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ABSTRACT 
 

This paper presents an efficient wavelet-based genetic algorithm strategy for optimal 

sensor\exciter placement (OSP\OEP) in large-scaled structures suitable for time-domain 

structural identification. For this purpose, a wavelet-based scheme is introduced in order to 

improve the fitness evaluation of GA-based individuals capable of using adaptive wavelets. 

A search domain reduction (SDR) strategy is proposed to reduce the wide space of initial 

unknowns corresponding to enormous degrees-of-freedom in large systems. The proposed 

reduction strategy is carried out at three stages according to the use of different wavelet 

functions. Furthermore, a multi-species decimal GA coding system is modified for a 

competent search around the local optima. In this regards, a local operation of mutation is 

presented in addition with regeneration and reintroduction operators. It is deduced that, the 

reliable OSP\OEP strategy prior to the time-domain identification will be achieved by those 

procedures dealing with minimizing the distance of simulated responses for the entire 

system and condensed system considering the excitation effects. The numerical assessment 

on the appropriateness and capability of the proposed approach demonstrates the 

substantially high computational performance and fast convergence of the proposed 

OSP\OEP strategy, especially in large-scaled structural systems. It is concluded that, the 

robustness of the proposed OSP\OEP procedure lies on the precise and fast fitness 

evaluation at larger sampling rates which resulting in the optimum evaluation of the GA-

based exploration and exploitation phases towards the global optimum solution. 

 
Keywords: optimal sensor placement; optimal exciter placement; time-domain identification; 

wavelet analysis; genetic algorithm. 

 
Received: 30 March 2022; Accepted: 20 July 2022 

                                                   
*Corresponding author: Department of Civil Engineering, Higher Education Complex of Bam, Bam, Iran 
†E-mail address: sh.mahdavi@bam.ac.ir (S. H. Mahdavi) 



S. H. Mahdavi and K. Azimbeik 

 

518 

1. INTRODUCTION 
 

Over the past two decades, structural identification and damage detection have been the area 

of great technical and scientific interests [1-6]. Generally, structural identification 

procedures fall into two main categories. The first category involves time-domain strategies 

considering the actual time-history of structural responses [7]. Whereas, the second is 

frequency-domain methods dealing with the modal parameters and natural frequencies of 

structural systems [8-12]. For many reasons the first category of structural identification is 

more beneficial than the second category [7]. For instance, the frequency-domain methods 

are based on the modal parameters (linear super position), thus they are limited for only 

linear systems. Another drawback in performing frequency-domain approaches is that, the 

information for higher structural modes are not reliable. In contrast, time-domain methods 

do not require to measure frequencies and modal parameters, and instead they directly utilize 

time-history information including all structural modelled modes.  

Generally, sensor\exciter (actuator) placement and optimization are of great significance in 

variety of vibration control problems. The effect of sensor and actuator configurations in large 

and flexible structural systems has been investigated by many researchers for active and 

passive control of structures [13-19]. In addition, Roh and Park [20] presented that, there are 

two main issues considering the structural identification and control of large systems. One is 

how to select those of exciters to perform a frequency-domain identification and the other is 

how to choose actuator locations to control the large system. Their proposed methods of 

optimal sensor\exciter placement were based on quantitative measures of modal degree of 

controllability and excitability. Furthermore, genetic algorithms (GAs) have been extensively 

employed for optimal sensor and actuator placement in diverse structural control problems 

[18,21-24]. 

There are many attempts have been delivered for optimal sensor placement (OSP) in 

frequency-domain. An enhanced GA strategy was presented for OSP of structural health 

monitoring systems by considering the performance function based on damage detection 

[23]. A decimal GA strategy was proposed by Liu et al. [24] for OSP in large scaled spatial 

lattice structures. The fitness evaluation was based on modal strain energy and modal 

assurance criterion suitable for frequency-domain structural identification. Their proposed 

method was using an operation of forced mutation to alter the identical possibilities obtained 

from a set of strings (namely, an individual). However, the proposed forced mutation was 

randomly operated and the major drawback of classical GA was still remained (in referring 

to the disability of GA for an efficient search around the local optima towards the global 

solution). The idea of forced mutation was introduced and it was deduced that the 

convergence rate speed is faster than penalty-based operations [24]. Moreover, theoretical 

and computational difficulties arising from the OSP configuration for prediction of structural 

uncertainties were addressed by Papadimitriou [25]. In addition, the influence of parametric 

uncertainties was investigated on OSP in a truss bridge by Castro et al. [26]. Mahdavi and 

Razak (2016) proposed a modified GA-based strategy for optimal sensor placement capable 

of time-domain structural identification. They demonstrated that for such aim, the improved 

operations of genetic coding provide the superiority of their proposed strategy in dealing 

with OSP problems. It was shown that the application of enhanced discrete GA coding will 

result in promising outputs for reliable time-domain identification problems [27].  The 
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review of relevant literature shows that frequency-domain methodologies were 

comparatively employed for OSP and the influence of exciter position was not thoroughly 

addressed in contributing with time-domain system identification problems. 

A framework was proposed for OSP in flexible structures with multi-dimensional mode 

shapes. The strength of signals was evaluated by effective independence and modified 

variance methods. The number of sensors was determined using a threshold for modal 

assurance criterion between predicted ones from observations and target mode shapes. It was 

shown that, a Krigings model could be determined as the sum of linear regression and 

random errors as the indicator of stochastic process. Furthermore, the effect of Krigings 

parameters was investigated in order to get the minimum number of sensors [28]. Li et al. 

[29] highlighted the main shortcoming of conventional sensor placement schemes for 

frequency-domain identification methods where these approaches do not take into account 

the actual structural responses and loading conditions (including exciter placement). They 

improved a novel load dependent method for OSP considering the structural modal features, 

exciter location as well as loading conditions. They concluded that, in order to gain an 

acceptable identification, not only the optimal sensor location but also the exciter positions 

have to be accounted. Ostachowicz et al. presented a comprehensive review of OSP in 

dealing with structural health monitoring problems [30]. Moreover, the sensor placement 

solutions are optimized using a parallel optimization framework based on the competent 

genetic algorithm, leading to a number of features that enrich the application flexibility [31]. 

In order to minimize the effects of noise on the damage detection process, efficient methods 

for OSP based on a new geometrical viewpoint for damage detection in structures was 

presented by Beygzadeh et al. (2013) [32]. An efficient data-driven method to obtain the 

optimal sensor subset from the entire candidate sensor set was proposed in Ref. [33]. In 

order to make the model more robust to outliers and overcome the limitation of inconsistent 

coefficients for multiple class optimization problem, the proposed method introduces a 

special norm to realize the similar sparse structures of coefficients. A hybrid optimization 

algorithm including finite element grids updating for optimal sensor placement was 

proposed based on effective independence method and sensor distribution index, in order to 

improve the algorithm efficient and reduce the redundancy information simultaneously [34]. 

Furthermore, a structural damage detection-oriented multi-type sensor placement method 

with multi-objective optimization was developed by Lin et al. (2018) [35].  

Based on the literature review presented here, one may conclude that, an efficient layout 

of sensor configuration and exciter locations are crucial to optimally measure structural 

responses. In other words, an accurate measurement for a trustworthy time-domain structural 

identification strategy cannot be achieved, regardless of the exciter locations. As a 

consequence, OSP\OEP strategies play the underlying role in achieving the reliable 

identification results. Therefore, the improvement of available methods for OSP\OEP 

capable of time-domain structural identification is unavoidable. 

On the other hand, wavelet analysis has attracted tremendous attentions of scientists and 

engineers in different disciplines of science and technology. Fundamentally, multi-resolution 

analysis and localization properties are the main strength points of this powerful tool for 

solving the variety of partial and ordinary differential equations [36]. In addition, the 

dynamic analysis of single-degree-of-freedom (SDOF), multi-degrees-of-freedom (MDOF) 

and framed structures were improved by using a wavelet-based method capable of using 
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only the simple Haar and the first kind of Chebyshev wavelets (FCW) [36]. An extension of 

the wavelet-based scheme for structural simulation of large-scaled space structures has also 

been developed by the same researchers using complex Chebyshev and Legendre wavelets 

[37]. A comprehensive study was conducted for the analysis of stability and accuracy of 

results. It was inferred that, the method lies on an unconditionally stable scheme with 

sufficient accuracy. As an unconditionally stable method, there was no requirement on 

selecting computational time intervals. Consequently, wide-frequency components of the 

applied load were accurately approximated by free-scaled operators of wavelet on adaptive 

collocation points. The property of compatibility provided the possibility of using more 

collocations regarding to the higher scales. Therefore, broad frequency features were 

accurately integrated in the vicinity of highly varying structural responses. The achieved 

results were promising enough so as to implement the proposed method for solving 

optimization problems. An efficient discrete and modified genetic algorithm was implement 

based on wavelet analysis for time-domain impact localization in large-scaled structures 

[38]. It is shown that, among the verity of evolutionary optimization algorithms available for 

such applications, the employment of multispecies discrete coding provides the superiority 

of the proposed scheme in addressing the major shortcoming of genetic algorithm. 

In this paper, an efficient OSP\OEP strategy is developed by using wavelet-based genetic 

algorithms suitable for time-domain identification of large-scaled structures. Due to inherent 

ability of wavelet functions the GA-based fitness evaluation is significantly improved towards 

the most optimum approach in Section 2. The proposed strategy for OSP\OEP is developed in 

Section 3. For this purpose, the proposed decimal GA coding system, adopted GA-based 

operations, the efficient forced mutation for local search, the proposed search domain 

reduction strategy and fitness evaluation of GA individuals are presented in this section. In 

addition, Section 4 is devoted to the step-by-step algorithm of the strategy applicable for 

OSP\OEP in large-scaled structures. Subsequently in Section 5, a brief description is presented 

for the employed strategy of time-domain structural identification for evaluation purpose. 

Finally, in order to confirm the validity of results of current study, two numerical applications 

are discussed in Section 6. The verification study involves OSP\OEP in a simple multi-

degrees-of-freedom (MDOF) system and a 3-dimensional (3D) and large-scaled space truss 

structure. 

 

 

2. OPTIMAL STRUCTURAL SIMULATION USING WAVELETS 

 
Fundamentally, the core of proposed genetic algorithm strategy in this study lies on the 

optimal structural simulation. The optimum structural simulation using adaptive wavelet 

functions is thoroughly discussed in Refs. [36,37]. Accordingly, the main characteristics of 

Haar wavelets, the first kind of Chebyshev wavelets (FCW) and the Legendre wavelets 

(LW) are presented in these references for implementing in forward dynamic analysis. The 

underlying idea is to simplify the governing dynamic equilibrium using wavelet operational 

matrices. For the sake of completeness, a brief description is provided in Appendix B 

regarding to the computation of wavelet operational matrices of FCW, the second kind of 

Chebyshev wavelet (SCW) and LW. In addition, it is shown that a signal can be 

decomposed by scaled and delayed wavelet functions from    to      (known as global time) 
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by dividing time interval to some partitions related to the order of the wavelet. The method 

of subdividing time domain of a signal into the multiple segments suitable for time-scaled-

frequency analysis is known as Segmentation Method (SM). Obviously, if a global time 

interval is divided into many local subdivisions (namely, collocation points), a set of 

adaptive segmentations will collectively and intricately cover the signal. Thus, the employed 

operation on the compatible collocation points can be adaptive with the features of the 

signal, i.e., frequency content of the signal [36,37]. In this study, 2M is taken 4 and refers to 

the number of partitions in each global time interval with respect to the scale of the proposed 

wavelet function. For instance, 2M= 2 j+1 represents the 2 j th scale of LW, SCW or Haar 

wavelet. Consequently, broad frequency components of either the externally applied load or 

inherent features of dynamic system are accurately and optimally approximated by free-

scaled operators of wavelet on compatible collocation points even for longer time intervals. 

The emphasis of compatibility lies on the possibility of using more collocations, denoting 

higher scales, and therefore precisely capturing wide-band frequency features. Eventually, 

after solving diverse structural dynamic problems, it is concluded that, different scales of 

SCW simulate the most accurate results. However, LW also achieves satisfactorily reliable 

results, and the superiority of LW lies on the better computational performance compared 

with SCW, in referring to the simple computation of operational matrices of LW (Appendix 

B). In addition, it is deduced that, despite the most optimum cost of analysis by using free-

scaled Haar wavelet functions, the accuracy of results using this basis function is not 

satisfactory.  

In addition, the improved Guyan dynamic condensation (IGDC) technique is utilized to 

reduce the size of structural characteristic’s matrices (i.e., stiffness, mass and damping) from 

the entire structure to the condensed system. For this aim, measured and loading degrees-of-

freedom (DOFs) corresponding to the location of exciter obtained from GA-based 

individuals are selected as master DOFs. Subsequently, the wavelet-based approach is 

implemented to optimally simulate the structural responses on master DOFs and then 

feeding the fitness evaluation code. It should be kept in mind that, the use of Gauss-Jordan 

elimination method in approaching IGDC is essential to avoid computational difficulties and 

calculating inverse matrices numerous times. 

 

 

3. PROPOSED WAVELET BASED GA STRATEGY FOR OSP\OEP 

 
Until now, GAs have proved to be a robust and competence tool for especially combinatorial 

optimization problems such as OSP\OEP. As the OSP\OEP problems proceed with 

searching on the population of alternative design variables rather than a single point in the 

design domain, the use of GA has a demonstrated merit over traditional optimization 

strategies. The first underlying step to employ GA is to adopt the most appropriate coding 

system. One of the superior features of the proposed wavelet-based GA algorithm herein is 

employing a search domain reduction (SDR) scheme at three stages of optimization. 

Subsequently, the proposed wavelet-based GA strategy, coding system and its operations are 

presented in this section.  

 



S. H. Mahdavi and K. Azimbeik 

 

522 

3.1 GA coding system and operations 

In this study, the decimal coding system is proposed for representing the design variables of 

OSP\OEP problem. The structure of the proposed GA population is shown in Fig. 1. As it is 

shown in this figure, each population is divided into 4 sub-populations (namely, species). 
 

 

Figure 1. The construction of the proposed multi-species DGA strategy for OSP\OEP 

 

One of the significant modification of the proposed strategy is adopting different species 

in each population to overcome the issue of local optima. In fact, one of the major issue with 

using simple GA is that the possible solutions may converge to the local optima and cannot 

escape towards the global optima. As it is shown in Fig. 1, species 1 stores the best fitted 

individuals (chromosomes) and it is adopted to avoid skipping the optimum solution. The 

size of each individual is   (the number of available sensors and exciters to be used).  

Each string may take a decimal number from one to the total number of DOFs. In this 

study, in order to improve the computational competency of OSP\OEP strategy for large-

scaled structures (in referring to the enormous number of DOFs) a search domain reduction 
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(SDR) approach is implemented. For this purpose, the feasible search domain governing the 

unknown sensor\exciter locations is reduced at three steps (except for species 2) 

corresponding to the use of different wavelet operators for fitness evaluation (Fig. 3). The 

proposed SDR strategy is regulated based on selecting the only connected DOFs and 

relatively all adjacent DOFs to the connected members of the best solution results from the 

former generations (adjacent DOFs are not essentially connected to the obtained positions 

for sensors\exciters). In addition, species 2 is constructed for random search on possible 

locations (DOFs) in original search domain (all DOFs existing in the structure) for adding 

sensor\exciter. It guaranties the comprehensive search in the entire search space so that the 

global solution is not skipped. However, for an efficient analysis, the size of this species 

may be chosen far lesser than other species. Furthermore, species 3 is adopted for searching 

on the entire reduced domain including both, all connected DOFs and adjacent ones. While, 

species 4 is organized for focusing on the local optima (only connected DOFs to the fitted 

solutions). The regeneration is carried out only on species 2 and 3, involving the complete 

replacement of this species to random possible solutions in original search domain and 

reduced domain corresponding to the species 2 and 3, respectively. This allows species 2 

and 3 to efficiently search on the search domain for possible solutions, while species 4 

refines previously generated solutions. It is observed that, the small number of regeneration 

is needed, however, it can be defined by the user (3 regenerations are operated in this study). 

Eventually, for the purpose of an efficient search on good solutions in species 4 (around 

local optima), reintroduction is necessary. In this way, at a prescribed number of times 

individuals in spices 1 (best solutions) are inserted into spices 4. It is found that the large 

number of this operation usually provides better convergence and therefore better results. 

However, for selecting the number of reintroduction it should be taken into account that, the 

best solutions from species 1 are supposed to be improved in species 4 and it will be 

accomplished after several generations. The reproduction process is carrying out by well-

known crossover and natural mutation operations. Two types of simple and multi point 

crossover are operated on selected pair individuals in species 2, 3 and 4 based on the 

prescribed crossover rate. In performing the crossover or natural mutation operations, the 

same location may be placed with two sensors\exciters in an individual, synchronously. In 

order to change the identical sensor\exciter locations in an individual, the operator of forced 

mutation is executed.  

This operator changes the string value randomly in original search domain and reduced 

domain until an unrepeated possible sensor\exciter location for species 2 and 3, respectively. 

The distinct advantage of the proposed forced mutation in this study is that, it searches only 

on connected DOFs (as sensor\exciter locations) for strings placed in the fourth species. This 

allows an efficient search around the local optima. Furthermore, the ratio of the natural 

mutation operation can be reduced in order to achieve a reasonable compatibility of GA-

based operations. Finally, in order to exchange information between species 2, 3 and 4, the 

migration is operated to transfer information from these species. This operation involves 

swapping randomly selected chromosomes between these two species. The migration rate 

controls the number of times to operate this operation. 

Moreover, one issue for storing the best optimum solutions in species 1 is that a same 

individual can be selected several times for this species. This will result in saturating spices 

1 and therefore an excessive focus will be on one possible solution (or sub-optimal 
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solutions) rather than focusing on many good possible solutions. To overcome this problem, 

the tagging procedure is introduced. First, all individuals are assigned as 0 tag and if an 

individual is moved into species 1 its tag will be changed to 1. This tag accompanies 

individual wherever it moves. Once this individual is altered by any GA-based operations 

(representing new possibilities), the tag is changed back to 0 and it could be selected again 

in the first species. To clarify the coding system and the proposed GA-based operations for 

OSP\OEP, a simple population corresponding to a 3D truss is illustrated in Fig 2. It should 

be noted that the main contribution of this study involves using decimal GA coding, 

however, in Fig. 2(c) a binary coding representation is also provided. It will be shown later 

that, the binary coding for particularly OSP\OEP in large-scaled structures is neither 

practical nor possible due to the high dissipative storage space for saving the optimum 

solutions of numerous DOFs. In contrast, decimal GA coding enlarges the individual’s 

storage and leads the satisfactorily fast convergence of the proposed algorithm. 

 

 
Figure 2. The proposed GA-based strategies for OSP\OEP, (a) a 3D truss example with 12 

DOFs, 2 available (Av.) sensors (Sens.) and 1 exciter (Exc.), (b) decimal GA coding (DGA), (c) 
binary GA coding (BGA), (d) the operation process of forced mutation 
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The pin-jointed truss system shown in Fig. 2(a) consists of 8 nodes, 12 transitional DOFs, 

and therefore 12 possible locations (DOFs 13-24) for sensors\exciters. For simplification 

purpose, it is assumed that 2 number of sensors and 1 exciter are available with only 1 

individual (Ind) per species (4 spices). This constructs the population size of (4×Ind) × 

(available sensors + exciters = 3) as shown in Fig. 2(b). Using the decimal representation of 

strings placed in species 2, Fig. 2(b), means that possible locations for the sensors and 

exciters are on the 20th and 17th DOFs and 22nd DOF, respectively. The binary representation 

of the considered population size is displayed in Fig. 2(c). As it is shown in Fig. 2(d), after 

paring selected individuals for reproduction (namely, parents) the two-points crossover is 

operated and resulting in the developed individuals (namely, offspring 1 and 2). It can be 

seen that, developed offspring 2 contains one identical DOF (16th) for sensor location. 

Obviously, one of these strings should be changed to the new possible solution due to the 

fact that, practically it is meaningless to define the same placement for two sensors. In this 

regards, forced mutation operator is designed to change one of the same values to another 

value which is not existed in this individual. For instance, in this example one of the value of 

16 can be changed to a connected DOF e.g., 18. It should be noted here that, the new value 

18 could be selected randomly from the entire search domain of 13-24 (as long as it is not 

repeated in the same individual). In contrast, if it is located in species 4 (which is designed 

for local search) the priority of selection is with the connected DOFs. This provides a 

comprehensive search around the best results obtained from previous generations. It can be 

seen in Fig. 2(d) that, an identical location 18th may be selected for sensor and exciter 

placement in a single individual. However, it will be shown later that, such placement is not 

optimum solution due to the condensation of structural characteristic’s matrices for one 

lesser master DOF which leads the lower fitness value for this individual. 

 

3.2 Fitness evaluation and selection 

As it was mentioned earlier, the main robustness of the proposed GA herein lies on the 

optimal structural simulation using adaptive wavelets. In other words, by improving the GA-

based fitness evaluations (FE) using adaptive wavelets, not only the convergence of results 

is accelerated but also the computational efficiency of the proposed OSP\OEP strategy is 

significantly improved. Accordingly, the fitness of each individual in all species proposed in 

this study are evaluated by adding the inverse of total sum of squared errors between the 

simulated time-history of accelerations for the entire structure (Acc1) and reduced structure 

(Acc2) based on the master and omitted DOFs developed in GA-based strings as follows: 

 

        
 

  
             

         

 
(1) 

 

In Eq. (1), DOFMaster represents all master DOFs including measured DOFs for sensor 

placement and DOFs with applied force (the location of exciters).   may take a small value of 

0.001 to prevent computational difficulties. Later, the selection procedure is carried out by 

allocating the probability of selection to each individual due to its final fitness. Fundamentally, 

the high performance of any GA strategy is the resultant of the quality of FE. For this reason, 
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in order to magnify the differences between different fitness values, a ranking procedure is 

employed to obtain the probabilities within each species. In this regards, the fitted individual is 

ranked the total number of population size and the rest are descended due to the value of the 

fitness function (it is shown in Figs. 1 and 2). The notable point is using adaptive wavelets for 

FE at small sampling rates. This significantly improves the fitness values and thus rapidly 

yields the convergence rate. The layout of the proposed wavelet-based FE is illustrated in Fig. 

3. 

 
Figure 3. Implementation of adaptive wavelets for OSP\OEP through the proposed DGA_W 

strategy 

 

As it is shown in Fig. 3, the proposed strategy involves a very fast prediction of variables 

by using simple and 2D Haar wavelets on optimum collocations. This phase may be 

interpreted as the exploration phase and there are most relevant variations around the local 

optima. Afterwards, the initial search domain which in fact lies on a broad space of the 

possible DOFs (as the sensor\exciter locations) is reduced (for species 3 and 4) based on the 

connected and adjacent DOFs to the best fitted results located at the first row of the 

population size. At the second stage of the strategy, the probability of selecting different 

OSP\OEP have been refined by using three dimensional LW for fitness evaluation of 

individuals as the same sampling rate as was considered for the first step. Accordingly, this 

stage is adopted for the exploitation phase where small variations around the global optima 

existed. In addition, the last SDR is implemented on species 3 and 4. Finally, employing the 

accurate SCW for fitness evaluation guarantees the promising solutions being selected at the 

last stage of the strategy. In this way, all details of input/output signals are collectively 

captured on adaptive collocation points, and therefore the last corrections on the OSP\OEP 

are optimally ascertained until the prescribed convergence rate is achieved (namely, the final 

exploitation phase). The motivation behind the proposed development arises from the fact 

that the overall computational efficiency of the OSP\OEP strategy for large number of 

possible scenarios is rigorously dependent on optimally reducing the feasible solutions in 

search domain for numerous possible solutions towards the most optimal scenarios. It should 

be kept in mind that, because of utilizing more precise wavelet functions progressively, the 

SDR is not applied on the second species so as it ensures an efficient random search for 

global optimum solutions.   

 

 

4. STEP-BY-STEP ALGORITHM FOR OSP\OE 
 

The OSP\OEP is accomplished by adopting the decimal GA strategy (DGA) using adaptive 

wavelets for FE (it is designated by DGA_W) in addition with conducting an efficient SDR 

strategy. However, with the same proposed DGA algorithm, the use of Newmark’s constant-
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average time integration scheme for FE will be investigated later for comparison purpose (it 

is designated by DGA_N).  

The proposed procedure involves reintroduction, regeneration and artificial selection of 

ranked individuals. To guarantee that species 4 (designed for the local search around the best 

fitted results) operates on a set of desirable solutions, the reintroduction is essential. The 

schematic flowchart of the proposed DGA_W is depicted in Fig. 4. With reference to Fig. 3, 

three runs and relatively two SDR are carried out corresponding to Haar, LW and SCW. It 

should be emphasized that, in this study 2M=4 (collocation points) is taken for three wavelet 

basis functions. 

 
Figure 4. The algorithm of proposed DGA_W strategy using adaptive wavelet functions 
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5. TIME-DOMAIN STRUCTURAL IDENTIFICATION USING MODIFIED GAS 
 

In order to verify and validate results obtained from the proposed OSP\OEP algorithm, a 

water cycle optimization algorithm (WCA) is conducted for time-domain structural 

identification [38]. The aforementioned strategy lies on minimization of the distance 

between actual measured accelerations and simulated accelerations obtained for the 

predicted model. Presuming the same fitness function as in Eq. (1), hence, Acc1 may be 

referred to the measured accelerations while Acc2 denotes the simulated accelerations. 

Accordingly, for comparison purpose, a known mass problem is formulated through the 

identification strategy based on different OSP\OEP scenarios obtained by the proposed 

algorithm. The overall process of each string (representative of stiffness value for each 

element) is illustrated in Fig. 5 for stiffness identification of known mass problems in time 

domain. 
 

 
Figure 5. The layout of each individual for the WCA strategy for stiffness identification of 

known mass problems 

 

Moreover, two procedures are considered for GA-based FE. First, the FE is achieved 

using Newmark’s constant-average acceleration method for simulating the time-history of 

acceleration (designated by MGA herein) at very small sampling rates (short time intervals 

should be utilized for capturing the entire details). While the second approach involves the 

implementation of adaptive wavelets at reasonably larger samplings (designated by WGA) 

for simulating the accelerations. 
 

 

6. NUMERICAL APPLICATIONS 
 

Actually, the numerical effectiveness of the proposed wavelet-based algorithm for structural 

dynamic simulation is well evaluated in Refs. [36,37]. In this section, the appropriateness 

and capability of the proposed DGA strategy for OSP\OEP are numerically examined on 

two structural systems. For this purpose, two structures are considered, involving a 5 DOFs 

shear building as well as a 3D and large-scaled truss system. It is to be noted that, the 

application of binary GA coding (BGA) is impractical for the second example due to the 

enormous DOFs and so the dissipative storage capacity is much more than the proposed 

DGA. Furthermore, the identification results corresponding to the obtained scenarios for 

OSP\OEP are comparatively investigated by using Newmark’s constant-acceleration scheme 

(MGA) and the wavelet-based approach (WGA). In addition, for both cases considered, the 

mass of structures is lumped at each transitional DOF. Moreover, damping effect is taken 

into account by adopting the well-known Rayleigh damping by setting the damping ratio of 

      …      α  β  

       

 

Each real coded individual 
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5% for the first two modes. The related damping constants (α and β) are presumed as 

unknown values in the identification process. To achieve a comprehensive evaluation, the 

CPU computational time (as indication of the cost of analysis) is considered for different 

strategies, which was recorded with a same hardware environment (Intel_R, Xeon_R, CPU 

E5-1620 V2 @ 3.7 GHz, 64 GB RAM, Operation 64 bit). Fundamentally, the very important 

step prior to performing the proposed DGA strategy for OSP\OEP is selecting the propitious 

parameters for GA-based operations. For this aim, some preliminary studies were carried out 

for each numerical application in order to determine the most reliable GA parameters. The 

underlying goal of these studies was to identify balanced GA parameters that will give 

consistently desirable results. It should be taken into consideration that, for different 

applications, different combinations of GA parameters will have different effects due to the 

variations across the structural systems and external excitation. Subsequently, the DGA 

parameters utilized for verification study of OSP\OEP are displayed in Table 1. 

 
Table 1: DGA Parameters utilized for verification study (OSP\OEP) 

 Ex. 1 Ex. 2 

Pop-size (species 1-4) 6+4+20+6 30+10+30+30 

Generations 3 10 3 150 

Crossover rate 0.8 0.6 

Natural mutation rate 0.05 0.1 

Migration rate 0.05 0.05 

Regeneration 3 3 

Reintroduction 6 45 

 

It is to be pointed out that, the distinguishable advantage and the superiority of the 

proposed DGA_W strategy fall into two aspects. First, involving the practice of the 

proposed strategy for OSP\OEP in large-scaled problems, which the performance of GA is 

considerably enhanced by the proposed SDR operation, multi-species and local search 

algorithm. Second, the wavelet-based scheme for optimum FE (known as the core of GA) 

especially for large-scaled systems. Whereby, the high frequency ranges and then large 

sampling rates (data points) are mostly the focus of interest in order to extract the entire 

features of dynamic responses. Considering the second point of view, implementing an 

efficient approach for FE is essential, where the fitness values generally lie on a small value. 

As a consequence, simple GAs finds it very difficult to be converged and therefore using an 

improved GA is inevitable. 
 

6.1 A five story MDOF shear system 

Fig. 6 illustrates a five-story shear building considered for the first numerical application. 

Shear building states for the only transitional DOF exciting at each story. The structural 

characteristics (i.e., the mass and stiffness of each story) as well as the externally applied 

loading      are shown in the figure. In addition, a schematic view of selecting the master 

and omitted DOFs is depicted in Fig. 6 corresponding to the different OSP\OEP scenarios. 

The first 2 sec of vibration is considered for simulating the structural responses at the 

sampling rate of 500 S/s and 100 S/s corresponding to the use of Newmark (DGA_N) and 
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wavelet methods (DGA_W), respectively. Furthermore, the noise-free input/output (I/O) 

data is utilized for this application. In order to clarify the optimization procedure, the first 

one second time-history of accelerations is depicted in Fig. 7 in referring to the various 

OSP\OEP scenarios. The first left-hand column corresponds to the OSP scenarios when 

there is only 1 available sensor, while the next 2 columns implies the OSP for 2 available 

sensors. In addition, the simulated time-history of accelerations for complete measurement is 

shown by a plain line in blue, compared with a dashed red line for considered OSP\OEP. As 

it is illustrated in Fig. 7(a), the goal of the OSP\OEP is to minimize the difference between 

these two time-history records. For instance, the minimum average error e (%) was 

computed for OSP\OEP1 as 0.047%, when the exciter’s location is at DOF 3. On the 

contrary, this value declined to about 0.032% for OSP\OEP2. 
 

 
Figure 6. A five DOF shear building considered for the first numerical example (     is in N) 

 

Different OSP\OEP scenarios obtained for different available number of sensors is 

provided in Fig. 7(b). The DGA parameters are taken from Table 1. Data displayed in Fig. 

7(b) demonstrate the necessity of measuring the 5th DOF for all obtained OSP\OEP 

scenarios. In other words, this DOF may be interpreted as the vital DOF for sensor 

placement. For a detailed comparison, the mean value of error (%) in identified stiffness of 

all stories is measured and tabulated in Table 2 for different OSP scenarios considering only 

1 available sensor and the exciter’s location 3. Fig. 8(b) and Table 2, demonstrates the 

computational robustness of the proposed OSP\OEP strategy for a reliable time-domain 

structural identification. 

 
Table 2: Mean error (e %) in stiffness identification results for different scenarios proposed for 1 

available sensor and exciter 

 
Measured DOFs 

(master) 

Omitted DOFs 

(Omitted) 

Exciter DOF 

(master) 

e % for 

identified stiffness 

SP 

(1 sensor) 

1 2 , 4 , 5 3 6.96 

2 1 , 4 , 5 3 7.15 

3 1 , 2 , 4 , 5 3 24.77 

4 1 , 2 , 5 3 8.82 

5 1 , 2 , 4 3 6.02 

           

Roving 
Exciter 

Roving sensors 

     

Master  

(measured DOF) 

Omitted 

DOF 
Master  

(measured DOF) 

Master  

(forced DOF) 

Omitted 

DOF 

           

           

           

           

Story 

  

( 
   N/m) 

  

( 
   kg) 

1 400 500 

2 400 400 

3 300 500 

4 200 300 

5 300 500 

    = (10e3)           
           

 



A MODIFIED GENETIC ALGORITHM STRATEGY FOR OPTIMAL ... 531 

 
Figuer 7. Optimal (Opt.) SP scenarios for 1 and 2 available sensors corresponding to different 

levels of exciter, (a) comparison of simulated time-history of acceleration for complete and 
incomplete measurement and obtained Opt. SP, (b) OSP\OEP scenarios 
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The computational time recorded for OSP\OEP2 using the binary coding GA (BGA_N 

for using Newark’s scheme and BGA_W using the wavelet-based method for FE) and 

decimal coding (DGA_N and DGA_W) are plotted in Fig. 8(a). As it is shown in this figure, 

using the wavelet-based approach for FE led the most cost-effective results for both binary 

and decimal coding systems. However, this figure shows almost a similar performance of 

BGA and DGA as the considered structure is very small one in scale.  

Accordingly, in order to validate the obtained OSP\OEP scenarios, the identification 

results for implementing WGA and MGA strategies using various placement scenarios are 

comparatively depicted in Fig. 8(b). In this regards, the first 8 sec of vibration is considered 

for evaluating the fitness functions. In this figure, OSP\OEP4 indicates the complete 

measurement for the exciter’s location at the 4th level. 
 

 

 

Figure 8. Comparison of results obtained for proposed GA-based algorithms of OSP\OEP and 

identification, (a) CPU time recorded for OSP\OEP2 using BGA and DGA, (b) CPU time and 
the mean value of errors in identified stiffness values corresponding to different OSP\OEP 

 

6.2 A double layered pin-jointed space structure 

Fig. 9 shows the geometry of a double layered pin-jointed and large-scaled truss structure 

considered for the current numerical application. This structural system comprises 128 truss 

elements, 41 pinned joints and therefore 111 transitional DOFs. The plain truss structure is 

hinged at fixed-point supports on four corner joints located at the bottom layer. Moreover, 

this truss system is constructed with aluminum pipes and the cross-sectional area, mass 

density and the elastic modulus are provided in Fig. 9(d). The deadweight of structural 

elements as well as hybrid joints are treated as lumped mass and concentrated at the related 

nodes. In addition, the first 4 natural frequencies obtained from the finite element model 

(FEM) are 44.06, 51.9, 63.12 and 74.78 Hz corresponding to the first 4 mode shapes of the 

structure as shown in Fig. 9(c). 

It is very important to keep in mind that, before starting the proposed OSP\OEP strategy 

or identification approach, the sequence of node numbering should be optimized, initially. 

Basically, the optimal node numbering of such large-scaled structures plays the underlying 

role in achieving the highest performance of the optimization approach. In other words, by 

optimal node numbering of such structures (instead of a random numbering), the bandwidth 
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of structural characteristics’ matrices (i.e., mass, stiffness and damping) is considerably 

reduced and will result in the reasonably optimum output. In this study, a decimal GA 

coding is adopted for this purpose and a brief description is provided in Appendix A. 

Accordingly, the node numbering illustrated in Fig. 9(b) lies on the one of the possible 

optimal node numbering. 

One of the important steps in dealing with the OSP\OEP and structural identification of 

this structure is to select the appropriate features of the applied excitation through the 

exciters. The last natural frequency obtained from the FEM lies on 797.33 Hz corresponding 

to the last mode of vibration. On the other hand, as the proposed strategy requires integration 

of accelerations, thus it is preferred to utilize a regular and smooth random force for this 

application rather than a very irregular and complex one. In this regards, a random 

sinusoidal loading of 40-800 cycle per second (Hz) with the amplitude of [-2, 2] kN 

generated at 1000 sampling rate, and then it is interpolated to match 200 samplings. 

Accordingly, the first 1 sec of aforementioned loading is considered for OSP\OEP strategy, 

while the longer time-history record of 5 sec is selected for identification purpose. The 

schematic view of the original applied loading and its reduced data length are depicted in 

Figs. 10(a) and (b) for the first one second of loading, respectively. 

As it is apparent in Fig. 10(b), the applied loading (on reduced data length) is smoother 

than the original one. However, it contains the entire frequency contents in order to extract 

all characteristics of vibration. Moreover, for FE of DGA_N strategy, a larger sampling rate 

of 200 S/s is utilized for Newmark’s constant-average acceleration method to integrate the 

entire frequency components. In contrast, in DGA_W strategy the wavelet-based FE of 

individuals is performed on the reasonably lesser sampling of 100 S/s. The DGA strategies 

are implemented for determining the OSP\OEP scenarios for different number of available 

sensors and exciters. The results are displayed in Table 3 for the use of DGA_W and 

DGA_N. Subsequently, the obtained locations for OSP\OEP1 (availability of 10 sensors and 

4 exciters) are also highlighted in Fig. 9(b). Data displayed in Table 3 demonstrates the 

highest computational efficiency achieved by DGA_W compared to DGA_N. For instance, 

the CPU time taken known as the indication of the cost of analysis is reduced by about 48% 

for OSP\OEP1 or by 32% for OSP\OEP3 for the use of DGA_W. In addition, it is observed 

that the x and y DOFs of node 11 are obtained as the optimal sensor locations for all three 

OSP considered. As a consequence, locations 11(x,y) may be interpreted as the so-called 

“vital sensor placements”. It is also inferred that, the obtained OEP scenarios for all cases 

lies on the z direction. This is most probably due to the lesser global rigidity of the structure 

in this direction in addition with the highest effect of the gravity, which will result in the 

maximum influence of loading at this direction. More importantly, it is seen that for 

OSP\OEP3 and above, the z direction of corner nodes is being consistently selected as the 

optimal sensor locations. The comparison of computational efficiency and convergence rate 

for OSP\OEP3 displayed in Table 3 using DGA_W and DGA_N are provided in Fig. 11. 

The emphasis is the fitness value history and CPU time taken in achieving to the prescribed 

number of generations (3×150 generations). 
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Figure 9. A double-layered space truss, (a) different views, (b) node numbering and OSP\OEP1 

shown in Table 3, (c) the first 4 structural mode shapes, (d) structural characteristics 
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Figure 10. The first one second time-history of input loading, (a) at 1000 sampling, (b) at 500 

reduced sampling (reduced data point) 

 

Table 3: OSP\OEP scenarios obtained for different number of available Sens.\Exs. using 

DGA_W and DGA_N 

 
Node number (sensor\exciter in x, y or z 

directions) 

CPU Time (min) 

DGA_W DGA_N 

OSP\OEP1(10 Sens., 

4 Acts.) 

Top: 

OSP: 11(x,y), 10(y), 29(y), 7(x), 

16(x) 
41.12 79.03 OEP: 6(z), 13(z), 15(z), 37(z) 

Bottom: OSP: 27(x), 35(x), 28(y), 39(y) 

OSP\OEP2(20 Sens., 

6 Acts.) 

Top: 

OSP: 3(x), 23(y), 7(x), 15(x), 

11(x,y), 29(y), 13(x), 16(x), 

10(y), 9(y), 19(x) 

58.32 95.44  OEP: 6(z), 13(z), 15(z), 37(z) 

Bottom: 
OSP: 12(x,y), 31(y), 33(x,y), 

27(x), 35(x), 38(y) 

 OEP: 30(z), 32(z) 

OSP\OEP3(30 Sens., 

10 Acts.) 

Top: 

OSP: 3(y), 4(x), 7(x), 23(x), 
29(y), 9(x), 10(y), 8(y), 16(x), 

19(y), 18(x), 11(x,y), 34(y), 1(z), 

14(z), 21(z), 40(z) 

70.51 103.59  
OEP: 6(z), 13(z), 15(z), 37(z), 

7(z), 10(z), 16(z), 29(z) 

Bottom: 
OSP: 12(x,y), 27(x), 30(y), 

31(x,y), 35(x), 36(y), 39(x,y) 

 OEP: 30(z), 32(z) 
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Figure 11. Comparison of computational efficiency and convergence rate for OSP\OEP3 using 

DGA_W and DGA_N, (a) fitness value history for 450 generations (Gen), (b) simulation scheme 

utilized and CPU time taken (min) at 3 stages of SDR 

 

The first notable consideration on the comparison of fitness value histories shown in Fig. 

11(a) deals with the highest speed of the convergence due to DGA_W. It is evident from the 

figure that the GA-based exploration phase (using the fast Haar wavelet before the first 

SDR) is optimally accomplished by an efficient search around the local optimum solutions. 

Furthermore, it is seen that the GA-based exploitation phase is broadly focused on the 

second (using the fast and precise LW operations after the first SDR takes place) and the 

third stage (using the accurate SCW operations after second SDR), in which that, the small 

variations around the global optimum solution is existed. In addition, it should be taken into 

account that the convergence rate and the computational competency are in fact the 

necessary and sufficient conditions to demonstrate the robustness of the OSP\OEP strategy. 

The complementary investigation is carried out on the computational efficiency of the 

proposed strategy in terms of the analysis cost. Accordingly, Fig. 11(b) shows one of the 

very interesting observations for the use of DGA_W compared to DGA_N in recording the 

optimum cost of the analysis at three stages that SDR takes place two times corresponding to 

the employment of different wavelet functions.  

Basically, the noise-free input loads are applied through the exciters based on OEP 

scenarios. However, the inherent of output signals (simulated accelerations) lies on the noise 

contaminated signals because of the highly varying transient responses due to the 

complexity of the structure. It can be overtly seen in Fig. 11(a) that the considerably larger 

fitness value is gained for DGA_W. This is due to the lesser effect of I/O noise to the signal 

on the proposed DGA_W strategy that has led to the better fitness value.  

Eventually, in order to validate the obtained scenarios of OSP\OEP shown in Table 3, the 

stiffness identification of this structure is conducted 5 times using water cycle optimization 

algorithm (WCA) on another 4 random OSP\OEP and considered one (as shown in Table 3). 

The ±15% of axial rigidity (E×Area) of each structural member is treated as unknown 

stiffness for the sake of comparision.  

The first observation from 3×5 times running the identification program as the 

preliminary tests lies on the best identification results for considered OSP\OEP in Table 3. 
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This is exactly in agreement with the FE of DGA strategy (implemented for placement) so 

that the optimization proceeds by minimizing the differences between the time-history of 

accelerations. Furthermore, it is observed that a very large value of error measurement in 

identification of one structural element may significantly alter the mean value of error and it 

could not be as a reliable indication for further comparisons. For this reason, mean value and 

max value of errors (%) in identified stiffness are presented separately and plotted in Fig. 12 

for only OSP\OEPs displayed in Table 3. 

 

 

Figure 12. Maximum (max) and mean error (%) in identified stiffness of structural members and 

recorded CPU time (min) corresponding to different OSP\OEPs shown in Table 3 

 

It was anticipated that, the maximum error values would return to the OSP\OEP1, which 

about 9% of all DOFs are measured. Consequently, as the number of master DOFs are far 

lesser than the OSP\OEP4 the most optimum CPU time was recorded for OSP\OEP1 

scenario. 

 

 

7. CONCLUSIONS 
 

In this paper, a wavelet-based genetic algorithm strategy is introduced for optimal 

sensor\exciter placement (OSP\OEP) desirable for time-domain structural identification of 

large-scaled problems. As the fitness evaluation is benefited by an optimum approach, it is 

more convenient to perform a multi-species GA for an efficient search on the wide space of 

feasible solutions (in referring to the numerous DOFs). In this regards, a local operation of 

mutation is presented through a multi-species decimal coding GA for focusing on the local 

optima. For this aim, the natural operation of mutation and forced mutation are carried out 

by selecting the only connected and adjacent DOFs corresponding to different species. It 

provides a comprehensive search around the local optima while the random search on 

feasible possibilities proceeds, especially in large-scaled systems. In addition, the fitness 

evaluation (known as the core of GA) is significantly improved towards the most optimum 

strategy by using adaptive wavelet functions at three stages. It was inferred that, the 
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combined multi-species GA may be adopted through the compatible search domain 

reduction (SDR) suitable for OSP\OEP in large-scaled structures. It was confirmed that, 

because of the property of unconditional stability of wavelets for structural simulation, from 

the computational efficiency point of view the fitness evaluation is considerably enhanced 

by using longer time intervals (shorter sampling rates). The emphasis was on precisely 

capturing broad frequency contents of the dynamic responses with adaptive collocation 

points of wavelets. It was concluded that, especially for large-scaled systems with numerous 

DOFs as possible solutions, by using adaptive wavelets for FE concurrent with an efficient 

SDR the proposed OSP\OEP strategy is optimally achieved. The far lesser computational 

time is taken in achieving a prescribed number of generations and resulting in the very cost-

effective strategy compared with existing algorithms. It was deduced that, the GA-based 

exploration and exploitation phases are optimally satisfied by the used of improved fitness 

evaluation at three stages, and therefore a faster convergence rate is accomplished. In 

addition, the lesser effects of I/O noise to the signal were recorded for the proposed DGA_W 

compared with DGA_N. The proposed wavelet-based fitness evaluation has considerably 

enhanced the computational performance of the OSP\OEP strategy, in terms of reliability, 

accuracy and computational cost (CPU time). Consequently, for the purpose of a reliable 

structural identification in time-domain (which is basically based on minimization of the 

distance between measured and simulated responses), the most accurate OSP\OEP strategy 

is gained by the proposed strategy with the superior computational performance. Overall, the 

practice of the proposed strategy in this paper in variety of structural control problems is 

rigorously recommended. 
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APPENDIX A. OPTIMAL NODE NUMBERING 
 

The brief description on the utilized strategy for optimal node numbering is presented in this 

section. Basically, a GA-based decimal two-dimensional array coding is proposed for this 

purpose as tabulated in Table A.1. 
 

Table A.1: Operation process of decimal two-dimensional array strategy for optimal node 

numbering 

Variables (sequence of nodal 

numbering for fixed coordinates) 
 

 1 2 3 … 
Total number of nodes 

including supports 

Individual gene pair before 

crossover and forced 
mutation 

Parent 1: 6 19 31 … 69 

Parent 2: 2 69 7 … 19 

 

The highest fitness of each individual for optimal node numbering returns to the shortest 

bandwidth of stiffness matrix for structural elements considered, therefore one may obtain 

fitness=1/(bandwidth[K]). 
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APPENDIX B. WAVELET OPERATIONAL MATRICES 
 

This appendix is devoted to the derivation of operation matrix P of integration 

(corresponding to FCW, SCW and LW). One may approximate the integration of      as 

(assumption of   2): 

 

       
 

 

           (A.1) 

 

As was mentioned before, the subscripts of     and    indicate the dimension of 

matrices. Correspondingly, the                -dimensional operational matrix P for 

FCW, SCW and LW is derived as [36-39]: 

 

  
 

  

 
 
 
 
 
               
               

     
     
      

 
 
 
 

 

 

(A.2) 

 

where,     square matrices F and L are given as follows: 

 

  

 
 
 
 
 
 
      
      
       
      
      

        
 
 
 
 
 

   

 
 
 
 
 
 
 
 

            
             
            
            
        
        

              

             
 
 
 
 
 
 
 

 (A.3) 

 

There is a similar population for components of P corresponding to considered wavelets. 

Therefore the coefficients of    are obtained as in Table B.1: In order to calculate operation 

matrix of P for FCW, SCW and LW, a backward algorithm of program coding is 

recommended. In other words, only the first four rows and columns of P are being 

calculated, firstly. At the second stage, the components of P being calculated and replaced 

from the last row and column  th until computation of the 5th row and column [36-39]. 
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Table B.1: Coefficients of    to calculate operation matrix of integration of FCW, SCW and 

Legendre wavelets 

   Legendre wavelet  FCW SCW 

   0            

   0 

  

 
 
       

 

 
         

   
  

      
  

 
  

 

 
 

                    

   0           

   0           

               

                       

   0 0 0 

   0 0 0 
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Note: FCW= first Chebyshev wavelet, SCW= second Chebyshev wavelet 
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