the allowable displacement. Optimization methods 

can be divided into two general categories: mathematical and meta-heuristic methods. 

Mathematical methods have a high convergence rate and accuracy. However, due to the use 

of gradient information and the complexity of their relationships, they need a suitable 

starting point. Plus, these methods require a lot of storage space; therefore, researchers are 

looking for ways to address these disadvantages [2]. 
Inspired by nature and its governing laws, which have always been a good teacher to 

mankind, researchers, in recent years, have introduced new methods, called meta-

exploratory methods, in order to overcome the drawbacks of mathematical methods. Unlike 

these methods, meta-heuristic algorithms enable us to find the best general solution without 

the use of objective function derivatives and the need for a suitable initial value, with less 

complex formulas. Even though the answer of these methods cannot be considered the best 

absolute solution to the problem, satisfactory results can be obtained with a simpler process 

and a more computationally efficient approach compared to mathematical methods [3].  

The optimization algorithms have also been widely used in a variety of civil and 

structural engineering applications. Among the researches conducted in the field of 

structural optimization, Shojaee and Darvishi [1] optimized the size and geometry of truss 

structures using the DNA calculation method and GCA generalized convex approximation 

method. In another study, Kaveh and Talatahari [4], Kaveh and Malakoutirad [5] and 

Shojaee et al. [6] performed optimization of truss structures by using the proposed hybrid 

method. The optimization of the size and geometry of truss structure using a new proposed 

method of combining optimized discrete particle swarm optimization (IDPSO) and 

asymmetric motion method (MMA) was conducted by Shojaee et al. [6]. Chaotic enhanced 

colliding bodies algorithms for size optimization of truss structures by Kaveh et al. [7] 

optimized the size of truss structures using a new proposed method (ECBO). Salajegheh et 

al. [8] used a combined method of particle swarm optimization (PSO) and gravitational 

search algorithm (GSA) by the first-order gradient method and a new optimization algorithm 

as GPSG for optimal design of structures by considering the frequency constraint. A hybrid 

algorithm based on the PSO particle swarm optimizer and cultural algorithm (CA) (PSOC) 

was used by Salajegheh et al. [9] for the optimal design of truss structures. Sizing and layout 

optimization of truss structures with artificial bee colony algorithm by Jawad et al. [10] used 
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a swarm intelligence-based optimization method called the Bee Colony Algorithm (ABC) to 

carry out truss structures optimization. The aim was to optimize the geometry and size of 

truss structure members with limited displacement, stress, and buckling. The convolution 

neural network (CNN) models have also been used in optimal shear wall design in terms of 

geometry and topology by Pizarro et al. [11].  

In the light of the previous studies, the main purpose of this paper is to present an 

algorithm that addresses the major drawbacks of the commonly-used algorithms including 

the Grey Wolf Optimization Algorithm (GWO), the Gravitational Search Algorithm (GSA), 

and the Particle Swarm Optimization Algorithm (PSO) and at the same time, benefits from a 

high convergence rate. The suggested method has high control on exploration and 

exploitation compared to PSO, GWO, and GSA. To this end, we drew the inspiration from 

the GSA Gravity Law feature, the top three GWO search factors, the PSO algorithm to 

calculate speed, and cell neighborhood to divide the population into smaller parts; the use of 

which has increased the rate of convergence in the method to the global optimal point. In 

this study, the proposed CGPGC algorithm is carefully examined and new insights are 

presented. The examples that are discussed here are divided into two types of benchmark 

functions (CEC2005) and optimal design of truss structures.  

This paper is organized as follows: The typical PSO, GWO, GSA methods, and cellular 

automation theory are briefly presented in Section 2 and the fundamentals and basic ideas of 

the proposed method are reviewed in this section. In Section 3, the optimization problem of 

two types of benchmark functions (CEC2005) and optimal design of truss structures are 

generally discussed. The efficiency of the proposed method is confirmed through numerical 

examples provided in Section 4. Finally, the conclusions of this research are summarized in 

Section 5.   

 

 

2. BASIC IDEAS 
 

The CGPGC method is based on the hybridization of the PSO, GSA, cellular automation 

theory, and GWO methods. A unique attractive feature of the proposed method is that it uses 

smaller components called cell neighborhoods, instead of using the entire population for 

updates. Calculating the force on particles, using a cell neighborhood, increases the 

likelihood of searching for new points, reduces convergence to a local optimum, and also 

increases the overall convergence rate. Another unique attractive feature of the proposed 

method is the fact that the stable scheme is frequently used with limits adjusting any 

parameter and the method is highly capable of making a balance between exploration and 

exploitation. Achieving reasonable results in mathematical functions (CEC 2005) and Large-

scale space structures with a high number of variables compared to the PSO, GSA, and 

GWO methods and some other known metaheuristic algorithms indicates an improvement in 

the performance of the method compared to other methods. In order to make the paper self-

explanatory, prior to proposing the CGPGC optimization method, the characteristics of the 

PSO, GSA, cellular automation theory, and GWO methods are briefly explained in the 

following four sections.  
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2.1 Introduction to PSO 

The basic steps of particle swarm optimization (PSO) are outlined here. PSO is an algorithm 

with a memory such that an individual’s properties are simulated with a particle. These 

particles are referred to as swarm. Each particle of the swarm represents a potential solution 

of the optimization problem. The i-th particle in t-th iteration is associated with a position 

vector, t

iX , and a velocity vector, t

iV , shown as the following: 

 

{ , ,..., }
1 2

{ , ,..., }
1 2

t t t t
X x x xi i Di i

t t t t
V v v vi i Di i




 (1) 

 

The initial particles are randomly generated from the uniform distribution. The steps of 

the PSO algorithm are then applied separately to the initial population, and the velocity and 

position of the particles are updated according to Eqs. (2) and (3).  

 

1 1 ( - ) ( - )
2 2

1t t t t t t t
V w V c r pbest X c r gbest Xi i i i i


    (2) 

1 1t t t
X X Vi i i

 
   (3) 

 

where 1r  and 2r  are two uniform random sequences generated from the interval [0, 1]; c1 and 

c2 are the cognitive and social scaling parameters, respectively and 
t  is the inertia weight 

that controls the influence of the previous velocity. At each step, the velocity and position 

are checked to ensure if their parameters are within the predefined limits. The next step is to 

determine and update the global best position (gbest) and personal best position (pbest). At 

this step, a new population will be created provided that the termination criteria of the PSO 

algorithm are satisfied; otherwise, updating the velocity and position of particles will 

continue.  

The [10], proposed that the cognitive and social scaling parameters c1 and c2 should be 

selected as c1=c2=2 to allow the product c1r1 or c2r2 to have a mean of 1. The performance of 

PSO is very sensitive to the inertia weight )( parameter, which may decrease with the 

number of iterations as follows: 

 

max min .max
max

t
t

 
 


   (4) 

 

where max  and min  are the maximum and minimum values of ω , respectively; and tmax is 

the maximum number of optimization iteration.  

One of the advantages of this algorithm is its memory, which means that in each step, the 

information of the previous steps is stored. Compared to the other evolutionary algorithms 

based on heuristics, the weaknesses of this algorithm consist of adjusting and implementing 
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parameters and difficulties to control the balance between exploration and exploitation. In 

the exploitation phase, the PSO algorithm may end up in premature convergence and in the 

exploration case, there is a chance to face time delay during the convergence when searching 

for an optimum. It can be anticipated that the algorithm may perform well in one specific 

problem but may not perform at all in a slightly varied one. In addition, in the process of 

using the algorithm, different strength levels of social and cognitive behavior would 

potentially have an influence on the success model used as well. In other words, the access 

to get a better answer would be justifiable in, for instance, unimodal problems because there 

is more likelihood to find better solutions, whereas in multimodal problems, the same access 

of individual particles is contractionary. Accordingly, the parameters used to control the 

behavior of the algorithm would strongly depend on the type of the problem surface and the 

actual situation the algorithm is facing in an iteration. 

 

2.2 Introduction to GSA 

The gravity search algorithm (GSA) contains a set of particles randomly assigned in the 

design space and updated over time [13]. The steps for the GS algorithm are summarized 

as follows:  

Step1. The position of each particle is defined as Eq. (5). In summary, the 

acceleration vector of the i-th particle in iteration  can be specified as [13]: 

 

( )

( ) ( )
( )1

M tn jt t t
a G t rand X X
i j j iR tj ij


 



 
 
 
 

 (5) 

 

where,  is the gravitational constant.  represents the mass of the j-th particle and can be 

evaluated according to the objective functions of the particles [13].  is the distance 

between the particles i and j. randj is a random scalar with uniform distribution in the 

interval of zero and one and  is a small number to prevent numerical errors. The 

gravitational constant  is defined as [13]:  

 

0
( )

t

TG t G e



   
(6) 

 

where the parameters  and  are two constant coefficients.  represents the current 

iteration and  is the maximum number of iterations. The updated mass of the particles is 

evaluated by Eq. (7) and normalized according to Eq. (8); 

 

( ) ( )

( )
( ) ( )

F t worst t
im t

i best t worst t






 (7) 
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1

( )

( )
( )NP

j

m t
iM t

i m t
j


  

(8) 

 

in which, 

 

( ) min ( ) 1:best t F t for i NPi   (9) 

( ) max ( ) 1:worst t F t for i NPi 
 

(10) 

 

and the fitness value (objective function) of the i-th particles is evaluated as Fi (t) at time 

t.  

Step 2. The updated gravitational velocity vector is calculated using Eq. (11), 

 
1t t t

V rand V ai i i i


  (11) 

 

Step 3. The position of the particles is updated according to Eq. (12), 

 

( 1) ( ) ( 1)
t t t

x t x t v t
i i i

     (12) 

 

Similar to the PSO algorithm, there are two major issues associated with the search 

performance of GSA. In the exploitation phase, the GSA may end up in premature 

convergence due to rapid reduction in diversity. As well as that, more ineffective iterations 

are needed to get a more accurate estimation of the local optima. In addition, it is difficult to 

have a good balance between exploration and exploitation, so the parameters used to control 

the behavior of the algorithm would strongly depend on the type of the problem surface and 

the actual situation the algorithm is facing in an iteration. 

 

2.3 Introduction to GWO 

The Grey Wolf Optimizer (GWO), which was introduced by Mirjalili et al. [14], is a 

population-based algorithm inspired by the social and hierarchical behavior of wolves in the 

hunting mechanism. In this algorithm, four types of grey wolves, including alpha, beta, 

delta, and omega, are considered to simulate the hierarchy of leadership. These four wolf 

groups take three main steps: observing and pursuing the prey, approaching and encircling it 

and ultimately, hunting attacks. The simplicity and broad ability of solving large-scale 

problems are two outstanding features of this algorithm. 
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Figure 1. The social hierarchy of a pack of grey wolves 

 

One of the most impressive aspects of the wolves’ social life is their hierarchy structure 

at group hunting. The Grey Wolf Optimizer (GWO) [14] is inspired by the leadership 

hierarchy and hunting behavior of wolves. Social hierarchy, tracking (exploration), 

encircling, and attacking (exploitation) are the main four sections of the GWO algorithm. 

Herein, all wolves are categorized as alpha (α), beta (β), delta (δ), and omega (ω), which 

respectively represent the first, second, third, and other remaining candidate solutions. The 

status of each of them in the hierarchy are illustrated in Fig. 1. Assuming that alpha, beta, 

and delta have better knowledge about the potential location of the prey and the other 

wolves follow them, the following equations show the updated position of each wolf at (t + 

1)-th iteration: 

 

( ) ( ) .( )
1 1

t t a
 X X A D  (13) 

2 2
( ) ( ) .( )t t

 
 X X A D

 
(14) 

( ) ( ) .( )
3 3

t t  X X A D
 

(15) 

22. . 1,2,3t i i  A a r a
 

(16) 

 

where Xtα, Xtβ, and Xtδ are the positions of the best three solutions. Ai is a random vector in 

the interval [−2a, 2a], where a is linearly decreased from 2 to 0 over the cycles of 

optimization. The D vectors mathematically simulate the encircling behavior through the 

following equations:  

 

    2 3( 1)
3

t
 

 
X X X

X
1  (17) 

. ( ) ( )
1

t t
  D C X X

 
(18) 

. ( ) ( )
3

t t  D C X X
 

(19) 

. ( ) ( )
2

t t  D C X X
 

(20) 

1, 2, 32.
1 1

i
i

C r
 (21) 

 

By mimicking the social leadership and hunting behavior of grey wolves in nature, GWO 

performs the search in a problem’s landscape with a distinct characteristic of balancing 
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exploration and exploitation, and has shown very competitive results compared to the other 

well-known meta-heuristic algorithms. Nevertheless, compared to some state-of-the-art 

optimization algorithms, GWO is usually outperformed due to its oversimplified search 

dynamics. However, GWO has poor exploration capability and suffers from local optima 

stagnation. Furthermore, due to its imperfect search structure and possible risk of being 

trapped in local optima, its application has been limited. 

 

2.4 Theory of cellular automation (CA) 

The theory of cellular automation was first introduced in 1950 by Wolfram, Ulam and 

Von Neumann  ([15-17]), who initially sought to obtain a graphical network with simple 

rules. Cellular automation is a dynamic system that is discrete in time and space and 

benefits from good convergence. The use of the cell automation method requires the 

definition of parts called cells, which form a cellular network together, describing the 

problem, in which each cell has properties called cell state. Different parameters can be 

introduced for cell states. These simple rules, which are applied to find the new state of 

each cell, are called transfer laws or local laws. Neighborhood is another major 

component of the cellular automation method, and the number of cells participating in 

the definition of local laws is called the neighborhood number [17]. Adjacent cells of 

each cell that interact with each other are called cell neighborhoods. A neighboring cell 

affects itself at each stage according to local laws [18] (Fig. 1). Fig. 2 shows the general 

process of the cellular method. In the cellular automata method, cells are defined as 

neighborhoods whose central cell state affects their cellular state in the next time step 

(Moore's neighborhood is used in this study (Fig. 2)). Therefore, a different arrangement 

for the neighborhood type of cells can be achieved [19]. Fig. 3 shows two models of 

standard neighborhoods proposed in different articles for 2D cellular network. In Van 

Neumann's neighborhood, each cell will be considered as a neighborhood with the other 

four cells around it in four main directions. In Moore's neighborhood, each cell, in 

addition to the four main directions, will also be associated with cells in its sub-

directions. It forms this neighborhood with a total of 8 cells around it. 

 

 
Figure 2. How the cellular method works [16] 
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Figure 3. How the cells are selected 

 

 

 

a) Vennie Neighborhood     b) Moore Neighborhood 

Figure 4. Types of Standard Neighborhoods 

 

 
Figure 5. Neighborhood selection based on the selected cell 

 
For a better explanation of the neighborhood, we can refer to Fig. 5, in which the 

neighboring cells show a desired cell, with the selected cell in the middle or corner of the 

cellular automation network. Fig. 3 shows how a neighborhood is selected, and in Fig. 5, the 

selected cell is shown in black and its neighborhood is shown in grey. 

 
2.5 The fundamentals of CGPGC 

In this section, we combine the three methods of GSA, PSO, and GWO with the theory of 

cellular automation. The purpose of combining these methods is to provide an efficient 

method that has a high rate of convergence to the global optimal point and does not fall into 

the optimal local trap. Different algorithms have their own strengths and weaknesses, so to 

achieve better results, it is necessary to combine algorithms or use computational solutions. 

Therefore, in order to increase the efficiency of the mentioned algorithms, the GSA algorithm 

has been used as the basic method and the strengths of the PSO and GWO algorithms have 

been taken advantage of on the side. As well as that, the theory of cellular automation has been 

used. The GSA algorithm is known as an algorithm based on collective intelligence, which 

seeks the optimal response in a vector and multidimensional space. In this algorithm, particles 
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make systematic and classic movements in their gravitational field in proportion to their mass, 

and the force that the particles exert on each other acts as a communication signal and 

determines the position of each particle. Thus, the particles make their next move in the search 

space intelligently. In this algorithm, for each mass, one considers an active gravitational 

mass, which measures the intensity of the gravitational force around an object, as well as a 

passive gravitational mass, which is a measure of the intensity of the force interacting. This 

work creates a parameter-less structure variant, which means it is virtually independent of the 

underlying examined problem type. To this end, we drew inspiration from the GSA gravity 

law feature, accompanied by the top three GWO search factors, the PSO algorithm to calculate 

speed, and also the theory of cellular automation.   

In order to calculate Fij
d (t), which represents the force applied from mass i to mass j at 

time t and dimension d, one can employ:  

 

( ) ( )
( ) ( ) ( ( ) ( ))

( )

M t M tpi ajd d d
F t G t x t x tij j iRpower

R tij 


 


 (22) 

 

In this relation and at time t, Rpower is a fixed number, which is equal to 0.1, and 𝜀 is a 

very small number, G(t) is the constant of gravity, Mpi(t) is the passive gravitational mass i 

and Maj(t) is the active gravitational mass j and finally, Rij is the Euclidean distance between 

the two masses of the GSA algorithm, which is known as an algorithm based on collective 

intelligence and seeks the optimal response in a vector and multidimensional space.  

 

( ) ( ) . ( )
2

R t x t x tij i j  (23) 

 

The coefficient G(t) can be written as follows: 

 

max
( ) ln( )




iter

iter
G t  (24) 

 

In this regard, iter represents the current number of iteration and max-iter represents the 

maximum number of iterations. Using this coefficient means that there is no need to adjust 

the constant coefficients required in the formula G(t) of the GSA algorithm, which adds 

another advantage to the proposed algorithm. Therefore, in order to calculate all of the 

forces acting on the mass i at time t and at dimension d, and considering a random 

coefficient in the interval [0,1], we can write: 

 

( ) ( )1
d dN

F t rand F ti j ijj    (25) 

 

However, in order to improve the discovery power of the algorithm, only the set 

containing top members is allowed to influence other members. 
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( ) ( ),
d d

F t rand F tjj nbest j ii ij     (26) 

 

in which, nbest is calculated according to the following equation: 

 

(2 (1 )*( 2)) /100nbest np iter max iter Cp      (27) 

 

in which, Cp is a fixed number and np is the number of particles. Once this step is taken, 

the acceleration of objects in dimension d can be determined. According to the Newton's 

second law, the acceleration of any object is equal to: 

( )
( )

( )

d
F td ia ti
M tii

  (28) 

 

In this case, Mii (t) is the inertial mass of the i-th particle. It should be noted that 

stochastic coefficients are used in thet relations to maintain the random nature of particle 

motion in the search space. The following equations are used to calculate the objects in this 

algorithm:  

 

( ) ( ) ( ) ( ) , 1, 2, ...,M t M t M t M t i Nii pi ai i     (29) 

( ) ( )
( )

( ) ( )

value t worst tim ti
best t worst t




  
(30) 

( )
( )

( )1

m tiM ti N
m tjj


   

(31) 

 

in which, valuei (t) indicates the suitability of the particle i at time t, and also best(t) and 

worst(t) indicate the suitability of the best and worst particles among the particle set. Given 

that the selection of best(t) and worst(t) is performed based on the objective function of the 

whole population, the theory of cellular automation has been used to improve the process, and 

results in increasing the rate of convergence, and also not falling into the optimal local trap. In 

the proposed method, Moore's neighborhood (Figs. 4 and 5) is used and the best and worst 

values are calculated by comparing the objective function of each cell (particle) and its eight 

neighboring cells. The quasi-mass calculation code based on the cellular method is as follows: 

 

Pseudocode 1 calculates the objects by the cellular method 

Placing particles in a square cellular network 

Calling neighboring particles of the desired particle from the cellular network 

Choosing the best and worst in the cellular neighborhood 

Calculate cell mass based on the best and worst cells 

 

According to the above-mentioned points, in order to increase the efficiency of the 
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algorithm, the velocity is calculated in three steps, which are inspired by the third step of the 

PSO algorithm. In the first step, the velocity is calculated from the sum of velocities in the 

previous step and the force of gravity according to the following equation: 

 

( 1) ( ) ( )
d

v t rand v t a ti i i     (32) 

 

and then, using the velocity calculated in the first step, the velocity in the second step is 

updated according to the following equation: 

 

( 1) ( ) ( ) (2 ) ( )
d

v t rand v t C a t C x x tii ik k mean gbest
        


 (33) 

 

The coefficient Ck is calculated by the following equation: 

 

2 0.25 log
ncn

C
k t
    (34) 

 

Also, the initial value of ncn is considered equal to 1 and is added to the initial population 

at any time. In the final step, using the velocity calculated in the previous step, while 

employing the PSO method, we have: 

 

( 1) ( ) ( ( )) ( ( ))
1 1 2 2IGSA GSA

d d d d d d
V t V t C x x t C x x ti i i ipbest gbesti

             (35) 

 

in which, 1
 and 2  are random variables in the range [0,1] and C1 and C2 are fixed 

coefficients. In addition, since the GWO algorithm considers the effect of top 3 particles to 

find the best solution, xd
mean-gbest is used instead of xd

gbest in the PSO formula, so as to be used 

in the proposed algorithm for the velocity. 

 

( ) / 3
d d d d

X X X X
mean gbest alpha beta delta

  
  

(36) 

 

where, xd
alpha, xd

beta and xd
delta represent the position of the top 3 particles in the algorithm. To 

calculate the new position of each particle, it is possible to write the sum of the calculated 

values using vector summation. 

 

( 1) ( ) ( 1)
d d d

x t x t v ti i i     (37) 

 

To remove the worst particle and replace it with a new or an improved one, it is 

necessary to generate a random value after identifying the worst mass called the gamma 

particle. If the random value generated is less than a computational value dependent on the 

current iteration and the maximum number of iterations, the gamma particle value is 
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replaced with a new value. Otherwise, it is replaced with the average xd
alpha, xd

beta and xd
delta 

particles. The pseudocode of the deletion process is as follows: 

 

 
Figure 6. The flowchart of the CGPGC algorithm 
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Pseudocode 2 calculates the worst elimination method (worst elimination) 

Create a random number 

If (maximum iteration) / (iteration number – 1) > random number then 

Create new position for particle = gamma 

Otherwise 

(xd
alpha + xd

beta + xd
delta) / 3 = gamma 

End 

 

 

3. PROBLEM FORMULATION 
 

The examples, which are discussed here, are divided into two types of benchmark functions 

(CEC2005) and optimal design of truss structures. These problems have been chosen to 

demonstrate the reliability and capability of the presented method. 
 

3.1 Benchmark functions: CEC2005 

To evaluate the performance of the proposed method in a more systematic manner, 

numerous examples of unconstrained problems of mathematical unimodal, multimodal, 

expanded and hybrid composition functions of CEC2005 are cited [20]. 

These functions play an important role in the development of the proposed search 

algorithms as well as in the assessment of algorithmic ideas. In this evaluation, the 

efficiency of the proposed method is confirmed by specifying a common termination 

criterion, size and scalability of problems, initialization scheme and linkages. To show the 

behavior of these functions, some sketches of them are demonstrated in figs. 2, 3 and 4. An 

unconstrained optimization problem can be formulated in the following form: 

 

Minimize      ( )

{ , ,..., ,..., }
1 2

f X

d
X x x x x Rnj 

 (38) 

 

where f(X) represents the objective function and n is the number of variables. A given set of 

values is expressed by Rd, where the design variables xj can take values only from this set. 
 

3.2 Optimal design of truss structures 

A structural optimization problem can be formulated in the following form: 

 
Minimize      ( )

Subject to ( ) 0 1 2

{ , ,..., ,..., }
1 2

f X

g X i , ,...,mi

d
X x x x x ÎRnj

 



 
(39) 
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where, g(X) is the behavioral constraint and m is the number of constraints. In size 

optimization problems, the main aim is usually to minimize the weight of the truss structures 

under design constraints. The design variables are chosen to be the cross-section areas of the 

elements, which are usually selected from a set of discrete values. Therefore, the 

optimization problem can be reformulated in the following form: 

 

Minimize (X) ( )
1

( )
Subject to 1 0 1,2,...,

( )
1 0 1,2,...,

{ , ,..., }
1 2

Ne
f W A Li i i i

i

Ai ig i NeS i
all

Aj i
g j NnDi

all

A A Ae e pi e e







  


   


   



 

A

A A

 
(40) 

 

where W is the structural weight, ii A, and iL  represent the material density, cross-section  

area and length of the i-th element, respectively, i  and all  are the stress in the i-th 

element and the allowable axial stress, 
j  and all  denote the displacement of the j-th node 

and the allowable displacement, Ne and Nn stand for the number of elements and nodes in the 

structure, and finally, Ae is the available profile list. A number of constraint-handling 

techniques have been proposed to solve constrained optimization problems. In this study, the 

penalty function is used to deal with the constrained search spaces as: 

 

 
( )

( ) max( (X),0.0)

d
f X if X R

f X
f X g otherwiseii




 





 (41) 

 

in which, )(Xf s
 is a modified function. In addition, Rd denotes the feasible search space. 

 

 

4. NUMERICAL PROBLEMS 
 

In this research, the proposed method is applied in 10 well-known CEC_2005 benchmark 

functions [20] to test the exploration, exploitation, local optima trap avoidance, and 

convergence properties. Furthermore, the new method has been used to minimize the weight 

of large-scale structures with a high number of variables of 942 members and 72 members in 

two cases considered as real-life engineering applications. All of the computations have 
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been performed using the MATLAB software in the Microsoft Windows 10 environment 

using common configurations. The stiffness method is applied to analyze the structures. The 

results of the new method are compared with those of different references. The tuning 

parameters of the new algorithm are summarized in Table 1. 

 
Table 1: The CGPGC algorithm parameters 

Parameter Description Value 

R power power of R coefficient 0.1 

W initial weight 0.9 

C1 , C2 learning coefficient 2 

Number of Runs _ 20 

Iteration _ 100, 500 

Number of Variables _ 10, 30 

Number of Particles 
_ 

 
25 

Number of Analyses 

Cp 

Iteration × Number of Particle 

Constant value 

2500, 12500 

100 

 

4.1 Benchmark functions: CEC2005 

In order to show the efficiency and robustness of the proposed method, it has been tested on 

9 CEC_2005 benchmark functions shown in Table 2. The search bound denotes the upper 

and lower bounds of the search space and the minimum answer is the best optimal answer. 

According to the CEC_2005 functions' characteristics, they are divided into 4 types, which 

are U: Unimodal, BM: Basic Multimodal, EM:  Expanded Multimodal, and HCM: Hybrid 

Composition Multimodal. 

 
Table 2: Information about CEC functions [18] 

Function Type 
Initialization 

Range 

Search 

Bound 

Minimum 

Answer 

C1: Shifted Sphere Function U [-100,100] [-100,100] -450 

C5: Schwefel's Problem 2.6 with Global 

Optimum on Bounds 
U [-100,100] [-100,100] -310 

C6: Shifted Rosenbrock's Function BM [-100,100] [-100,100] 390 

C8: Shifted Rotated Ackley's Function 

with Global Optimum on Bounds 
BM [-32,32] [-32,32] -140 

C11: Shifted Rotated Weierstrass 

Function 
BM [-0.5,0.5] [-0.5,0.5] 90 

C13: Expanded Extended Griewank's 

plus Rosenbrock's Function 

(CEC8CEC2) 

EM [-3,1] [-3,1] -130 

C14: Shifted Rotated Expanded Scaffer's 

CEC6 
EM [-100,100] [-100,100] -300 
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C16: Rotated Hybrid Composition 

Function 
HCM [-5,5] [-5,5] 120 

C17: Rotated Hybrid Composition 

Function with Noise in Fitness 
HCM [-5,5] [-5,5] 120 

C25: Rotated Hybrid Composition 

Function without Bounds 
HCM [-2,5] [-5,5] 260 

 

Due to the randomness of the metaheuristic methods, each of these functions was run 20 

times independently with a variable number of 10 and 30 with an iteration number of 100 

and 500. The results obtained are the values of average, median, best solution, average 

iteration, average time, standard deviation, and violation, which are given in Table 3. The 

results of studying the performance of CGPGC algorithm in 2005 standard functions showed 

that this algorithm performs very well in solving these problems. According to the results of 

Table 3, this algorithm has a powerful performance in solving these functions in 92% of the 

cases, which is shown in Figs. (7-13).  
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Table 3: CEC 2005 Results 

  
D = 10 & T = 100 D = 30 & T = 100 D = 30 & T = 500 

 
Answer CGPGC PSO GWO GSA CGPGC PSO GWO GSA CGPGC PSO GWO GSA 

CEC1 

Average 0.036 5504.63 1410.795 29624.489 209.675 44881.102 43240.154 94863.487 2.0631e-05 46734.113 23683.789 51930.193 

Median 0.036 5504.613 1410.795 29624.489 209.675 44881.102 43240.154 94863.487 9.0528e-06 43749.807 22052.025 48316.120 

Best 0.017 3687.172 1198.790 27945.023 192.736 22912.039 34678.503 78285.778 1.0012e-06 11248.407 9497.558 38766.569 

Avg itera 100 100 99.5 26.5 99 100 98 14 500 134.9 498.15 138.25 

Avg time 0.930 0.077 0.101 0.068 0.882 0.087 0.099 0.058 3.436 0.210 0.323 0.338 

std 0.027 2570.250 299.820 2375.123 23.956 31068.947 12108.003 23444.421 3.1601e-05 19956.291 8068.587 10731.614 

Violation 450.017 4137.172 2072.801 31753.955 642.736 23362.039 52251.805 111891.197 450 52477.099 28225.822 44778.662 

CEC5 

Average 22.555 12459.963 7190.737 17865.686 8191.240 31801.768 24825.995 60695.107 4543.813 29975.131 19040.839 35605.57 

Median 22.555 12459.963 7190.737 17865.686 8191.240 31801.768 24825.995 60695.107 4273.878 29655.829 19813.351 33795.141 

Best 8.417 9865.571 4410.343 17299.103 5856.475 25858.112 22794.991 55865.429 2722.142 
13259.188

1 
12117.287 27240.375 

Avg iter 99 100 98.5 18 96 100 97 4 494.15 228.45 497.7 120.15 

Avg time 1.146 0.123 0.153 0.083 1.125 0.129 0.177 0.070 3.705 0.300 0.544 0.355 

std 19.993 3669.024 3932.070 801.270 3301.856 8405.599 2872.274 6830.196 1443.460 7955.253 3636.261 6120.747 

Violation 346.693 10175.571 4720.343 17609.103 6166.475 26168.112 27167.000 56175.429 6503.088 27038.036 17182.387 40207.534 

CEC6 

Average 15.632 79504363.574 
1169125577

.583 

4690992688

.765 

3219433.3

08 

10267158342

0.524 

18813926877

.987 

96143990639

.40 
5321.185 

372982737

36.321 

5117057749.

999 

25256049988.

193 

Median 15.632 79504363.574 
1169125577

.583 

4690992688

.765 

3219433.3

08 

10267158342

0.524 

18813926877

.987 

96143990639

.402 
2632.466 

336128081

60.013 

4925264829.

654 

21727029408.

908 

Best 10.306 1431454.799 
6980884.20

6 

2942831561

.711 

2350380.2

49 

24402383810.

560 

15280457996

.53 

91875141882

.521 
23.5939 

791113020

9.636 

410154478.7

926 

7231428892.2

767 

Avg iter 99 100 99 27 100 3 97 63.5 499.1 147.55 497.3 142.35 

Avg time 1.041 0.081 0.098 0.075 0.676 0.058 0.089 0.056 3.0572 0.24796 0.28362 0.29479 

std 7.532 110411766.443 
1643520786

.813 

2472273175

.092 

1229026.6

2 

11068936360

4.498 

4997079614,

380 

6037063807,

699 
5639.382 

280461081

01,5731 

2967043878,

153 

16795413847,

806 

Violation 369.041 1431064.799 
6980494.20

6 

6439153425

.819 

4088096.3

67 

24402383420,

560 

22347395369

.444 

91875141492

.521 
307.855 

933228407

3.852 

8140978081,

529 

62021539383,

929 
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   D = 10 & T = 100   D = 30 & T = 100   D = 30 & T = 500  

 Answer CGPGC PSO GWO GSA CGPGC PSO GWO GSA CGPGC PSO GWO GSA 

CEC8 

Average 20.464 20.884 20.631 20.965 21.204 21.252 21.238 21.247 21.068 21.153 21.178 21.208 

Median 20.464 20.884 20.631 20.965 21.204 21.252 21.238 21.247 21.065 21.173 21.186 21.206 

Best 20.383 20.797 20.626 20.957 21.176 21.238 21.214 21.229 20.926 20.890 20.954 20.980 

Avg iter 49.5 15 38 13 34 94 30 7 80.3 28.7 56.45 23 

Avg time 0.800 0.089 0.094 0.075 0.767 0.073 0.123 0.052 4.075 0.267 0.328 0.284 

std 0.113 0.123 0.006 0.010 0.039 0.019 0.033 0.025 0.061 0.078 0.071 0.091 

Violation 160.383 160.797 160.626 160.957 161.176 161.266 161.214 161.265 161.055 161.166 161.170 161.316 

CEC1

1 

Average 22.555 12459.963 7190.737 17865.686 8191.240 31801.768 24825.995 60695.107 4543.813 29975.131 19040.839 35605.57 

Median 22.555 12459.963 7190.737 17865.686 8191.240 31801.768 24825.995 60695.107 4273.878 29655.829 19813.351 33795.141 

Best 8.417 9865.571 4410.343 17299.103 5856.475 25858.112 22794.991 55865.429 2722.142 13259.1881 12117.287 27240.375 

Avg iter 99 100 98.5 18 96 100 97 4 494.15 228.45 497.7 120.15 

Avg time 1.146 0.123 0.153 0.083 1.125 0.129 0.177 0.070 3.705 0.300 0.544 0.355 

std 19.993 3669.024 3932.070 801.270 3301.856 8405.599 2872.274 6830.196 1443.460 7955.253 3636.261 6120.747 

Violation 346.693 10175.571 4720.343 17609.103 6166.475 26168.112 27167.000 56175.429 6503.088 27038.036 17182.387 40207.534 

CEC1

3 

Average 10.872 13.606 9.474 12.286 43.394 40.672 31.018 43.160 40.873 37.398 27.002 41.684 

Median 10.872 13.606 9.474 12.286 43.394 40.672 31.018 43.160 42.294 37.576 27.698 40.538 

Best 10.646 13.021 9.401 10.599 43.320 35.296 29.879 37.868 28.640 30.145 19.828 35.405 

Avg iter 82.5 71 96.5 19 43 60 99 4 84.05 300.3 497.25 89 

Avg time 0.852 0.087 0.128 0.093 1.006 0.101 0.131 0.124 5.685 0.614 0.686 0.668 

std 0.319 0.827 0.102 2.386 0.105 7.602 1.611 7.484 4.087 4.120 3.229 3.567 

Violation -78.901 -76.978 -80.598 -76.026 -46.530 -54.703 -57.842 -52.131 -46.717 -46.174 -57.686 -49.198 
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   D = 10 & T = 100   D = 30 & T = 100   D = 30 & T = 500  

 Answer CGPGC PSO GWO GSA CGPGC PSO GWO GSA CGPGC PSO GWO GSA 

CEC14 Average 4.005 4.364 4.223 4.722 14.110 14.329 13.404 14.377 13.72 13.927 13.367 14.239 

 

Median 4.005 4.364 4.223 4.722 14.110 14.329 13.404 14.377 13.763 13.889 13.399 14.276 

Best 3.834 4.098 3.938 4.655 14.091 14.316 13.314 14.339 13.320 13.357 12.521 13.608 

Avg iter 79 90 94 3 40 73 88 55.5 120.2 162.15 263.45 5.1 

Avg time 0.726 0.071 0.068 0.064 0.816 0.087 0.114 0.078 4.840 0.484 0.582 0.510 

std 0.242 0.375 0.402 0.095 0.026 0.018 0.127 0.053 0.197 0.245 0.378 0.328 

Violation 304.176 304.098 303.938 304.790 314.128 314.342 313.314 314.414 313.320 314.117 312.977 314.544 

CEC16 Average 214.613 451.717 358.880 454.712 398.844 951.520 946.079 794.069 331.158 852.430 602.297 653.225 

 

Median 214.613 451.717 358.880 454.712 398.844 951.520 946.079 794.069 310.109 831.159 600.888 658.705 

Best 195.432 234.462 327.311 344.278 362.055 880.364 811.708 764.971 203.109 424.598 242.127 389.079 

Avg iter 77 100 66.5 32 99 81 98.5 23 370.1 234.5 497.55 85.9 

Avg time 8.256 1.56 1.556 1.536 8.734 1.660 1.757 1.669 45.4887 8.5987 8.7258 8.682 

std 27.125 307.245 44.644 156.176 52.028 100.629 190.029 41.150 102.7761 256.5592 205.1345 149.6181 

Violation 113.794 114.462 207.311 224.278 242.055 902.676 691.708 703.166 108.6328 681.2848 617.5058 511.5766 

CEC25 Average 1238.54 766.005 996.900 1638.164 984.718 1570.618 1427.009 2053.230 487.254 1508.061 1331.667 1920.554 

 

Median 1238.54 766.005 996.900 1638.164 984.718 1570.618 1427.009 2053.230 233.592 1509.97 1343.708 2015.711 

Best 1179.696 448.369 654.059 1368.392 675.014 1455.701 1402.901 1994.089 224.106 1180.450 904.327 758.515 

Avg iter 74 97 35 3 99.5 98 71.5 1 175.1 373.15 154 1.15 

Avg time 7.452 1.3944 1.420 1.455 8.182 1.564 1.591 1.574 46.615 8.958 9.265 9.132 

std 83.229 449.204 484.851 381. 515 437.987 162.516 34.094 83.638 581.2636 133.8174 112.9868 302.476 

Violation 1037.40 823.640 1079.742 1647.936 1034.421 1425.534 1191.118 1852.371 12.596 1202.169 1124.437 1597.734 

Avg iter =Average iteration                  Avg time= Average time(s)                          std= Standard deviation 
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a) D = 10 & T = 100      b) D = 30 & T = 100        c) D = 30 & T = 500 

Figure 7. Iteration histories for F1 
 

 
a)   D = 10 & T = 100     b) D = 30 & T = 100      c) D = 30 & T = 500 

Figure 8. Iteration histories for F5 



F. Biabani, A. Razzazi, S. Shojaee and S. Hamzehei-Javaran 

 

300 

 
a) D = 10 & T = 100        b) D = 30 & T = 100      c) D = 30 & T = 500 

Figure 9. Iteration histories for F6 
 

 
a)  D = 10 & T = 100      b) D = 30 & T = 100       c) D = 30 & T = 500 

Figure 10. Iteration histories for F13 
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a) D = 10 & T = 100       b) D = 30 & T = 100       c) D = 30 & T = 500 

Figure 11. Iteration histories for F14 
 

 
a)  D = 10 & T = 100       b) D = 30 & T = 100       c) D = 30 & T = 500 

Figure 12. Iteration histories for F16 
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a) D = 10 & T = 100       b) D = 30 & T = 100       c) D = 30 & T = 500 

Figure 13. Iteration histories for F25 
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4.2 Optimization of truss structures 

In this section, a number of trusses are examined and analyzed to evaluate the performance 

of the CGPGC algorithm in structural problems. These examples include a 72-member truss 

with two types of loading and a 942-member space truss. Then, the results of trusses’ 

analysis using this algorithm are compared with a number of algorithms, which are given 

below.  

 
4.2.1 72-bar space truss 

The 72-member space truss structure, shown in Fig. (14), is analyzed in this example. The 

material density equals 0.1   (2767.990 ) and the modulus of elasticity is 

10000 ksi (68950.)   This space truss is subjected to the following two loading 

conditions: In the first case, Px= 5 kips , Py= 5 kips , and Pz= - 5 kips are applied to the node 

17, where the minimum cross-sectional area of each member is 0.1 in2 (0.6452 cm2), and in 

the second case, Px= 0 , Py= 0, and Pz= - 5 kips are applied to the nodes 17, 18, 19 and 20, 
where the minimum cross-sectional area of each member is 0.01 in2 (0.06452 cm2). In this 

case, the structure is symmetric about the x and y axes [23].  

 

 
Figure 14. A 72-bar space truss [19] 

 

Taking these conditions into account, the truss members are divided into 16 groups, 

which can be seen in Table (4). The members are with the stress limitations of 

 and the maximum allowable displacement of the nodes should not 

exceed  in the x and y directions. The results from the CGPGC algorithm 

and other algorithms can be seen in Tables (5) and (6). The convergence history diagram is 

also shown in Figs. (15) and (16), respectively. 
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Table 4: Elements’ groups of the 72-bar space truss [21] 

Group Number Members Group Number Members 

1 A1~A4 9 A37~A40 

2 A5~A12 10 A11~A48 

3 A13~A16 11 A49~A52 

4 A17~A18 12 A53~A54 

5 A19~A22 13 A55~A58 

6 A23~A30 14 A59~A66 

7 A31~A34 15 A67~A70 

8 A35~A36 16 A71~A72 

 
Table 5: Optimum values of the cross-sectional areas of the 72-bar truss, case 1 

Area (in2) 
DHPSACO 

[22] 

IMBA 

[25] 

EFA 

[26] 

MCOA 

[28] 
CGPGC 

A1 1.800 1.990 1.990 1.990 1.8689 

A2 0.442 0.442 0.563 0.563 0.50901 

A3 0.141 0.111 0.111 0.111 0.10021 

A4 0.111 0.111 0.111 0.111 0.10012 

A5 1.228 1.266 1.228 1.228 1.2672 

A6 0.563 0.563 0.442 0.442 0.50658 

A7 0.111 0.111 0.111 0.111 0.10004 

A8 0.111 0.111 0.111 0.111 0.10031 

A9 0.563 0.422 0.563 0.563 0.53123 

A10 0.563 0.422 0.563 0.563 0.52042 

A11 0.111 0.111 0.111 0.111 0.10003 

A12 0.250 0.111 0.111 0.111 0.10024 

A13 0.196 0.196 0.196 0.196 0.15624 

A14 0.563 0.563 0.563 0.563 0.54552 

A15 0.442 0.442 0.391 0.391 0.44161 

A16 0.563 0.602 0.563 0.563 0.55252 

Weight (lb) 390.380 389.334 389.334 389.334 379.7492 

Average 

weight(lb) 
- 389.457 390.913 389.823 380.2289 

Std - 0.84 1.161 0.840 0.45733 

Number of 

Analysis 
- 6250 3123 6250 7488 
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Table 6: Optimum values of the cross-sectional areas of the 72-bar truss, case 2 
Area (in2) Fuzzy GA [27] CGPGC 

A1 1.732 1.867 

A2 0.522 0.532 

A3 0.01 0.010 

A4 0.013 0.010 

A5 1.345 1.272 

A6 0.551 0.509 

A7 0.01 0.010 

A8 0.013 0.010 

A9 0.492 0.519 

A10 0.545 0.512 

A11 0.066 0.010 

A12 0.013 0.081 

A13 0.178 0.169 

A14 0.524 0.564 

A15 0.396 0.435 

A16 0.595 0.562 

Weight (lb) 364.40 364.051 

Avg. W (lb) - 364.962 

Std - 0.746 

Number of Analysis 14669 7488 

 

 
Figure 15. The convergence history of the 72-bar space truss, case 1 
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Figure 16. The convergence history of the 72-bar space truss, case 2 

 

4.2.2 942-bar space truss 

The 26-story space truss examined in this example contains 942 members and 244 nodes, as 

shown in Fig. (17). Due to symmetry, the space truss is divided into 59 groups. The material 

density is 0.1   and the modulus of elasticity is 1e7 psi. The area of the permissible 

sections in this example has been selected in the range of 1 to 200  [28]. The liading of 

this structure includes vertical downward loads and horizontal loads, which are given in 

Table (7). The tensile and compressive stresses of this structure is 170 Mpa (25.0 ksi) [28] . 

The results of the CGPGC and other algorithms can be seen in Table (8) and also, the 

convergence history diagram is shown in Fig. (18). 

 
Table 7: Loading details of the 942-bar space truss [28] 

 
Direction Load Value 

Displavement 

Value 

First vertical z 
13.344 KN 

(3 kips) 
- 

Second vertical z 
26.688 KN 

(6 kips) 
- 

Third vertical z 
40.032 KN 

(9 kips) 
- 

Horizontal 

at each node 

on the left side 

x 
6.672 KN 

(1.5 kips) 
- 

Horizontal 

at each node 

on the right side 

x 
4.448 KN 

(1 kips) 
- 
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Horizontal 

At each node on the 

back side 

y 
4.448 KN 

(1 kips) 
- 

Horizontal 

At each node on the 

front side 

y 
4.448 KN 

(1 kips) 
- 

First vertical x, y, z - 
0.381 m 

(15.0 in) 

 

 
Figure 17. The 942-bar space truss [28] 
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Table 8: Optimum values of the cross-sectional areas of the 942-bar space truss 

Member group Optimal cross-sectional areas 

 
ES [30] GNMS [31] CGPGC 

1 1.02 2.786 1.2636 

2 1.037 1.357 1.06019 

3 2.943 5.036 3.53655 

4 1.92 2.24 1.84504 

5 1.025 1.223 1.02016 

6 14.961 14.958 15.4152 

7 3.074 2.957 3.10758 

8 6.78 10.904 6.86835 

9 18.58 14.418 18.0247 

10 2.415 3.709 3.45962 

11 6.584 5.708 5.47809 

12 6.291 4.926 6.09398 

13 15.383 14.175 15.781 

14 2.1 1.904 2.20256 

15 6.021 2.81 4.23461 

16 1.022 1 1.01026 

17 23.099 18.807 23.0325 

18 2.889 2.615 2.67212 

19 7.96 12.533 9.06512 

20 1.008 1.131 1.08406 

21 28.548 30.512 29.1676 

22 3.349 3.346 3.42252 

23 16.144 17.045 17.0619 

24 24.822 18.079 26.4077 

25 38.401 39.272 37.0048 

26 3.787 2.606 1.36634 

27 12.32 9.83 12.8834 

28 17.036 13.113 17.059 

29 14.733 13.69 14.8719 

30 15.031 16.978 16.9973 

31 38.597 37.601 38.5 

32 3.511 3.06 3.55134 

33 2.997 5.511 3.02627 

34 3.06 1.801 2.61534 

35 1.086 1.157 1.00589 

36 1.462 1.242 1.34471 

37 59.433 62.774 58.0722 

38 3.632 3.328 3.45736 
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39 1.887 4.237 1.93195 

40 4.072 1.72 3.39306 

41 1.595 1.015 1.37232 

42 3.671 5.643 3.33084 

43 79.511 78.009 79.9039 

44 3.394 3.221 3.54972 

45 1.581 3.593 1.62271 

46 4.204 4.767 3.86949 

47 1.329 1.153 1.44632 

48 2.242 2.17 2.49582 

49 96.886 99.641 95.8963 

50 3.71 4.147 3.60003 

51 1.055 2.16 1.01013 

52 4.566 4.15 4.59175 

53 9.606 11.207 8.01014 

54 2.984 11.09 4.07714 

55 45.917 35.92 44.324 

56 1 2.194 1.0452 

57 62.246 66.171 66.5871 

58 2.977 3.34 2.78116 

59 1 4.053 1.12176 

Weight 141241 142296 141090.751 

Avg. W  N/A N/A 141454.1967 

Std N/A N/A 297.0353 

Number of Analysis 150000 N/A 60000 

 

 
Figure 18. The convergence history of the 942-bar space truss 
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5. CONCLUSION 
 

Nowadays, proposing practical and efficient AI methods and applying them to various 

optimization problems for a wide variety of subjects has become an undeniable necessity. In 

this regard, different types of evolutionary-based algorithms have been proposed for 

optimization, not only in the realm of structures, but also in many other research domains. 
Therefore, in this study, we proposed a new and effective hybrid method by combining PSO, 

GWO, and GSA algorithms, where it is tried to benefit from the strengths of these 

algorithms and at the same time, improve the weaknesses of each. This optimization makes 

our proposed model (called CGPGC) an effective approach to be used in optimizing a 

variety of real problems. The cellular automation method was used along with the three 

aforementioned evolutionary algorithms so as to increase the rate of convergence of the 

proposed CGPGC method into the general optimal point, and so as not to get stuck in the 

trap of local optimality. The obtained results of the proposed method were tested on the 

CEC2005 standard functions and large-scale space truss structures with high number of 

variables (a 72-member space truss structure with 16 variables and two different loading 

conditions, as well as a 942-member space truss structure with 59 variables). The final 

outcomes were compared with those of other evolutionary algorithms, which indicted the 

remarkable performance of the proposed CGPGC method. 

 

 

REFERENCES 
 

1. Darvishi P, Shojaee S. Size and geometry optimization of truss structures using the 

combination of DNA computing algorithm and generalized convex approximation 

method, Int J Optim Civil Eng 2018; 8(4): 625-56. 

2. Kaveh A, Khayatazad M. A new meta-heuristic method: Ray optimization, Comput 

Struct 2012; 112–113: 283–94. 

3. Kaveh A, Ilchi Ghazaan M, Bakhshpoori T. An improved ray optimization algorithm for 

design of truss structures, Period Polytech Civil Eng 2013; 57(2): 97–112. 

4. Kaveh A, Talatahari S. Hybrid charged system search and particle swarm optimization 

for engineering design problems, Eng Computat 2011. 

5. Kaveh A, Malakoutirad S. Hybrid genetic algorithm and particle swarm optimization for 

the force method-based simultaneous analysis and design, Iranian J Sci Technol, Tran B-

Eng 2010; 34(1). 

6. Shojaee S, Arjomand M, Khatibinia M. A hybrid algorithm for sizing and layout 

optimization of truss structures combining discrete pso and convex approximation, Int J 

Optim Civil Eng 2013; 3(1): 57–83. 

7. Kaveh A, Dadras Eslamlou A, Montazeran AH. Chaotic enhanced colliding bodies 

algorithms for size optimization of truss structures, Acta Mech 2018; 229(7): 2883–907. 

8. Salajegheh F, Salajegheh E, Shojaee S. Optimum design of truss structures with 

frequency constraints by an enhanced PSOG method based on emigration philosophy, 

Eng Optim, Published online: 19 Dec 2021.  

9. Jafari M, Salajegheh E, Salajegheh J. Optimal design of truss structures using a hybrid 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=O0b2DJoAAAAJ&cstart=20&pagesize=80&citation_for_view=O0b2DJoAAAAJ:1qzjygNMrQYC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=O0b2DJoAAAAJ&cstart=20&pagesize=80&citation_for_view=O0b2DJoAAAAJ:1qzjygNMrQYC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=O0b2DJoAAAAJ&cstart=20&pagesize=80&citation_for_view=O0b2DJoAAAAJ:BrmTIyaxlBUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=O0b2DJoAAAAJ&cstart=20&pagesize=80&citation_for_view=O0b2DJoAAAAJ:BrmTIyaxlBUC


DESIGN AND APPLICATION OF A HYBRID META-HEURISTIC … 

 

 

311 

method based on particle swarm optimizer and cultural algorithm, Struct 2021; 32: 391–

405. 

10. Jawad FKJ, Ozturk C, Dansheng W, Mahmood M, Al-azzawi O, Al-jemely A. Sizing and 

layout optimization of truss structures with artificial bee colony algorithm, Struct 2021; 

30: 546-59. 

11. Pizarro PN, Massone LM, Rojas FR, Ruiz RO. Use of convolutional networks in the 

conceptual structural design of shear wall buildings layout, Eng Struct 2021; 239: 

112311. 

12. Li LJ, Huang ZB, Liu F. A heuristic particle swarm optimization method for truss 

structures with discrete variables, Comput Struct 2009; 87(7–8): 435-43. 

13. Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA : A gravitational search algorithm, Inf 

Sci (Ny) 2009; 179(13): 2232-48. 

14. Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf Optimizer, Adv. Eng. Softw 2014; 69: 46–

61. 

15. Von Neumann J, Burks AW. Theory of self-reproducing automata, IEEE Trans, Neural 

Networks 1966; 5(1): 3-14. 

16. Ulam S. Random processes and transformations, in Proceedings of the International 

Congress on Mathematics 1952; pp. 264-275. 

17. Wolfram S. Cellular Automata and Complexity: Collected Papers, CRC Press, 2018. 

18. Missoum S, Gürdal Z, Setoodeh S. Local update schemes for cellular automata in 

structural design, in 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and 

Optimization 2002; pp. 5519. 

19. Evsutin O, Shelupanov A, Meshcheryakov R, Bondarenko D, Rashchupkina A. The 

algorithm of continuous optimization based on the modified cellular automaton, Symmet 

(Basel) 2016; 9: 84. 

20. Suganthan PN, Hansen N, Liang J, Deb K. Problem definitions and evaluation criteria for 

the CEC 2005 special session on real-parameter optimization, Natural Comput 2005; 

341-357. 

21. Lee KS, Geem ZW. A new structural optimization method based on the harmony search 

algorithm, Comput Struct 2004; 82(9–10): 781-98. 

22. Kaveh A, Talatahari S. A particle swarm ant colony optimization for truss structures with 

discrete variables, J Constr Steel Res 2009; 65: 1558-68. 

23. Camp CV,. Bichon BJ. Design of space trusses using ant colony optimization, Struct Eng 

2004; 130(5): 741-51. 

24. Perez RE, Behdinan K. Particle swarm approach for structural design optimization, 

Comput Struct 2007; 85(19–20): 1579-88. 

a. Sadollah A, Eskandar H, Bahreininejad A, Kim JH. Water cycle, mine blast and 

improved mine blast algorithms for discrete sizing optimization of truss structures, 

Comput Struct 2015; 149: 1-16. 

25. Le DT, Bui DK, Ngo TD, Nguyen QH, Nguyen-Xuan H. A novel hybrid methods 

combining electromagnetism-like mechanism and firefly algorithms for constrained 

design optimization of discrete truss structures, Comput Struct 2019; 212: 20–42. 

26. Sarma KC, Adeli H. Fuzzy genetic algorithm for optimization of steel structures, J Struct 

Eng 2000; 126(5): 596-604. 



F. Biabani, A. Razzazi, S. Shojaee and S. Hamzehei-Javaran 

 

312 

27. Pierezan J, Coelho LDS, Mariani VC, Segundo EHV, Prayogo D. Chaotic coyote 

algorithm applied to truss optimization problems, Comput Struct 2021; 242: 1-10. 

28. Ronagh M. Plastic hinge length of RC columns subjected to both far-fault and near-fault 

ground motions having forward directivity, Struct Des Tall Spec Build 2011; 24(2014): 

421–39. 

29. Hasançebi O, Erbatur F. On efficient use of simulated annealing in complex structural 

optimization problems, Acta Mech 2002; 157(1–4): 27–50. 

30. Hasançebi O. Adaptive evolution strategies in structural optimization: Enhancing their 

computational performance with applications to large-scale structures, Comput. Struct 

2008; 86(1–2): 119-132. 

31. Rahami H, Kaveh A, Aslani M, Najian Asl R. A hybrid modified genetic-nelder mead 

simplex algorithm for large-scale truss optimization, Int J Optim Civil Eng 2011; 1(1): 

29-46. 


